JP3819587B2 - Exhaust gas treatment apparatus and exhaust gas treatment method - Google Patents

Exhaust gas treatment apparatus and exhaust gas treatment method Download PDF

Info

Publication number
JP3819587B2
JP3819587B2 JP10801298A JP10801298A JP3819587B2 JP 3819587 B2 JP3819587 B2 JP 3819587B2 JP 10801298 A JP10801298 A JP 10801298A JP 10801298 A JP10801298 A JP 10801298A JP 3819587 B2 JP3819587 B2 JP 3819587B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst layer
combustion
catalyst
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10801298A
Other languages
Japanese (ja)
Other versions
JPH11304132A (en
Inventor
宏 一柳
悟志 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP10801298A priority Critical patent/JP3819587B2/en
Publication of JPH11304132A publication Critical patent/JPH11304132A/en
Application granted granted Critical
Publication of JP3819587B2 publication Critical patent/JP3819587B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、排ガス処理装置および排ガス処理方法に係り、特に排ガス中の悪臭成分や有害成分を除去するに好適な排ガス処理装置および排ガス処理方法に関する。
【0002】
【従来の技術】
化学工業等の反応工程から排出される排ガスや、樹脂、合板、半導体等の製造工程(焼成、乾燥、洗浄)から排出される排ガス、または塗装工程の焼付け、乾燥工程から排出される排ガス中には微量の悪臭成分や有害成分が含まれている。化学工業における排ガス中の悪臭または有害成分としては、原料の分解ガスや未収率分としての一酸化炭素、炭化水素、酢酸などの有機酸類、またはアルデヒド類等がその代表的なものであり、また樹脂等の製造工程や塗装工程から排出される排ガスには、溶剤として使われるトルエンやアセトン等のアルコール系芳香族炭化水素等が含まれている。
【0003】
これら成分を含む排ガスは、そのまま排気されると悪臭を発し、また人体に有害であることから、公害防止の観点から排気前に脱臭するとともに無害化しなければならない。
これらの悪臭、有害成分を含む排ガスを処理する従来技術は、吸着法、吸収法、燃焼酸化法の3つに大別される。このうち吸着法は、シリカゲル、アルミナゲル、ゼオライト、粘土鉱物、活性炭等の吸着力を利用する方法である。また、吸収法は処理対象物質の化学反応性(酸塩基反応等)を利用する方法であり、アンモニア、アミン類等の塩基性化合物に対しては酸による洗浄が、また酸性のメルカプタン類にはアルカリ洗浄が有効に用いられる。さらに、次亜塩素酸、塩素、過マンガン酸カリウム等の水溶液は強い酸化剤であり、これらの水溶液を用いて有害成分等を吸収、酸化分解する方法もある。
【0004】
また、燃焼酸化法は直接燃焼法と触媒燃焼法に大別される。直接燃焼法は、一般に補助燃料を用いて排ガスを加熱し、800℃以上の温度で排ガス中の悪臭、有害成分を燃焼し、二酸化炭素と水にする方法である。一方、触媒燃焼法は、触媒の酸化作用により500℃またはそれ以下の比較的低温で排ガス中の悪臭、有害成分を燃焼するものである。
【0005】
これらの処理方式は、排ガスの条件や経済性を考慮して選定されるが、吸着法は排ガス中の除去成分が微量(ppm 以下)の場合に適している。除去成分の量が増えるに比例して寿命が低下し、短時間で吸着剤の再生や交換が必要となるからである。また、吸着剤の再生時には吸着した除去成分が脱着されて排出されるため、後流での除去処理が必要となる。一方、吸収法は、使用する吸収液に選択性があるため種類の違った除去成分を含む排ガスの処理には向いておらず、また吸収液や排水の後処理も必要となる。
【0006】
これらのことから、悪臭、有害成分の除去方法としては、燃焼酸化法による処理方法が広く採用されており、最近では触媒燃焼法が、直接燃焼法に較べ補助燃料の節減や2次公害の原因となるNOxの生成がない等の利点があるので注目され、採用されるようになってきた。
図3は、従来技術における触媒燃焼方式による排ガス処理装置の一例を示すフローである。図3において、排ガスファン2により吸引された排ガス1(排ガス1が加圧状態で導入される場合は、排ガスファン2は不要の場合もある)は、熱交換器3に入り、該熱交換器3で燃焼処理排ガス10との熱交換により加熱され、予熱排ガス4となって触媒反応器6へ導かれる。この触媒反応器6の前流には、装置起動時の予熱排ガス4の加熱および熱交換器3で必要温度まで加熱されない場合のバックアップ加熱のために、補助燃料12としてLPG、天然ガス、都市ガスまたは軽油、灯油などの良質油を使用する助燃バーナ11を有する排ガス加熱装置5が設けられており、熱交換器3と排ガス加熱装置5により排ガス1は、安定して触媒燃焼を継続できる温度、例えば150〜400℃まで、予熱される。
