TW201924769A - Regenerative catalytic oxidizer for the abatement of VOCs laden gases - Google Patents

Regenerative catalytic oxidizer for the abatement of VOCs laden gases Download PDF

Info

Publication number
TW201924769A
TW201924769A TW106141338A TW106141338A TW201924769A TW 201924769 A TW201924769 A TW 201924769A TW 106141338 A TW106141338 A TW 106141338A TW 106141338 A TW106141338 A TW 106141338A TW 201924769 A TW201924769 A TW 201924769A
Authority
TW
Taiwan
Prior art keywords
catalytic
regenerator
regenerative
vocs
temperature
Prior art date
Application number
TW106141338A
Other languages
Chinese (zh)
Inventor
張榮興
Original Assignee
張榮興
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 張榮興 filed Critical 張榮興
Priority to TW106141338A priority Critical patent/TW201924769A/en
Publication of TW201924769A publication Critical patent/TW201924769A/en

Links

Landscapes

  • Incineration Of Waste (AREA)

Abstract

This invention provides a novel regenerative catalytic oxidizer (RCO) for the abatement of VOCs laden gases. The said RCO is composed of at least two packed bed canisters, a high temperature oxidation reaction chamber connecting the said packed bed canisters, a set of bypass passages inside the packed bed canisters consist of higher porosity and lower capacity packing material in the said packed bed canisters, a layer of catalytic bed above the packed bed, a set of auto-controlled dampers connecting to the said bypass passages, and a programmable logic control system for temperature control. The said novel RCO consists of continuous feeding of combustible VOCs laden gases into the said packed bed canister, preheating the VOCs laden gases in the packed bed, oxidizing the VOCs at elevated temperature in the high temperature oxidation reaction chamber and catalytic beds, eliminating the over temperature of the combustion chamber due to high concentration of VOCs laden gases by adjusting the opening of the dampers for quick passages. The VOCs laden gases are destructed completely in the said regenerative catalytic oxidizer. The transient over temperature is eliminated by the bypassing of VOCs laden gases to the said oxidation reaction chamber through the said bypass passages when the concentration of inlet VOCs laden gases is higher than design value.

Description

處理VOCs廢氣的蓄熱再生型催化氧化器 Thermal storage regenerative catalytic oxidizer for treating VOCs exhaust gas

本創作之主要目的,係提供一種處理VOC廢氣的的蓄熱再生型催化氧化器(Regenerative Catalytic Oxidizer,RCO),其特徵是在催化蓄熱室內設有冷旁通快速通道及流量控制閥門,經由高溫氧化反應室超溫邏輯控制器,使得部分VOCs廢氣可以維持在較低溫度直接進入高溫氧化反應室,可以徹底解決蓄熱再生型催化氧化器(RCO)在VOC廢氣濃度超限時,經常發生的高溫氧化反應室超溫及燃爆的問題。 The main purpose of the present invention is to provide a Regenerative Catalytic Oxidizer (RCO) for treating VOC exhaust gas, which is characterized in that a cold bypass fast path and a flow control valve are provided in the catalytic heat storage chamber, and the high temperature oxidation is performed. The reaction chamber over-temperature logic controller allows some VOCs to be kept at a lower temperature and directly enters the high-temperature oxidation reaction chamber, which can completely solve the high-temperature oxidation that occurs when the regenerative regenerative catalytic oxidizer (RCO) exceeds the VOC exhaust gas concentration. The problem of overheating and explosion in the reaction chamber.

揮發性有機化合物(Volatile Organic Compounds,VOCs)是工業界常見空氣污染物之一,其主要來源為化主廠、石化工業、橡膠業、塑膠業、印刷業、塗裝業、膠帶業、電路板業以及近年來新興之高科技半導體積體電路製造與光電液晶顯示器產業。由於VOCs具有毒性以及容易破壞大氣臭氧層,所以必須加以控制以避免危害地球環境。現行已開發及商業化之VOCs污染防制設備技術包含焚化、吸附、吸收、冷凝等方法,其基本上可分為破壞性及非破壞性兩種方法。破壞性方法包括焚化、高溫氧化與觸媒氧化,在此機制下VOCs將轉化為CO2及水 或其他惰性等污染性較小之物質;而非破壞性方法則是利用吸附、吸收及冷凝等物理方法,將VOCs自排放廢氣中以物理方法轉移,使其成為乾淨氣體。 Volatile Organic Compounds (VOCs) are one of the common air pollutants in the industry. Their main sources are chemical, petrochemical, rubber, plastics, printing, coating, tape, and circuit boards. And the emerging high-tech semiconductor integrated circuit manufacturing and optoelectronic liquid crystal display industry in recent years. Because VOCs are toxic and easily destroy the atmospheric ozone layer, they must be controlled to avoid harm to the global environment. The currently developed and commercialized VOCs pollution prevention equipment technology includes incineration, adsorption, absorption, condensation and the like, which can be basically divided into two methods: destructive and non-destructive. Destructive methods include incineration, high temperature oxidation and catalyst oxidation. Under this mechanism, VOCs will be converted into CO 2 and water or other inert materials such as less polluting; non-destructive methods use adsorption, absorption and condensation. Physically, VOCs are physically transferred from the exhaust gas to make it a clean gas.

目前商業化技術,一般而言,低濃度排氣(<10-20mg/m3)大部分以活性碳吸附處理,中低濃度廢氣(50-1000mg/m3)使用吸附濃縮/脫附焚化法處理,中濃度廢氣(500-5,000mg/m3)使用蓄熱式氧化法(RTO)處理或蓄熱催化氧化(RCO)處理,高濃度廢氣(>5,000-10,000mg/m3)則以火焰焚化(DFTO)、高溫脈衝波反應器結合RTO(PDR-RTO)、冷凝回收處理。若含中低濃度硫或氮成分臭氣,則可以用化學洗滌法處理。然而,上述各常用之處理方法中均有其優缺點及適用之場合,尤其對於VOCs濃度較高的情況,目前商業化的處理方法,除了PDR-RTO意外,均面對處理操作成本高、容易產生爆炸或火災風險的困擾。 At present, commercialization technology generally uses low-concentration exhaust gas (<10-20mg/m 3 ) for active carbon adsorption treatment, and low-concentration exhaust gas (50-1000mg/m 3 ) for adsorption concentration/desorption incineration. Treatment, medium-concentration exhaust gas (500-5,000mg/m 3 ) is treated by regenerative oxidation (RTO) or thermal catalytic oxidation (RCO), and high-concentration exhaust gas (>5,000-10,000mg/m 3 ) is incinerated by flame ( DFTO), high temperature pulse wave reactor combined with RTO (PDR-RTO), condensation recovery treatment. If the medium or low concentration sulfur or nitrogen component is odorous, it can be treated by chemical washing. However, all the above-mentioned common processing methods have their advantages and disadvantages and applications. Especially for the case of high concentration of VOCs, the current commercial processing methods, in addition to the PDR-RTO accident, are costly and easy to handle. Trouble with the risk of explosion or fire.

再生蓄熱催化氧化法(RCO)是在蓄熱床頂部填充一層多孔性催化材料及一層多孔性保護材料,利用催化劑的低溫氧化特性,控制高溫氧化反應室操作溫度於300~450℃間的最適催化反應溫度,提供VOC廢氣催化反應條件,達成破壞效率的要求。但由於催化劑對於溫度具有較高的敏感性,高溫氧化反應室溫度控制就變成極為重要的參數。 The regenerative thermal catalytic oxidation (RCO) method is to fill a layer of porous catalytic material and a porous protective material on the top of the regenerator bed, and to control the optimum catalytic reaction temperature between 300 and 450 ° C in the high temperature oxidation reaction chamber by using the low temperature oxidation characteristics of the catalyst. The temperature provides the VOC exhaust gas catalytic reaction conditions to meet the requirements for destruction efficiency. However, due to the high sensitivity of the catalyst to temperature, the temperature control of the high temperature oxidation reaction chamber becomes an extremely important parameter.

典型的蓄熱再生型催化氧化器(RCO)如第1圖所示。蓄熱再生型催化氧化器1至少包括二個催化蓄熱室(包含:第一催化蓄熱室10、第二催化蓄熱室20)、進氣控制設備(包含:第一催化蓄熱室入氣閥110、第二催化蓄熱室入氣閥112)、出氣控制設備(包含:第一催化蓄熱室排氣閥130、第二催化蓄熱室排氣閥 132)、加熱設備(包含:燃燒機60、輔助燃料供應管線201、輔助燃料流量調節閥202、空氣流量調節閥212)及溫度控制設備(包含:燃燒安全控制器300、溫度感測傳送器301),蓄熱床內填充石質或陶瓷蓄熱材料(包含:第一催化蓄熱室的多孔蓄熱床12、及第二催化蓄熱室的多孔蓄熱床22)及多孔触媒床(包含:第一催化蓄熱室的多孔觸媒床13,及第二催化蓄熱室的多孔觸媒床23)。 A typical heat storage regenerative catalytic oxidizer (RCO) is shown in Figure 1. The heat storage regeneration type catalytic oxidizer 1 includes at least two catalytic regenerators (including: a first catalytic regenerator 10, a second catalytic regenerator 20), and an intake control device (including: a first catalytic regenerator inlet valve 110, a first a second catalytic regenerator inlet valve 112), an outlet control device (including: a first catalytic regenerator exhaust valve 130, a second catalytic regenerator exhaust valve 132), heating device (including: combustion machine 60, auxiliary fuel supply line 201, auxiliary fuel flow regulating valve 202, air flow regulating valve 212) and temperature control device (including: combustion safety controller 300, temperature sensing transmitter 301) The regenerator is filled with a stone or ceramic heat storage material (including: a porous regenerator bed 12 of a first catalytic regenerator and a porous regenerator bed 22 of a second catalytic regenerator) and a porous catalyst bed (including: a first catalytic regenerator) The porous catalyst bed 13 and the porous catalyst bed 23 of the second catalytic regenerator.