【0007】
触媒反応器6の内部には燃焼触媒層7が設けられており、予熱排ガス4は触媒反応器6の上部より導入され、燃焼触媒層7に供給される。予熱排ガス4は燃焼触媒層7を通過する時、触媒の酸化作用により悪臭成分、有害成分が低温で燃焼し、無公害な燃焼処理排ガス10として触媒反応器6下部より排出される。この燃焼触媒層7における排ガスの燃焼は、発熱反応のためほとんどの場合に燃焼触媒層7出口の燃焼処理排ガス10の温度は、燃焼触媒層7入口の予熱排ガス4の温度より高くなる。従って触媒反応器6を出た燃焼処理排ガス10は熱交換器3へ導入され、排ガス1に廃熱を与え、場合によってさらにその後流の廃熱回収装置15で廃熱を回収されたのち、煙突16から排気17として排出される。
【0008】
燃焼触媒層7の燃焼触媒としては、白金、パラジウム等の貴金属系および/またはマンガン、銅、コバルト等の卑金属系のものが使用され、また触媒の形状はペレット状(粒状)やハニカム状が一般的であり、これらペレット状触媒を充填またはハニカム状触媒を積層して燃焼触媒層7が形成される。
この燃焼触媒層7は、触媒反応器6の内部に多孔板状や格子状の触媒受け8によって支持されているが、一般に燃焼触媒層7の荷重方向とガス流を同一方向にするため、触媒反応器6の上部より予熱排ガス4を下降流として燃焼触媒層7に供給し、燃焼処理排ガス10の出口側で燃焼触媒層7を支持する方法が採用されている。
【0009】
20は、燃焼触媒層7の異常を管理するための触媒差圧計である。
【0010】
【発明が解決しようとする課題】
上記従来技術は、排ガス中にダスト、タール等の汚れ成分が含まれ、燃焼触媒層7に排ガス中の汚れ成分が付着し、燃焼触媒層7の通過流動抵抗(触媒層差圧)が上昇した場合においても運転が継続されるため、燃焼触媒層7の出口側の触媒受け8にかかる荷重が増加して触媒受け8が破壊するか、触媒層入口側の内部圧力が上昇して、触媒反応器6の強度上の限界圧力を超えてしまい、触媒反応器6の容器が破壊してしまう危険性があった。すなわち、燃焼触媒層の重量をW1、燃焼触媒層入口圧力をP1、燃焼触媒層出口圧力をP2、燃焼触媒層の受圧面積をAとすると、燃焼触媒層を排ガスが通過することにより発生する流動抵抗△PcはP2−P1となる。燃焼触媒層が汚れにより詰まりや閉塞を生じてくると、この通過流動抵抗△Pcが上昇してくる。この場合、燃焼触媒層の重量による荷重の方向と排ガスの流れ方向が同じであるために、触媒受けにかかる荷重は(W1+△Pc・A)となり、△Pcの上昇に伴って触媒受けにかかる荷重は大きくなる。この触媒受け8にかかる荷重が触媒受け8の強度上の限界荷重を超えると触媒受け8が破壊するという危険性がある。また、燃焼触媒層出口の圧力P2は一定であるから、流動抵抗△Pcの上昇によって燃焼触媒層入口側の圧力P1が高くなる。この燃焼触媒層入口圧力P1が触媒反応器の容器限界圧力を超えると容器が破壊するという危険性がある。このような危険を回避するため、燃焼触媒層7の差圧を検出して燃焼触媒層7に詰まり等の異常を生じた場合、事前に検知して装置を停止する方法が取られているものもあるが、燃焼触媒層7の詰まりは瞬時に発生する場合が多々あり、燃焼触媒層7の差圧検出では時間的な遅れを生じるため対処できない場合が多い。
【0011】
また、上記従来技術は、燃焼触媒層7の支持を排ガスの温度が高くなる出口側で行うため、触媒受け8の材料も耐熱性の高い高級材料を使用する必要があり、経済的にも負担が大きくなるという問題があった。
本発明の目的は、上記従来技術における問題点を解消するものであって、排ガス中の汚れ成分による燃焼触媒層の詰まりによる圧力上昇を生じても、触媒反応容器が破壊することのない、安全で、そのうえ触媒受けに安価な材料が使用できる排ガス処理装置および処理方法を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するため本願で特許請求される発明は以下のとおりである。
(1) 有害成分を含有する排ガスを燃焼触媒層に導入して前記有害成分を触媒燃焼により加熱除去する排ガス処理装置において、前記燃焼触媒層および該触媒層を支持する手段を内装する触媒反応器と、該反応器の前記触媒層の下方から触媒燃焼開始温度以上の排ガスを導入する手段と、前記燃焼触媒層通過後の排ガスを前記反応器の上部から排出する手段と、前記燃焼触媒層の上部に該触媒層の荷重を調整する錘手段を設けたことを特徴とする排ガス処理装置。
【0013】
(2) 前記触媒反応器の前流に設けられて排ガスを触媒燃焼開始温度以上に加熱する排ガス加熱装置と、触媒反応器より排出された排ガス中の燃焼熱を回収する熱交換器とを備えたことを特徴とする(1)に記載の排ガス処理装置。
(3) 触媒反応器内の前記触媒層を支持する手段が該触媒層の下方に設けられていることを特徴とする(1)または(2)に記載の排ガス処理装置。
【0014】
4) 有害成分を含有する排ガスを燃焼触媒層に導入して前記有害成分を触媒燃焼により加熱除去する排ガス処理方法であって、前記排ガスを排ガス加熱装置により触媒燃焼開始温度まで加熱し、該加熱された排ガスを、触媒受けによって下方から支持され、かつ上部に荷重を調整する錘手段を設けた燃焼触媒層を有する触媒反応器に前記触媒層の下方から導入し、該触媒層を通過させて排ガス中の有害成分を加熱除去したのち燃焼触媒層上方から排出するとともに、燃焼触媒層通過前後の排ガス圧力差ΔPと該触媒層の通過断面積Aとの積ΔP・Aが前記燃焼触媒の重量W1と前記錘手段の重量W2より大きくなった際に、前記触媒層に排ガスの吹抜けを発生させ、該触媒層入口の排ガス圧力の過度の上昇を抑制することを特徴とする排ガス処理方法。
【0015】