蓄熱再生型催化氧化器1啟動時,先關閉三向旁通閥102,將揮發性有機化學廢氣100經揮發性有機化學廢氣旁通管道103導向揮發性有機化學廢氣旁通排放口150;開啟空氣閥106,將空氣管線211內的空氣210,經催化蓄熱室入氣管道108送進蓄熱再生型催化氧化器1;接著啟動燃燒機60,利用溫度感測傳送器301訊號,由燃燒安全控制器300調節控制空氣流量調節閥212及輔助燃料流量調節閥202,將輔助燃料200經輔助燃料供應管線201送至燃燒機30;先將高溫氧化反應室50升溫到操作溫度Tc,然後再啟動三向旁通閥102,將揮發性有機化學廢氣100導入系統。欲處理的揮發性有機化學廢氣100經揮發性有機化學廢氣入氣管道101,由三向旁通閥102控制,在正常操作情況下,經火焰防阻器104作適當保護後,經催化蓄熱室入氣管道108;首先開啟第一催化蓄熱室入氣閥110、關閉第一催化蓄熱室排氣閥130,並關閉第二催化蓄熱室入氣閥112、開啟第二催化蓄熱室排氣閥132,將VOCs廢氣經第一催化蓄熱室入氣管道111導入第一催化蓄熱室10,氣體首先進入第一催化蓄熱室的入氣室11,均勻送進第一催化蓄熱室的多孔蓄熱床12預熱至一定溫度後,再流經過第一催化蓄熱室的多孔觸媒床13進行部分氧化,然 後再經過高溫氧化室50調節到最適催化反應溫度,然後,再送到第二催化蓄熱室20,經第二催化蓄熱室的多孔觸媒床23進行高溫催化氧化反應,將含VOCs廢氣中的VOCs徹底破壞;其後,高溫氣體再流經第二催化蓄熱室的多孔蓄熱床22將高溫氣體之顯熱儲存在原已冷卻之第二催化蓄熱室的多孔蓄熱床22蓄熱材內;經熱交換後的氣體,再經第二催化蓄熱室的入氣室21混合後,以較低的溫度經第二催化蓄熱室排氣管道133,從第二催化蓄熱室排氣閥132流向排氣管道144,經誘引排風機145抽引,排經尾排氣管道147流向排氣煙囪80排放。待一定時間後,切換閥門,將欲處理的揮發性有機化學廢氣100導入該已經蓄存能量的高溫床第二催化蓄熱室20預熱,反應後高溫氣體能量則儲存於第一催化蓄熱室10,完成一操作循環。此作業方法是關閉第一催化蓄熱室入氣閥110、開啟第一催化蓄熱室排氣閥130,並開啟第二催化蓄熱室入氣閥112、關閉第二催化蓄熱室排氣閥132,將VOCs廢氣經第二催化蓄熱室入氣管道113導入第二催化蓄熱室20,氣體首先進入第二催化蓄熱室的入氣室21,均勻送進第二催化蓄熱室的多孔蓄熱床22預熱至一定溫度後,再流經過第二催化蓄熱室的多孔觸媒床23進行部分氧化,然後再經過高溫氧化室50調節到最適催化反應溫度,然後,再送到第一催化蓄熱室10,經第一催化蓄熱室的多孔觸媒床13進行高溫催化氧化反應,將含VOCs廢氣中的VOCs徹底破壞;其後,高溫氣體再流經第一催化蓄熱室的多孔蓄熱床12將高溫氣體之顯熱儲存在原已冷卻之第一催化蓄熱室的多孔蓄熱床12蓄熱材內;經熱交換後的氣體,再經第一催化蓄熱室的入氣室11混合後,以較低的溫度經第一催化蓄熱室排氣管 道131,從第一催化蓄熱室排氣閥130流向排氣管道144,經誘引排風機145抽引,排經尾排氣管道147流向排氣煙囪80排放。RTO及RCO雖然已經廣泛應用在各種領域上,但是在操作實務卻是意外頻傳,超溫、回火、燃爆等意外,經常發生。追究其原因,通常是由於前端製程擾動,造成VOC廢氣濃度及流量的快速改變,使得RTO及RCO的高溫氧化反應室溫度失控所造成。例如,欲處理的揮發性有機化學廢氣100濃度如超過原設計濃度,當揮發性有機化學廢氣100經揮發性有機化學廢氣入氣管道101,由三向旁通閥102控制,經火焰防阻器104作適當保護後,經催化蓄熱室入氣管道108;經由開啟的第一催化蓄熱室入氣閥110導入第一催化蓄熱室10,氣體在第一催化蓄熱室的多孔蓄熱床12預熱至一定溫度後,再流經過第一催化蓄熱室的多孔觸媒床13進行部分氧化,然後送至高溫氧化室50,此時,由於VOCs廢氣濃度高於設計值,氣體到達第二催化蓄熱室20經第二催化蓄熱室的多孔觸媒床23進行高溫催化氧化反應後,除了將含VOCs廢氣中的VOCs徹底破壞,也同時釋放出高於原設計值的能量;其後,高溫氣體再流經第二催化蓄熱室的多孔蓄熱床22將高溫氣體之顯熱儲存在原已冷卻之第二催化蓄熱室的多孔蓄熱床22蓄熱材內時,所儲存的能量將高於原設計值。待一定時間後,切換閥門,將欲處理的揮發性有機化學廢氣100導入該已經蓄存能量的高溫床第二催化蓄熱室20預熱,反應後高溫氣體能量則儲存於第一催化蓄熱室10,完成一操作循環。此時VOCs廢氣導入第二催化蓄熱室20,氣體在第二催化蓄熱室的多孔蓄熱床22熱交換會獲得高於原設計值的能量,再流經過第二催化蓄熱室的多孔觸媒床23進行部分氧 化,又產生高於設定值的能量,使得高溫氧化室50的溫度漸升,然後,氣體再送到第一催化蓄熱室10,經第一催化蓄熱室的多孔觸媒床13進行高溫催化氧化反應,再放出多於設計值的能量;其後,高溫氣體再流經第一催化蓄熱室10將更多的能量儲存在第一催化蓄熱室的多孔蓄熱床12蓄熱材內;如此,當VOCs廢氣濃度升高後,蓄熱再生型催化氧化器1的操作溫度將持續升高,甚至導致失控。 When the heat storage regeneration type catalytic oxidizer 1 is started, the three-way bypass valve 102 is first closed, and the volatile organic chemical waste gas 100 is led to the volatile organic chemical waste gas bypass discharge port 150 through the volatile organic chemical waste gas bypass pipe 103; The valve 106 sends the air 210 in the air line 211 to the thermal storage regenerative catalytic oxidizer 1 through the catalytic regenerator inlet duct 108; then, the combustion engine 60 is started, and the temperature sensing transmitter 301 signal is used, and the combustion safety controller is used. 300 air-conditioning control flow regulating valve 212 and the pilot fuel flow rate control valve 202, the auxiliary fuel 200 through the auxiliary fuel supply line 201 to the combustor (30); first high temperature oxidation reaction chamber 50 raised to the operating temperature T c, then start three To the bypass valve 102, the volatile organic chemical exhaust gas 100 is introduced into the system. The volatile organic chemical exhaust gas 100 to be treated is controlled by a three-way bypass valve 102 via a volatile organic chemical exhaust gas inlet pipe 102, and under normal operation, after being properly protected by the flame resistor 104, the catalytic regenerator The air inlet duct 108 first opens the first catalytic regenerator inlet valve 110, closes the first catalytic regenerator exhaust valve 130, and closes the second catalytic regenerator inlet valve 112 and opens the second catalytic regenerator exhaust valve 132. The VOCs exhaust gas is introduced into the first catalytic regenerator 10 through the first catalytic regenerator inlet pipe 111, and the gas first enters the inlet chamber 11 of the first catalytic regenerator, and is uniformly fed into the porous regenerator bed 12 of the first catalytic regenerator. After being heated to a certain temperature, it is partially oxidized by flowing through the porous catalyst bed 13 of the first catalytic regenerator, and then adjusted to the optimum catalytic reaction temperature through the high temperature oxidation chamber 50, and then sent to the second catalytic regenerator 20, The porous catalyst bed 23 of the second catalytic regenerator undergoes a high temperature catalytic oxidation reaction to completely destroy the VOCs in the VOCs-containing exhaust gas; thereafter, the high temperature gas flows through the porous regenerator bed 22 of the second catalytic regenerator The sensible heat of the high temperature gas is stored in the heat storage material of the porous heat storage bed 22 of the second cooled catalytic regenerator; the heat exchanged gas is mixed with the gas inlet chamber 21 of the second catalytic regenerator, and is lower. The temperature flows through the second catalytic regenerator exhaust duct 133 from the second catalytic regenerator exhaust valve 132 to the exhaust duct 144, is drawn by the induced exhaust fan 145, and exhausted through the exhaust exhaust duct 147 to the exhaust stack 80. After a certain period of time, the valve is switched, and the volatile organic chemical waste gas 100 to be treated is introduced into the high temperature bed second catalytic regenerator 20 that has stored energy, and the high temperature gas energy is stored in the first catalytic regenerator 10 after the reaction. , complete an operation cycle. The operation method is to close the first catalytic regenerator inlet valve 110, open the first catalytic regenerator exhaust valve 130, and open the second catalytic regenerator inlet valve 112 and close the second catalytic regenerator exhaust valve 132. The VOCs exhaust gas is introduced into the second catalytic regenerator 20 through the second catalytic regenerator inlet duct 113, and the gas first enters the inlet chamber 21 of the second catalytic regenerator, and is uniformly fed into the porous regenerator bed 22 of the second catalytic regenerator to be preheated to After a certain temperature, it is further oxidized by the porous catalyst bed 23 of the second catalytic regenerator, and then adjusted to the optimum catalytic reaction temperature by the high temperature oxidation chamber 50, and then sent to the first catalytic regenerator 10, first. The porous catalyst bed 13 of the catalytic regenerator performs a high-temperature catalytic oxidation reaction to completely destroy the VOCs in the VOCs-containing exhaust gas; thereafter, the high-temperature gas flows through the porous regenerator bed 12 of the first catalytic regenerator to store the sensible heat of the high-temperature gas. In the heat storage material of the porous heat storage bed 12 of the first cooled first catalytic regenerator; the heat exchanged gas is mixed with the gas inlet chamber 11 of the first catalytic regenerator, and then passed through the first temperature at a lower temperature. Regenerator exhaust duct 131, from the first catalyst regenerator exhaust valve 130 to the exhaust pipes 144, 145 by evacuating attractant exhaust fan, the exhaust 80 discharged through the exhaust duct 147 to the exhaust end of the chimney. Although RTO and RCO have been widely used in various fields, the practice of operation is accidental, and accidents such as over-temperature, tempering, and explosion have occurred frequently. The reason for this is usually caused by the front-end process disturbance, which causes the VOC exhaust gas concentration and flow rate to change rapidly, which causes the temperature of the high temperature oxidation reaction chamber of RTO and RCO to be out of control. For example, if the concentration of the volatile organic chemical exhaust gas 100 to be treated exceeds the original design concentration, when the volatile organic chemical exhaust gas 100 passes through the volatile organic chemical exhaust gas inlet pipe 101, it is controlled by the three-way bypass valve 102, and the flame retarder is controlled. After proper protection, 104 is passed through the catalytic regenerator inlet duct 108; the first catalytic regenerator inlet valve 110 is introduced into the first catalytic regenerator 10, and the gas is preheated in the porous regenerator bed 12 of the first catalytic regenerator to After a certain temperature, it is partially oxidized through the porous catalyst bed 13 of the first catalytic regenerator, and then sent to the high temperature oxidation chamber 50. At this time, the gas reaches the second catalytic regenerator 20 because the VOCs exhaust gas concentration is higher than the design value. After the high-temperature catalytic oxidation reaction is carried out through the porous catalyst bed 23 of the second catalytic regenerator, in addition to completely destroying the VOCs in the VOCs-containing exhaust gas, energy higher than the original design value is simultaneously released; thereafter, the high-temperature gas flows again. When the porous regenerator bed 22 of the second catalytic regenerator stores the sensible heat of the high temperature gas in the heat storage material of the porous regenerator bed 22 of the originally cooled second catalytic regenerator, the stored energy will be higher than Original design value. After a certain period of time, the valve is switched, and the volatile organic chemical waste gas 100 to be treated is introduced into the high temperature bed second catalytic regenerator 20 that has stored energy, and the high temperature gas energy is stored in the first catalytic regenerator 10 after the reaction. , complete an operation cycle. At this time, the VOCs exhaust gas is introduced into the second catalytic regenerator 20, and the heat exchange of the gas in the porous regenerator bed 22 of the second catalytic regenerator obtains energy higher than the original design value, and then flows through the porous catalyst bed 23 of the second catalytic regenerator. Partial oxidation is performed, and energy higher than the set value is generated, so that the temperature of the high temperature oxidation chamber 50 is gradually increased. Then, the gas is sent to the first catalytic regenerator 10, and the high temperature catalysis is performed through the porous catalyst bed 13 of the first catalytic regenerator. Oxidation reaction, then releasing more energy than the design value; thereafter, the high temperature gas flows through the first catalytic regenerator 10 to store more energy in the heat storage material of the porous regenerator bed 12 of the first catalytic regenerator; After the VOCs increase in exhaust gas concentration, the operating temperature of the thermal storage regenerative catalytic oxidizer 1 will continue to rise and even lead to runaway.

為了解決VOC廢氣濃度升高時,高溫氧化室的溫度瞬間超溫導致系統跳車的問題,美國專利US5837205在高溫氧化反應室50設置對大氣的緊急旁通開口,當系統一旦有發生超溫情況的可能時,就自動開啟緊急旁通開口,將高溫氣體直接排放,這種技術統稱為『熱旁通技術』;這種技術單純為了設備安全考量,完全不考慮可能發生的工業安全問題及污染物排放問題。這種『熱旁通技術』,在產業界實際應用時,工安問題不斷。當系統操作超溫時,開啟熱旁通瞬間排出的高溫氣體常會引燃VOCs廢氣,造成嚴重的工安意外,爆炸事件時有所聞。 In order to solve the problem that the temperature of the high-temperature oxidation chamber is over-temperature caused by the instantaneous over-temperature of the VOC exhaust gas to cause the system to jump, U.S. Patent No. 5,837,205 sets an emergency bypass opening to the atmosphere in the high-temperature oxidation reaction chamber 50, and when the system has an over-temperature condition When possible, the emergency bypass opening is automatically opened to directly discharge high-temperature gas. This technology is collectively referred to as “thermal bypass technology”; this technology is purely for equipment safety considerations, and does not consider possible industrial safety problems and pollution. The problem of emissions. This kind of "hot bypass technology" has a constant problem of work safety when it is actually applied in the industry. When the system is operated over-temperature, the high-temperature gas that is instantaneously discharged when the thermal bypass is turned on will often ignite the VOCs, causing serious accidents and accidents.

台灣發明專利I 504844及I 448657、中國發明專利ZL 2012 1 0143533.6及ZL 2012 1 0549700.5則是針對濃度高於LEL以上的含VOCs廢氣,利用安裝在高溫氧化反應室50的高溫脈衝波反應器(PDR)進行處理,並利用廢熱回收鍋爐回收能源,安全的解決了濃度高於LEL以上的VOC廢氣的處理。亦即,根據以上分析,對於濃度偏高但是低於LEL以下,且濃度及流量會產生快速變化的含VOCs廢氣的處理問題,迄今產業界仍無安全可靠的方法可以解決。導致業界的蓄熱再生式催化氧化系統(RCO)在濃度容易產生變化的應用場合,仍經常遭遇 超溫失控的困境。 Taiwan invention patents I 504844 and I 448657, Chinese invention patents ZL 2012 1 0143533.6 and ZL 2012 1 0549700.5 are for high temperature pulse wave reactors (PDR) installed in the high temperature oxidation reaction chamber 50 for VOCs containing more than LEL. The treatment is carried out, and the waste heat recovery boiler is used to recover energy, and the treatment of VOC waste gas having a concentration higher than LEL is safely solved. That is to say, according to the above analysis, for the treatment problem of the VOCs-containing exhaust gas having a high concentration but lower than LEL and a rapid change in concentration and flow rate, the industry has not yet solved a safe and reliable method. The industry's regenerative regenerative catalytic oxidation system (RCO) is often encountered in applications where concentration is likely to change. The predicament of over temperature control.

蓄熱再生式催化氧化系統(RCO)的能源回收效率高是其優點,但由於石化、化工等產業的含VOCs廢氣通常而言,其特徵是濃度快速變化、流量快速變化;使用傳統的蓄熱再生式催化氧化系統(RCO)經常會發生超溫失控的困擾,甚或產生超溫燃爆的意外。若VOCs濃度較高,過剩能量無法有效排出蓄熱再生式催化氧化系統(RCO),且無法有效控制高溫氧化反應室的操作溫度,RCO即有溫度失控使得催化劑焚毀或產生燃爆的風險。近年來,國際上發生多起蓄熱再生式催化氧化系統(RCO)爆炸或焚毀的案例,主要即導因於誤將含高濃度VOCs廢氣導入蓄熱再生式催化氧化系統(RCO),在空氣供應調節不當的情況下,產生燃爆(Deflagration)或爆轟(Detonation)現象或超溫操作導致催化劑毀損。因此,改良現有蓄熱再生式催化氧化系統技術,創造一個可以有效控制VOCs燃燒所釋放出來的能量的方法及設備即為本創作的目的之一。 The high energy recovery efficiency of the regenerative regenerative catalytic oxidation system (RCO) is its advantage, but because the VOCs containing waste gas in petrochemical, chemical and other industries are generally characterized by rapid changes in concentration and rapid changes in flow rate; using conventional thermal storage regeneration Catalytic oxidation systems (RCOs) often suffer from over-temperature runaway, or even accidents that cause over-temperature explosions. If the concentration of VOCs is high, the excess energy cannot effectively discharge the regenerative regenerative catalytic oxidation system (RCO), and the operating temperature of the high temperature oxidation reaction chamber cannot be effectively controlled. The RCO has the risk of temperature loss and the catalyst is burned or ignited. In recent years, there have been many cases of explosion or incineration of regenerative regenerative catalytic oxidation system (RCO) in the world, mainly due to the accidental introduction of high-concentration VOCs into the regenerative regenerative catalytic oxidation system (RCO). In the event of improper conditions, a Deflagration or Detonation phenomenon or an over-temperature operation results in catalyst damage. Therefore, it is one of the purposes of the present invention to improve the existing regenerative regenerative catalytic oxidation system technology and to create a method and equipment for effectively controlling the energy released by the combustion of VOCs.

本創作之主要目的,係欲提供一種可以處理VOCs廢氣的蓄熱再生式催化氧化系統,其特徵是在催化蓄熱室內設有催化蓄熱室冷旁通快速通道及閥門,經由高溫氧化反應室超溫邏輯控制器控制空氣流量調節閥開度,使得部分VOCs廢氣可以經由換熱效率較低的催化蓄熱室冷旁通快速通道,以較低的溫度進入高溫氧化反應室,以抑制因為VOCs濃度變化造成的溫升問題,維持高溫氧化反應室可以控制在合理的溫度範圍,維持催化劑活性,徹底解決蓄熱再生型催化 氧化器(RCO)VOC廢氣濃度超限的高溫氧化反應室超溫問題。 The main purpose of this creation is to provide a regenerative regenerative catalytic oxidation system that can treat VOCs exhaust gas, which is characterized in that a catalytic regenerator is provided with a cold bypass bypass passage and a valve in the catalytic regenerator, and an ultra-temperature logic is passed through the high-temperature oxidation reaction chamber. The controller controls the opening of the air flow regulating valve, so that part of the VOCs exhaust gas can pass through the cold bypass bypass fast passage of the catalytic regenerator with low heat exchange efficiency, and enter the high temperature oxidation reaction chamber at a lower temperature to suppress the change of the VOCs concentration. Temperature rise problem, maintaining high temperature oxidation reaction chamber can be controlled within a reasonable temperature range, maintaining catalyst activity, completely solving the heat storage regeneration type catalysis Oxidizer (RCO) VOC exhaust gas concentration over-temperature problem of high temperature oxidation reaction chamber over temperature.

分析這種超溫問題的解決方案,可以從第1圖之傳統的蓄熱再生式催化氧化系統(RCO)的特徵,來思考解決方案。蓄熱再生式催化氧化系統之熱回收率,一般定義為:R=(Tc-To)/(Tc-Ti)x 100% (1)其中Tc為蓄熱再生式高溫氧化系統的高溫氧化反應室50內氣體最高溫度或操作溫度(即最高氧化溫度)、To為蓄熱再生式高溫氧化系統(即regenerative oxidizer)排氣管道144出口溫度、Ti為欲處理的揮發性有機化學廢氣100在催化蓄熱室入氣管道108之入口溫度。設若Tc、To、Ti分別為400℃、85℃、50℃,則R=(400-85)/(400-50)x 100%=90%由上計算例所代表的意義是蓄熱再生型催化氧化器(RCO)本身的能源回收效率如果設計為90%,僅需提供能量使得欲處理的含揮發性有機化學廢氣100的溫度能提高35℃(To-Ti=85-50=35℃)即可將氣體中之VOCs氧化。一般而言,以蓄熱再生式催化氧化系統(RCO)處理含揮發性有機化學廢氣100的濃度大於1,500mg/m3之廢排氣(相當於一般VOC約500ppmv),除了啟動時燃燒機60需要輔助燃料以外;正常操作時,揮發性有機化學廢氣100內的有機揮發性成分氧化,所提供的熱量就足以滿足RCO系統穩定操作所需要的能量,正常操作即無需使用輔助燃料或電熱。這是RCO的優點,但是,也是構成RCO在石化、化工產業使用時,操作上面臨困難的重大缺點;由於RCO的催化劑對溫度比較敏感,如果 VOCs廢氣的濃度瞬間升高,則RCO的高溫氧化反應室50溫度將驟升;若VOCs廢氣的濃度升高為設計值以上且持續一段時間,則RCO的高溫氧化反應室50溫度將持續升溫、甚至導致失控。 A solution to this over-temperature problem can be considered from the characteristics of the conventional heat storage regenerative catalytic oxidation system (RCO) of Figure 1. The heat recovery rate of the regenerative regenerative catalytic oxidation system is generally defined as: R = (T c -T o ) / (T c -T i ) x 100% (1) where T c is the high temperature of the regenerative regenerative high temperature oxidation system The maximum temperature or operating temperature of the gas in the oxidation reaction chamber 50 (ie, the highest oxidation temperature), T o is the regenerative regenerative high temperature oxidation system (ie, regenerative oxidizer), the outlet temperature of the exhaust pipe 144, and T i is the volatile organic chemical waste gas to be treated. 100 is at the inlet temperature of the ingenating conduit 108 of the catalytic regenerator. If T c , T o , and T i are 400 ° C, 85 ° C, and 50 ° C, respectively, then R = (400 - 85) / (400 - 50) x 100% = 90%. The meaning represented by the above calculation example is heat storage. If the energy recovery efficiency of the regenerative catalytic oxidizer (RCO) itself is designed to be 90%, only the energy is required to increase the temperature of the volatile organic chemical exhaust gas 100 to be treated by 35 ° C (T o -T i =85-50 =35 ° C) can oxidize VOCs in the gas. In general, a waste gas containing a volatile organic chemical exhaust gas 100 having a concentration greater than 1,500 mg/m 3 (corresponding to a general VOC of about 500 ppmv) is treated with a regenerative regenerative catalytic oxidation system (RCO), except that the burner 60 is required at startup. In addition to the auxiliary fuel; in normal operation, the organic volatile components in the volatile organic chemical exhaust gas 100 are oxidized to provide sufficient energy for the stable operation of the RCO system, and normal operation requires no use of auxiliary fuel or electric heat. This is the advantage of RCO, but it is also a major disadvantage in the operation of RCO in the petrochemical and chemical industries. Because the catalyst of RCO is sensitive to temperature, if the concentration of VOCs is increased instantaneously, the high temperature oxidation of RCO The temperature of the reaction chamber 50 will rise rapidly; if the concentration of the VOCs exhaust gas rises above the design value for a period of time, the temperature of the high temperature oxidation reaction chamber 50 of the RCO will continue to heat up, and may even lead to runaway.

例如,假設蓄熱再生型催化氧化器1的設計平衡濃度為Co,亦即當VOCs廢氣的濃度為Co時,蓄熱再生型催化氧化器1可以穩定操作在溫度Tc無需輔助燃料。當揮發性有機化學廢氣100的濃度低於Co時,高溫氧化反應室50需要經由燃燒機60添加燃料,才能維持操作溫度。當揮發性有機化學廢氣100的濃度高於Co時,高溫氧化反應室50的操作溫度將會漸增。利用本創作的設計,讓部分揮發性有機化學廢氣經由冷旁通快速通道(例如:第一催化蓄熱室冷旁通快速通道125或第二催化蓄熱室冷旁通快速通道127)流進高溫氧化反應室50,假設該氣體流量佔揮發性有機化學廢氣100的總流量的α倍體積比例(α<1),且冷旁通快速通道的採用蓄熱容量低或比熱低的蓄熱材,使得經過冷旁通快速通道的氣體能量回收比例為正常蓄熱床的β倍(β<1),亦即經過冷旁通快速通道的氣體升溫△T s 為經過正常蓄熱床的氣體升溫為△T i β倍(β<1),亦即△T s =βT i ;則揮發性有機化學廢氣100流經冷旁通快速通道的比例α與含VOCs氣體濃度與平衡設計濃度之比值C/Co、高溫氧化反應室50的操作溫度Tc與經過正常蓄熱床的氣體升溫△T i 的比例,及能量回收比例β的關係,可以表示為: For example, it is assumed that the design equilibrium concentration of the heat storage regenerative catalytic oxidizer 1 is Co, that is, when the concentration of the VOCs exhaust gas is Co, the thermal storage regenerative catalytic oxidizer 1 can be stably operated at the temperature Tc without the auxiliary fuel. When the concentration of the volatile organic chemical exhaust gas 100 is lower than Co, the high temperature oxidation reaction chamber 50 needs to be fueled via the burner 60 to maintain the operating temperature. When the concentration of the volatile organic chemical exhaust gas 100 is higher than Co, the operating temperature of the high temperature oxidation reaction chamber 50 will gradually increase. Using this design, some of the volatile organic chemical exhaust gas flows into the high temperature oxidation via a cold bypass fast path (eg, the first catalytic regenerator cold bypass fast channel 125 or the second catalytic regenerator cold bypass fast channel 127) The reaction chamber 50 is assumed to have an α volume ratio ( α <1) of the total flow rate of the volatile organic chemical exhaust gas 100, and the cold bypass passage uses a heat storage material having a low heat storage capacity or a low specific heat, so that the cold storage passage is cooled. The gas energy recovery ratio of the bypass fast channel is β times ( β <1) of the normal regenerator bed, that is, the gas temperature rise Δ T s through the cold bypass fast path is the temperature of the gas passing through the normal regenerator bed is Δ T i β fold <1), i.e., △ T s = β △ T i ; α is the ratio of volatile organic exhaust gas 100 flowing through the cooling passage and the bypass fast-containing gas concentration ratio of the VOCs and design of the concentration equilibrium C / Co, high temperature oxidation reaction chamber operating temperature Tc 50 normal relationship regenerator bed through the gas heating ratio △ T i, the energy recovery and the ratio β can be expressed as:

例如,設若蓄熱再生型催化氧化器(RCO)的Tc、To、Ti分別為 400℃、85℃、50℃,本身的能源回收效率根據方程式(1)為R=(Tc-To)/(Tc-Ti)x 100%=(400-85)/(400-50)X 100%=90%。假設冷旁通快速通道的設計使得能源回收效率只有20%,則;△T i =85-50=35℃;又假設揮發性有機化學廢氣100的濃度預備設計成最多可以容許升高100%,C/C0=2;則根據方程式(2)可以推估設計冷旁通快速通道時,考慮的氣體流量比率α如下: 亦即,只要準備12.33%流量的冷旁通快速通道,就可以有效的調整控制系統的操作,使得高溫氧化反應室50的操作溫度可以在VOCs廢氣濃度變化時,仍能有效的控制在穩定的設定操作溫度。因此,利用這種在蓄熱室內部增設VOCs廢氣冷旁通快速通道的設計方案,可以讓蓄熱再生型催化氧化器面對VOCs廢氣的濃度變化,得到有效的控制,進一步提高蓄熱再生型催化氧化器的操作安全性。 For example, if the Tc, To, and Ti of the heat storage regenerative catalytic oxidizer (RCO) are 400 ° C, 85 ° C, and 50 ° C, respectively, the energy recovery efficiency of itself is R = (Tc - To) / (Tc according to the equation (1). -Ti) x 100% = (400-85) / (400-50) X 100% = 90%. Assuming that the design of the cold bypass fast track results in an energy recovery efficiency of only 20%, then ; △ T i = 85-50 = 35 ° C; also assume that the concentration of volatile organic chemical exhaust gas 100 is pre-designed to allow a maximum increase of 100%, C / C0 = 2; then according to equation (2) can be estimated design cold When bypassing the fast track, the gas flow ratio α considered is as follows: That is, as long as the 12.33% flow rate cold bypass fast channel is prepared, the operation of the control system can be effectively adjusted, so that the operating temperature of the high temperature oxidation reaction chamber 50 can be effectively controlled while the VOCs exhaust gas concentration changes. Set the operating temperature. Therefore, by using the design scheme of adding a VOCs exhaust gas cold bypass rapid passage in the regenerator interior, the regenerative regenerative catalytic oxidizer can be effectively controlled by the concentration change of the VOCs exhaust gas, and the regenerative regenerative catalytic oxidizer can be further improved. Operational safety.

附圖編號符號如下所示: The figure number symbols are as follows:

1‧‧‧蓄熱再生型催化氧化器 1‧‧‧ Thermal storage regenerative catalytic oxidizer

10‧‧‧第一催化蓄熱室 10‧‧‧First catalytic regenerator

11‧‧‧第一催化蓄熱室的入氣室 11‧‧‧Inlet chamber of the first catalytic regenerator

12‧‧‧第一催化蓄熱室的多孔蓄熱床 12‧‧‧Porous heat storage bed of the first catalytic regenerator

13‧‧‧第一催化蓄熱室的多孔觸媒床 13‧‧‧Porous catalytic bed of the first catalytic regenerator

20‧‧‧第二催化蓄熱室 20‧‧‧Second catalytic regenerator

21‧‧‧第二催化蓄熱室的入氣室 21‧‧‧Inlet chamber of the second catalytic regenerator

22‧‧‧第二催化蓄熱室的多孔蓄熱床 22‧‧‧Porous heat storage bed of the second catalytic regenerator

23‧‧‧第二催化蓄熱室的多孔觸媒床 23‧‧‧Porous catalytic bed of the second catalytic regenerator

30‧‧‧第三催化蓄熱室 30‧‧‧The third catalytic regenerator

31‧‧‧第三催化蓄熱室的入氣室 31‧‧‧Inlet chamber of the third catalytic regenerator

32‧‧‧第三催化蓄熱室的多孔蓄熱床 32‧‧‧Porous accumulator bed for the third catalytic regenerator

33‧‧‧第三催化蓄熱室的多孔觸媒床 33‧‧‧Porous catalytic bed of the third catalytic regenerator

50‧‧‧高溫氧化反應室 50‧‧‧High temperature oxidation reaction chamber

60‧‧‧燃燒機 60‧‧‧burner

70‧‧‧燃燒機 70‧‧‧burner

80‧‧‧排氣煙囪 80‧‧‧Exhaust chimney

100‧‧‧揮發性有機化學廢氣 100‧‧‧Volatile organic chemical waste gas

101‧‧‧揮發性有機化學廢氣入氣管道 101‧‧‧Volatile organic chemical exhaust gas inlet pipe

102‧‧‧三向旁通閥 102‧‧‧Three-way bypass valve

103‧‧‧揮發性有機化學廢氣旁通管道 103‧‧‧Volatile organic chemical waste bypass pipe

104‧‧‧火焰防阻器 104‧‧‧ Flame Barrier

106‧‧‧空氣閥 106‧‧‧Air valve

107‧‧‧旁通空氣管道 107‧‧‧ bypass air duct

108‧‧‧催化蓄熱室入氣管道 108‧‧‧ Catalytic regenerator inlet duct

110‧‧‧第一催化蓄熱室入氣閥 110‧‧‧First catalytic regenerator inlet valve

111‧‧‧第一催化蓄熱室入氣管道 111‧‧‧First catalytic regenerator inlet duct

112‧‧‧第二催化蓄熱室入氣閥 112‧‧‧Second catalytic regenerator inlet valve

113‧‧‧第二催化蓄熱室入氣管道 113‧‧‧Second catalytic regenerator inlet duct

114‧‧‧第三催化蓄熱室入氣閥 114‧‧‧Three catalytic regenerator inlet valve

115‧‧‧第三催化蓄熱室入氣管道 115‧‧‧Three catalytic regenerator inlet duct

124‧‧‧第一催化蓄熱室冷旁通快速通道流量調節閥 124‧‧‧First catalytic regenerator cold bypass fast-path flow regulating valve