5) 前記燃焼触媒層上方から排出される排ガスを熱交換器に導入して該排ガス中の燃焼熱を回収することを特徴とする(4)に記載の排ガス処理方法。
本発明においては、燃焼触媒層の重量による荷重の方向と排ガスの流れ方向が対向しているため、触媒受けにかかる荷重はW1−ΔPc・Aとなり、ΔPcが上昇してW1<ΔPc・Aとなった時点で燃焼触媒層は排ガスによって押し上げられてペレットの充填層またはハニカムの積層に崩れが生じ、この崩れが排ガスの吹抜け部となるので、それ以上のΔPcの上昇が抑制される。したがって、燃焼触媒層が安全装置の役割を果たして触媒受けに過大な荷重がかかることもなく、また燃焼触媒層入口圧力P1の上昇も抑制される。
【0016】
さらに、燃焼触媒層の上部に重量W2の錘を乗せることにより、燃焼触媒層の重量がW1+W2となるので、燃焼触媒層が押し上げられる△Pcの値を自在に調整することができる。また、燃焼触媒層の重量による荷重の方向と排ガスの流れ方向を対向させたことにより、温度の低い排ガス入口側で燃焼触媒層を支持でき、耐熱性の高い高級材料を使用する必要がなくなる。
【0017】
【発明の実施の形態】
図1は、本発明の実施の形態の一例である排ガス処理装置のフロー図である。図1において、排ガスファン2により吸引された排ガス1(排ガス1が必要加圧状態で導入される場合は排ガスファン2は不要となる場合もある)は、熱交換器3に入る。熱交換器3で、排ガス1は自己の燃焼処理排ガス10との熱交換により加熱され、予熱排ガス4となって触媒反応器6へ導かれる。この触媒反応器6の前流には、装置起動時の予熱排ガス4の加熱および熱交換器3で必要温度まで加熱されない場合のバックアップ加熱のために、補助燃料12としてLPG、天然ガス、都市ガスまたは軽油、灯油などの良質油を使用する助燃バーナ11を有する排ガス加熱装置5が設けられており、この排ガス加熱装置5と熱交換器3とにより常に安定して触媒燃焼が継続できる温度(一般的には150〜400℃)まで、排ガス1が予熱される。触媒反応器6の内部には燃焼触媒層7が設けられており、予熱排ガス4は触媒反応器6の下部に導入されて燃焼触媒層7に供給される。予熱排ガス4は燃焼触媒層7を通過する時、触媒の酸化作用により悪臭成分、有害成分が低温で燃焼され、無公害な燃焼処理排ガス10として触媒反応器6の上部から排出される。燃焼触媒層7の上部、すなわち燃焼処理排ガス出口側には錘(触媒押さえ)9が乗せてあり、燃焼触媒層7の重量に荷重が付加されている。触媒反応器6を出た燃焼処理排ガス10は熱交換器3へ導入され、ここで排ガス1に廃熱を与え、場合によってさらにその後流の廃熱回収装置15で廃熱が回収されたのち、煙突16から排気17として排出される。
【0018】
本実施例において、燃焼触媒層7は、触媒反応器6の内部に多孔板状や格子状の触媒受け8を設置し、この触媒受け8の上に白金、パラジウム等の貴金属系および/またはマンガン、銅、コバルト等の卑金属系の触媒であって、ペレット状(粒状)の触媒やハニカム状の触媒を充填または積層することによって形成されている。また、燃焼触媒層7の上側に乗せてある錘9は、図2に模式図として示したように排ガスの流動抵抗を増加させない格子状等の構造のものが好適に使用される。
【0019】
本実施例によれば、燃焼触媒層7は予熱排ガス4の入口側で触媒受け8によって支持されているので、燃焼触媒層7の荷重は触媒受け8に下向きに作用するが、予熱排ガス4が触媒反応器6の下部より上昇流として供給されるので、排ガスの流れによる燃焼触媒層7の押し上げ力は燃焼触媒層7に上向きに作用する。したがって、触媒受8への作用力が小さくなりその破損を防止することができる。
【0020】
【発明の効果】
本発明によれば、触媒支持手段によって下方から支持されている燃焼触媒層を有する触媒反応器に、前記触媒層の下方から加熱排ガスを導入して、前記燃焼触媒層内を上向流として流通させることにより排ガス中にダストやタール等の汚れ成分が含まれ、燃焼触媒層に排ガス中の汚れ成分が付着し、燃焼触媒層の通過流動抵抗(触媒層差圧)が上昇した場合に充填された触媒層が崩れて排ガスの吹抜け部が形成されるので、燃焼触媒層を支持する触媒受けや触媒反応容器が破壊される危険性をなくし、かつ瞬時の触媒閉塞等においても安全に設備の運用が可能となる。また、燃焼触媒層を排ガスの温度が低い燃焼触媒層入口側で支持するため、触媒受けに安価な材料が使用できる。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例である排ガス処理装置のフロー図。
【図2】本発明の一実施例に使用される、燃焼触媒層の上に乗せた錘の構造を示す模式図。
【図3】従来技術における排ガス処理装置の一例を示すフロー図。
【符号の説明】
1…排ガス、2:排ガスファン、3…熱交換器、4…予熱排ガス、5…排ガス加熱装置、6…触媒反応器、7…燃焼触媒層、8…触媒受け、9…錘(触媒押さえ)、10…燃焼処理排ガス、11…助燃バーナ、12…補助燃料、13…燃焼空気、14…燃焼空気ファン、15…廃熱回収装置、16…煙突、17…排気、18…コントロール弁、19…温度調節計、20…触媒差圧計。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas treatment device and an exhaust gas treatment method, and more particularly to an exhaust gas treatment device and an exhaust gas treatment method suitable for removing malodorous components and harmful components in exhaust gas.