125‧‧‧第一催化蓄熱室冷旁通快速通道 125‧‧‧First catalytic regenerator cold bypass fast channel

126‧‧‧第二催化蓄熱室冷旁通快速通道流量調節閥 126‧‧‧Second catalytic regenerator cold bypass fast channel flow control valve

127‧‧‧第二催化蓄熱室冷旁通快速通道 127‧‧‧Second catalytic regenerator cold bypass fast channel

128‧‧‧第三催化蓄熱室冷旁通快速通道流量調節閥 128‧‧‧Third Catalytic Regenerator Cold Bypass Fast Track Flow Regulator

129‧‧‧第三催化蓄熱室冷旁通快速通道 129‧‧‧The third catalytic regenerator cold bypass fast channel

130‧‧‧第一催化蓄熱室排氣閥 130‧‧‧First catalytic regenerator exhaust valve

131‧‧‧第一催化蓄熱室排氣管道 131‧‧‧First catalytic regenerator exhaust duct

132‧‧‧第二催化蓄熱室排氣閥 132‧‧‧Second catalytic regenerator exhaust valve

133‧‧‧第二催化蓄熱室排氣管道 133‧‧‧Second catalytic regenerator exhaust duct

134‧‧‧第三催化蓄熱室排氣閥 134‧‧‧Three catalytic regenerator exhaust valve

135‧‧‧第三催化蓄熱室排氣管道 135‧‧‧Three catalytic regenerator exhaust duct

144‧‧‧排氣管道 144‧‧‧Exhaust pipe

145‧‧‧誘引排風機 145‧‧‧Inducing exhaust fan

147‧‧‧尾排氣管道 147‧‧‧ tail exhaust pipe

150‧‧‧揮發性有機化學廢氣旁通排放口 150‧‧‧Volatile Organic Chemical Waste Bypass

160‧‧‧第一催化蓄熱室反洗閥 160‧‧‧First catalytic regenerator backwash valve

161‧‧‧第一催化蓄熱室反洗管道 161‧‧‧First catalytic regenerator backwashing pipeline

162‧‧‧第二催化蓄熱室反洗閥 162‧‧‧Second catalytic regenerator backwash valve

163‧‧‧第二催化蓄熱室反洗管道 163‧‧‧Second catalytic regenerator backwashing pipeline

164‧‧‧第三催化蓄熱室反洗閥 164‧‧‧The third catalytic regenerator backwash valve

165‧‧‧第三催化蓄熱室反洗管道 165‧‧‧The third catalytic regenerator backwashing pipeline

166‧‧‧反洗風車 166‧‧‧Backwashing windmill

167‧‧‧反洗管道 167‧‧‧Backwashing pipeline

200‧‧‧輔助燃料 200‧‧‧Auxiliary fuel

201‧‧‧輔助燃料供應管線 201‧‧‧Auxiliary fuel supply pipeline

202‧‧‧輔助燃料流量調節閥 202‧‧‧Auxiliary fuel flow control valve

210‧‧‧空氣 210‧‧‧ Air

211‧‧‧空氣管線 211‧‧‧Air pipeline

212‧‧‧空氣流量調節閥 212‧‧‧Air flow control valve

300‧‧‧燃燒安全控制器 300‧‧‧Combustion safety controller

301‧‧‧溫度感測傳送器 301‧‧‧Temperature Sensing Transmitter

320‧‧‧高溫氧化反應室超溫邏輯控制器 320‧‧‧High temperature oxidation chamber over temperature logic controller

321‧‧‧高溫氧化反應室超溫控制器 321‧‧‧High temperature oxidation chamber over temperature controller

為使對本創作有較佳之了解,特就下列圖示為例作為本發明之一較佳實施例說明如下。 In order to better understand the present invention, the following illustrations are taken as an example of a preferred embodiment of the present invention.

第1圖:傳統的蓄熱再生式催化氧化系統 Figure 1: Traditional thermal storage regenerative catalytic oxidation system

第2圖:本創作之二槽式蓄熱再生式催化氧化系統之實施例 Figure 2: Example of the two-slot regenerative catalytic oxidation system of the present invention

第3圖:本創作之三槽式蓄熱再生式催化氧化系統之實施例 Figure 3: Example of a three-slot regenerative catalytic oxidation system of the present invention

第4圖:快速通道的流動面積比率(α)與濃度變化比率(C/Co)的關係 Figure 4: Relationship between flow area ratio ( α ) of fast channel and concentration change ratio (C/Co)

第5圖:快速通道的流動面積比率(α)與濃度變化比率(C/Co)的關係 Figure 5: Relationship between flow area ratio ( α ) of fast channel and concentration change ratio (C/Co)

為達上述功效,本創作係提供一種可以處理VOC廢氣的蓄熱再生型催化氧化器1,其中,含有至少二個以上的催化蓄熱室、一個高溫氧化反應室及高溫氧化反應室超溫邏輯控制器,其中催化蓄熱室內有多孔材料堆積成的多孔蓄熱床、在該多孔蓄熱床上方有一多孔觸媒床,高溫氧化反應室位於催化蓄熱室上方並與催化蓄熱室結合,且在該多孔蓄熱床內有部分多孔材料採用孔隙度大、熱容量低的材料構成催化蓄熱室內部的冷旁通快速通道,且在催化蓄熱室冷旁通快速通道設有溫度自動控制的流量調節閥及高溫氧化反應室超溫邏輯控制器;含VOC廢氣被導入蓄熱再生型催化氧化器內,經由預熱、高溫催化氧化處理;在VOC廢氣濃度超過限值時,由高溫氧化反應室超溫邏輯控制器利用溫度自動控制的催化蓄熱室冷旁通快速通道流量調節閥導引部分VOC廢氣經由催化蓄熱室冷旁通快速通道,以較低的熱回收效率,維持較低溫狀態進入高溫氧化反應室,調節控制高溫氧化反應室的操作溫度,以避免系統發生超溫意外。 In order to achieve the above effects, the present invention provides a thermal storage regenerative catalytic oxidizer 1 capable of treating VOC exhaust gas, wherein at least two catalytic regenerators, a high temperature oxidation reaction chamber and a high temperature oxidation reaction chamber over temperature logic controller are provided. a porous regenerator bed in which a porous material is accumulated in a catalytic regenerator, a porous catalyst bed on the porous regenerator bed, a high temperature oxidation reaction chamber located above the catalytic regenerator and combined with the catalytic regenerator, and in the porous regenerator bed Some porous materials use a material with large porosity and low heat capacity to form a cold bypass fast channel inside the catalytic regenerator, and a cold flow bypass in the catalytic regenerator is provided with a temperature-controlled flow regulating valve and a high-temperature oxidation reaction chamber. The temperature logic controller; the VOC-containing exhaust gas is introduced into the regenerative regenerative catalytic oxidizer, and is subjected to preheating and high-temperature catalytic oxidation treatment; when the VOC exhaust gas concentration exceeds the limit, the temperature is automatically controlled by the high temperature oxidation reaction chamber over temperature logic controller. Catalytic regenerator cold bypass fast channel flow regulating valve guiding part of VOC exhaust gas via catalytic storage The hot chamber cold bypass fast path, with lower heat recovery efficiency, maintains a lower temperature state and enters the high temperature oxidation reaction chamber, and regulates the operating temperature of the high temperature oxidation reaction chamber to avoid an over temperature accident in the system.

作為本創作的第一個實施例,請參閱〔第2圖〕所示。本創作之第一個實施例係包括有:一蓄熱再生型催化氧化器1(RCO),內部至少包含二個催化蓄熱室(第一催化蓄熱室10、第二催化蓄熱室20)、二組位於催化蓄熱室內部的催化蓄熱室冷旁通快速通道(第一催化蓄熱室冷旁通快速通道125、第二催化蓄熱 室冷旁通快速通道127)、二組進氣控制設備(第一催化蓄熱室入氣閥110、第二催化蓄熱室入氣閥112)、二組出氣控制設備(第一催化蓄熱室排氣閥130、第二催化蓄熱室排氣閥132)、至少一組加熱設備(燃燒機60、輔助燃料供應管線201、輔助燃料流量調節閥202、空氣流量調節閥212)及高溫氧化反應室50的溫度控制設備(燃燒安全控制器300、溫度感測傳送器301),催化蓄熱室的多孔蓄熱床內填充石質或陶瓷蓄熱材料及催化劑。蓄熱再生型催化氧化器1啟動時,先關閉三向旁通閥102,將揮發性有機化學廢氣100經揮發性有機化學廢氣旁通管道103導向揮發性有機化學廢氣旁通排放口150;開啟空氣閥106,將空氣管線211內的空氣210,經催化蓄熱室入氣管道108送進蓄熱再生型催化氧化器1,啟動燃燒機60,利用溫度感測傳送器301訊號,由燃燒安全控制器300調節控制空氣流量調節閥212及輔助燃料流量調節閥202,將輔助燃料200經輔助燃料供應管線201送至燃燒機30進行燃燒升溫;先將高溫氧化反應室50升溫到操作溫度(Tc)。再啟動三向旁通閥102,將揮發性有機化學廢氣100導入系統。欲處理的揮發性有機化學廢氣100經揮發性有機化學廢氣入氣管道101,由三向旁通閥102控制,在正常操作情況下,經火焰防阻器104作適當保護後,經催化蓄熱室入氣管道108;首先開啟第一催化蓄熱室入氣閥110、關閉第一催化蓄熱室排氣閥130,並關閉第二催化蓄熱室入氣閥112、開啟第二催化蓄熱室排氣閥132,將VOCs廢氣經第一催化蓄熱室入氣管道111導入第一催化蓄熱室10,氣體首先進入第一催化蓄熱室的入氣室11,均勻送進第一催化蓄熱室的多孔蓄熱床12預熱至一定溫度後,再流經過第一催化蓄熱室的多孔觸媒床 13進行部分氧化,然後再經過高溫氧化室50調節到最適催化反應溫度,然後,再送到第二催化蓄熱室20,經第二催化蓄熱室的多孔觸媒床23進行高溫催化氧化反應,將含VOCs廢氣中的VOCs徹底破壞;其後,高溫氣體再流經第二催化蓄熱室的多孔蓄熱床22將高溫氣體之顯熱儲存在原已冷卻之第二催化蓄熱室的多孔蓄熱床22蓄熱材內;經熱交換後的氣體,再經第二催化蓄熱室的入氣室21混合後,以較低的溫度經第二催化蓄熱室排氣管道133,從第二催化蓄熱室排氣閥132流向排氣管道144,經誘引排風機145抽引,排經尾排氣管道147流向排氣煙囪80排放。在這過程中,例如假設蓄熱再生型催化氧化器1的設計平衡濃度為Co=1500ppm,亦即當VOCs廢氣的濃度為Co=1500ppm時,蓄熱再生型催化氧化器1可以穩定操作在溫度Tc=400℃無需輔助燃料。當揮發性有機化學廢氣100的濃度為500~1500ppm(低於Co=1500ppm)時,高溫氧化反應室50需要經由燃燒機60添加燃料,才能維持操作溫度。例如當揮發性有機化學廢氣100的濃度達到3000ppm(高於Co=1500ppm)時,高溫氧化反應室50的操作溫度將會因為揮發性有機化學廢氣100的濃度超過設計值,而使得高溫氧化反應室50的溫度漸增。利用本創作的設計,當系統溫度超過設定值後,高溫氧化反應室超溫邏輯控制器320會開始作動開啟第一催化蓄熱室冷旁通快速通道流量調節閥124,讓部分揮發性有機化學廢氣經由第一催化蓄熱室冷旁通快速通道125流進高溫氧化反應室50,揮發性有機化學廢氣100的總流量的體積比例α值可以利用方程式(2)推估之。假設冷旁通快速通道的採用蓄熱容量低或比熱低的蓄熱材,使得經過冷旁通快速通道的氣體能 量回收比例為正常蓄熱床的β倍(β<1,例如β=0.25),亦即經過冷旁通快速通道的氣體升溫△T s 為經過正常蓄熱床的氣體升溫為△T i β倍(β<1),亦即△T s =βT i =0.25△T i ;蓄熱再生型催化氧化器1(RCO)的Tc、To、Ti分別為400℃、85℃、50℃,本身的能源回收效率如果設計為90%。△T i =85-50=35℃;則揮發性有機化學廢氣100流經第一催化蓄熱室冷旁通快速通道125的VOCs廢氣比例α可以利用方程式(2)推估為: 亦即,只要有12.8%流量的VOCs廢氣流經第一催化蓄熱室冷旁通快速通道125,就可以有效調整系統操作溫度,使得高溫氧化反應室50的操作溫度可以在VOCs廢氣濃度變化時,仍能有效的控制在原設定操作溫度。在本實例中,第一催化蓄熱室冷旁通快速通道125提供了較低的換熱效率給VOCs廢氣,使得部分VOCs廢氣能夠以較低溫度進入高溫氧化反應室50,達到調節控制高溫氧化反應室50的操作溫度的目的;由於揮發性有機化學廢氣100釋放的燃燒熱值也會經由高溫氧化反應室50及第二催化蓄熱室的多孔觸媒床23的氧化反應將過剩能量釋放出來;此時,蓄熱再生型催化氧化器1的高溫氧化反應室超溫邏輯控制器320,也會同時調節控制第二催化蓄熱室冷旁通快速通道127的開度,有效的將過剩能量排出。待一定時間後,切換閥門,將欲處理的揮發性有機化學廢氣100導入該已經蓄存能量的高溫床第二催化蓄熱室20預熱,反應後高溫氣體能量則儲存於第一催化蓄熱室10,完成一操作循環。此作業方法是關閉第一催化蓄熱室入氣閥110、開啟第一催化蓄熱室 排氣閥130,並開啟第二催化蓄熱室入氣閥112、關閉第二催化蓄熱室排氣閥132,將VOCs廢氣經第二催化蓄熱室入氣管道113導入第二催化蓄熱室20,氣體首先進入第二催化蓄熱室的入氣室21,均勻送進第二催化蓄熱室的多孔蓄熱床22預熱至一定溫度後,再流經過第二催化蓄熱室的多孔觸媒床23進行部分氧化,然後再經過高溫氧化反應室超溫邏輯控制器320調節控制第二催化蓄熱室冷旁通快速通道127及第一催化蓄熱室冷旁通快速通道125,有效的控制高溫氧化室50操作在最適催化反應溫度,然後,再送到第一催化蓄熱室10,經第一催化蓄熱室的多孔觸媒床13進行高溫催化氧化反應,將含VOCs廢氣中的VOCs徹底破壞;其後,高溫氣體再流經第一催化蓄熱室的多孔蓄熱床12將高溫氣體之顯熱儲存在原已冷卻之第一催化蓄熱室的多孔蓄熱床12蓄熱材內;經熱交換後的氣體,再經第一催化蓄熱室的入氣室11混合後,以較低的溫度經第一催化蓄熱室排氣管道131,從第一催化蓄熱室排氣閥130流向排氣管道144,經誘引排風機145抽引,排經尾排氣管道147流向排氣煙囪80排放。 As a first embodiment of the present creation, please refer to [Fig. 2]. The first embodiment of the present invention includes: a thermal storage regenerative catalytic oxidizer 1 (RCO) having at least two catalytic regenerators (first catalytic regenerator 10, second catalytic regenerator 20) and two groups. a cold bypass bypass passage of the catalytic regenerator located inside the catalytic regenerator (first catalytic regenerator cold bypass fast passage 125, second catalytic regenerator cold bypass fast passage 127), two sets of intake control devices (first catalytic The regenerator inlet valve 110, the second catalytic regenerator inlet valve 112), the two sets of outlet control devices (the first catalytic regenerator exhaust valve 130, the second catalytic regenerator exhaust valve 132), at least one set of heating devices (combustion machine 60, auxiliary fuel supply line 201, auxiliary fuel flow regulating valve 202, air flow regulating valve 212) and temperature control device of high temperature oxidation reaction chamber 50 (combustion safety controller 300, temperature sensing transmitter 301), catalysis The porous regenerator bed of the regenerator is filled with a stone or ceramic heat storage material and a catalyst. When the heat storage regeneration type catalytic oxidizer 1 is started, the three-way bypass valve 102 is first closed, and the volatile organic chemical waste gas 100 is led to the volatile organic chemical waste gas bypass discharge port 150 through the volatile organic chemical waste gas bypass pipe 103; The valve 106 sends the air 210 in the air line 211 to the regenerative regenerative catalytic oxidizer 1 through the catalytic regenerator inlet duct 108, activates the combustor 60, and utilizes the temperature sensing transmitter 301 signal, and the combustion safety controller 300 The control air flow regulating valve 212 and the auxiliary fuel flow regulating valve 202 are adjusted to send the auxiliary fuel 200 to the combustor 30 via the auxiliary fuel supply line 201 for combustion temperature rise; first, the high temperature oxidation reaction chamber 50 is heated to the operating temperature (Tc). The three-way bypass valve 102 is restarted to introduce the volatile organic chemical exhaust gas 100 into the system. The volatile organic chemical exhaust gas 100 to be treated is controlled by a three-way bypass valve 102 via a volatile organic chemical exhaust gas inlet pipe 102, and under normal operation, after being properly protected by the flame resistor 104, the catalytic regenerator The air inlet duct 108 first opens the first catalytic regenerator inlet valve 110, closes the first catalytic regenerator exhaust valve 130, and closes the second catalytic regenerator inlet valve 112 and opens the second catalytic regenerator exhaust valve 132. The VOCs exhaust gas is introduced into the first catalytic regenerator 10 through the first catalytic regenerator inlet pipe 111, and the gas first enters the inlet chamber 11 of the first catalytic regenerator, and is uniformly fed into the porous regenerator bed 12 of the first catalytic regenerator. After being heated to a certain temperature, it is partially oxidized by flowing through the porous catalyst bed 13 of the first catalytic regenerator, and then adjusted to the optimum catalytic reaction temperature through the high temperature oxidation chamber 50, and then sent to the second catalytic regenerator 20, The porous catalyst bed 23 of the second catalytic regenerator undergoes a high temperature catalytic oxidation reaction to completely destroy the VOCs in the VOCs-containing exhaust gas; thereafter, the high temperature gas flows through the porous regenerator bed 22 of the second catalytic regenerator The sensible heat of the high temperature gas is stored in the heat storage material of the porous heat storage bed 22 of the second cooled catalytic regenerator; the heat exchanged gas is mixed with the gas inlet chamber 21 of the second catalytic regenerator, and is lower. The temperature flows through the second catalytic regenerator exhaust duct 133 from the second catalytic regenerator exhaust valve 132 to the exhaust duct 144, is drawn by the induced exhaust fan 145, and exhausted through the exhaust exhaust duct 147 to the exhaust stack 80. In this process, for example, it is assumed that the design equilibrium concentration of the regenerative regenerative catalytic oxidizer 1 is Co=1500 ppm, that is, when the concentration of the VOCs exhaust gas is Co=1500 ppm, the regenerative regenerative catalytic oxidizer 1 can be stably operated at the temperature Tc= No auxiliary fuel is required at 400 °C. When the concentration of the volatile organic chemical exhaust gas 100 is 500 to 1500 ppm (less than Co = 1500 ppm), the high temperature oxidation reaction chamber 50 needs to be fueled via the burner 60 to maintain the operating temperature. For example, when the concentration of the volatile organic chemical exhaust gas 100 reaches 3000 ppm (higher than Co = 1500 ppm), the operating temperature of the high temperature oxidation reaction chamber 50 will cause the high temperature oxidation reaction chamber because the concentration of the volatile organic chemical exhaust gas 100 exceeds the design value. The temperature of 50 is increasing. With the design of the present invention, when the system temperature exceeds the set value, the high temperature oxidation reaction chamber over temperature logic controller 320 will start to activate the first catalytic regenerator cold bypass fast channel flow regulating valve 124 to allow part of the volatile organic chemical exhaust gas. Through the first catalytic regenerator cold bypass fast channel 125 flowing into the high temperature oxidation reaction chamber 50, the volume ratio α value of the total flow rate of the volatile organic chemical exhaust gas 100 can be estimated by using equation (2). Assume that the cold bypass passage uses a heat storage material with low heat storage capacity or low specific heat, so that the gas energy recovery ratio through the cold bypass fast passage is β times ( β <1, for example, β = 0.25) of the normal regenerator bed, that is, cold gas bypass passage through fast heating through the normal △ T s is the temperature rise of the heat storage bed gas βT i of times <1), i.e., △ T s = β △ T i = 0.25 △ T i; regenerative The Tc, To, and Ti of the regenerative catalytic oxidizer 1 (RCO) are 400 ° C, 85 ° C, and 50 ° C, respectively, and the energy recovery efficiency of the catalyst is 90%. Δ T i =85-50=35 ° C; then the VOCs exhaust gas ratio α of the volatile organic chemical exhaust gas 100 flowing through the first catalytic regenerator cold bypass fast channel 125 can be estimated by using equation (2): That is, as long as 12.8% of the VOCs exhaust gas flows through the first catalytic regenerator cold bypass fast channel 125, the operating temperature of the system can be effectively adjusted, so that the operating temperature of the high temperature oxidation reaction chamber 50 can be changed when the VOCs exhaust gas concentration changes. The original set operating temperature can still be effectively controlled. In the present example, the first catalytic regenerator cold bypass fast channel 125 provides a lower heat exchange efficiency to the VOCs exhaust gas, so that part of the VOCs exhaust gas can enter the high temperature oxidation reaction chamber 50 at a lower temperature to achieve the regulation and control of the high temperature oxidation reaction. The purpose of the operating temperature of the chamber 50; the combustion heat value released by the volatile organic chemical exhaust gas 100 also releases excess energy through the oxidation reaction of the high temperature oxidation reaction chamber 50 and the porous catalyst bed 23 of the second catalytic regenerator; At this time, the high temperature oxidation reaction chamber over temperature logic controller 320 of the thermal storage regenerative catalytic oxidizer 1 also adjusts and controls the opening degree of the cold bypass bypass passage 127 of the second catalytic regenerator to effectively discharge excess energy. After a certain period of time, the valve is switched, and the volatile organic chemical waste gas 100 to be treated is introduced into the high temperature bed second catalytic regenerator 20 that has stored energy, and the high temperature gas energy is stored in the first catalytic regenerator 10 after the reaction. , complete an operation cycle. The operation method is to close the first catalytic regenerator inlet valve 110, open the first catalytic regenerator exhaust valve 130, and open the second catalytic regenerator inlet valve 112 and close the second catalytic regenerator exhaust valve 132. The VOCs exhaust gas is introduced into the second catalytic regenerator 20 through the second catalytic regenerator inlet duct 113, and the gas first enters the inlet chamber 21 of the second catalytic regenerator, and is uniformly fed into the porous regenerator bed 22 of the second catalytic regenerator to be preheated to After a certain temperature, it is further flowed through the porous catalyst bed 23 of the second catalytic regenerator for partial oxidation, and then passed through the high temperature oxidation reaction chamber over temperature logic controller 320 to adjust and control the second catalytic regenerator cold bypass fast channel 127 and the first A catalytic regenerator cold bypass fast channel 125 is provided to effectively control the high temperature oxidation chamber 50 to operate at an optimum catalytic reaction temperature, and then sent to the first catalytic regenerator 10 for high temperature through the porous catalyst bed 13 of the first catalytic regenerator. The catalytic oxidation reaction completely destroys the VOCs in the VOCs-containing exhaust gas; thereafter, the high-temperature gas flows through the porous regenerator bed 12 of the first catalytic regenerator to store the sensible heat of the high-temperature gas in the original cooled state. The porous heat storage bed 12 of the first catalytic regenerator is in the heat storage material; the heat exchanged gas is mixed with the gas inlet chamber 11 of the first catalytic regenerator, and then passed through the first catalytic regenerator exhaust pipe at a lower temperature. 131, flowing from the first catalytic regenerator exhaust valve 130 to the exhaust duct 144, drawn by the induced exhaust fan 145, and discharged through the exhaust duct 147 to the exhaust stack 80.

作為本創作的第二個實施例,請參閱〔第3圖〕所示。本創作之第二個實施例係包括有:一個具有三槽式的蓄熱再生型催化氧化器1(RCO),內部至少包含三個催化蓄熱室(第一催化蓄熱室10、第二催化蓄熱室20、第三催化蓄熱室30)、三組位於催化蓄熱室內部的催化蓄熱室冷旁通快速通道(第一催化蓄熱室冷旁通快速通道125、第二催化蓄熱室冷旁通快速通道127、第三催化蓄熱室冷旁通快速通道129)、三組進氣控制設備(第一催化蓄熱室入氣閥110、第二催化蓄 熱室入氣閥112、第三催化蓄熱室入氣閥114)、三組出氣控制設備(第一催化蓄熱室排氣閥130、第二催化蓄熱室排氣閥132、第三催化蓄熱室排氣閥134)、至少一組加熱設備(燃燒機60、燃燒機70、輔助燃料供應管線201、輔助燃料流量調節閥202、空氣流量調節閥212)及高溫氧化反應室50的溫度控制設備(燃燒安全控制器300、溫度感測傳送器301),催化蓄熱室的多孔蓄熱床內填充石質或陶瓷蓄熱材料及催化劑。三槽式蓄熱再生型催化氧化器1操作時,有一個催化蓄熱室作為入氣室、一個催化蓄熱室作為出氣室、一個催化蓄熱室作為反洗室;以避免催化蓄熱室切換時,造成的短時間污染情況。作為反洗室的催化蓄熱室,反洗流量約為正常操作流量的1/5~1/10,反洗時間約20秒以上。三槽式蓄熱再生型催化氧化器1操作時,可以分為以下三個操作組合,依時序或出口溫度控制對應閥門的開啟與關閉。(1)一進三出二反洗(第一催化蓄熱室10進氣,第二催化蓄熱室20反洗,第三催化蓄熱室30出氣);(2)三進二出一反洗(第一催化蓄熱室10反洗,第二催化蓄熱室20出氣,第三催化蓄熱室30進氣);及(3)二進一出三反洗(第一催化蓄熱室10出氣,第二催化蓄熱室20進氣,第三催化蓄熱室30反洗)。 As a second embodiment of this creation, please refer to [Fig. 3]. A second embodiment of the present invention includes: a three-tank regenerative regenerative catalytic oxidizer 1 (RCO) having at least three catalytic regenerators therein (first catalytic regenerator 10, second catalytic regenerator) 20. The third catalytic regenerator 30) and the three sets of catalytic regenerator cold bypass fast channels inside the catalytic regenerator (the first catalytic regenerator cold bypass fast channel 125, the second catalytic regenerator cold bypass fast channel 127) a third catalytic regenerator cold bypass fast passage 129), three sets of intake control devices (first catalytic regenerator inlet valve 110, second catalytic storage) The hot chamber inlet valve 112, the third catalytic regenerator inlet valve 114), the three sets of outlet control devices (the first catalytic regenerator exhaust valve 130, the second catalytic regenerator exhaust valve 132, and the third catalytic regenerator chamber row) a gas valve 134), at least one set of heating devices (burner 60, burner 70, auxiliary fuel supply line 201, auxiliary fuel flow regulating valve 202, air flow regulating valve 212) and temperature control device of high temperature oxidation reaction chamber 50 (combustion) The safety controller 300 and the temperature sensing transmitter 301) are filled with a rock or ceramic heat storage material and a catalyst in a porous heat storage bed of the catalytic regenerator. When the three-tank regenerative catalytic converter oxidizer 1 is operated, there is a catalytic regenerator as an inlet chamber, a catalytic regenerator as an outlet chamber, and a catalytic regenerator as a backwash chamber; to avoid the switching of the catalytic regenerator. Short-term pollution situation. As the catalytic regenerator of the backwashing chamber, the backwashing flow rate is about 1/5 to 1/10 of the normal operating flow rate, and the backwashing time is about 20 seconds or more. When the three-tank regenerative catalytic oxidizer 1 is operated, it can be divided into the following three operation combinations, and the corresponding valves are opened and closed according to the timing or the outlet temperature. (1) One-in, three-out and two-backwashing (first catalytic regenerator 10 intake, second catalytic regenerator 20 backwashing, third catalytic regenerator 30 out of gas); (2) three-in, two-out and one-washback (first) a catalytic regenerator 10 backwashing, a second catalytic regenerator 20 out of gas, a third catalytic regenerator 30 intake; and (3) two in one out three backwashing (first catalytic regenerator 10 out of gas, a second catalytic regenerator 20 intake air, third catalytic regenerator 30 backwash).