[0002]
[Prior art]
In exhaust gas discharged from reaction processes such as chemical industry, exhaust gas discharged from manufacturing processes (firing, drying, washing) of resins, plywood, semiconductors, etc., or exhaust gas discharged from baking and drying processes of painting processes Contains trace amounts of malodorous and harmful ingredients. Typical examples of malodorous or harmful components in exhaust gases in the chemical industry include cracked gas from raw materials, organic acids such as carbon monoxide, hydrocarbons and acetic acid, or aldehydes as unyield, The exhaust gas discharged from the production process of resin and the coating process contains alcohol-based aromatic hydrocarbons such as toluene and acetone used as a solvent.
[0003]
The exhaust gas containing these components emits a bad odor when exhausted as it is, and is harmful to the human body. Therefore, it must be deodorized and made harmless before exhaust from the viewpoint of pollution prevention.
Conventional techniques for treating exhaust gas containing these malodors and harmful components are roughly classified into three methods: an adsorption method, an absorption method, and a combustion oxidation method. Among these, the adsorption method is a method that utilizes the adsorption power of silica gel, alumina gel, zeolite, clay mineral, activated carbon, and the like. The absorption method uses the chemical reactivity (acid-base reaction, etc.) of the substance to be treated. For basic compounds such as ammonia and amines, washing with acid is used. For acidic mercaptans, Alkaline cleaning is effectively used. Furthermore, aqueous solutions of hypochlorous acid, chlorine, potassium permanganate and the like are strong oxidizing agents, and there is a method of absorbing and oxidizing and decomposing harmful components using these aqueous solutions.
[0004]
The combustion oxidation method is roughly classified into a direct combustion method and a catalytic combustion method. The direct combustion method is generally a method in which exhaust gas is heated using auxiliary fuel, and malodor and harmful components in the exhaust gas are burned at a temperature of 800 ° C. or higher to form carbon dioxide and water. On the other hand, the catalytic combustion method burns malodorous and harmful components in exhaust gas at a relatively low temperature of 500 ° C. or lower due to the oxidizing action of the catalyst.
[0005]
These treatment methods are selected in consideration of exhaust gas conditions and economy, but the adsorption method is suitable when the amount of components removed in the exhaust gas is very small (ppm or less). This is because the lifetime decreases in proportion to the amount of the removed component, and the adsorbent must be regenerated or replaced in a short time. Further, since the adsorbed removal component is desorbed and discharged during regeneration of the adsorbent, a downstream removal process is required. On the other hand, the absorption method is not suitable for the treatment of exhaust gas containing different types of removal components because of the selectivity of the absorption solution used, and also requires post-treatment of the absorption solution and waste water.
[0006]
As a result, as a method for removing malodors and harmful components, a treatment method using a combustion oxidation method has been widely adopted. Recently, the catalytic combustion method is a cause of saving auxiliary fuel and secondary pollution compared to the direct combustion method. Since it has advantages such as no generation of NOx, it has attracted attention and has been adopted.
FIG. 3 is a flowchart showing an example of an exhaust gas treatment apparatus using a catalytic combustion method in the prior art. In FIG. 3, the exhaust gas 1 sucked by the exhaust gas fan 2 (if the exhaust gas 1 is introduced in a pressurized state, the exhaust gas fan 2 may be unnecessary) enters the heat exchanger 3 and the heat exchanger 3 is heated by heat exchange with the combustion treatment exhaust gas 10 to be preheated exhaust gas 4 and led to the catalytic reactor 6. The upstream of the catalytic reactor 6 includes LPG, natural gas, and city gas as auxiliary fuel 12 for heating the preheated exhaust gas 4 at the time of starting the apparatus and for backup heating when the heat exchanger 3 does not heat to the required temperature. Alternatively, an exhaust gas heating device 5 having an auxiliary combustion burner 11 using high-quality oil such as light oil and kerosene is provided, and the exhaust gas 1 can be stably heated by the heat exchanger 3 and the exhaust gas heating device 5 at a temperature at which catalytic combustion can be continued stably. For example, it is preheated to 150 to 400 ° C.
[0007]
A combustion catalyst layer 7 is provided inside the catalyst reactor 6, and the preheated exhaust gas 4 is introduced from above the catalyst reactor 6 and supplied to the combustion catalyst layer 7. When the preheated exhaust gas 4 passes through the combustion catalyst layer 7, malodorous components and harmful components are burned at a low temperature due to the oxidizing action of the catalyst, and are discharged from the lower part of the catalyst reactor 6 as non-polluting combustion treatment exhaust gas 10. In most cases, combustion of the exhaust gas in the combustion catalyst layer 7 is an exothermic reaction, so that the temperature of the combustion treatment exhaust gas 10 at the outlet of the combustion catalyst layer 7 is higher than the temperature of the preheated exhaust gas 4 at the inlet of the combustion catalyst layer 7. Accordingly, the combustion treatment exhaust gas 10 exiting the catalytic reactor 6 is introduced into the heat exchanger 3 to give waste heat to the exhaust gas 1 and, in some cases, the waste heat is recovered by the waste heat recovery device 15 downstream thereof, and then the chimney. 16 is discharged as exhaust 17.
[0008]
As the combustion catalyst of the combustion catalyst layer 7, a precious metal such as platinum or palladium and / or a base metal such as manganese, copper or cobalt is used, and the shape of the catalyst is generally in the form of pellets or honeycombs. The combustion catalyst layer 7 is formed by filling these pellet-shaped catalysts or laminating honeycomb-shaped catalysts.
The combustion catalyst layer 7 is supported inside the catalyst reactor 6 by a porous plate-like or lattice-like catalyst receiver 8. Generally, in order to make the gas flow the same as the load direction of the combustion catalyst layer 7, A method is adopted in which the preheated exhaust gas 4 is supplied as a downward flow from the upper part of the reactor 6 to the combustion catalyst layer 7 and the combustion catalyst layer 7 is supported on the outlet side of the combustion treated exhaust gas 10.
[0009]
Reference numeral 20 denotes a catalyst differential pressure gauge for managing the abnormality of the combustion catalyst layer 7.
[0010]
[Problems to be solved by the invention]
In the above prior art, dirt components such as dust and tar are contained in the exhaust gas, the dirt components in the exhaust gas adhere to the combustion catalyst layer 7, and the flow resistance (catalyst layer differential pressure) of the combustion catalyst layer 7 increases. Even in this case, the operation is continued, so that the load applied to the catalyst receiver 8 on the outlet side of the combustion catalyst layer 7 is increased and the catalyst receiver 8 is broken or the internal pressure on the catalyst layer inlet side is increased to cause a catalytic reaction. There was a risk that the critical pressure of the reactor 6 would be exceeded and the container of the catalytic reactor 6 would be destroyed. That is, if the weight of the combustion catalyst layer is W1, the combustion catalyst layer inlet pressure is P1, the combustion catalyst layer outlet pressure is P2, and the pressure receiving area of the combustion catalyst layer is A, the flow generated by the exhaust gas passing through the combustion catalyst layer The resistance ΔPc is P2-P1. When the combustion catalyst layer is clogged or clogged with dirt, this flow resistance ΔPc increases. In this case, since the direction of the load due to the weight of the combustion catalyst layer is the same as the flow direction of the exhaust gas, the load applied to the catalyst receiver is (W1 + ΔPc · A), and the catalyst receiver is applied as ΔPc increases. The load increases. When the load applied to the catalyst receiver 8 exceeds the limit load on the strength of the catalyst receiver 8, there is a risk that the catalyst receiver 8 is broken. Further, since the pressure P2 at the outlet of the combustion catalyst layer is constant, the pressure P1 at the inlet side of the combustion catalyst layer increases as the flow resistance ΔPc increases. If the combustion catalyst layer inlet pressure P1 exceeds the container limit pressure of the catalyst reactor, there is a risk that the container will be destroyed. In order to avoid such a danger, when the pressure difference of the combustion catalyst layer 7 is detected and an abnormality such as clogging occurs in the combustion catalyst layer 7, a method of detecting in advance and stopping the apparatus is taken. However, there are many cases where the clogging of the combustion catalyst layer 7 occurs instantaneously, and detection of the differential pressure in the combustion catalyst layer 7 causes a time lag and often cannot be dealt with.
[0011]
Further, in the above prior art, since the combustion catalyst layer 7 is supported on the outlet side where the temperature of the exhaust gas becomes high, it is necessary to use a high-grade material having high heat resistance for the material of the catalyst receiver 8, which is economically burdensome. There was a problem that became larger.
An object of the present invention is to solve the above-described problems in the prior art, and the safety of the catalytic reaction vessel is not destroyed even if a pressure increase occurs due to the clogging of the combustion catalyst layer due to dirt components in the exhaust gas. In addition, another object is to provide an exhaust gas treatment apparatus and a treatment method that can use an inexpensive material for the catalyst receiver.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the invention claimed in the present application is as follows.
(1) In an exhaust gas treatment apparatus that introduces exhaust gas containing harmful components into a combustion catalyst layer and heats and removes the harmful components by catalytic combustion, the catalytic reactor including the combustion catalyst layer and means for supporting the catalyst layer When the means for introducing the catalytic combustion initiation temperature or higher of the exhaust gas from below the catalyst layer of the reactor, means for discharging the exhaust gas after passing through the combustion catalyst layer from the top of the reactor, the combustion catalyst layer An exhaust gas treatment apparatus provided with weight means for adjusting the load of the catalyst layer on an upper part .