三槽式蓄熱再生型催化氧化器1操作啟動時,先關閉三向旁通閥102,將揮發性有機化學廢氣100經揮發性有機化學廢氣旁通管道103導向揮發性有機化學廢氣旁通排放口150;開啟空氣閥106,將空氣管線211內的空氣210,經催化蓄熱室入氣管道108送進蓄熱再生型催化氧化器1,啟動燃燒機60及燃燒機70,利用溫度感測傳送器301訊號,由燃燒安全控制器300調節控制空氣流量調節閥212 及輔助燃料流量調節閥202,將輔助燃料200經輔助燃料供應管線201送至燃燒機60及燃燒機70進行燃燒升溫;先將高溫氧化反應室50升溫到操作溫度(Tc)。再啟動三向旁通閥102,將揮發性有機化學廢氣100導入系統。欲處理的揮發性有機化學廢氣100經揮發性有機化學廢氣入氣管道101,由三向旁通閥102控制,在正常操作情況下,經火焰防阻器104作適當保護後,經催化蓄熱室入氣管道108,送進RCO處理。 When the three-tank regenerative catalytic oxidizer 1 is started, the three-way bypass valve 102 is closed, and the volatile organic chemical exhaust gas 100 is led to the volatile organic chemical waste bypass port through the volatile organic chemical waste bypass pipe 103. 150; The air valve 106 is opened, and the air 210 in the air line 211 is sent to the heat storage regeneration type catalytic oxidizer 1 through the catalytic regenerator air inlet pipe 108, and the combustion machine 60 and the combustion machine 70 are started, and the temperature sensing transmitter 301 is used. Signal, the control air flow regulating valve 212 is regulated by the combustion safety controller 300 The auxiliary fuel flow rate adjusting valve 202 sends the auxiliary fuel 200 to the combustor 60 and the combustor 70 via the auxiliary fuel supply line 201 for combustion temperature rise; first, the high temperature oxidation reaction chamber 50 is heated to the operating temperature (Tc). The three-way bypass valve 102 is restarted to introduce the volatile organic chemical exhaust gas 100 into the system. The volatile organic chemical exhaust gas 100 to be treated is controlled by a three-way bypass valve 102 via a volatile organic chemical exhaust gas inlet pipe 102, and under normal operation, after being properly protected by the flame resistor 104, the catalytic regenerator The air inlet pipe 108 is sent to the RCO for processing.

一進三出二反洗One in three out two backwash

首先開啟第一催化蓄熱室入氣閥110、關閉第一催化蓄熱室排氣閥130、關閉第一催化蓄熱室反洗閥160,同時關閉第二催化蓄熱室入氣閥112、關閉第二催化蓄熱室排氣閥132、開啟第二催化蓄熱室反洗閥162,並關閉第三催化蓄熱室入氣閥114、開啟第三催化蓄熱室排氣閥134、關閉第三催化蓄熱室反洗閥164,將VOCs廢氣經第一催化蓄熱室入氣管道111導入第一催化蓄熱室10,氣體首先進入第一催化蓄熱室的入氣室11,均勻送進第一催化蓄熱室的多孔蓄熱床12預熱至一定溫度後,再流經過第一催化蓄熱室的多孔觸媒床13進行部分氧化,然後再經過高溫氧化室50調節到最適催化反應溫度,然後,再送到第三催化蓄熱室30,經第三催化蓄熱室的多孔觸媒床33進行高溫催化氧化反應,將含VOCs廢氣中的VOCs徹底破壞;其後,高溫氣體再流經第三催化蓄熱室的多孔蓄熱床32將高溫氣體之顯熱儲存在原已冷卻之第三催化蓄熱室的多孔蓄熱床32蓄熱材內;經熱交換後的氣體,再經第三催化蓄熱室的入氣室31混合後,以較低的溫度經第三 催化蓄熱室排氣管道135,從第三催化蓄熱室排氣閥134流向排氣管道144,經誘引排風機145抽引,排經尾排氣管道147流向排氣煙囪80排放。同時,微量的潔淨燃燒產物將被反洗風車166抽引,將第二催化蓄熱室20反洗,氣體經第二催化蓄熱室反洗閥162、第二催化蓄熱室反洗管道163,流經反洗風車166,再經反洗管道167,送回催化蓄熱室入氣管道108;將第二催化蓄熱室20反洗潔淨後,接著可以作為下一個循環『三進二出一反洗』的出氣催化蓄熱室使用。在這過程中,例如假設蓄熱再生型催化氧化器1的設計平衡濃度為Co=1500ppm,亦即當VOCs廢氣的濃度為Co=1500ppm時,蓄熱再生型催化氧化器1可以穩定操作在溫度Tc=400℃無需輔助燃料。當揮發性有機化學廢氣100的濃度為500~1500ppm(低於Co=1500ppm)時,高溫氧化反應室50需要經由燃燒機60及燃燒機70添加燃料,才能維持操作溫度。例如當揮發性有機化學廢氣100的濃度達到3000ppm(高於Co=1500ppm)時,高溫氧化反應室50的操作溫度將會因為揮發性有機化學廢氣100的濃度超過設計值,而使得高溫氧化反應室50的溫度漸增。利用本創作的設計,當系統溫度超過設定值後,高溫氧化反應室超溫邏輯控制器320會開始作動開啟第一催化蓄熱室冷旁通快速通道流量調節閥124,讓部分揮發性有機化學廢氣經由第一催化蓄熱室冷旁通快速通道125流進高溫氧化反應室50,揮發性有機化學廢氣100的總流量的體積比例α值可以利用方程式(2)推估之。假設冷旁通快速通道的採用蓄熱容量低或比熱低的蓄熱材,使得經過冷旁通快速通道的氣體能量回收比例為正常蓄熱床的β倍(β<1,例如β=0.25),亦即經過 冷旁通快速通道的氣體升溫△T s 為經過正常蓄熱床的氣體升溫為△T i β倍(β<1),亦即△T s =βT i =0.25△T i ;蓄熱再生型催化氧化器1(RCO)的Tc、To、Ti分別為400℃、85℃、50℃,本身的能源回收效率如果設計為90%。△T i =85-50=35℃;則揮發性有機化學廢氣100流經第一催化蓄熱室冷旁通快速通道125的VOCs廢氣比例α可以利用方程式(2)推估為 First, the first catalytic regenerator inlet valve 110 is opened, the first catalytic regenerator exhaust valve 130 is closed, the first catalytic regenerator backwash valve 160 is closed, and the second catalytic regenerator inlet valve 112 is closed, and the second catalytic is turned off. The regenerator exhaust valve 132 opens the second catalytic regenerator backwash valve 162, and closes the third catalytic regenerator inlet valve 114, opens the third catalytic regenerator exhaust valve 134, and closes the third catalytic regenerator backwash valve. 164, the VOCs exhaust gas is introduced into the first catalytic regenerator 10 through the first catalytic regenerator inlet pipe 111, and the gas first enters the inlet chamber 11 of the first catalytic regenerator, and is uniformly fed into the porous regenerator bed of the first catalytic regenerator 12 After preheating to a certain temperature, it is partially oxidized by flowing through the porous catalyst bed 13 of the first catalytic regenerator, and then adjusted to the optimum catalytic reaction temperature through the high temperature oxidation chamber 50, and then sent to the third catalytic regenerator 30. The high-temperature catalytic oxidation reaction is carried out through the porous catalyst bed 33 of the third catalytic regenerator to completely destroy the VOCs in the VOCs-containing exhaust gas; thereafter, the high-temperature gas flows through the porous regenerator bed 32 of the third catalytic regenerator to the high-temperature gas. The sensible heat of the body is stored in the heat storage material of the porous regenerator bed 32 of the originally cooled third catalytic regenerator; the heat exchanged gas is mixed with the gas inlet chamber 31 of the third catalytic regenerator to a lower temperature. The third catalytic regenerator exhaust duct 135 flows from the third catalytic regenerator exhaust valve 134 to the exhaust duct 144, is drawn by the induced exhaust fan 145, and is discharged to the exhaust stack 80 through the exhaust duct 147. At the same time, a small amount of clean combustion products will be drawn by the backwashing windmill 166, the second catalytic regenerator 20 will be backwashed, and the gas flows through the second catalytic regenerator backwash valve 162 and the second catalytic regenerator backwashing pipe 163. The backwashing windmill 166 is returned to the catalytic regenerator inlet pipe 108 via the backwashing pipe 167; the second catalytic regenerator 20 is backwashed and cleaned, and then can be used as the next cycle "three in two out and one backwashing" The gas catalyzed regenerator is used. In this process, for example, it is assumed that the design equilibrium concentration of the regenerative regenerative catalytic oxidizer 1 is C o = 1500 ppm, that is, when the concentration of the VOCs exhaust gas is C o = 1500 ppm, the regenerative regenerative catalytic oxidizer 1 can be stably operated at the temperature. No auxiliary fuel is required for T c =400 °C. When the concentration of the volatile organic chemical exhaust gas 100 is 500 to 1500 ppm (less than C o = 1500 ppm), the high temperature oxidation reaction chamber 50 needs to be fueled by the burner 60 and the burner 70 to maintain the operating temperature. For example, when the concentration of the volatile organic chemical exhaust gas 100 reaches 3000 ppm (higher than C o = 1500 ppm), the operating temperature of the high temperature oxidation reaction chamber 50 will cause the high temperature oxidation reaction because the concentration of the volatile organic chemical exhaust gas 100 exceeds the design value. The temperature of the chamber 50 is gradually increased. With the design of the present invention, when the system temperature exceeds the set value, the high temperature oxidation reaction chamber over temperature logic controller 320 will start to activate the first catalytic regenerator cold bypass fast channel flow regulating valve 124 to allow part of the volatile organic chemical exhaust gas. Through the first catalytic regenerator cold bypass fast channel 125 flowing into the high temperature oxidation reaction chamber 50, the volume ratio α value of the total flow rate of the volatile organic chemical exhaust gas 100 can be estimated by using equation (2). Assume that the cold bypass passage uses a heat storage material with low heat storage capacity or low specific heat, so that the gas energy recovery ratio through the cold bypass fast passage is β times ( β <1, for example, β = 0.25) of the normal regenerator bed, that is, cold gas bypass passage through fast heating through the normal △ T s is the temperature rise of the heat storage bed gas βT i of times <1), i.e., △ T s = β △ T i = 0.25 △ T i; regenerative The T c , T o , and T i of the regenerative catalytic oxidizer 1 (RCO) are 400 ° C, 85 ° C, and 50 ° C, respectively, and the energy recovery efficiency of the self is designed to be 90%. Δ T i =85-50=35° C; then the VOCs exhaust gas ratio α of the volatile organic chemical exhaust gas 100 flowing through the first catalytic regenerator cold bypass fast channel 125 can be estimated by using equation (2)

亦即,只要有12.8%流量的VOCs廢氣流經第一催化蓄熱室冷旁通快速通道125,就可以有效調整系統操作溫度,使得高溫氧化反應室50的操作溫度可以在VOCs廢氣濃度變化時,仍能有效的控制在原設定操作溫度。在本實例中,第一催化蓄熱室冷旁通快速通道125提供了較低的換熱效率給VOCs廢氣,使得部分VOCs廢氣能夠以較低溫度進入高溫氧化反應室50,達到調節控制高溫氧化反應室50的操作溫度的目的;由於揮發性有機化學廢氣100釋放的燃燒熱值也會經由高溫氧化反應室50及第三催化蓄熱室的多孔觸媒床33的氧化反應將過剩能量釋放出來;此時,蓄熱再生型催化氧化器1的高溫氧化反應室超溫邏輯控制器320,也會同時調節控制第三催化蓄熱室冷旁通快速通道129的開度,有效的將過剩能量排出。 That is, as long as 12.8% of the VOCs exhaust gas flows through the first catalytic regenerator cold bypass fast channel 125, the operating temperature of the system can be effectively adjusted, so that the operating temperature of the high temperature oxidation reaction chamber 50 can be changed when the VOCs exhaust gas concentration changes. The original set operating temperature can still be effectively controlled. In the present example, the first catalytic regenerator cold bypass fast channel 125 provides a lower heat exchange efficiency to the VOCs exhaust gas, so that part of the VOCs exhaust gas can enter the high temperature oxidation reaction chamber 50 at a lower temperature to achieve the regulation and control of the high temperature oxidation reaction. The purpose of the operating temperature of the chamber 50; the combustion heat value released by the volatile organic chemical exhaust gas 100 also releases excess energy through the oxidation reaction of the high temperature oxidation reaction chamber 50 and the porous catalyst bed 33 of the third catalytic regenerator; At this time, the high temperature oxidation reaction chamber over temperature logic controller 320 of the thermal storage regenerative catalytic oxidizer 1 also adjusts and controls the opening degree of the third catalytic regenerator cold bypass fast channel 129 to effectively discharge excess energy.

三進二出一反洗Three in two out one backwash

待一定時間後,切換閥門,將欲處理的揮發性有機化學廢氣100導入該已經蓄存能量的高溫床第三催化蓄熱室30預熱,反應後高溫氣體能量則儲存於第一催化 蓄熱室10,完成『三進二出一反洗』的操作循環。此作業方法是關閉第一催化蓄熱室入氣閥110、關閉第一催化蓄熱室排氣閥130、開啟第一催化蓄熱室反洗閥160,並關閉第二催化蓄熱室入氣閥112、開啟第二催化蓄熱室排氣閥132、關閉第二催化蓄熱室反洗閥162,開啟第三催化蓄熱室入氣閥114、關閉第三催化蓄熱室排氣閥134、關閉第三催化蓄熱室反洗閥164,將VOCs廢氣經第三催化蓄熱室入氣管道115導入第三催化蓄熱室30,氣體首先進入第三催化蓄熱室的入氣室31,均勻送進第三催化蓄熱室的多孔蓄熱床32預熱至一定溫度後,再流經過第三催化蓄熱室的多孔觸媒床33進行部分氧化,然後再經過高溫氧化反應室超溫邏輯控制器320調節控制第三催化蓄熱室冷旁通快速通道129、第二催化蓄熱室冷旁通快速通道127及第一催化蓄熱室冷旁通快速通道125,有效的控制高溫氧化室50操作在最適催化反應溫度,然後,再送到第二催化蓄熱室20,經第二催化蓄熱室的多孔觸媒床23進行高溫催化氧化反應,將含VOCs廢氣中的VOCs徹底破壞;其後,高溫氣體再流經第二催化蓄熱室的多孔蓄熱床22將高溫氣體之顯熱儲存在原已冷卻之第二催化蓄熱室的多孔蓄熱床22蓄熱材內;經熱交換後的氣體,再經第二催化蓄熱室的入氣室21混合後,以較低的溫度經第二催化蓄熱室排氣管道133,從第二催化蓄熱室排氣閥132流向排氣管道144,經誘引排風機145抽引,排經尾排氣管道147流向排氣煙囪80排放。同時,微量的潔淨燃燒產物將被反洗風車166抽引,將第一催化蓄熱室10反洗,氣體經第一催化蓄熱室反洗閥160、第一催化蓄熱室反洗管道161,流經反洗風車166,再經反洗管道 167,送回催化蓄熱室入氣管道108;將第一催化蓄熱室10反洗潔淨後,接著可以作為下一個循環『二進一出三反洗』的出氣催化蓄熱室使用。在本實例中,第三催化蓄熱室冷旁通快速通道129提供了較低的換熱效率給VOCs廢氣,使得部分VOCs廢氣能夠以較低溫度進入高溫氧化反應室50,達到調節控制高溫氧化反應室50的操作溫度的目的;由於揮發性有機化學廢氣100釋放的燃燒熱值也會經由高溫氧化反應室50及第二催化蓄熱室的多孔觸媒床23的氧化反應將過剩能量釋放出來;此時,蓄熱再生型催化氧化器1的高溫氧化反應室超溫邏輯控制器320,也會同時調節控制第二催化蓄熱室冷旁通快速通道127的開度,有效的將過剩能量排出。 After a certain period of time, the valve is switched, and the volatile organic chemical waste gas 100 to be treated is introduced into the third catalytic regenerator 30 of the high temperature bed that has stored energy, and the high temperature gas energy is stored in the first catalyst after the reaction. The regenerator 10 completes the operation cycle of "three ins and two outs and one backwashing". The operation method is to close the first catalytic regenerator inlet valve 110, close the first catalytic regenerator exhaust valve 130, open the first catalytic regenerator backwash valve 160, and close the second catalytic regenerator inlet valve 112, open The second catalytic regenerator exhaust valve 132, the second catalytic regenerator backwash valve 162 is closed, the third catalytic regenerator inlet valve 114 is opened, the third catalytic regenerator exhaust valve 134 is closed, and the third catalytic regenerator is closed. The valve 164 is used to introduce the VOCs exhaust gas into the third catalytic regenerator 30 through the third catalytic regenerator inlet duct 115. The gas first enters the inlet chamber 31 of the third catalytic regenerator and is uniformly fed into the third catalytic regenerator. After the bed 32 is preheated to a certain temperature, it is further partially oxidized through the porous catalyst bed 33 of the third catalytic regenerator, and then adjusted and controlled by the high temperature oxidation reaction chamber over temperature logic controller 320 to control the cold bypass of the third catalytic regenerator. The fast channel 129, the second catalytic regenerator cold bypass fast channel 127 and the first catalytic regenerator cold bypass fast channel 125 effectively control the high temperature oxidation chamber 50 to operate at an optimum catalytic reaction temperature, and then to the first The catalytic regenerator 20 performs high-temperature catalytic oxidation reaction through the porous catalyst bed 23 of the second catalytic regenerator to completely destroy the VOCs in the VOCs-containing exhaust gas; thereafter, the high-temperature gas flows through the porous regenerator bed of the second catalytic regenerator The sensible heat of the high temperature gas is stored in the heat storage material of the porous heat storage bed 22 of the second cooled catalytic regenerator; the heat exchanged gas is mixed with the gas inlet chamber 21 of the second catalytic regenerator to The low temperature flows through the second catalytic regenerator exhaust duct 133 from the second catalytic regenerator exhaust valve 132 to the exhaust duct 144, is drawn by the induced exhaust fan 145, and flows through the exhaust duct 147 to the exhaust stack 80. emission. At the same time, a small amount of clean combustion products will be drawn by the backwashing windmill 166, the first catalytic regenerator 10 will be backwashed, and the gas passes through the first catalytic regenerator backwash valve 160, the first catalytic regenerator backwashing pipe 161, and flows through Backwashing the windmill 166, then backwashing the pipeline 167, returning to the catalytic regenerator inlet duct 108; after the first catalytic regenerator 10 is backwashed and cleaned, it can be used as an outlet catalytic regenerator of the next cycle "two in one out and three backwashing". In the present example, the third catalytic regenerator cold bypass fast channel 129 provides a lower heat exchange efficiency to the VOCs exhaust gas, so that part of the VOCs exhaust gas can enter the high temperature oxidation reaction chamber 50 at a lower temperature to achieve the regulation and control of the high temperature oxidation reaction. The purpose of the operating temperature of the chamber 50; the combustion heat value released by the volatile organic chemical exhaust gas 100 also releases excess energy through the oxidation reaction of the high temperature oxidation reaction chamber 50 and the porous catalyst bed 23 of the second catalytic regenerator; At this time, the high temperature oxidation reaction chamber over temperature logic controller 320 of the thermal storage regenerative catalytic oxidizer 1 also adjusts and controls the opening degree of the cold bypass bypass passage 127 of the second catalytic regenerator to effectively discharge excess energy.

二進一出三反洗Two in one out three backwash

待一定時間後,切換閥門,將欲處理的揮發性有機化學廢氣100導入該已經蓄存能量的高溫床第二催化蓄熱室20預熱,反應後高溫氣體能量則儲存於第一催化蓄熱室10,完成『二進一出三反洗』的操作循環。此作業方法是關閉第一催化蓄熱室入氣閥110、開啟第一催化蓄熱室排氣閥130、關閉第一催化蓄熱室反洗閥160,並開啟第二催化蓄熱室入氣閥112、關閉第二催化蓄熱室排氣閥132、關閉第二催化蓄熱室反洗閥162,關閉第三催化蓄熱室入氣閥114、關閉第三催化蓄熱室排氣閥134、開啟第三催化蓄熱室反洗閥164,將VOCs廢氣經第二催化蓄熱室入氣管道113導入第二催化蓄熱室20,氣體首先進入第二催化蓄熱室的入氣室21,均勻送進第二催化蓄熱室的多孔蓄熱床22預熱至一定溫度後,再流經過第 二催化蓄熱室的多孔觸媒床23進行部分氧化,然後再經過高溫氧化反應室超溫邏輯控制器320調節控制第二催化蓄熱室冷旁通快速通道127、第一催化蓄熱室冷旁通快速通道125及第三催化蓄熱室冷旁通快速通道129,有效的控制高溫氧化室50操作在最適催化反應溫度,然後,再送到第一催化蓄熱室10,經第一催化蓄熱室的多孔觸媒床13進行高溫催化氧化反應,將含VOCs廢氣中的VOCs徹底破壞;其後,高溫氣體再流經第一催化蓄熱室的多孔蓄熱床12將高溫氣體之顯熱儲存在原已冷卻之第一催化蓄熱室的多孔蓄熱床12蓄熱材內;經熱交換後的氣體,再經第一催化蓄熱室的入氣室11混合後,以較低的溫度經第一催化蓄熱室排氣管道131,從第一催化蓄熱室排氣閥130流向排氣管道144,經誘引排風機145抽引,排經尾排氣管道147流向排氣煙囪80排放。同時,微量的潔淨燃燒產物將被反洗風車166抽引,將第三催化蓄熱室30反洗,氣體經第三催化蓄熱室反洗閥164、第三催化蓄熱室反洗管道165,流經反洗風車166,再經反洗管道167,送回催化蓄熱室入氣管道108;將第三催化蓄熱室30反洗潔淨後,接著可以作為下一個循環『一進三出二反洗』的出氣催化蓄熱室使用。在本實例中,第二催化蓄熱室冷旁通快速通道127提供了較低的換熱效率給VOCs廢氣,使得部分VOCs廢氣能夠以較低溫度進入高溫氧化反應室50,達到調節控制高溫氧化反應室50的操作溫度的目的;由於揮發性有機化學廢氣100釋放的燃燒熱值也會經由高溫氧化反應室50及第一催化蓄熱室的多孔觸媒床13的氧化反應將過剩能量釋放出來;此時,蓄熱再生型催化氧化器1的高溫氧化反應室超溫邏輯控制器 320,也會同時調節控制第一催化蓄熱室冷旁通快速通道125的開度,有效的將過剩能量排出。 After a certain period of time, the valve is switched, and the volatile organic chemical waste gas 100 to be treated is introduced into the high temperature bed second catalytic regenerator 20 that has stored energy, and the high temperature gas energy is stored in the first catalytic regenerator 10 after the reaction. , complete the "two in one out three backwash" operation cycle. The operation method is to close the first catalytic regenerator inlet valve 110, open the first catalytic regenerator exhaust valve 130, close the first catalytic regenerator backwash valve 160, and open the second catalytic regenerator inlet valve 112, and close. The second catalytic regenerator exhaust valve 132, the second catalytic regenerator backwash valve 162 is closed, the third catalytic regenerator inlet valve 114 is closed, the third catalytic regenerator exhaust valve 134 is closed, and the third catalytic regenerator is opened. The valve 164 is used to introduce the VOCs exhaust gas into the second catalytic regenerator 20 through the second catalytic regenerator inlet duct 113. The gas first enters the inlet chamber 21 of the second catalytic regenerator and is uniformly fed into the second catalytic regenerator. After the bed 22 is preheated to a certain temperature, it flows through the first The porous catalytic bed 23 of the second catalytic regenerator is partially oxidized, and then passed through the high temperature oxidation reaction chamber over temperature logic controller 320 to adjust and control the second catalytic regenerator cold bypass fast channel 127, the first catalytic regenerator cold bypass fast The channel 125 and the third catalytic regenerator cold bypass fast channel 129 effectively control the high temperature oxidation chamber 50 to operate at an optimum catalytic reaction temperature, and then sent to the first catalytic regenerator 10, through the porous catalyst of the first catalytic regenerator The bed 13 undergoes a high-temperature catalytic oxidation reaction to completely destroy the VOCs in the VOCs-containing exhaust gas; thereafter, the high-temperature gas flows through the porous regenerator bed 12 of the first catalytic regenerator to store the sensible heat of the high-temperature gas in the first cooled first catalyst. The heat storage chamber 12 of the regenerator is in the heat storage material; the heat exchanged gas is mixed with the gas inlet chamber 11 of the first catalytic regenerator, and then passed through the first catalytic regenerator exhaust pipe 131 at a lower temperature. The first catalytic regenerator exhaust valve 130 flows to the exhaust duct 144, is drawn by the induced exhaust fan 145, and is discharged to the exhaust stack 80 through the exhaust duct 147. At the same time, a small amount of clean combustion products will be drawn by the backwashing windmill 166, and the third catalytic regenerator 30 will be backwashed, and the gas flows through the third catalytic regenerator backwash valve 164 and the third catalytic regenerator backwashing pipe 165. The backwashing windmill 166 is returned to the catalytic regenerator inlet pipe 108 via the backwashing pipe 167; the third catalytic regenerator 30 is backwashed and cleaned, and then can be used as the next cycle "one in three outs and two backwashing" The gas catalyzed regenerator is used. In the present example, the second catalytic regenerator cold bypass fast channel 127 provides a lower heat exchange efficiency to the VOCs exhaust gas, allowing a portion of the VOCs exhaust gas to enter the high temperature oxidation reaction chamber 50 at a lower temperature to achieve a regulated high temperature oxidation reaction. The purpose of the operating temperature of the chamber 50; the combustion heat value released by the volatile organic chemical exhaust gas 100 also releases excess energy through the oxidation reaction of the high temperature oxidation reaction chamber 50 and the porous catalyst bed 13 of the first catalytic regenerator; Atmospheric temperature logic controller for high temperature oxidation reaction chamber of thermal storage regenerative catalytic oxidizer 1 320, the opening of the cold bypass bypass passage 125 of the first catalytic regenerator is also controlled at the same time, and the excess energy is effectively discharged.

本創作的處理VOC廢氣的蓄熱再生型催化氧化器,是經由催化蓄熱室內整合設計的冷旁通快速通道及流量調節閥,配合高溫氧化反應室超溫邏輯控制器320,利用PLC規劃編程,與燃燒安全控制器300結合,以PID控制模式調節控制第一催化蓄熱室冷旁通快速通道流量調節閥124、第二催化蓄熱室冷旁通快速通道流量調節閥126、及第三催化蓄熱室冷旁通快速通道流量調節閥128,達成穩定控制高溫氧化反應室50的操作溫度的目的,使得本創作的蓄熱再生型催化氧化器1能夠因應工業界VOCs廢氣排放治理需要,對於快速變化的VOCs廢氣濃度及速度、濃度高於設定值的應用情況等,都能夠提供一個嶄新而且安全的控制工具。 The heat storage regenerative catalytic oxidizer for treating VOC exhaust gas is a cold bypass fast passage and a flow regulating valve integrated through a catalytic heat storage chamber, and is equipped with a high temperature oxidation reaction chamber over temperature logic controller 320, and is programmed by PLC, and The combustion safety controller 300 is combined to control and control the first catalytic regenerator cold bypass fast channel flow regulating valve 124, the second catalytic regenerator cold bypass fast channel flow regulating valve 126, and the third catalytic regenerator cold in the PID control mode. By bypassing the fast-channel flow regulating valve 128, the purpose of stably controlling the operating temperature of the high-temperature oxidation reaction chamber 50 is achieved, so that the regenerative regenerative catalytic oxidizer 1 of the present invention can respond to the needs of industrial VOCs for exhaust gas emission control, and for rapidly changing VOCs. Concentrations and speeds, applications with concentrations above the set point, etc., provide a new and safe control tool.

上述所揭露之圖式、說明,僅為本創作之較佳的二槽式及三槽式的處理VOCs廢氣的蓄熱再生型催化氧化器實施例,大凡熟悉此項技藝人士,依本案精神範疇所作之修飾、等效變化或增加蓄熱槽數目等變化,仍應包括在本案申請專利範圍內。 The above-mentioned drawings and descriptions are only the preferred two-slot and three-slot embodiments of the heat storage regenerative catalytic oxidizer for treating VOCs waste gas, which are familiar to the skilled person and are based on the spirit of the present case. Changes such as modification, equivalent change or increase in the number of heat storage tanks should still be included in the scope of patent application in this case.

第4圖及第5圖為VOCs廢氣流經冷旁通快速通道的比例或快速通道的流動面積比率(α)與濃度變化比率(C/Co)的關係,其中β為經過冷旁通快速通道的氣體能量回收率與正常蓄熱床的氣體能量回收率比值。由第4圖顯示,冷旁通快速通道的材料及結構設計決定β值,β值越小因應濃度變化的能力越強。系統如果要因應濃度變化範圍越廣,則設計蓄熱再生型催化氧化器1時,快速 通道的流動面積比(α)就需要加大。如第5圖所示,當快速通道的流動面積比率(α)等於10%時,若β值設計為0.1,則蓄熱再生型催化氧化器1在VOCs廢氣濃度變化增加達94%時,仍能穩定控制操作溫度在原設定值。但當β值設計為0.3時,則蓄熱再生型催化氧化器1在VOCs廢氣濃度變化增加73%時,仍能穩定控制操作溫度在原設定值。高溫氧化反應室超溫邏輯控制器320搭配最適化控制編程技術,可以讓VOCs廢氣的濃度比增加20%時,仍能讓蓄熱再生型催化氧化器1穩定控制操作溫度在原設定值的溫度高位警告以下;例如,當快速通道的流動面積比率(α)等於10%時,若β值設計為0.1,則蓄熱再生型催化氧化器1在VOCs廢氣濃度變化增加達94% X 1.2=112.8%時,例如原設計VOCs廢氣濃度為1500ppm,系統操作到3192ppm時,系統仍能穩定控制操作。當β值設計為0.3時,則蓄熱再生型催化氧化器1在VOCs廢氣濃度變化增加73% X 1.2=87.6%時,例如原設計VOCs廢氣濃度為1500ppm,系統操作到2814ppm時,系統仍能穩定控制操作溫度在原設定值。 Figure 4 and Figure 5 show the ratio of the VOCs flow through the cold bypass fast channel or the flow area ratio ( α ) of the fast channel to the concentration change ratio (C/Co), where β is the cold bypass fast path The ratio of gas energy recovery to gas energy recovery of a normal regenerator bed. Shown by FIG. 4, material and structural design of the cold bypass passage fast decision beta] value, the smaller the value beta] concentration change due to the ability to be the stronger. If the temperature range of the system is to be varied, the flow area ratio ( α ) of the fast channel needs to be increased when the regenerative regenerative catalytic oxidizer 1 is designed. As shown in Fig. 5, when the flow area ratio ( α ) of the fast path is equal to 10%, if the β value is designed to be 0.1, the regenerative regenerative catalytic oxidizer 1 can still increase the VOCs exhaust gas concentration change by 94%. The stable control operating temperature is at the original set value. However, when the beta value is designed to be 0.3, the regenerative regenerative catalytic oxidizer 1 can stably control the operating temperature at the original set value when the VOCs exhaust gas concentration change is increased by 73%. The high temperature oxidation reaction chamber over temperature logic controller 320 with the optimal control programming technology can increase the concentration ratio of the VOCs exhaust gas by 20%, and still enable the heat storage regeneration type catalytic oxidizer 1 to stably control the operating temperature at the original set value temperature high warning Hereinafter, for example, when the flow area ratio ( α ) of the fast channel is equal to 10%, if the β value is designed to be 0.1, the regenerative regeneration type catalytic oxidizer 1 increases the VOCs exhaust gas concentration change by 94% X 1.2=112.8%. For example, the original design VOCs exhaust gas concentration is 1500ppm, the system can still control the operation when the system is operated to 3192ppm. When the β value is designed to be 0.3, the regenerative regenerative catalytic oxidizer 1 can increase the VOCs exhaust gas concentration change by 73% X 1.2=87.6%, for example, the original design VOCs exhaust gas concentration is 1500 ppm, and the system can be stabilized when the system is operated to 2814 ppm. Control the operating temperature at the original set value.

冷旁通快速通道的材料及結構設計決定β值的大小,例如,多孔材料的孔隙度ε越大、有效孔徑Dh越大、及材料的比熱Cp越小都會影響β值,使得β值越小,根據方程式(2),快速通道的流動面積比率(α)與(1-β)成反比,β值越小所需要的快速通道的流動面積比率(α)也越小。通常設計選用的材料及結構設計β值小於0.5為原則,且以β值小於0.3最佳。若使用中空陶瓷管作為冷旁通快速通道的材料,β值趨近於零,根據方程式(2),快速通道的流動面 積比率(α)與(1-β)成反比,β值越小所需要的快速通道的流動面積比率(α)也越小,因此,使用中空陶瓷管,所需的快速通道的流動面積比率(α)也最小;但是使用中空陶瓷管作為冷旁通快速通道的材料,材料結構設計需要特別設計。 Structural design and materials fast cold bypass passage determines the size of β value, e.g., the greater the porosity ε of the porous material, the greater the effective aperture D h, and β influence the specific heat C p value of the material will be smaller, so that the value of β The smaller, according to equation (2), the flow area ratio ( α ) of the fast channel is inversely proportional to (1- β ), and the smaller the β value, the smaller the flow area ratio ( α ) of the fast channel. Typically the choice of materials and design of structural design principle β less than 0.5, less than 0.3 and at the best value β. If a hollow ceramic tube is used as the material of the cold bypass fast path, the β value approaches zero. According to equation (2), the flow area ratio ( α ) of the fast channel is inversely proportional to (1- β ), and the smaller the β value fast flow area ratio of the desired channel ([alpha]) is also smaller, and therefore, the use of hollow ceramic tube, the flow passage area ratio of the desired speed ([alpha]) is minimal; but the use of hollow ceramic tube as the cold bypass passage fast material Material structure design requires special design.

綜上所述,本創作所揭示之處理VOC廢氣的蓄熱再生型催化氧化器,為昔所無,且確能達到功效之增進,並具可供產業利用性,完全符合發明專利要件,祈請 鈞局核賜專利,以勵創新,無任德感。惟,上述所揭露之圖式、說明,僅為本創作之較佳實施例,大凡熟悉此項技藝人士,依本案精神範疇所作之修飾或等效變化,仍應包括在本案申請專利範圍內。 In summary, the regenerative regenerative catalytic oxidizer for treating VOC exhaust gas disclosed in the present invention is unprecedented, and can indeed achieve the improvement of efficacy, and is available for industrial utilization, fully complying with the invention patent requirements, praying The bureau issued a patent to encourage innovation and no sense of morality. However, the drawings and descriptions disclosed above are only preferred embodiments of the present invention, and modifications or equivalent changes made by those skilled in the art in accordance with the spirit of the present invention should still be included in the scope of the patent application.

Claims (9)

一種蓄熱再生型催化氧化器,含有至少二個催化蓄熱室、一個高溫氧化反應室,其中催化蓄熱室內有多孔材料堆積成的多孔蓄熱床、在該多孔蓄熱床上方有一多孔觸媒床,高溫氧化反應室位於催化蓄熱室上方並與催化蓄熱室結合,且在每一個催化蓄熱室的多孔蓄熱床內部有一組氣體冷旁通快速通道,在氣體冷旁通快速通道底部有一組流量調節閥。 A thermal storage regenerative catalytic oxidizer comprising at least two catalytic regenerators and a high temperature oxidation reaction chamber, wherein a porous regenerator bed in which a porous material is deposited in a catalytic regenerator, a porous catalyst bed on the porous regenerator bed, and high temperature oxidation The reaction chamber is located above the catalytic regenerator and combined with the catalytic regenerator, and has a set of gas cold bypass fast channels inside the porous regenerator of each catalytic regenerator, and a set of flow regulating valves at the bottom of the gas cold bypass fast channel. 如申請專利範圍第1項之蓄熱再生型催化氧化器,其中每一組氣體冷旁通快速通道底部的流量調節閥可以獨立控制。 For example, in the regenerative regenerative catalytic oxidizer of claim 1, the flow regulating valve at the bottom of each group of gas cold bypass fast channels can be independently controlled. 如申請專利範圍第1項之蓄熱再生型催化氧化器,其中構成氣體冷旁通快速通道的材料為多孔材料,其蓄熱容量為多孔蓄熱床多孔材料之蓄熱容量的50%以下。 The regenerative regenerative catalytic oxidizer according to claim 1, wherein the material constituting the gas cold bypass passage is a porous material, and the heat storage capacity is 50% or less of the heat storage capacity of the porous regenerator porous material. 如申請專利範圍第1項之蓄熱再生型催化氧化器,其中構成氣體冷旁通快速通道的材料為中空陶瓷管。 The regenerative regenerative catalytic oxidizer of claim 1, wherein the material constituting the gas cold bypass rapid passage is a hollow ceramic tube. 如申請專利範圍第1項之蓄熱再生型催化氧化器,設有高溫氧化反應室超溫邏輯控制器,自動控制氣體冷旁通快速通道的流量調節閥。 For example, the regenerative regenerative catalytic oxidizer of claim 1 is provided with a high temperature oxidation reaction chamber over temperature logic controller, which automatically controls the flow regulating valve of the gas cold bypass fast passage. 一種蓄熱再生型催化氧化器的氣體冷旁通快速通道,是位於在催化蓄熱室內有多孔材料堆積成的多孔蓄熱床內部,且氣體冷旁通快速通道底部有一組流量調節閥。 A gas cold bypass fast passage of a regenerative regenerative catalytic oxidizer is located inside a porous regenerator bed in which a porous material is accumulated in a catalytic regenerator, and a flow regulating valve is arranged at the bottom of the gas cold bypass fast channel. 如申請專利範圍第6項之蓄熱再生型催化氧化器的氣體冷旁通快速通道,其底部的流量調節閥利用超溫邏輯控制器獨立控制。 For example, in the gas cold bypass fast passage of the regenerative regenerative catalytic oxidizer of claim 6, the flow regulating valve at the bottom is independently controlled by the over temperature logic controller. 如申請專利範圍第6項之蓄熱再生型催化氧化器的氣體冷旁通快速通道,係利用多孔材料鋪設而成。 The gas cold bypass fast passage of the regenerative regenerative catalytic oxidizer of claim 6 is laid by using a porous material. 如申請專利範圍第6項之蓄熱再生型催化氧化器的氣體冷旁通快速通道,係利用中空陶瓷管鋪設而成。 For example, the gas cold bypass fast passage of the regenerative regenerative catalytic oxidizer of claim 6 is laid by using a hollow ceramic tube.
TW106141338A 2017-11-28 2017-11-28 Regenerative catalytic oxidizer for the abatement of VOCs laden gases TW201924769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106141338A TW201924769A (en) 2017-11-28 2017-11-28 Regenerative catalytic oxidizer for the abatement of VOCs laden gases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106141338A TW201924769A (en) 2017-11-28 2017-11-28 Regenerative catalytic oxidizer for the abatement of VOCs laden gases

Publications (1)

Publication Number Publication Date
TW201924769A true TW201924769A (en) 2019-07-01

Family

ID=68048762

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106141338A TW201924769A (en) 2017-11-28 2017-11-28 Regenerative catalytic oxidizer for the abatement of VOCs laden gases

Country Status (1)

Country Link
TW (1) TW201924769A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114797463A (en) * 2022-05-30 2022-07-29 中国科学院过程工程研究所 Device system and method for denitration of sintering flue gas by CO catalytic heat exchange series connection medium-low temperature SCR

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114797463A (en) * 2022-05-30 2022-07-29 中国科学院过程工程研究所 Device system and method for denitration of sintering flue gas by CO catalytic heat exchange series connection medium-low temperature SCR

Similar Documents

Publication Publication Date Title
US5637283A (en) Method and afterburner apparatus for control of highly variable flows
CN106090945B (en) A kind of heat accumulating type incineration device and method of processing dust-laden VOC exhaust gas
US4741690A (en) Process for combustion or decomposition of pollutants and equipment therefor
JP6191832B2 (en) Exhaust gas purification equipment and operation control method thereof
CN107569968A (en) A kind of organic exhaust gas regenerative oxidation device and method
CN206715626U (en) Runner high efficiency cleaning system
CN207153400U (en) A kind of organic exhaust gas regenerative oxidation device
TW201924769A (en) Regenerative catalytic oxidizer for the abatement of VOCs laden gases
KR102589082B1 (en) Apparatus for regenerating catalytic oxidation
TWM577101U (en) REGENERATIVE CATALYTIC OXIDIZER FOR THE ABATEMENT OF VOCs LADEN GASES
TW201925686A (en) Regenerative thermal oxidizer for the abatement of VOCs laden gases
KR102436711B1 (en) Concentrate and 2-bed type regenerative thermal oxidizer with purge means
KR101324204B1 (en) Highly Effective Regenerative Catalyst Oxidizer Including Auxiliary Catalyst
CN109893994A (en) Handle the accumulation of heat regenerative catalytic oxidizer of VOCs exhaust gas
TWM571945U (en) Thermal storage regenerative oxidizer for treating VOCs exhaust gas
KR101558907B1 (en) Hybrid thermo-catalyst oxidation system
TWI504844B (en) A method of voc abatement with energy recovery and rto waste heat recovery boiler using the method
KR100988643B1 (en) Safe-processing apparatus of volatile organic compounds
DK156814B (en) PLANT FOR THE REMOVAL OF OXIDIZABLE INGREDIENTS FROM POLLUTANEOUS GASES, AS FROM POLLUTANEOUS AIR
KR102636137B1 (en) Regenerative Thermal Oxidizer for direct burning waste gas
CN212377992U (en) Organic waste gas treatment integration equipment
CN217773720U (en) RTO exhaust treatment system with multiple safety protection
EP4119215B1 (en) Fume treatment plant equipped with a mercury emissions abating system with a fixed bed of chemi-adsorbents and a method for abating mercury emissions in a fume treatment plant
CN109899809A (en) Handle the accumulation of heat regenerative oxidator of VOCs exhaust gas
CN219897574U (en) Waste gas treatment system