[0013]
(2) An exhaust gas heating device that is provided upstream of the catalytic reactor and heats the exhaust gas to a temperature equal to or higher than the catalytic combustion start temperature, and a heat exchanger that recovers the combustion heat in the exhaust gas discharged from the catalytic reactor. The exhaust gas treatment apparatus as described in ( 1) above .
(3) The exhaust gas treatment apparatus according to ( 1) or (2), characterized in that means for supporting the catalyst layer in the catalyst reactor is provided below the catalyst layer.
[0014]
( 4) An exhaust gas treatment method for introducing exhaust gas containing harmful components into a combustion catalyst layer and heating and removing the harmful components by catalytic combustion, wherein the exhaust gas is heated to a catalytic combustion start temperature by an exhaust gas heating device, Heated exhaust gas is introduced from below the catalyst layer into a catalyst reactor having a combustion catalyst layer supported by a catalyst receiver from below and provided with weight means for adjusting the load at the top, and passes through the catalyst layer. converting mechanism is discharged from the combustion catalyst layer upward After heating remove harmful components in the exhaust gas, the product [Delta] P · a of the passage cross-sectional area a of the exhaust gas pressure difference [Delta] P and the catalyst layer before and after passing through the combustion catalyst layer of the combustion catalyst when becomes greater than the weight W2 of the weight W 1 and the weight unit, the blow-by of exhaust gas is generated in the catalyst layer, and wherein the suppressing an excessive increase of the exhaust gas pressure of the catalyst layer inlet waste gas Processing method.
[0015]
( 5) The exhaust gas treatment method according to (4) , wherein exhaust gas discharged from above the combustion catalyst layer is introduced into a heat exchanger to recover combustion heat in the exhaust gas.
In the present invention, since the direction of the load due to the weight of the combustion catalyst layer and the flow direction of the exhaust gas are opposed to each other, the load applied to the catalyst receiver becomes W1−ΔPc · A, ΔPc increases, and W1 <ΔPc · A. At this point, the combustion catalyst layer is pushed up by the exhaust gas, and the packed bed of the pellets or the honeycomb stack is collapsed. This collapse becomes a blow-off portion of the exhaust gas, and further increase in ΔPc is suppressed. Therefore, the combustion catalyst layer serves as a safety device so that an excessive load is not applied to the catalyst receiver, and an increase in the combustion catalyst layer inlet pressure P1 is suppressed.
[0016]
Furthermore, since the weight of the combustion catalyst layer becomes W1 + W2 by placing a weight of weight W2 on top of the combustion catalyst layer, the value of ΔPc by which the combustion catalyst layer is pushed up can be freely adjusted. In addition, since the load direction due to the weight of the combustion catalyst layer and the flow direction of the exhaust gas are opposed to each other, the combustion catalyst layer can be supported on the exhaust gas inlet side having a low temperature, and it is not necessary to use a high-grade heat-resistant material.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a flowchart of an exhaust gas treatment apparatus that is an example of an embodiment of the present invention. In FIG. 1, the exhaust gas 1 sucked by the exhaust gas fan 2 (when the exhaust gas 1 is introduced in a necessary pressurized state, the exhaust gas fan 2 may be unnecessary) enters the heat exchanger 3. In the heat exchanger 3, the exhaust gas 1 is heated by heat exchange with its combustion treatment exhaust gas 10, and becomes preheated exhaust gas 4, which is led to the catalytic reactor 6. The upstream of the catalytic reactor 6 includes LPG, natural gas, and city gas as auxiliary fuel 12 for heating the preheated exhaust gas 4 at the time of starting the apparatus and for backup heating when the heat exchanger 3 does not heat to the required temperature. Alternatively, an exhaust gas heating device 5 having an auxiliary combustion burner 11 that uses high-quality oil such as light oil and kerosene is provided, and the exhaust gas heating device 5 and the heat exchanger 3 can always stably and continuously continue catalytic combustion (general). Specifically, the exhaust gas 1 is preheated up to 150 to 400 ° C. A combustion catalyst layer 7 is provided inside the catalyst reactor 6, and the preheated exhaust gas 4 is introduced into the lower part of the catalyst reactor 6 and supplied to the combustion catalyst layer 7. When the preheated exhaust gas 4 passes through the combustion catalyst layer 7, malodorous components and harmful components are burned at a low temperature due to the oxidizing action of the catalyst, and discharged from the upper part of the catalyst reactor 6 as non-polluting combustion treatment exhaust gas 10. A weight (catalyst presser) 9 is placed on the upper part of the combustion catalyst layer 7, that is, on the combustion treatment exhaust gas outlet side, and a load is added to the weight of the combustion catalyst layer 7. The combustion treatment exhaust gas 10 exiting the catalytic reactor 6 is introduced into the heat exchanger 3 where waste heat is given to the exhaust gas 1 and, in some cases, after the waste heat is recovered by the waste heat recovery device 15 in the downstream flow, It is discharged from the chimney 16 as exhaust 17.
[0018]
In this embodiment, the combustion catalyst layer 7 is provided with a porous plate-like or lattice-like catalyst receiver 8 inside the catalyst reactor 6, and a noble metal system such as platinum and palladium and / or manganese is provided on the catalyst receiver 8. A base metal catalyst such as copper or cobalt, which is formed by filling or laminating a pellet-shaped (granular) catalyst or a honeycomb-shaped catalyst. As the weight 9 placed on the upper side of the combustion catalyst layer 7, a lattice-like structure that does not increase the flow resistance of the exhaust gas as shown in the schematic diagram of FIG. 2 is preferably used.
[0019]
According to this embodiment, since the combustion catalyst layer 7 is supported by the catalyst receiver 8 on the inlet side of the preheated exhaust gas 4, the load of the combustion catalyst layer 7 acts downward on the catalyst receiver 8, but the preheated exhaust gas 4 Since it is supplied as an upward flow from the lower part of the catalytic reactor 6, the pushing force of the combustion catalyst layer 7 due to the flow of exhaust gas acts upward on the combustion catalyst layer 7. Therefore, the acting force on the catalyst receiver 8 is reduced, and the damage can be prevented.
[0020]
【The invention's effect】
According to the present invention, the catalytic reactor having a combustion catalyst layer which is supported from below by a catalyst support means, by introducing heated gas from below the catalyst layer, flowing through the combustion catalyst layer as an upward stream When the exhaust gas contains dirt components such as dust and tar, the dirt components in the exhaust gas adhere to the combustion catalyst layer, and the flow resistance of the combustion catalyst layer (catalyst layer differential pressure) increases , Since the filled catalyst layer collapses and an exhaust gas blow-off part is formed, there is no risk of the catalyst receiver and catalyst reaction vessel supporting the combustion catalyst layer being destroyed, and safe installation is possible even when instantaneous catalyst clogging occurs. Can be operated. Further, since the combustion catalyst layer is supported on the combustion catalyst layer inlet side where the temperature of the exhaust gas is low, an inexpensive material can be used for the catalyst receiver.
[Brief description of the drawings]
FIG. 1 is a flowchart of an exhaust gas treatment apparatus as an example of an embodiment of the present invention.
FIG. 2 is a schematic diagram showing the structure of a weight placed on a combustion catalyst layer used in one embodiment of the present invention.
FIG. 3 is a flowchart showing an example of an exhaust gas treatment apparatus in the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Exhaust gas, 2: Exhaust gas fan, 3 ... Heat exchanger, 4 ... Pre-heating exhaust gas, 5 ... Exhaust gas heating device, 6 ... Catalyst reactor, 7 ... Combustion catalyst layer, 8 ... Catalyst receiver, 9 ... Weight (catalyst holding) DESCRIPTION OF SYMBOLS 10 ... Combustion process waste gas, 11 ... Auxiliary burner, 12 ... Auxiliary fuel, 13 ... Combustion air, 14 ... Combustion air fan, 15 ... Waste heat recovery device, 16 ... Chimney, 17 ... Exhaust, 18 ... Control valve, 19 ... Temperature controller, 20 ... Catalyst differential pressure gauge.

Claims (5)

有害成分を含有する排ガスを燃焼触媒層に導入して前記有害成分を触媒燃焼により加熱除去する排ガス処理装置において、前記燃焼触媒層および該触媒層を支持する手段を内装する触媒反応器と、該反応器の前記触媒層の下方から触媒燃焼開始温度以上の排ガスを導入する手段と、前記燃焼触媒層通過後の排ガスを前記反応器の上部から排出する手段と、前記燃焼触媒層の上部に該触媒層の荷重を調整する錘手段を設けたことを特徴とする排ガス処理装置。In an exhaust gas treatment apparatus that introduces exhaust gas containing harmful components into a combustion catalyst layer and heats and removes the harmful components by catalytic combustion, a catalyst reactor including the combustion catalyst layer and means for supporting the catalyst layer, Means for introducing exhaust gas at a temperature equal to or higher than the catalyst combustion start temperature from below the catalyst layer of the reactor, means for discharging exhaust gas after passing through the combustion catalyst layer from the upper part of the reactor, and the upper part of the combustion catalyst layer. An exhaust gas treatment apparatus provided with weight means for adjusting the load of the catalyst layer . 前記触媒反応器の前流に設けられて排ガスを触媒燃焼開始温度以上に加熱する排ガス加熱装置と、触媒反応器より排出された排ガス中の燃焼熱を回収する熱交換器とを備えたことを特徴とする請求項1に記載の排ガス処理装置。An exhaust gas heating device provided in the upstream of the catalyst reactor for heating the exhaust gas to a temperature equal to or higher than the catalyst combustion start temperature, and a heat exchanger for recovering the combustion heat in the exhaust gas discharged from the catalyst reactor. The exhaust gas treatment apparatus according to claim 1, wherein 触媒反応器内の前記触媒層を支持する手段が該触媒層の下方に設けられていることを特徴とする請求項1または2に記載の排ガス処理装置。 The exhaust gas treatment apparatus according to claim 1 or 2, wherein means for supporting the catalyst layer in the catalyst reactor is provided below the catalyst layer. 有害成分を含有する排ガスを燃焼触媒層に導入して前記有害成分を触媒燃焼により加熱除去する排ガス処理方法であって、前記排ガスを排ガス加熱装置により触媒燃焼開始温度まで加熱し、該加熱された排ガスを、触媒受けによって下方から支持され、かつ上部に荷重を調整する錘手段を設けた燃焼触媒層を有する触媒反応器に前記触媒層の下方から導入し、該触媒層を通過させて排ガス中の有害成分を加熱除去したのち燃焼触媒層上方から排出するとともに、燃焼触媒層通過前後の排ガス圧力差ΔPと該触媒層の通過断面積Aとの積ΔP・Aが前記燃焼触媒の重量W1と前記錘手段の重量W2より大きくなった際に、前記触媒層に排ガスの吹抜けを発生させ、該触媒層入口の排ガス圧力の過度の上昇を抑制することを特徴とする排ガス処理方法。An exhaust gas treatment method for introducing exhaust gas containing harmful components into a combustion catalyst layer and heating and removing the harmful components by catalytic combustion, wherein the exhaust gas is heated to a catalytic combustion start temperature by an exhaust gas heating device, and the heated The exhaust gas is introduced from below the catalyst layer into the catalyst reactor supported by the catalyst receiver from below and provided with a combustion catalyst layer provided with a weight means for adjusting the load at the top, and passes through the catalyst layer to pass through the catalyst layer. as well as discharged from the combustion catalyst layer upward After heating remove harmful components, the weight W 1 of the product [Delta] P · a of the passage cross-sectional area a of the exhaust gas pressure difference [Delta] P and the catalyst layer before and after passing through the combustion catalyst layer wherein the combustion catalyst wherein when the greater than the weight W2 of the weight unit, the catalyst layer to generate a blow of exhaust gas, exhaust gas treatment, characterized in that suppresses an excessive increase of the exhaust gas pressure of the catalyst layer inlet and Law. 前記燃焼触媒層上方から排出される排ガスを熱交換器に導入して該排ガス中の燃焼熱を回収することを特徴とする請求項に記載の排ガス処理方法。The exhaust gas treatment method according to claim 4 , wherein exhaust gas discharged from above the combustion catalyst layer is introduced into a heat exchanger to recover the combustion heat in the exhaust gas.
JP10801298A 1998-04-17 1998-04-17 Exhaust gas treatment apparatus and exhaust gas treatment method Expired - Fee Related JP3819587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10801298A JP3819587B2 (en) 1998-04-17 1998-04-17 Exhaust gas treatment apparatus and exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10801298A JP3819587B2 (en) 1998-04-17 1998-04-17 Exhaust gas treatment apparatus and exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JPH11304132A JPH11304132A (en) 1999-11-05
JP3819587B2 true JP3819587B2 (en) 2006-09-13

Family

ID=14473760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10801298A Expired - Fee Related JP3819587B2 (en) 1998-04-17 1998-04-17 Exhaust gas treatment apparatus and exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP3819587B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263880A (en) * 2003-01-21 2004-09-24 Mitsubishi Rayon Co Ltd Catalytic combustion equipment and catalytic combustion method
JP2007273571A (en) * 2006-03-30 2007-10-18 Tamura Furukawa Machinery:Kk Reflow furnace
WO2014178337A1 (en) * 2013-05-01 2014-11-06 東京博善株式会社 Cremation system and cremation method
TWI613400B (en) * 2014-10-30 2018-02-01 Tokyo Hakuzen Co Ltd Cremation system and cremation method
CN106765218B (en) * 2016-12-01 2024-03-22 广州斯而德农业科技有限公司 VOCs waste gas comprehensive treatment heat energy utilization equipment
CN113494715B (en) * 2021-05-26 2023-02-14 南大恩洁优环境技术(江苏)股份公司 VOCs circulating catalytic combustion purification device

Also Published As

Publication number Publication date
JPH11304132A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
KR101309714B1 (en) The treating system of odors and volatile organic compounds simultaneously
WO1994027710A1 (en) Pollution reduction process
CA2397226C (en) Process, catalyst system, and apparatus for treating sulfur compound containing effluent
JP2008000748A (en) Regeneration of nt-scr catalyst
JP2011036730A (en) Method of treating emission discharged from co2 recovery device
KR20180030661A (en) Method and system for particulate matter removal from a process exhaust stream
KR101250940B1 (en) The treating system of odors and volatile organic compounds simultaneously
JPH10267248A (en) Catalyst type exhaust gas processor
JP3819587B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
WO2011114978A1 (en) Method and device for treating gas discharged from a carbon dioxide recovery device
CN101920152B (en) Method for treating organic matters in large-capacity industrial waste gas
CN107433104A (en) A kind of waste gas purification technique based on ROC technologies
JPH10238741A (en) Catalytic combustion type thermal storage exhaust gas treating apparatus
WO2006076849A1 (en) Cleaning process for converting a waste gas into an industrial organic waste gas capable of circulating utilization
JPH10238740A (en) Catalytic combustion type exhaust gas treating apparatus
JP3779889B2 (en) Catalyst regeneration method
CN208287803U (en) Flue gas carrier gas device after a kind of desulphurization denitration for regenerating active carbon
TW201104062A (en) De-NOx, intelligent, full-featured diesel engine exhaust treatment system
JPH0347884B2 (en)
TW506850B (en) Regeneration method of turning-wheel absorption concentration system
JP2004098014A (en) Method for treating gas containing volatile organic compound
JPH0975670A (en) Treatment of organic pollutant
BE1028740B1 (en) FLUE GAS PURIFICATION
CN210473499U (en) Removing device for dioxin in solid waste incineration flue gas
JPH10174837A (en) Harmful component removing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060615

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees