WO2014178337A1 - Cremation system and cremation method - Google Patents

Cremation system and cremation method Download PDF

Info

Publication number
WO2014178337A1
WO2014178337A1 PCT/JP2014/061663 JP2014061663W WO2014178337A1 WO 2014178337 A1 WO2014178337 A1 WO 2014178337A1 JP 2014061663 W JP2014061663 W JP 2014061663W WO 2014178337 A1 WO2014178337 A1 WO 2014178337A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
dust
upstream
downstream
exhaust gas
Prior art date
Application number
PCT/JP2014/061663
Other languages
French (fr)
Japanese (ja)
Inventor
眞知子 浅岡
Original Assignee
東京博善株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京博善株式会社 filed Critical 東京博善株式会社
Priority to JP2014545999A priority Critical patent/JP5721914B2/en
Publication of WO2014178337A1 publication Critical patent/WO2014178337A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8631Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8696Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G1/00Furnaces for cremation of human or animal carcasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20769Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/904Multiple catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/93Toxic compounds not provided for in groups B01D2257/00 - B01D2257/708

Definitions

  • the present invention relates to a cremation system and a cremation method, and more particularly to a cremation system and a cremation method provided with a catalyst device for removing harmful substances contained in exhaust gas discharged from a cremation furnace.
  • the exhaust gas emitted from the cremation furnace may contain a large amount of nitrogen oxides (NOx) as well as odorous components such as ammonia, sulfur compounds and hydrogen sulfide, and may possibly contain dioxins, and nitrogen oxides ( It has the peculiar property that the concentration of NOx) and the temperature of exhaust gas fluctuate rapidly in a short time.
  • NOx nitrogen oxides
  • odorous components such as ammonia, sulfur compounds and hydrogen sulfide
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-170452
  • the exhaust gas processing apparatus shown in FIG. 9 introduces optimum temperature control means for adjusting the exhaust temperature to the optimum temperature on the downstream side of the main combustion chamber 91 and the re-combustion chamber 92 and the re-combustion chamber 92;
  • the first stage NOx removal catalyst layer 93 for reducing the nitrogen oxides in the exhaust gas, and the latter stage NOx removal catalyst layer 94 for reduction with unreacted ammonia are provided.
  • the denitrification catalyst used in the second-stage denitration catalyst layer 94 includes the oxides constituting the first-stage denitration catalyst 93, a noble metal such as platinum, palladium and iridium, and a metal such as copper, manganese and chromium or a compound thereof It is made to carry.
  • an air preheater 95 for optimally raising the temperature of the exhaust gas supplied to the dust collector 96 in the downstream of the rear stage NOx removal catalyst layer 94 and an exhaust fan for exhausting the exhaust gas to an exhaust cylinder (not shown) And 97 are provided.
  • the exhaust gas treatment apparatus described in this publication can reduce the temperature of the exhaust gas rapidly in a short period of time, even under conditions specific to the exhaust gas from the cremation furnace. In addition to reducing the nitrogen oxides, it is configured to remove odorous components and dioxins.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-310410.
  • the exhaust gas treatment apparatus described in this publication aims to operate stably for a long time with respect to an exhaust gas containing an alkaline substance.
  • the exhaust gas processing apparatus shown in FIG. 10 includes a main combustion chamber 101, a re-combustion chamber 102, and a gas cooling area 103 provided downstream of the re-combustion chamber 102; Furthermore, after the dust collection means 104 and the catalyst layer 105 provided on the downstream side are provided and the exhaust gas temperature is lowered in the gas cooling area 103, dust containing alkaline substance is removed by the dust collection means 104 such as a bag filter.
  • the catalyst layer 105 is set to a temperature of 90.degree. C. so as to perform denitration and deodorization of exhaust gas and removal of dioxins.
  • the durability of the catalyst layer 105 is improved by disposing the dust collection means 104 such as a bag filter, an electric dust collector, or a ceramic filter at the front stage of the catalyst. Further, as the front catalyst layer 1051, the same NOx removal catalyst as that of the front NOx removal catalyst layer 93 described in the first prior art is used.
  • the second-stage catalyst layer 1052 a denitration catalyst similar to the second-stage denitration catalyst layer 94 described in the first prior art is used, and the second-stage catalyst layer 1052 has a honeycomb shape and structurally uses a dust free type. Dust is allowed to pass through the catalyst layer, so that smooth operation can be performed without increasing pressure loss and reducing performance.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 58-30345.
  • the catalyst activation method described in this publication aims to efficiently activate the catalyst in a state where the catalyst is filled in the apparatus when the performance of the catalyst decreases.
  • the exhaust gas 113 discharged from the dust collection device (not shown) in the front stage during normal operation is oxidized in the exhaust gas by the NOx removal reaction device 112 containing the honeycomb catalyst 111.
  • the substance is decomposed into harmless N 2 and water.
  • the valve 114 is opened and a gas such as steam or air is injected from the gas introduction pipe 116 from the blow nozzle 118 at a constant pressure to remove dust. .
  • the operation of the denitrification reaction device 112 is stopped, the piping to which the nozzle of the denitrification reaction device 112 is attached is taken out, the blow nozzle 118 is replaced with the water washing nozzle, and the nozzle piping is inserted into the catalyst layer gas inlet
  • the valve 114 is closed, the valve 115 is opened, and the cleaning water introduced through the cleaning water introduction pipe 117 is jetted out from the nozzle, and the dust accumulated in the honeycomb catalyst 111 is eluted and removed.
  • the exhaust gas temperature is lowered to 200 ° C. to 550 ° C. by the optimum temperature control means disposed downstream of the reburning chamber 92, and ammonia is reduced.
  • the nitrogen oxide in the introduced exhaust gas is reduced using the first stage NOx removal catalyst layer 93 and the second stage NOx removal catalyst layer 94, and after removing odorous components and dioxins, the temperature is measured by the air preheater 95 and cooling air.
  • the adjusted exhaust gas is sent to the dust collector 96, and the dust collector 96 is configured to remove dust contained in the exhaust gas.
  • the exhaust gas treatment apparatus described in this publication precisely controls the amount of introduced ammonia introduced to reduce nitrogen oxides on the inflow side of the first stage NOx removal catalyst layer 93, and controls unreacted ammonia in the second stage NOx removal catalyst layer. Although it is configured so that ammonia does not leak by passing it through 94, it is difficult to completely remove ammonia so that ammonia is not finally exhausted from the exhaust stack even if these measures are taken practically It is.
  • the exhaust gas treatment apparatus improves the durability of the catalyst layer 105 and the clogging of the catalyst layer by arranging the dust collection means 104 at the front stage of the catalyst layer 105.
  • the catalyst layer is clogged during continuous operation, the catalyst layer is clogged.
  • the catalyst layer is operated for a long time, the catalyst layer clogs, and maintenance or replacement of the catalyst device becomes essential. There is a problem that stable driving is difficult and cremation efficiency is poor.
  • the present invention provides a cremation system and a cremation method which suitably solve the above-mentioned problems.
  • the cremation system of the present invention comprises a combustion furnace for burning a body, a dust collector for collecting and treating exhaust gas from the combustion furnace, and a catalyst device provided downstream of the dust collector and purifying exhaust gas.
  • the catalyst device includes an upstream catalyst set disposed upstream of exhaust gas and a downstream catalyst set disposed downstream of the upstream catalyst set, the upstream catalyst set and the downstream catalyst set An upstream dust spray for injecting high pressure gas to remove dust adhering to the upstream catalyst set, and a downstream dust spray for injecting the high pressure gas to remove dust adhering to the downstream catalyst set , And are configured to provide.
  • the high-pressure gas is injected while the upstream dust spray and the downstream dust spray move along the upper surface of the catalyst vessel constituting the upstream catalyst set and the upper surface of the catalyst vessel constituting the downstream catalyst set, respectively. It may be configured as follows.
  • the upstream dust spray and the downstream dust spray may be configured to slide and move on rails provided at both ends or one end of the upstream dust spray and the downstream dust spray.
  • the movement start position and movement stop position of the upstream dust removal spray and the downstream dust spray are set by movement start / stop means, and the upstream dust removal spray and the downstream dust spray stop the movement from the movement start position It may be configured to automatically stop upon reaching the position and then automatically return to the movement start position.
  • At least one of the upstream dust spray and the downstream dust spray may be configured to operate during cremation operation.
  • a pressure sensor is provided to measure the pressure difference between the exhaust gas inlet and outlet of the upstream catalyst set, and an alarm signal is output when the pressure difference reaches a predetermined value or more.
  • a pressure sensor is provided to measure the pressure difference between the exhaust gas inlet and outlet of the exhaust gas in the upstream catalyst set, and when the pressure difference reaches a predetermined value or more, the upstream dust spray is automatically generated. It may be configured to start operation.
  • the upstream catalyst set or the downstream catalyst set is provided with a catalyst unit so as to be removable from the upstream catalyst set or the downstream catalyst set, and the catalyst units are arranged in a grid shape.
  • the shape of the catalyst cell constituting the catalyst unit is any of a honeycomb shape, a cylindrical shape, a cylindrical shape, a pipe shape, a plate shape, a ribbon shape, a ribbon shape, a corrugated plate shape and a rectangle, and has a straight flow structure.
  • the cell openings may be configured to be 7 mm to 11 mm.
  • the opening of the first catalyst cell constituting the upstream catalyst set may be configured to be equal to or larger than the opening of the second catalyst cell constituting the downstream catalyst set.
  • the upstream catalyst set or the downstream catalyst set is provided with a catalyst unit so as to be removable from the upstream catalyst set or the downstream catalyst set, and the catalyst units are arranged in a grid shape.
  • a portion of the catalyst unit may be configured as a sampling catalyst unit for evaluating the catalytic performance of the upstream catalyst set or the downstream catalyst set.
  • sampling catalyst unit may be configured to be disposed at a central portion of the upstream catalyst set or the downstream catalyst set.
  • a grid grit covering the catalyst unit and the sampling catalyst unit may be provided on the upstream catalyst set or the downstream catalyst set, and the grid corresponding to the sampling catalyst unit may be configured to be openable and closable.
  • At least one metal oxide selected from titanium vanadium oxide or titanium, silicon, and zirconium and at least one metal oxide selected from vanadium, tungsten, and molybdenum may be used as the material in contact with the exhaust gas. May be configured to include any of the mixed and calcined catalysts.
  • the cremation method of the present invention is a cremation system provided with a combustion furnace for burning a body, a dust collector for collecting and treating exhaust gas from the combustion furnace, and a catalyst device disposed downstream of the dust collector and purifying exhaust gas.
  • a first step of performing exhaust gas treatment of at least denitrification, deodorization, decomposition of dioxins with an upstream catalyst set disposed upstream of exhaust gas, and a downstream step of the upstream catalyst set A second step of treating the exhaust gas treated in the first step with a downstream catalyst set disposed on the side, and a third step of injecting high pressure gas to remove dust adhering to the upstream catalyst set And a fourth step of injecting the high pressure gas to remove dust adhering to the downstream catalyst set.
  • the high-pressure injection means is moved along the upper surface of the catalyst vessel constituting the upstream catalyst set and the upper surface of the catalyst vessel constituting the downstream catalyst set, respectively.
  • the high pressure gas may be injected from the high pressure injection means.
  • At least one of the third step and the fourth step may be configured to be performed during a cremation operation.
  • the pressure difference between the exhaust gas at the inlet and the outlet of the exhaust gas in the upstream catalyst set may be measured, and an alarm signal may be output when the pressure difference reaches a predetermined value or more.
  • the pressure difference between the exhaust gas inlet and outlet of the upstream catalyst set is measured, and when the pressure difference reaches a predetermined value or more, the third step or the fourth step is automatically performed. It may be configured to start operation.
  • the cremation system and cremation method according to the present invention remove harmful substances such as dioxins adhering to dust and dust of exhaust gas discharged from the reburner with a dust collector, and dioxins and odor slightly remaining in the exhaust gas from the dust collector Since the components are decomposed and detoxified using a catalytic converter, the dust, dioxins or odorous components contained in the exhaust gas are reduced sufficiently below the specified value and discharged to the atmosphere through the exhaust stack. be able to.
  • the cremation system and cremation method according to the present invention have a dust collector installed in front of the catalyst device, most dust contained in the exhaust gas from the reburning furnace is removed by the dust collector and there is little dust or dust particles Since very small exhaust gas flows into the catalytic device, clogging of the catalytic device is less likely to occur, and since the exhaust gas from which most dust containing a large amount of alkaline substances has been removed by the dust collector is introduced to the catalytic device, durability of the catalytic device There is an excellent feature that the quality is improved.
  • the catalyst device mounted in the cremation system according to the present invention uses titanium vanadium oxide as a catalyst, dioxins can be decomposed into CO 2 , H 2 O, and Hcl, and the exhaust gas can be substantially detoxified. As a result, secondary treatment is not necessary, which makes it possible to miniaturize the catalyst device and reduce the treatment cost.
  • the catalyst device mounted in the cremation system according to the present invention has a honeycomb structure and is of a straight flow type in which both the inflow side and the outflow side of the catalyst cell are open, and furthermore, the catalyst cell has a wide opening. It is characterized in that clogging of cells is unlikely to occur.
  • the catalyst device mounted on the cremation system of the present invention comprises a dust removing device for removing dust and the like attached to the catalyst cell, and constitutes the dust removing device by driving the dust removing device periodically or irregularly.
  • the catalyst device can be cleaned automatically without removing the catalyst unit.
  • a plurality of catalyst sets in which catalyst units are arranged in a grid are arranged in series, and the upstream side of the catalyst set on the inflow side, and between the downstream side of the catalyst set and the upstream side of the catalyst set following the catalyst set Even when the flow path of the catalyst cell is long by providing the dust removing device, dust attached to the catalyst cell, etc., because the flow velocity of the high pressure gas flowing through the catalyst cell constituting the downstream catalyst set is sufficiently fast. Can be sufficiently removed.
  • the catalyst device mounted in the cremation system of the present invention adheres to the catalyst cell by ejecting high pressure gas to each catalyst cell from a plurality of nozzles provided in the dust removal spray while moving the dust removal spray. Dust and the like can be uniformly removed.
  • a pressure sensor is provided to measure the pressure difference between the inlet and outlet of the gas flowing through the catalyst cell, and clogging of the catalyst cell constituting the catalyst device can be constantly monitored, and the pressure difference is predetermined. When it becomes more than the value, it is judged that clogging has occurred in the catalyst cell, and an alarm signal can be output. Furthermore, when the pressure difference becomes equal to or more than a predetermined value, it is also possible to drive the dust removal device to remove dust and the like attached to the catalyst cell. Since this does not cause clogging in the catalyst device, stable cremation operation is possible.
  • a catalyst unit comprising a plurality of catalyst cells is attachable to and detachable from the catalyst set, and the catalyst unit with deteriorated catalyst performance can be replaced with maintenance or a new one on a catalyst unit basis. This is economical as it is not necessary to update the entire catalyst set.
  • the catalyst set is configured by arranging catalyst units in a grid
  • a part of the catalyst unit is configured as a sampling catalyst unit
  • the catalyst performance as a whole of the catalyst unit is evaluated by evaluating the sampling catalyst unit. It is possible.
  • by evaluating the sampling catalyst unit without evaluating all the catalyst units it is possible to estimate the dust adhesion state of the entire catalyst unit and the deterioration state of the catalyst performance, and early maintenance of the catalyst device or The catalyst unit can be replaced and stable cremation operation is possible.
  • the catalyst device installed in the cremation system of the present invention is significantly miniaturized as compared with the conventional catalyst device, and it is particularly suitable as a future urban cremation system with a relatively small area. Are better.
  • FIG. 4 (a) is a perspective view of one catalyst unit
  • FIG.4 (b) is an enlarged view of the part shown by A of FIG. 4 (a).
  • FIG. 5 is a perspective view of a sampling catalyst unit according to an embodiment of the present invention. It is a side view of the catalyst tank by an embodiment of the present invention. It is a top view of the dust removal apparatus by this Embodiment. It is a side view of the dust removal device by this embodiment.
  • It is a block diagram of the processing apparatus of waste gas of the 2nd prior art.
  • It is a block diagram explaining the activation method of the catalyst of the 3rd prior art.
  • FIG. 1 is a block diagram of a cremation system according to an embodiment of the present invention, and a main combustion unit which burns a body, a burial, a mortuary using a main combustion burner 12 and a farewell 16 on which a chute 17 is placed.
  • a furnace 11, a refueling furnace 13 for completely burning the exhaust gas from the main combustion furnace 11, and an automatic storage device 15 capable of automatically storing the crucible 17 in the main combustion furnace 12 are provided.
  • the exhaust gas from the main burner 11 is led to the power generation system 19 through the common flue 18A and the exhaust duct 18B which are in communication with the reburner 13.
  • the exhaust gas led to the power generation system 19 exchanges heat with the refrigerant to transfer heat energy, and further flows into the hot air recovery heat exchanger 110.
  • the inflowing exhaust gas exchanges heat with air, and the heated hot air is guided to the main combustion furnace 11 through the hot air recovery path 116.
  • the exhaust gas flowing out of the hot air recovery heat exchanger 110 flows into the dust collector 112 together with the outside air taken in from the air inlet 111 in order to lower the temperature of the exhaust gas, where dust and the like contained in the exhaust gas are removed.
  • the exhaust gas that has flowed out of the dust collector 112 is sent to the catalyst device 113, where nitrogen oxides, odorous components, dioxins such as polychlorinated dibenzodioxins and polychlorinated dibenzofurans contained in the exhaust gas are removed.
  • the exhaust gas discharged from the catalyst device 113 is sucked by the exhaust fan 114 and discharged to the atmosphere via the exhaust stack 115.
  • the cremation system and cremation method according to the present invention removes harmful substances such as large amounts of nitrogen oxides, odorous components, dust and dioxins generated in the main combustion furnace 11 and regenerates clean air into the air.
  • the non-polluting cremation system and cremation method which are important issues of the urban cremation system, are realized.
  • the catalyst device 113 of the present invention comprises an upper catalyst set 22 for introducing exhaust gas from the dust collector 112 shown in FIG. 1 through a duct 21A, a lower catalyst set 22 'configured in series with the upper catalyst set 22, A dust removal spray 222 for removing dust, fine particles and the like adhering to the catalyst tank 221 constituting the catalyst set 22, a plurality of nozzles (not shown) provided on the dust removal spray 222 and ejecting high pressure gas, dust Drive motor 23 for dust removal spray for moving removal spray 222, driving range of drive motor 23 for dust removal spray, that is, limit switch 24 for setting movement range of dust removal spray 222, high pressure air to nozzle And the like to control the supply of high pressure gas.
  • the catalyst tank 221', the dust removal spray 222 ', the dust removal spray drive motor 23', the limit switch 24 ', and the valve 25 ' is provided for the lower catalyst set 22 'disposed downstream of the catalytic converter 113.
  • the structures of the catalyst tank 221 constituting the upper catalyst set 22 and the catalyst tank 221 'constituting the lower catalyst set 22' may be the same or different. That is, the catalyst device 113 according to the present embodiment adopts a two-step system of the upper catalyst set 22 and the lower catalyst set 22 ′ disposed in series therewith, and the upper catalyst set 22 could not be removed.
  • the harmful gas and the like are configured to be removed by the lower catalyst set 22 '.
  • the openings of the catalyst cells constituting the catalyst tank 221 ' are made smaller than those of the catalyst cells constituting the catalyst tank 221, and the number of catalyst cells per unit area and the surface area of the catalyst contacted by the exhaust gas are large. It may be configured to
  • the exhaust gas discharged from the lower catalyst set 22 'in FIG. 2 passes through the duct 21C, and is discharged from the exhaust pipe 115 shown in FIG. Further, an emergency duct 21B for discharging the exhaust gas from the dust collector 112 directly to the duct 21C in an emergency is provided.
  • the catalyst device 113 according to the present embodiment has been described as a two-stage system of the upper stage catalyst set 22 and the lower stage catalyst set 22 ', but may be a multistage configuration of three or more stages.
  • the dust removal spray may or may not be provided between the catalyst sets of the third and subsequent stages, and the installation specification of the dust removal spray is determined in consideration of the frequency of maintenance and the like.
  • the exhaust gas from the upper catalyst set 22 is introduced into the catalyst tank 221 'constituting the lower catalyst set 22', and denitration and deodorization of exhaust gas and / or decomposition of dioxins in the oxidation catalyst layer as described above Is done.
  • the upper catalyst set 22 and the lower catalyst set 22 ' are sealed by a container, and the exhaust gas from the upper catalyst set 22 does not leak to the outside, and is introduced into the catalyst tank 221' constituting the lower catalyst set 22 '. Configured as.
  • the plurality of nozzles arranged linearly on the dust removal spray 222 are driven and moved by the dust removal spray drive motor 23 to configure the catalyst tank 221 while scanning the entire top surface of the catalyst tank 221
  • the high pressure gas is ejected evenly to all the catalyst cells. For this reason, it is possible to uniformly remove dust and the like adhering to all catalyst cells.
  • the movement start position and movement stop position of the dust removal spray 222 are set by the limit switch 24. When multiple nozzles on a straight line eject high-pressure gas and reach from near the movement start position to near the movement stop position, the limit switch 24 When activated, the plurality of nozzles on a straight line stop near the movement stop position.
  • the limit switch 24 is activated, and the dust removal spray 222 stops at the movement start position. This operation is repeated one or more times until dust and the like attached to all catalyst cells are removed.
  • the valve 25 is closed to stop the supply of high pressure gas to the upper catalyst set 22.
  • the catalyst device 113 is provided with a pressure sensor for measuring the pressure difference between the inlet and outlet of the gas flowing through the catalyst cell, and constantly monitors the clogging state of the catalyst cell constituting the catalyst device 113. It is possible. If the pressure difference exceeds a predetermined value, it is determined that clogging has occurred in the catalyst cell, and it can be used as an alarm signal, but if the pressure difference exceeds a predetermined value, the dust removal sprays 222 and 222 It may be configured to automatically drive 'to remove dust and the like attached to the catalyst cell. As a result, no clogging occurs in the catalyst device 113, so stable cremation operation is possible.
  • the dust removing spray 222 and 222 ' is driven after the cremation work of one day is finished and the exhaust gas from the main combustion furnace 11 and the reburning furnace 13 is stopped
  • the dust removal spray 222 is , 222 'may be driven.
  • the spray of high pressure gas from the nozzle is directed to the top of the catalyst cell and the periphery of the nozzle and the dust removal spray 222, 222 'so that dust does not adhere to the nozzle and the dust removal spray 222, 222'.
  • the catalyst set is configured in multiple stages in series, and the first stage catalyst set (upper stage catalyst set) 22 and the second stage catalyst set (lower stage catalyst Set) 22 'is provided with a dust removal spray 222', and the catalyst set of each stage after the third stage has both configurations with and without the dust removal spray.
  • the catalyst set is configured in multiple stages in series, and the first stage catalyst set (upper stage catalyst set) 22 and the second stage catalyst set (lower stage catalyst Set) 22 'is provided with a dust removal spray 222', and the catalyst set of each stage after the third stage has both configurations with and without the dust removal spray.
  • FIG. 3 is a plan view of the catalyst tank 221, 221 '.
  • the catalyst tank 221, 221' according to the present embodiment is configured by arranging the catalyst units 31 repeatedly in the horizontal direction and the vertical direction without gaps in a lattice shape. . Further, by configuring a part of the catalyst unit 31 as the sampling catalyst unit 32 and evaluating this sampling catalyst unit 32, it is possible to evaluate the catalyst performance of the catalyst tank 221, 221 '.
  • the sampling catalyst unit 32 is disposed substantially at the center of the catalyst tank 221. The reason will be described next.
  • the exhaust gas from the dust collector 112 described in FIG. 1 is introduced into the upper catalyst set 22, the exhaust gas flows vertically to the upper end face of the catalyst cell 41 shown in FIG. It does not become the same in the cell, and it is considered that the flow velocity is the fastest in the central part. Since the amount of dust and the like attached to and deposited on the catalyst cell 41 increases as the flow velocity of the exhaust gas increases, the sampling catalyst unit 32 is disposed at the center of the catalyst tank 221 (221 ′). If the adhesion state and the deterioration state of the catalyst performance are evaluated, the catalyst unit 31 to which the dust etc. adheres and deposits most among the catalyst units 31 is evaluated.
  • the amount of dust and the like adhering to and deposited on the other catalyst units 31 is smaller than the amount of dust and the like adhering to and deposited on the sampling catalyst unit 32 disposed in the central portion.
  • the catalyst unit 31 and the sampling catalyst unit 32 are also evaluated in the case of evaluating the deterioration state The relationship with is similar.
  • FIG. 4 (a) is a perspective view of one catalyst unit 31, and FIG. 4 (b) is an enlarged view of a portion indicated by A in FIG. 4 (a).
  • the shape of the catalyst cell 41 is not particularly limited, but can be selected from a cylindrical shape, a cylindrical shape, a pipe shape, a plate shape, a ribbon shape, a ribbon shape, a corrugated plate shape, a rectangle, a honeycomb shape, etc. It is suitable because it is largely clogged with dust. Further, since the catalyst cell 41 according to the present embodiment has a so-called straight flow structure in which the exhaust gas passes through the catalyst cell 41, dust is less likely to adhere to and deposit on the catalyst surface.
  • the catalyst cell 41 is also characterized in that the size of the opening of the catalyst cell, that is, the opening is set large in order to prevent clogging. Specifically, the opening is set to 7 mm to 11 mm, and the length of the catalyst cell is increased to 800 mm to 1200 mm, and the surface area of the catalyst per catalyst cell 41 is set large. In addition, all the catalyst units 31 are configured to be attachable to and detachable from the catalyst vessels 221 and 221 'independently.
  • titanium vanadium oxide is suitable, and this material can be used to decompose harmful substances such as dioxins in exhaust gas even in a low temperature range of 160 to 300.degree.
  • the inlet temperature of the catalytic converter 113 is set to 160 to 200 ° C., and the exhaust gas from the dust collector 112 is allowed to flow directly to the catalytic converter 113 without raising the exhaust gas temperature from the dust collector 112 Disassemble and remove.
  • the material of the catalyst cell 41 in addition to titanium vanadium oxide, at least one metal oxide selected from vanadium, tungsten and molybdenum, and at least one metal oxide selected from titanium, silicon and zirconium It is also possible to use a compound obtained by supporting at least one of platinum, palladium, rhodium, ruthenium and iridium on the above-mentioned calcined product using a mixed and calcined catalyst. Further, a compound in which at least one of copper, iron, manganese, chromium, cobalt, cerium, and nickel is supported may be used as the above compound. By using these catalyst materials, harmful substances such as dioxins are decomposed into carbon dioxide, water, etc. to render them harmless, and no special secondary treatment is required.
  • the sampling catalyst unit 32 will now be described with reference to FIG.
  • the structure of the sampling catalyst unit 32 is basically the same as that of the catalyst unit 31 shown in FIG. 4, and the catalyst cells 41 are arranged in a lattice shape without gaps in the sampling catalyst cassette 51. Further, the outer surface of the sampling catalyst cassette 51 is in contact with the inner surface of the fixed cassette 52 fixed to the catalyst tank 221, 221 ', and the outer surface of the sampling catalyst cassette 51 is made the inner surface of the fixed cassette 52 by pulling the handle 53 upward.
  • the sampling catalyst cassette 51 can be taken out by sliding it.
  • the openings of the sampling catalyst unit 32 are larger than those of the catalyst unit 31 so that the dust in the exhaust gas is more easily attached and accumulated. It may be configured to be smaller.
  • FIG. 6 is a side view of the catalyst tank 221, wherein 61 indicates an upper grit and 62 indicates a lower grit.
  • the upper grit 61 and the lower grit 62 are grid-like members, and are fixed to the upper and lower portions of the side plate, respectively.
  • the sampling catalyst cassette 51 when taking out the sampling catalyst cassette 51 from the catalyst tank 221 (221 ′), the sampling catalyst cassette 51 can be taken out from the catalyst tank 221 (221 ′) more easily without removing the entire upper grit 61. It is devised. That is, the corresponding part of the sampling catalyst unit 32 of the upper grit 61 is specially configured to be able to open and close, and the openable grit (not shown) provided for the sampling catalyst unit 32 can be opened with one touch. Thus, the sampling catalyst cassette 51 can be easily removed.
  • FIG. 7 is a plan view of the dust removing device 70 according to the present embodiment
  • FIG. 8 is a side view of the device 70.
  • the exhaust gas from the dust collector 112 flows vertically downward in the drawing with respect to a catalyst tank 221, 221 ′ (not shown) provided inside the frame 75.
  • 222 is a dust removing spray that ejects high pressure gas such as high pressure air from a plurality of nozzles while sliding in the X direction with respect to the rail 72 at both ends, and 71 is a dust removing spray 222 via a communicating internal space
  • the high pressure gas is supplied to the dust removal spray supporting portion for holding the dust removal sprays 222 together.
  • Reference numeral 74 denotes a dust removing spray driving device which is mounted on the stage 73 and drives the dust removing spray 222 and the dust removing spray supporting portion 71 in the X direction, and drives the dust removing spray drive motor 23 described in FIG. It is the source. As shown in FIG.
  • the dust removing spray driving device 74 includes a dust removing spray 222 that constitutes the upper catalyst set 22 and a dust removing spray driving device 74A that drives the dust removing spray supporting portion 71, and a lower catalyst set (22 'Has a dust removing spray (222': not shown) constituting a 'not shown' and a dust removing spray driving device 74B for driving a dust removing spray support (71 ': not shown) If there are three or more cassettes, dust removal spray drive devices 74C, 74D,... May be added.
  • the dust removing device 70 After the day's cremation work is completed and the exhaust gases from the main furnace 11 and the refueling furnace 13 shown in FIG. 1 are stopped, the worker operates the drive start button (not shown) of the dust removing device 70 The valve 25 shown in FIG. 2 is opened, and a high pressure gas such as high pressure air is directed downward from the plurality of nozzles provided on the dust removal spray 222 toward the upper surface of the catalyst cell constituting the catalyst tank 221 by the dust removal spray 222 Spout. At the same time, the dust removing spray driving device 74 starts driving, and the dust removing spray 222 and the dust removing spray supporting portion 71 move from the movement start position on the near side toward the back direction.
  • a high pressure gas such as high pressure air
  • the dust removal spray 222 and the dust removal spray support 71 automatically stop when advancing to the movement stop position set by the limit switches 24 and 24 ', and then automatically eject high pressure gas from the dust removal spray 222 In the forward direction, it automatically stops at the movement start position set by the limit switches 24, 24 '.
  • the plurality of nozzles disposed on a straight line to the dust removing spray 222 scan the entire top surface of the catalyst tank 221 (221 ′) while the catalyst tank Since the high pressure gas is ejected uniformly to all the catalyst cells constituting the catalyst 221, dust, fine particles and the like adhering to all the catalyst cells can be removed uniformly and uniformly.
  • the pressure of the high pressure gas ejected from the nozzles is approximately P / N.
  • M is the number of dust removing sprays 222 disposed in the X direction
  • the ejection pressure from the nozzle is reduced to 1 / M of the ejection pressure according to the present embodiment.
  • the pressure of the high-pressure gas supplied to the dust removal spray 222 must be M times Not only does the dust removing device become larger, but it is difficult to stably maintain high pressure.
  • the dust removal spray 222 according to the present embodiment moves the dust removal spray 222 itself and scans all over the top surface of the catalyst tank 221 (221 ') uniformly while configuring all of the catalyst tank 221 (221'). The above problem is overcome by the method of injecting high pressure gas evenly to the catalyst cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Incineration Of Waste (AREA)
  • Chimneys And Flues (AREA)

Abstract

[Problem] To provide a cremation method and a cremation system comprising a catalytic device that efficiently decomposes and removes toxic substances contained in exhaust gases from a crematory furnace and that prevents clogging of a catalytic cell by driving a dust removing device while a catalytic unit is loaded in a catalytic tank. [Solution] A cremation system is provided with an upper catalyst set (22) into which exhaust from a dust collector is introduced, a lower catalyst set (22') disposed in series with the upper catalytic set (22), a dust removing sprayer (222) for removing dust, particles, or the like adhering to a catalytic tank (221), a plurality of nozzles that are provided on the sprayer (222) and that discharge high pressure gas, a drive motor for the dust removing sprayer (23) for moving the sprayer (222), a valve (25) that controls supply of high pressure gas to the nozzles, and a pressure sensor for measuring pressure differences between an inlet and an outlet for a gas flowing in the catalytic cell. A dust removing device is run when the pressure difference reaches or exceeds a prescribed value, and dust or the like adhering to the catalytic cells is removed.

Description

火葬システムおよび火葬方法Cremation system and method
 本発明は火葬システムおよび火葬方法、特に、火葬炉から排出される排ガスに含まれる有害物質を除去する為の触媒装置を備える火葬システムおよび火葬方法に関する。 The present invention relates to a cremation system and a cremation method, and more particularly to a cremation system and a cremation method provided with a catalyst device for removing harmful substances contained in exhaust gas discharged from a cremation furnace.
 火葬炉から排出される排ガスは、大量の窒素酸化物(NOx)とともにアンモニア、硫黄化合物、硫化水素などの臭気成分を含み、場合によってはダイオキシン類も含む可能性があり、かつ、窒素酸化物(NOx)の濃度と排ガスの温度とが短時間に急激に変動するという特異な性質を有する。一方、近年増加している都市型火葬施設は住宅地域に隣接して建設されることが多く、排気筒から排出される排気ガス中の窒素酸化物および臭気成分はもとより、ダイオキシン類の排出濃度をどのような条件においても基準値を下回るようにする高度な排ガス処理が強く求められている。 The exhaust gas emitted from the cremation furnace may contain a large amount of nitrogen oxides (NOx) as well as odorous components such as ammonia, sulfur compounds and hydrogen sulfide, and may possibly contain dioxins, and nitrogen oxides ( It has the peculiar property that the concentration of NOx) and the temperature of exhaust gas fluctuate rapidly in a short time. On the other hand, urban crematories, which have been increasing in recent years, are often built adjacent to residential areas, and dioxins in addition to nitrogen oxides and odorous components in the exhaust gas emitted from the exhaust gas There is a strong demand for advanced exhaust gas treatment to keep below the standard value under any conditions.
 このような排ガス処理装置の第1の従来技術として、特許文献1(特開2001-170452公報)に記載の排ガスの処理装置があり、図9を参照して説明する。本公報において図9記載の排ガスの処理装置は、主燃焼室91と再燃焼室92と、再燃焼室92の後流側で排気温度を最適温度に調整する最適温度調整手段と、アンモニアを導入した排ガス中の窒素酸化物を還元処理する前段脱硝触媒層93と、未反応のアンモニアで還元処理する後段脱硝触媒層94とを備えている。前段脱硝触媒層93で用いる脱硝触媒としては、バナジウム、タングステン、モリブデンから選択された少なくとも1種の金属酸化物と、チタン、ケイ素、ジルコニウムから選択された少なくとも1種の金属酸化物とを混合焼成した触媒を用い、後段脱硝触媒層94で用いる脱硝触媒としては、前段脱硝触媒93を構成する各酸化物に、白金、パラジウム、イリジウムなどの貴金属と、銅、マンガン、クロムなどの金属またはその化合物を担持させて構成している。 As a first prior art of such an exhaust gas treatment apparatus, there is an exhaust gas treatment apparatus described in Patent Document 1 (Japanese Patent Laid-Open No. 2001-170452), which will be described with reference to FIG. In this publication, the exhaust gas processing apparatus shown in FIG. 9 introduces optimum temperature control means for adjusting the exhaust temperature to the optimum temperature on the downstream side of the main combustion chamber 91 and the re-combustion chamber 92 and the re-combustion chamber 92; The first stage NOx removal catalyst layer 93 for reducing the nitrogen oxides in the exhaust gas, and the latter stage NOx removal catalyst layer 94 for reduction with unreacted ammonia are provided. As the NOx removal catalyst used in the first stage NOx removal catalyst layer 93, a mixture of at least one metal oxide selected from vanadium, tungsten and molybdenum and at least one metal oxide selected from titanium, silicon and zirconium is mixed and fired The denitrification catalyst used in the second-stage denitration catalyst layer 94 includes the oxides constituting the first-stage denitration catalyst 93, a noble metal such as platinum, palladium and iridium, and a metal such as copper, manganese and chromium or a compound thereof It is made to carry.
 さらに後段脱硝触媒層94の後流には集塵機96に供給する排ガスの温度を最適に昇温するための空気予熱器95と、排気筒(図示せず)に排気ガスを排気するための排気ファン97とが設けられている。このような構成により本公報記載の排ガスの処理装置は、排気ガス温度が短時間で急激に変動する火葬炉からの排気ガス特有の条件下においても、前段脱硝触媒層93と後段脱硝触媒層94とで窒素酸化物を還元処理するとともに、臭気成分とダイオキシン類の除去を行うような構成としている。 Furthermore, an air preheater 95 for optimally raising the temperature of the exhaust gas supplied to the dust collector 96 in the downstream of the rear stage NOx removal catalyst layer 94 and an exhaust fan for exhausting the exhaust gas to an exhaust cylinder (not shown) And 97 are provided. With such a configuration, the exhaust gas treatment apparatus described in this publication can reduce the temperature of the exhaust gas rapidly in a short period of time, even under conditions specific to the exhaust gas from the cremation furnace. In addition to reducing the nitrogen oxides, it is configured to remove odorous components and dioxins.
 また火葬炉からの排ガス処理装置の第2の従来技術として、特許文献2(特開2002-310410公報)に記載の排ガスの処理装置がある。本公報記載の排ガスの処理装置は、アルカリ性物質を含有する排ガスに対して長期間安定して稼働することを目的としている。 Further, as a second prior art of an exhaust gas processing system from a crematory furnace, there is an exhaust gas processing system described in Patent Document 2 (Japanese Patent Application Laid-Open No. 2002-310410). The exhaust gas treatment apparatus described in this publication aims to operate stably for a long time with respect to an exhaust gas containing an alkaline substance.
 具体的に図10を参照して説明すると、図10記載の排ガスの処理装置は、主燃焼室101と再燃焼室102と、再燃焼室102の後流側に設けたガス冷却域103と、さらにその後流側に設けた集塵手段104および触媒層105とを備え、ガス冷却域103で排ガス温度を下げた後、バグフィルターなどの集塵手段104でアルカリ性物質を含むダストを除去し、所定の温度に設定された触媒層105で、排ガスの脱硝と脱臭およびダイオキシン類の除去を行うように構成している。図10記載の排ガスの処理装置は、触媒の前段にバグフィルターや電気集塵機、セラミックフィルタ等の集塵手段104を配置することで、触媒層105の耐久性を改善している。また前段触媒層1051としては、第1の従来技術で説明した前段脱硝触媒層93と同様の脱硝触媒を用いている。 Specifically, referring to FIG. 10, the exhaust gas processing apparatus shown in FIG. 10 includes a main combustion chamber 101, a re-combustion chamber 102, and a gas cooling area 103 provided downstream of the re-combustion chamber 102; Furthermore, after the dust collection means 104 and the catalyst layer 105 provided on the downstream side are provided and the exhaust gas temperature is lowered in the gas cooling area 103, dust containing alkaline substance is removed by the dust collection means 104 such as a bag filter. The catalyst layer 105 is set to a temperature of 90.degree. C. so as to perform denitration and deodorization of exhaust gas and removal of dioxins. In the exhaust gas processing apparatus shown in FIG. 10, the durability of the catalyst layer 105 is improved by disposing the dust collection means 104 such as a bag filter, an electric dust collector, or a ceramic filter at the front stage of the catalyst. Further, as the front catalyst layer 1051, the same NOx removal catalyst as that of the front NOx removal catalyst layer 93 described in the first prior art is used.
 また後段触媒層1052としては、第1の従来技術で説明した後段脱硝触媒層94と同様の脱硝触媒を用い、さらに後段触媒層1052の形状をハニカム形状とし構造的にはダストフリータイプを用いて、ダストが触媒層を通過し、圧力損失の増大や性能が低下せず円滑な操業が可能となるように構成している。 Further, as the second-stage catalyst layer 1052, a denitration catalyst similar to the second-stage denitration catalyst layer 94 described in the first prior art is used, and the second-stage catalyst layer 1052 has a honeycomb shape and structurally uses a dust free type. Dust is allowed to pass through the catalyst layer, so that smooth operation can be performed without increasing pressure loss and reducing performance.
 また排ガス処理装置の第3の従来技術として、特許文献3(特開昭58-30345号公報)に記載の触媒の賦活方法がある。本公報記載の触媒の賦活方法は、触媒の性能低下時に装置内に触媒を充填したままの状態で、効率良く触媒の賦活を図ることを目的としている。 Further, as a third prior art of the exhaust gas processing apparatus, there is a catalyst activation method described in Patent Document 3 (Japanese Patent Application Laid-Open No. 58-30345). The catalyst activation method described in this publication aims to efficiently activate the catalyst in a state where the catalyst is filled in the apparatus when the performance of the catalyst decreases.
 具体的に図11を参照して説明すると、通常運転時は前段の集塵装置(図示せず)から排出された排ガス113を、ハニカム触媒111を内蔵した脱硝反応装置112で排ガス中の窒素酸化物を無害なNと水とに分解処理する。一方ハニカム触媒111に付着・堆積したダストを除去する際は、バルブ114を開放してガス導入パイプ116から蒸気または空気などのガス体をブロー用ノズル118から一定圧力で噴射し、ダストを除去する。その後、脱硝反応装置112の稼働を停止し、脱硝反応装置112のノズルが取り付けられている配管を外に抜き出し、ブロー用ノズル118を水洗用ノズルに取り替え、触媒層ガス入口部にノズル配管を挿入・固定した後、バルブ114を閉じバルブ115を開放して洗浄水導入パイプ117を介して導入した洗浄水をノズルから噴出し、ハニカム触媒111に蓄積したダストを溶出除去するように構成している。 Specifically, referring to FIG. 11, the exhaust gas 113 discharged from the dust collection device (not shown) in the front stage during normal operation is oxidized in the exhaust gas by the NOx removal reaction device 112 containing the honeycomb catalyst 111. The substance is decomposed into harmless N 2 and water. On the other hand, when removing dust attached to or deposited on the honeycomb catalyst 111, the valve 114 is opened and a gas such as steam or air is injected from the gas introduction pipe 116 from the blow nozzle 118 at a constant pressure to remove dust. . After that, the operation of the denitrification reaction device 112 is stopped, the piping to which the nozzle of the denitrification reaction device 112 is attached is taken out, the blow nozzle 118 is replaced with the water washing nozzle, and the nozzle piping is inserted into the catalyst layer gas inlet After fixing, the valve 114 is closed, the valve 115 is opened, and the cleaning water introduced through the cleaning water introduction pipe 117 is jetted out from the nozzle, and the dust accumulated in the honeycomb catalyst 111 is eluted and removed. .
特開2001-170452公報JP, 2001-170452, A
特開2002-310410公報Japanese Patent Application Laid-Open No. 2002-310410
特開昭58-30345号公報Japanese Patent Application Laid-Open No. 58-30345
 特許文献1記載の第1の従来技術における排ガスの処理装置は、再燃焼室92の後流側に配置された最適温度調整手段により排気ガスの温度を200℃~550℃まで降温し、アンモニアを導入した排ガスの窒素酸化物を前段脱硝触媒層93と後段脱硝触媒層94とを用いて還元処理するとともに、臭気成分とダイオキシン類の除去を行った後、空気予熱器95と冷却空気とで温度調整した排ガスを集塵機96に送り込み、集塵機96で排ガス中に含まれるダストを除去する構成としている。 According to the first prior art described in Patent Document 1, the exhaust gas temperature is lowered to 200 ° C. to 550 ° C. by the optimum temperature control means disposed downstream of the reburning chamber 92, and ammonia is reduced. The nitrogen oxide in the introduced exhaust gas is reduced using the first stage NOx removal catalyst layer 93 and the second stage NOx removal catalyst layer 94, and after removing odorous components and dioxins, the temperature is measured by the air preheater 95 and cooling air. The adjusted exhaust gas is sent to the dust collector 96, and the dust collector 96 is configured to remove dust contained in the exhaust gas.
 上記構成の場合、毒性が高い排ガスが前段脱硝触媒層93と後段脱硝触媒層94に直接導入されるので、各触媒層93,94の耐久性が悪く、このため各触媒層93,94のメンテナンスや交換などを頻繁に行わなければならず、安定した火葬を行うことが困難である。 In the case of the above configuration, exhaust gas having high toxicity is directly introduced into the first stage NOx removal catalyst layer 93 and the second stage NOx removal catalyst layer 94, so the durability of each catalyst layer 93, 94 is poor. And frequent replacements, making it difficult to achieve stable cremation.
 また排ガス中のダストは付着性が強いため触媒層に大量のダストが付着し、目詰まりの要因となるため、ダストを除去するための対策が欠かせない。このため、長時間に亘って排ガス処理装置を安定して運転することが困難である。本公報記載の排ガス処理装置では、開口率を65~85%とすることでこの問題を解決するとしているが、火葬炉から排出される排ガスの条件は多様でかつ変動が大きく、全ての条件に対して開口率の設定だけで目詰まり対策を行うことは困難である。 Further, dust in the exhaust gas is strongly adherent, and a large amount of dust adheres to the catalyst layer, which causes clogging, so it is essential to take measures to remove the dust. For this reason, it is difficult to operate the exhaust gas processing device stably for a long time. In the exhaust gas processing apparatus described in this publication, this problem is solved by setting the aperture ratio to 65 to 85%, but the conditions of the exhaust gas discharged from the cremator are diverse and highly variable, and all the conditions are satisfied. On the other hand, it is difficult to take measures against clogging only by setting the aperture ratio.
 さらに本公報記載の排ガスの処理装置は、前段脱硝触媒層93の流入側で窒素酸化物を還元するために導入したアンモニアの導入量を精密に制御し、かつ未反応のアンモニアを後段脱硝触媒層94を通すことでアンモニアがリークしないように構成しているが、現実的にはこれらの対策を施しても、最終的に排気筒からアンモニアが排気されないようにアンモニアを完全に除去することは困難である。 Furthermore, the exhaust gas treatment apparatus described in this publication precisely controls the amount of introduced ammonia introduced to reduce nitrogen oxides on the inflow side of the first stage NOx removal catalyst layer 93, and controls unreacted ammonia in the second stage NOx removal catalyst layer. Although it is configured so that ammonia does not leak by passing it through 94, it is difficult to completely remove ammonia so that ammonia is not finally exhausted from the exhaust stack even if these measures are taken practically It is.
 また特許文献2記載の第2の従来技術における排ガスの処理装置は、触媒層105の前段に集塵手段104を配置することで、触媒層105の耐久性と触媒層の目詰まりを改善しているが、連続運転した際に触媒層が目詰まりを生じたときの対応を行っておらず、長時間運転した際に触媒層に目詰まりが発生し、触媒装置のメンテナンスや交換が必須となり、安定した運転が難しく火葬効率が悪いという問題点がある。 Further, the exhaust gas treatment apparatus according to the second prior art described in Patent Document 2 improves the durability of the catalyst layer 105 and the clogging of the catalyst layer by arranging the dust collection means 104 at the front stage of the catalyst layer 105. However, when the catalyst layer is clogged during continuous operation, the catalyst layer is clogged. When the catalyst layer is operated for a long time, the catalyst layer clogs, and maintenance or replacement of the catalyst device becomes essential. There is a problem that stable driving is difficult and cremation efficiency is poor.
 また特許文献3記載の第3の従来技術における触媒の賦活方法は、蒸気または空気などのガス体をブロー用ノズル118から一定圧力で噴射しダストを除去した後に、脱硝反応装置112の稼働を停止し、ブロー用ノズル118を水洗用ノズルに交換し、交換した水洗用ノズルから洗浄水を噴出するので、ブロー用ノズルと水洗用ノズルとを頻繁に交換しなければならず、運転効率が低下するという問題がある。また洗浄水をノズルから噴出する際は脱硝反応装置112の稼働を停止しなければならず、本公報記載の触媒の賦活方法を火葬システムに適用した場合、火葬システムの運転効率の低下が避けられない。 Moreover, after activating the catalyst in the third prior art described in Patent Document 3 by injecting a gas such as steam or air from the blow nozzle 118 at a constant pressure to remove dust, the operation of the NOx removal reaction device 112 is stopped. Since the blow nozzle 118 is replaced with the flush nozzle and the flush water is ejected from the replaced flush nozzle, the blow nozzle and the flush nozzle must be replaced frequently, which lowers the operating efficiency. There is a problem of Further, when the washing water is spouted from the nozzle, the operation of the denitrification reaction device 112 must be stopped, and when the catalyst activation method described in this publication is applied to a cremation system, a decrease in the operation efficiency of the cremation system is avoided. Absent.
 また図11に記載のハニカム触媒111を構成する触媒セルに対して、ノズルから高圧ガスまたは洗浄水を均等に噴出する必要があるが、本公報にはどのようにして各触媒セルに対して、高圧ガスまたは洗浄水を均等に噴出するかについては一切開示が無い。この為、高圧ガスまたは洗浄水の噴出圧力が小さい場合は対応する触媒セルに目詰まりが生じ、脱硝反応装置112全体としての触媒性能が低下するという問題がある。 In addition, although it is necessary to eject high pressure gas or washing water uniformly from the nozzle with respect to the catalyst cells constituting the honeycomb catalyst 111 shown in FIG. There is no disclosure as to whether the high pressure gas or the flush water is ejected evenly. For this reason, when the injection pressure of the high pressure gas or the washing water is small, the corresponding catalyst cell is clogged, and there is a problem that the catalyst performance as the entire denitration reaction device 112 is lowered.
 また本公報記載の触媒の賦活方法は、ハニカム触媒111の目詰まり状態を監視する方法がない。従って石炭や石油などを安定して燃焼させるボイラーなどの場合は、ハニカム触媒111へのダスト付着はほぼ一定でありハニカム触媒111の目詰まり状態を検知する必要性は低いが、火葬炉からの排気ガス中に含まれるダストの量は火葬の状況により大幅に変動するので、触媒装置に目詰まりを生じる時期を事前に予測することは困難であり、本公報記載の触媒の賦活方法を火葬システムおよび火葬方法に適用した場合、触媒装置に目詰まりを生じる可能性が高く、安定して稼働する火葬システムおよび火葬方法を実現することは困難である。 Further, in the catalyst activation method described in this publication, there is no method for monitoring the clogging state of the honeycomb catalyst 111. Therefore, in the case of a boiler or the like that stably burns coal, oil, etc., dust adhesion to the honeycomb catalyst 111 is almost constant, and there is little need to detect the clogging state of the honeycomb catalyst 111, but exhaust from the cremation furnace Since the amount of dust contained in the gas varies significantly depending on the state of cremation, it is difficult to predict in advance when the catalyst device will be clogged, and the method of activating the catalyst described in this publication is a cremation system and When applied to the cremation method, there is a high possibility of clogging of the catalyst device, and it is difficult to realize a stably operating cremation system and cremation method.
 本発明は上記課題を好適に解決した火葬システムおよび火葬方法を提供する。 The present invention provides a cremation system and a cremation method which suitably solve the above-mentioned problems.
 本発明の火葬システムは、遺体を燃焼するための燃焼炉と、前記燃焼炉からの排ガスを集塵処理する集塵機と、前記集塵機の下流に配置され排ガスを浄化する触媒装置とを設けた火葬システムであって、前記触媒装置は、排ガスの上流側に配置される上流触媒セットと、前記上流触媒セットの下流側に配置される下流触媒セットとを有し、前記上流触媒セットおよび前記下流触媒セットは、それぞれ、高圧ガスを噴射して前記上流触媒セットに付着するダスト類を除去する上流ダストスプレーと、前記高圧ガスを噴射して前記下流触媒セットに付着するダスト類を除去する下流ダストスプレーと、を備えるように構成されている。 The cremation system of the present invention comprises a combustion furnace for burning a body, a dust collector for collecting and treating exhaust gas from the combustion furnace, and a catalyst device provided downstream of the dust collector and purifying exhaust gas. The catalyst device includes an upstream catalyst set disposed upstream of exhaust gas and a downstream catalyst set disposed downstream of the upstream catalyst set, the upstream catalyst set and the downstream catalyst set An upstream dust spray for injecting high pressure gas to remove dust adhering to the upstream catalyst set, and a downstream dust spray for injecting the high pressure gas to remove dust adhering to the downstream catalyst set , And are configured to provide.
 また、前記上流ダストスプレーおよび前記下流ダストスプレーが、それぞれ前記上流触媒セットを構成する触媒槽の上面および前記下流触媒セットを構成する触媒槽の上面に沿って移動しながら、前記高圧ガスを噴射するように構成してもよい。 Further, the high-pressure gas is injected while the upstream dust spray and the downstream dust spray move along the upper surface of the catalyst vessel constituting the upstream catalyst set and the upper surface of the catalyst vessel constituting the downstream catalyst set, respectively. It may be configured as follows.
 また、前記上流ダストスプレーおよび前記下流ダストスプレーが、前記上流ダストスプレーおよび前記下流ダストスプレーの両端または一端に設けられたレールを摺動しながら移動するように構成してもよい。 In addition, the upstream dust spray and the downstream dust spray may be configured to slide and move on rails provided at both ends or one end of the upstream dust spray and the downstream dust spray.
 さらに、前記上流ダスト除去スプレーおよび前記下流ダストスプレーの移動開始位置と移動停止位置とは移動開始/停止手段で設定され、前記上流ダスト除去スプレーおよび前記下流ダストスプレーが前記移動開始位置から前記移動停止位置まで到達すると自動的に停止し、その後、前記移動開始位置に自動的に戻るように構成してもよい。 Furthermore, the movement start position and movement stop position of the upstream dust removal spray and the downstream dust spray are set by movement start / stop means, and the upstream dust removal spray and the downstream dust spray stop the movement from the movement start position It may be configured to automatically stop upon reaching the position and then automatically return to the movement start position.
 また、前記上流ダストスプレーおよび前記下流ダストスプレーの少なくともいずれかが、火葬運転中に作動するように構成してもよい。 Also, at least one of the upstream dust spray and the downstream dust spray may be configured to operate during cremation operation.
 また、前記上流触媒セットにおける排ガスの流入口と流出口の排ガスの圧力差を測定するための圧力センサを設け、前記圧力差が所定値以上に達した際にアラーム信号が出力されるように構成してもよい。 In addition, a pressure sensor is provided to measure the pressure difference between the exhaust gas inlet and outlet of the upstream catalyst set, and an alarm signal is output when the pressure difference reaches a predetermined value or more. You may
 また、前記上流触媒セットにおける排ガスの流入口と流出口の排ガスの圧力差を測定するための圧力センサを設け、前記圧力差が所定値以上に達した際に、前記上流ダストスプレーが自動的に作動開始するように構成してもよい。 In addition, a pressure sensor is provided to measure the pressure difference between the exhaust gas inlet and outlet of the exhaust gas in the upstream catalyst set, and when the pressure difference reaches a predetermined value or more, the upstream dust spray is automatically generated. It may be configured to start operation.
 また、前記上流触媒セットまたは前記下流触媒セットは、前記上流触媒セットまたは前記下流触媒セットに対して着脱可能なように触媒ユニットが設けられ、かつ前記触媒ユニットが格子状に配列されて構成され、前記触媒ユニットを構成する触媒セルの形状はハニカム形状、円筒形状、円柱形状、パイプ形状、板形状、リボン形状、波板形状、矩形のいずれかであって、かつストレートフロー構造をなし、前記触媒セルの目開きは7mm~11mmであるように構成してもよい。 Further, the upstream catalyst set or the downstream catalyst set is provided with a catalyst unit so as to be removable from the upstream catalyst set or the downstream catalyst set, and the catalyst units are arranged in a grid shape. The shape of the catalyst cell constituting the catalyst unit is any of a honeycomb shape, a cylindrical shape, a cylindrical shape, a pipe shape, a plate shape, a ribbon shape, a ribbon shape, a corrugated plate shape and a rectangle, and has a straight flow structure. The cell openings may be configured to be 7 mm to 11 mm.
 また、前記上流触媒セットを構成する第1の触媒セルの目開きが、前記下流触媒セットを構成する第2の触媒セルの目開きと同じか、大きいように構成してもよい。 Further, the opening of the first catalyst cell constituting the upstream catalyst set may be configured to be equal to or larger than the opening of the second catalyst cell constituting the downstream catalyst set.
 また、前記上流触媒セットまたは前記下流触媒セットは、前記上流触媒セットまたは前記下流触媒セットに対して着脱可能なように触媒ユニットが設けられ、かつ前記触媒ユニットが格子状に配列されて構成され、前記触媒ユニットの一部が前記上流触媒セットまたは前記下流触媒セットの触媒性能を評価するサンプリング触媒ユニットとして構成されてもよい。 Further, the upstream catalyst set or the downstream catalyst set is provided with a catalyst unit so as to be removable from the upstream catalyst set or the downstream catalyst set, and the catalyst units are arranged in a grid shape. A portion of the catalyst unit may be configured as a sampling catalyst unit for evaluating the catalytic performance of the upstream catalyst set or the downstream catalyst set.
 また、前記サンプリング触媒ユニットは、前記上流触媒セットまたは前記下流触媒セットの中央部に配置されるように構成してもよい。 Further, the sampling catalyst unit may be configured to be disposed at a central portion of the upstream catalyst set or the downstream catalyst set.
 また、前記触媒ユニットおよび前記サンプリング触媒ユニットをカバーする格子状のグリットが前記上流触媒セットまたは前記下流触媒セットに設けられ、前記サンプリング触媒ユニットに対応する前記グリッドは開閉可能に構成されてもよい。 A grid grit covering the catalyst unit and the sampling catalyst unit may be provided on the upstream catalyst set or the downstream catalyst set, and the grid corresponding to the sampling catalyst unit may be configured to be openable and closable.
 また、前記触媒装置で排ガスと接触する材料が酸化チタンバナジウム、またはチタン、ケイ素、ジルコニウムから選択された少なくとも一種の金属酸化物と、バナジウム、タングステン、モリブデンから選択された少なくとも一種の金属酸化物とを混合焼成した触媒のいずれかを含むように構成してもよい。 In the catalyst device, at least one metal oxide selected from titanium vanadium oxide or titanium, silicon, and zirconium and at least one metal oxide selected from vanadium, tungsten, and molybdenum may be used as the material in contact with the exhaust gas. May be configured to include any of the mixed and calcined catalysts.
 本発明の火葬方法は、遺体を燃焼するための燃焼炉と、前記燃焼炉からの排ガスを集塵処理する集塵機と、前記集塵機の下流に配置され排ガスを浄化する触媒装置とを設けた火葬システムを用いる火葬方法であって、排ガスの上流側に配置される上流触媒セットで、少なくとも脱硝、脱臭、ダイオキシン類の分解のいずれかの排ガス処理を行う第1の工程と、前記上流触媒セットの下流側に配置される下流触媒セットで前記第1の工程で処理された排ガス処理を行う第2の工程と、高圧ガスを噴射して前記上流触媒セットに付着するダスト類を除去する第3の工程と、前記高圧ガスを噴射して前記下流触媒セットに付着するダスト類を除去する第4の工程と、を備えている。 The cremation method of the present invention is a cremation system provided with a combustion furnace for burning a body, a dust collector for collecting and treating exhaust gas from the combustion furnace, and a catalyst device disposed downstream of the dust collector and purifying exhaust gas. A first step of performing exhaust gas treatment of at least denitrification, deodorization, decomposition of dioxins with an upstream catalyst set disposed upstream of exhaust gas, and a downstream step of the upstream catalyst set A second step of treating the exhaust gas treated in the first step with a downstream catalyst set disposed on the side, and a third step of injecting high pressure gas to remove dust adhering to the upstream catalyst set And a fourth step of injecting the high pressure gas to remove dust adhering to the downstream catalyst set.
 また、前記第3の工程および前記第4の工程は、高圧噴射手段を前記上流触媒セットを構成する触媒槽の上面および前記下流触媒セットを構成する触媒槽の上面に沿ってそれぞれ移動しながら、前記高圧噴射手段から前記高圧ガスを噴射するように構成してもよい。 In the third and fourth steps, the high-pressure injection means is moved along the upper surface of the catalyst vessel constituting the upstream catalyst set and the upper surface of the catalyst vessel constituting the downstream catalyst set, respectively. The high pressure gas may be injected from the high pressure injection means.
 また、前記第3の工程および前記第4の工程のうち少なくとも一つの工程は、火葬運転中に実行されるように構成してもよい。 Further, at least one of the third step and the fourth step may be configured to be performed during a cremation operation.
 また、前記上流触媒セットにおける排ガスの流入口と流出口の排ガスの圧力差を測定し、前記圧力差が所定値以上に達した際にアラーム信号を出力するように構成してもよい。 Further, the pressure difference between the exhaust gas at the inlet and the outlet of the exhaust gas in the upstream catalyst set may be measured, and an alarm signal may be output when the pressure difference reaches a predetermined value or more.
 また、前記上流触媒セットにおける排ガスの流入口と流出口の排ガスの圧力差を測定し、前記圧力差が所定値以上に達した際に、前記第3の工程または前記第4の工程が自動的に作動開始するように構成してもよい。 In addition, the pressure difference between the exhaust gas inlet and outlet of the upstream catalyst set is measured, and when the pressure difference reaches a predetermined value or more, the third step or the fourth step is automatically performed. It may be configured to start operation.
 本発明による火葬システムおよび火葬方法は、再燃炉から排出される排ガスのダストおよびダストに付着するダイオキシン類などの有害物質を集塵機で除去し、集塵機からの排ガス中にわずかに残留するダイオキシン類や臭気成分を触媒装置を用いて分解し無害化するように構成したので、排ガスに含まれるダストやダイオキシン類あるいは臭気成分を規定値以下よりも十分低くして、排気筒を介して大気中へ排出することができる。 The cremation system and cremation method according to the present invention remove harmful substances such as dioxins adhering to dust and dust of exhaust gas discharged from the reburner with a dust collector, and dioxins and odor slightly remaining in the exhaust gas from the dust collector Since the components are decomposed and detoxified using a catalytic converter, the dust, dioxins or odorous components contained in the exhaust gas are reduced sufficiently below the specified value and discharged to the atmosphere through the exhaust stack. be able to.
 また本発明による火葬システムおよび火葬方法は触媒装置の前に集塵機を設置しているので、再燃炉からの排ガス中に含まれる大部分のダストは集塵機で除去され、ダストが殆ど無いかダスト粒子が非常に小さい排ガスが触媒装置に流入するので、触媒装置の目詰まりが生じにくく、また集塵機によりアルカリ性物質を多く含むダストの殆どが除去された排ガスが触媒装置に導入されるので、触媒装置の耐久性が向上するという優れた特徴がある。 Further, since the cremation system and cremation method according to the present invention have a dust collector installed in front of the catalyst device, most dust contained in the exhaust gas from the reburning furnace is removed by the dust collector and there is little dust or dust particles Since very small exhaust gas flows into the catalytic device, clogging of the catalytic device is less likely to occur, and since the exhaust gas from which most dust containing a large amount of alkaline substances has been removed by the dust collector is introduced to the catalytic device, durability of the catalytic device There is an excellent feature that the quality is improved.
 さらに本発明による火葬システムに搭載した触媒装置は、触媒として酸化チタンバナジウムを用いているので、ダイオキシン類をCO、HO、Hclに分解し排気ガスをほぼ無毒化することができる。この為二次処理が不要となり、触媒装置の小型化と処理費用の低減をすることができる。 Furthermore, since the catalyst device mounted in the cremation system according to the present invention uses titanium vanadium oxide as a catalyst, dioxins can be decomposed into CO 2 , H 2 O, and Hcl, and the exhaust gas can be substantially detoxified. As a result, secondary treatment is not necessary, which makes it possible to miniaturize the catalyst device and reduce the treatment cost.
 また本発明による火葬システムに搭載した触媒装置はハニカム構造を有し、また触媒セルの流入側、流出側がともに開口しているストレートフロー方式であること、さらに触媒セルの目開きが広いため、触媒セルの目詰まりが生じにくいという特徴がある。 In addition, the catalyst device mounted in the cremation system according to the present invention has a honeycomb structure and is of a straight flow type in which both the inflow side and the outflow side of the catalyst cell are open, and furthermore, the catalyst cell has a wide opening. It is characterized in that clogging of cells is unlikely to occur.
 また本発明の火葬システムに搭載した触媒装置は、触媒セルに付着したダストなどを除去するダスト除去装置を備え、定期的または不定期的にダスト除去装置を駆動することにより、ダスト除去装置を構成する触媒ユニットを取り外すことなく自動的に触媒装置のクリーニングを行うことができる。 Further, the catalyst device mounted on the cremation system of the present invention comprises a dust removing device for removing dust and the like attached to the catalyst cell, and constitutes the dust removing device by driving the dust removing device periodically or irregularly. The catalyst device can be cleaned automatically without removing the catalyst unit.
 また触媒ユニットを格子状に配列した触媒セットを複数直列的に配置し、上流側の触媒セットの流入側、およびこの触媒セットの下流側とこの触媒セットに続く触媒セットの上流側との間にもそれぞれダスト除去装置を設けることにより、触媒セルの流路の長さが長い場合も、下流側の触媒セットを構成する触媒セルを流れる高圧ガスの流速が十分早いので触媒セルに付着したダストなどを十分除去することができる。 In addition, a plurality of catalyst sets in which catalyst units are arranged in a grid are arranged in series, and the upstream side of the catalyst set on the inflow side, and between the downstream side of the catalyst set and the upstream side of the catalyst set following the catalyst set Even when the flow path of the catalyst cell is long by providing the dust removing device, dust attached to the catalyst cell, etc., because the flow velocity of the high pressure gas flowing through the catalyst cell constituting the downstream catalyst set is sufficiently fast. Can be sufficiently removed.
 また本発明の火葬システムに搭載した触媒装置は、ダスト除去スプレーを移動させながら、ダスト除去スプレーに設けた複数のノズルから各触媒セルに対して高圧ガスを噴出することにより、触媒セルに付着したダストなどをムラ無く除去することができる。 Further, the catalyst device mounted in the cremation system of the present invention adheres to the catalyst cell by ejecting high pressure gas to each catalyst cell from a plurality of nozzles provided in the dust removal spray while moving the dust removal spray. Dust and the like can be uniformly removed.
 さらに触媒セルを流れるガスの流入口と流出口の圧力差を測定するための圧力センサを設け、触媒装置を構成する触媒セルの目詰まり状態を常時モニタすることが可能であり、圧力差が所定値以上になった場合は触媒セルに目詰まりが発生したと判断し、アラーム信号を出力することが出来る。さらに、圧力差が所定値以上になった場合にダスト除去装置を駆動し、触媒セルに付着したダストなどを除去するように構成することも可能である。これにより触媒装置に目詰まりが発生することがないので、安定した火葬運転が可能である。 Furthermore, a pressure sensor is provided to measure the pressure difference between the inlet and outlet of the gas flowing through the catalyst cell, and clogging of the catalyst cell constituting the catalyst device can be constantly monitored, and the pressure difference is predetermined. When it becomes more than the value, it is judged that clogging has occurred in the catalyst cell, and an alarm signal can be output. Furthermore, when the pressure difference becomes equal to or more than a predetermined value, it is also possible to drive the dust removal device to remove dust and the like attached to the catalyst cell. Since this does not cause clogging in the catalyst device, stable cremation operation is possible.
 また複数の触媒セルからなる触媒ユニットは触媒セットへ着脱可能であり、触媒性能が劣化した触媒ユニットは、触媒ユニット単位でメンテナンスや新品のものと交換することが出来る。これにより、触媒セット全体を更新する必要がないので経済的である。 Further, a catalyst unit comprising a plurality of catalyst cells is attachable to and detachable from the catalyst set, and the catalyst unit with deteriorated catalyst performance can be replaced with maintenance or a new one on a catalyst unit basis. This is economical as it is not necessary to update the entire catalyst set.
 また触媒セットは触媒ユニットを格子状に配列して構成されるが、触媒ユニットの一部をサンプリング触媒ユニットとして構成し、このサンプリング触媒ユニットを評価することにより、触媒ユニット全体としての触媒性能を評価することが可能である。換言すると、全ての触媒ユニットを評価することなく、サンプリング触媒ユニットを評価することで、触媒ユニット全体のダスト付着状況や触媒性能の劣化の状態を推定することが出来、触媒装置の早期のメンテナンスや触媒ユニットの交換などを行うことができ、安定した火葬運転が可能である。 In addition, although the catalyst set is configured by arranging catalyst units in a grid, a part of the catalyst unit is configured as a sampling catalyst unit, and the catalyst performance as a whole of the catalyst unit is evaluated by evaluating the sampling catalyst unit. It is possible. In other words, by evaluating the sampling catalyst unit without evaluating all the catalyst units, it is possible to estimate the dust adhesion state of the entire catalyst unit and the deterioration state of the catalyst performance, and early maintenance of the catalyst device or The catalyst unit can be replaced and stable cremation operation is possible.
 上記に説明したように、本発明の火葬システムに搭載した触媒装置は従来の触媒装置と比べて大幅に小型化が図られており、比較的敷地面積が狭い未来型の都市型火葬システムとして特に優れている。 As described above, the catalyst device installed in the cremation system of the present invention is significantly miniaturized as compared with the conventional catalyst device, and it is particularly suitable as a future urban cremation system with a relatively small area. Are better.
本発明の実施の形態に係わる火葬システムの構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the cremation system concerning embodiment of this invention. 本発明の実施の形態による触媒装置の基本構成を示す概略図である。It is the schematic which shows the basic composition of the catalyst apparatus by embodiment of this invention. 本発明の実施の形態による触媒槽の平面図である。It is a top view of a catalyst tank by an embodiment of the present invention. 図4(a)は1個の触媒ユニットの斜視図であり、図4(b)は図4(a)のAで示す部分の拡大図である。Fig.4 (a) is a perspective view of one catalyst unit, FIG.4 (b) is an enlarged view of the part shown by A of FIG. 4 (a). 本発明の実施の形態によるサンプリング触媒ユニットの斜視図である。FIG. 5 is a perspective view of a sampling catalyst unit according to an embodiment of the present invention. 本発明の実施の形態による触媒槽の側面図である。It is a side view of the catalyst tank by an embodiment of the present invention. 本実施の形態によるダスト除去装置の平面図である。It is a top view of the dust removal apparatus by this Embodiment. 本実施の形態によるダスト除去装置の側面図である。It is a side view of the dust removal device by this embodiment. 第1の従来技術の排ガスの処理装置の構成図である。It is a block diagram of the processing apparatus of waste gas of the 1st prior art. 第2の従来技術の排ガスの処理装置の構成図である。It is a block diagram of the processing apparatus of waste gas of the 2nd prior art. 第3の従来技術の触媒の賦活方法を説明する構成図である。It is a block diagram explaining the activation method of the catalyst of the 3rd prior art.
 次に本発明の実施の形態について図面を参照して詳細に説明する。 Next, embodiments of the present invention will be described in detail with reference to the drawings.
[全体構成]
 図1は本発明の実施の形態に係わる火葬システムの構成図であり、棺17を載置するお別れ台16と、主燃バーナ12を用いて遺体や副葬品、棺などの燃焼を行う主燃炉11と、主燃炉11からの排ガスを完全燃焼させるための再燃炉13と、棺17を主燃炉12に自動で納棺可能とする自動納棺装置15とを備えている。
[overall structure]
FIG. 1 is a block diagram of a cremation system according to an embodiment of the present invention, and a main combustion unit which burns a body, a burial, a mortuary using a main combustion burner 12 and a farewell 16 on which a chute 17 is placed. A furnace 11, a refueling furnace 13 for completely burning the exhaust gas from the main combustion furnace 11, and an automatic storage device 15 capable of automatically storing the crucible 17 in the main combustion furnace 12 are provided.
 また主燃炉11からの排ガスは、再燃炉13に連通した共通煙道18Aおよび排気ダクト18Bを通って、発電システム19に導かれる。発電システム19に導かれた排ガスは冷媒と熱交換して熱エネルギーを伝達し、さらに、熱風回収熱交換器110に流入する。流入した排ガスは空気と熱交換し、熱せられた熱風は熱風回収路116を通って主燃炉11に導かれる。 Further, the exhaust gas from the main burner 11 is led to the power generation system 19 through the common flue 18A and the exhaust duct 18B which are in communication with the reburner 13. The exhaust gas led to the power generation system 19 exchanges heat with the refrigerant to transfer heat energy, and further flows into the hot air recovery heat exchanger 110. The inflowing exhaust gas exchanges heat with air, and the heated hot air is guided to the main combustion furnace 11 through the hot air recovery path 116.
 熱風回収熱交換器110から流出した排ガスは、排ガスの温度を下げるため吸気口111から取り入れた外気とともに集塵機112に流入し、ここで排ガス中に含まれるダスト等が除去される。次に集塵機112から流出した排ガスは触媒装置113に送られ、ここで排ガス中に含まれる窒素酸化物、臭気成分、ポリ塩素化ジベンゾダイオキシンやポリ塩素化ジベンゾフラン等のダイオキシン類が除去される。触媒装置113から排出された排出ガスは、排風機114により吸引され排気筒115を介して大気中に排出される。 The exhaust gas flowing out of the hot air recovery heat exchanger 110 flows into the dust collector 112 together with the outside air taken in from the air inlet 111 in order to lower the temperature of the exhaust gas, where dust and the like contained in the exhaust gas are removed. Next, the exhaust gas that has flowed out of the dust collector 112 is sent to the catalyst device 113, where nitrogen oxides, odorous components, dioxins such as polychlorinated dibenzodioxins and polychlorinated dibenzofurans contained in the exhaust gas are removed. The exhaust gas discharged from the catalyst device 113 is sucked by the exhaust fan 114 and discharged to the atmosphere via the exhaust stack 115.
 このようにして本発明による火葬システムおよび火葬方法は、主燃炉11で生じた大量の窒素酸化物、臭気成分、ダストおよびダイオキシン類などの有害物質を除去しクリーンな空気に再生して大気中に還元するとともに、都市型火葬システムの重要課題である無公害の火葬システムおよび火葬方法を実現している。 Thus, the cremation system and cremation method according to the present invention removes harmful substances such as large amounts of nitrogen oxides, odorous components, dust and dioxins generated in the main combustion furnace 11 and regenerates clean air into the air. In addition, the non-polluting cremation system and cremation method, which are important issues of the urban cremation system, are realized.
[触媒装置の基本構成]
 次に図2を参照して本発明の触媒装置の基本構成について説明する。本発明の触媒装置113は、図1に記載の集塵機112からの排ガスをダクト21Aを介して導入する上段触媒セット22と、上段触媒セット22に直列に構成される下段触媒セット22’と、上段触媒セット22を構成する触媒槽221に付着したダストや微粒子などを除去するためのダスト除去スプレー222と、ダスト除去スプレー222に設けられ高圧ガスを噴出する複数のノズル(図示せず)と、ダスト除去スプレー222を移動するためのダスト除去スプレー用駆動モータ23と、ダスト除去スプレー用駆動モータ23の駆動範囲、すなわち、ダスト除去スプレー222の移動範囲を設定するリミットスイッチ24と、ノズルへの高圧空気などの高圧ガスの供給を制御するバルブ25とを有する。
[Basic configuration of catalyst device]
Next, the basic configuration of the catalyst device of the present invention will be described with reference to FIG. The catalyst device 113 of the present invention comprises an upper catalyst set 22 for introducing exhaust gas from the dust collector 112 shown in FIG. 1 through a duct 21A, a lower catalyst set 22 'configured in series with the upper catalyst set 22, A dust removal spray 222 for removing dust, fine particles and the like adhering to the catalyst tank 221 constituting the catalyst set 22, a plurality of nozzles (not shown) provided on the dust removal spray 222 and ejecting high pressure gas, dust Drive motor 23 for dust removal spray for moving removal spray 222, driving range of drive motor 23 for dust removal spray, that is, limit switch 24 for setting movement range of dust removal spray 222, high pressure air to nozzle And the like to control the supply of high pressure gas.
 また触媒装置113の下流側に配置される下段触媒セット22’に対しても、同様に、触媒槽221’、ダスト除去スプレー222’、ダスト除去スプレー用駆動モータ23’、リミットスイッチ24’、バルブ25’が設けられる。なお、上段触媒セット22を構成する触媒槽221と下段触媒セット22’を構成する触媒槽221’の構造は同じであっても良く、異なるように構成してもよい。すなわち、本実施の形態による触媒装置113は、上段触媒セット22とこれと直列に配置される下段触媒セット22’との2段階方式を採用しており、上段触媒セット22で除去しきれなかった有害ガスなどを下段触媒セット22’で除去するように構成している。このため触媒槽221’を構成する触媒セルの目開きを、触媒槽221を構成する触媒セルの目開きよりも小さくし、単位面積当たりの触媒セルの数および排ガスが接触する触媒の表面積を大きくするように構成してもよい。 Similarly, for the lower catalyst set 22 'disposed downstream of the catalytic converter 113, the catalyst tank 221', the dust removal spray 222 ', the dust removal spray drive motor 23', the limit switch 24 ', and the valve 25 'is provided. The structures of the catalyst tank 221 constituting the upper catalyst set 22 and the catalyst tank 221 'constituting the lower catalyst set 22' may be the same or different. That is, the catalyst device 113 according to the present embodiment adopts a two-step system of the upper catalyst set 22 and the lower catalyst set 22 ′ disposed in series therewith, and the upper catalyst set 22 could not be removed. The harmful gas and the like are configured to be removed by the lower catalyst set 22 '. For this reason, the openings of the catalyst cells constituting the catalyst tank 221 'are made smaller than those of the catalyst cells constituting the catalyst tank 221, and the number of catalyst cells per unit area and the surface area of the catalyst contacted by the exhaust gas are large. It may be configured to
 図2において下段触媒セット22’から排出された排ガスはダクト21Cを通過し、排風機114を介して図1に記載の排気筒115から排出される。また緊急時に、集塵機112からの排ガスを直接ダクト21Cに排出するための緊急用ダクト21Bを設けている。なお上記において、本実施の形態による触媒装置113は、上段触媒セット22と下段触媒セット22’との2段階方式として説明したが、3段階以上の多段階構成としてもよい。このとき、3段目以降の各段の触媒セット間には、ダスト除去スプレーを設けても設けなくても良く、メンテナンス性の頻度などを考慮してダスト除去スプレーの設置仕様を定める。 The exhaust gas discharged from the lower catalyst set 22 'in FIG. 2 passes through the duct 21C, and is discharged from the exhaust pipe 115 shown in FIG. Further, an emergency duct 21B for discharging the exhaust gas from the dust collector 112 directly to the duct 21C in an emergency is provided. In the above, the catalyst device 113 according to the present embodiment has been described as a two-stage system of the upper stage catalyst set 22 and the lower stage catalyst set 22 ', but may be a multistage configuration of three or more stages. At this time, the dust removal spray may or may not be provided between the catalyst sets of the third and subsequent stages, and the installation specification of the dust removal spray is determined in consideration of the frequency of maintenance and the like.
[通常運転時における触媒装置の基本動作]
 次に図2の触媒装置113の通常運転時における基本動作について説明する。図1に記載の集塵機112からの排ガスが上段触媒セット22に導入されると、触媒槽221を構成する多数の触媒セルに形成された酸化触媒層で排ガスの脱硝と脱臭および/またはダイオキシン類の分解が行われる。ここで、ダイオキシン類を酸化触媒層で反応させることにより、ダイオキシン類を無害な二酸化炭素(CO)や水に分解する。すなわち、下記反応によりダイオキシン類を無害化する。
 ダイオキシン類→CO+HO+Hcl
上記反応では塩化水素(Hcl)も同時に生成されるが、触媒装置113に導入される排ガス中のダイオキシン類の濃度は非常に低いので、生成される塩化水素の量は環境に全く影響を与えない程度の濃度に低減されて排出される。
[Basic operation of catalytic device in normal operation]
Next, the basic operation of the catalyst device 113 of FIG. 2 during normal operation will be described. When the exhaust gas from the dust collector 112 shown in FIG. 1 is introduced into the upper catalyst set 22, denitration and deodorization of the exhaust gas and / or dioxins in the oxidation catalyst layers formed in a large number of catalyst cells constituting the catalyst tank 221 Disassembly is performed. Here, dioxins are decomposed into harmless carbon dioxide (CO 2 ) and water by reacting dioxins in the oxidation catalyst layer. That is, dioxins are rendered harmless by the following reaction.
Dioxins → CO 2 + H 2 O + Hcl
In the above reaction, hydrogen chloride (Hcl) is also produced at the same time, but since the concentration of dioxins in the exhaust gas introduced into the catalytic converter 113 is very low, the amount of hydrogen chloride produced does not affect the environment at all. The concentration is reduced and discharged.
 次に上段触媒セット22からの排ガスは、下段触媒セット22’を構成する触媒槽221’に導入され、上記に説明したと同様に酸化触媒層で排ガスの脱硝と脱臭および/またはダイオキシン類の分解が行われる。上段触媒セット22と下段触媒セット22’は容器により密封されており、上段触媒セット22からの排ガスが外部に漏れ出すことはなく、下段触媒セット22’を構成する触媒槽221’に導入されるように構成される。 Next, the exhaust gas from the upper catalyst set 22 is introduced into the catalyst tank 221 'constituting the lower catalyst set 22', and denitration and deodorization of exhaust gas and / or decomposition of dioxins in the oxidation catalyst layer as described above Is done. The upper catalyst set 22 and the lower catalyst set 22 'are sealed by a container, and the exhaust gas from the upper catalyst set 22 does not leak to the outside, and is introduced into the catalyst tank 221' constituting the lower catalyst set 22 '. Configured as.
[ダスト除去動作時における触媒装置の基本動作]
 次に図2の触媒装置113のダスト除去動作時における基本動作について説明する。一日の火葬作業が終了し主燃炉11と再燃炉13からの排ガスが停止した後、バルブ25を開放し、ダスト除去スプレー222により高圧空気などの高圧ガスを、複数のノズルから触媒槽221を構成する触媒セルの上面に向けて噴出する。噴出された高圧ガスは触媒セル内部を高速で通過し、この際触媒セル表面に付着したダストや微粒子を除去するように動作する。
[Basic operation of catalyst device in dust removal operation]
Next, the basic operation at the time of the dust removal operation of the catalyst device 113 of FIG. 2 will be described. After the day's cremation work is completed and the exhaust gases from the main combustion furnace 11 and the refueling furnace 13 are stopped, the valve 25 is opened, and high pressure gas such as high pressure air is discharged by the dust removing spray 222 from the plurality of nozzles. Spout towards the top of the catalyst cell that constitutes the The emitted high pressure gas passes through the inside of the catalyst cell at high speed, and operates to remove dust and particles adhering to the surface of the catalyst cell.
 一方、一例としてダスト除去スプレー222に直線上に配置された複数のノズルは、ダスト除去スプレー用駆動モータ23により駆動されて移動し、触媒槽221の上面全体をスキャンしながら、触媒槽221を構成する全ての触媒セルに対して均等に高圧ガスを噴出する。この為、全ての触媒セルに対して付着するダストなどをムラ無く除去することが出来る。ダスト除去スプレー222の移動開始位置と移動停止位置とはリミットスイッチ24で設定され、直線上の複数のノズルが高圧ガスを噴出しながら移動開始位置近傍から移動停止位置近傍まで到達するとリミットスイッチ24が作動し、直線上の複数のノズルは移動停止位置近傍で停止する。その後、ダスト除去スプレー222が移動停止位置から移動開始位置まで戻るとリミットスイッチ24が作動し、ダスト除去スプレー222が移動開始位置で停止する。この動作を一往復または複数回、全ての触媒セルに対して付着するダストなどが除去されるまで繰り返す。ダスト除去作業が終了すると、バルブ25を閉じて上段触媒セット22への高圧ガスの供給を停止する。上記において上段触媒セット22に対して説明したが、下段触媒セット22’に対しても同様である。すなわち、上段触媒セット22と下段触媒セット22’は並列的に独立して動作する。 On the other hand, as an example, the plurality of nozzles arranged linearly on the dust removal spray 222 are driven and moved by the dust removal spray drive motor 23 to configure the catalyst tank 221 while scanning the entire top surface of the catalyst tank 221 The high pressure gas is ejected evenly to all the catalyst cells. For this reason, it is possible to uniformly remove dust and the like adhering to all catalyst cells. The movement start position and movement stop position of the dust removal spray 222 are set by the limit switch 24. When multiple nozzles on a straight line eject high-pressure gas and reach from near the movement start position to near the movement stop position, the limit switch 24 When activated, the plurality of nozzles on a straight line stop near the movement stop position. Thereafter, when the dust removal spray 222 returns from the movement stop position to the movement start position, the limit switch 24 is activated, and the dust removal spray 222 stops at the movement start position. This operation is repeated one or more times until dust and the like attached to all catalyst cells are removed. When the dust removal operation is completed, the valve 25 is closed to stop the supply of high pressure gas to the upper catalyst set 22. Although the upper catalyst set 22 has been described above, the same applies to the lower catalyst set 22 '. That is, the upper stage catalyst set 22 and the lower stage catalyst set 22 'operate independently in parallel.
 また本実施の形態による触媒装置113は、触媒セルを流れるガスの流入口と流出口の圧力差を測定するための圧力センサを設け、触媒装置113を構成する触媒セルの目詰まり状態を常時モニタすることが可能である。圧力差が所定値以上になった場合は触媒セルに目詰まりが発生したと判断し、アラーム信号として活用することが出来るが、圧力差が所定値以上になった場合にダスト除去スプレー222、222’を自動的に駆動し、触媒セルに付着したダストなどを自動的に除去するように構成しても良い。これにより触媒装置113に目詰まりを発生することがないので、安定した火葬運転が可能である。 Further, the catalyst device 113 according to the present embodiment is provided with a pressure sensor for measuring the pressure difference between the inlet and outlet of the gas flowing through the catalyst cell, and constantly monitors the clogging state of the catalyst cell constituting the catalyst device 113. It is possible. If the pressure difference exceeds a predetermined value, it is determined that clogging has occurred in the catalyst cell, and it can be used as an alarm signal, but if the pressure difference exceeds a predetermined value, the dust removal sprays 222 and 222 It may be configured to automatically drive 'to remove dust and the like attached to the catalyst cell. As a result, no clogging occurs in the catalyst device 113, so stable cremation operation is possible.
 なお上記において一日の火葬作業が終了して主燃炉11と再燃炉13からの排ガスが停止した後に、ダスト除去スプレー222、222’を駆動するとして説明したが、火葬中にダスト除去スプレー222、222’を駆動するように構成しても良い。この場合、ノズルおよびダスト除去スプレー222、222’にダストが付着しないように、ノズルからの高圧ガスの噴射は、触媒セルの上面およびノズルおよびダスト除去スプレー222、222’の周辺に向けて行うようにしても良い。 In the above description, although it is described that the dust removing spray 222 and 222 'is driven after the cremation work of one day is finished and the exhaust gas from the main combustion furnace 11 and the reburning furnace 13 is stopped, the dust removal spray 222 is , 222 'may be driven. In this case, the spray of high pressure gas from the nozzle is directed to the top of the catalyst cell and the periphery of the nozzle and the dust removal spray 222, 222 'so that dust does not adhere to the nozzle and the dust removal spray 222, 222'. You may
 また本実施の形態による触媒装置113は、前述したように、触媒セットが直列的に多段階構成をなし、1段目の触媒セット(上段触媒セット)22と2段目の触媒セット(下段触媒セット)22’間にはダスト除去スプレー222’が設けられ、3段目以降の各段の触媒セット間には、ダスト除去スプレーを設けた場合と設けない場合との両方の構成を有している。このような特徴により、触媒セルの流路の長さが長い場合、または触媒セットの段数が多い場合においても、下流側の触媒セットを構成する触媒セルを流れる高圧ガスの流速が早いので触媒セルに付着したダストなどを十分除去することができるという特徴がある。 In the catalyst device 113 according to the present embodiment, as described above, the catalyst set is configured in multiple stages in series, and the first stage catalyst set (upper stage catalyst set) 22 and the second stage catalyst set (lower stage catalyst Set) 22 'is provided with a dust removal spray 222', and the catalyst set of each stage after the third stage has both configurations with and without the dust removal spray. There is. Due to such features, even when the flow path length of the catalyst cell is long or the number of stages of the catalyst set is large, the flow rate of the high pressure gas flowing through the catalyst cell constituting the downstream catalyst set is high, so the catalyst cell It is characterized in that the dust and the like attached to it can be sufficiently removed.
[触媒槽の構造]
 次に図3~図6を参照して本実施の形態による触媒槽221,221’の構造について説明する。図3は触媒槽221,221’の平面図であり、本実施の形態による触媒槽221,221’は触媒ユニット31を水平方向および垂直方向に繰り返して格子状に隙間無く配列して構成される。また触媒ユニット31の一部をサンプリング触媒ユニット32として構成し、このサンプリング触媒ユニット32を評価することにより、触媒槽221,221’の触媒性能を評価することが可能である。換言すると、全ての触媒ユニット31を評価することなく、サンプリング触媒ユニット32を評価することで、触媒ユニット全体のダスト付着状況や触媒性能の劣化の状態を推定することが出来、触媒装置の早期のメンテナンスや触媒ユニット31の交換などを行うことができ、安定した火葬運転が可能である。
[Structure of catalyst tank]
Next, the structure of the catalyst tank 221, 221 'according to the present embodiment will be described with reference to FIG. 3 to FIG. FIG. 3 is a plan view of the catalyst tank 221, 221 '. The catalyst tank 221, 221' according to the present embodiment is configured by arranging the catalyst units 31 repeatedly in the horizontal direction and the vertical direction without gaps in a lattice shape. . Further, by configuring a part of the catalyst unit 31 as the sampling catalyst unit 32 and evaluating this sampling catalyst unit 32, it is possible to evaluate the catalyst performance of the catalyst tank 221, 221 '. In other words, by evaluating the sampling catalyst unit 32 without evaluating all the catalyst units 31, it is possible to estimate the dust adhesion state of the entire catalyst unit and the deterioration state of the catalyst performance, and it is possible Maintenance and replacement of the catalyst unit 31 can be performed, and stable cremation operation is possible.
 図3において、サンプリング触媒ユニット32は触媒槽221のほぼ中央部に配置されているが、次にこの理由について説明する。図1に記載の集塵機112からの排ガスが上段触媒セット22に導入されると、図4に示す触媒セル41の上部端面に垂直方向に排ガスが流れ込むが、このときの排ガスの流速は全ての触媒セルで同じにならず、中央部で最も流速が早いと考えられる。触媒セル41に付着・堆積するダストなどの量は、排ガスの流速が大きくなると増加するので、触媒槽221(221’)の中央部にサンプリング触媒ユニット32を配置し、このサンプリング触媒ユニット32のダスト付着状況や触媒性能の劣化の状態を評価すれば、触媒ユニット31のうち最もダストなどが付着・堆積する触媒ユニット31を評価することになる。すなわち、他の触媒ユニット31に付着・堆積するダストなどの量は中央部に配置したサンプリング触媒ユニット32に付着・堆積するダストなどの量よりも小さいと判断できる。これにより、触媒槽221(221’)のほぼ中央部に配置したサンプリング触媒ユニット32の付着・堆積量をもとに触媒槽221(221’)全体でのダストなどが付着・堆積する最大値を算出し、この算出結果を参照してメンテナンスや触媒ユニット31の交換を行うことにより、全ての触媒ユニット31の目詰まりを防止することが出来る。また上記において、触媒ユニット31とサンプリング触媒ユニット32に付着・堆積するダストなどの量の関係についてのみ述べたが、触媒性能の劣化の状態を評価する場合についても、触媒ユニット31とサンプリング触媒ユニット32との関係は同様である。 In FIG. 3, the sampling catalyst unit 32 is disposed substantially at the center of the catalyst tank 221. The reason will be described next. When the exhaust gas from the dust collector 112 described in FIG. 1 is introduced into the upper catalyst set 22, the exhaust gas flows vertically to the upper end face of the catalyst cell 41 shown in FIG. It does not become the same in the cell, and it is considered that the flow velocity is the fastest in the central part. Since the amount of dust and the like attached to and deposited on the catalyst cell 41 increases as the flow velocity of the exhaust gas increases, the sampling catalyst unit 32 is disposed at the center of the catalyst tank 221 (221 ′). If the adhesion state and the deterioration state of the catalyst performance are evaluated, the catalyst unit 31 to which the dust etc. adheres and deposits most among the catalyst units 31 is evaluated. That is, it can be determined that the amount of dust and the like adhering to and deposited on the other catalyst units 31 is smaller than the amount of dust and the like adhering to and deposited on the sampling catalyst unit 32 disposed in the central portion. As a result, the maximum value at which dust and the like in the entire catalyst tank 221 (221 ') adheres and deposits based on the amount of adhesion and deposition of the sampling catalyst unit 32 disposed substantially at the center of the catalyst tank 221 (221'). By calculating and performing maintenance or replacement of the catalyst unit 31 with reference to the calculation result, clogging of all the catalyst units 31 can be prevented. Further, although only the relationship between the amount of dust and the like attached to and deposited on the catalyst unit 31 and the sampling catalyst unit 32 has been described above, the catalyst unit 31 and the sampling catalyst unit 32 are also evaluated in the case of evaluating the deterioration state The relationship with is similar.
 次に図4を参照して触媒セル41について説明する。図4(a)は1個の触媒ユニット31の斜視図であり、図4(b)は図4(a)のAで示す部分の拡大図である。触媒セル41の形状は特に限定されないが、円筒形状、円柱形状、パイプ形状、板形状、リボン形状、波板形状、矩形、ハニカム形状などから選択可能であるが、ハニカム形状のものが接触面積が大きくダストによる目詰まりが少ないので好適である。また本実施の形態による触媒セル41は、排気ガスが触媒セル41を素通りするタイプ、いわゆるストレートフロー構造であるので、ダストが触媒表面に付着・堆積しにくいという特徴がある。 Next, the catalyst cell 41 will be described with reference to FIG. FIG. 4 (a) is a perspective view of one catalyst unit 31, and FIG. 4 (b) is an enlarged view of a portion indicated by A in FIG. 4 (a). The shape of the catalyst cell 41 is not particularly limited, but can be selected from a cylindrical shape, a cylindrical shape, a pipe shape, a plate shape, a ribbon shape, a ribbon shape, a corrugated plate shape, a rectangle, a honeycomb shape, etc. It is suitable because it is largely clogged with dust. Further, since the catalyst cell 41 according to the present embodiment has a so-called straight flow structure in which the exhaust gas passes through the catalyst cell 41, dust is less likely to adhere to and deposit on the catalyst surface.
 また触媒セル41は、目詰まりを防止するために触媒セルの開口部の大きさ、すなわち目開きを大きく設定していることが特徴である。具体的には目開きを7mm~11mmとし、一方触媒セルの長さを800mm~1200mmと長くして、触媒セル41一本当たりの触媒表面積を大きく設定している。また、全ての触媒ユニット31は触媒槽221,221’に対して独立して着脱可能に構成されている。 The catalyst cell 41 is also characterized in that the size of the opening of the catalyst cell, that is, the opening is set large in order to prevent clogging. Specifically, the opening is set to 7 mm to 11 mm, and the length of the catalyst cell is increased to 800 mm to 1200 mm, and the surface area of the catalyst per catalyst cell 41 is set large. In addition, all the catalyst units 31 are configured to be attachable to and detachable from the catalyst vessels 221 and 221 'independently.
 触媒セル41の材料としては酸化チタンバナジウムが好適であり、この材料を用いて160~300℃の低温度範囲においても排ガス中のダイオキシン類などの有害物質を分解することが出来る。本実施の形態では、触媒装置113の入口温度を160~200℃とし、集塵機112からの排ガス温度を昇温することなく、集塵機112からの排ガスをそのまま触媒装置113に流して排ガス中の有害物質を分解・除去する。触媒セル41の材料としては酸化チタンバナジウムの他に、バナジウム、タングステン、モリブデンから選択された少なくとも1種の金属酸化物と、チタン、ケイ素、ジルコニウムから選択された少なくとも1種の金属酸化物とを混合焼成した触媒を用い、さらに上記焼成物に白金、パラジウム、ロジウム、ルテニウム、イリジウムの少なくとも一つを担持した化合物を用いても良い。また上記化合物に、さらに、銅、鉄、マンガン、クロム、コバルト、セリウム、ニッケルのうち少なくとも一つを担持した化合物を用いても良い。これらの触媒材料を用いて、ダイオキシン類などの有害物質を二酸化炭素や水などに分解して無害化し、特別な二次処理が不要になる。 As a material of the catalyst cell 41, titanium vanadium oxide is suitable, and this material can be used to decompose harmful substances such as dioxins in exhaust gas even in a low temperature range of 160 to 300.degree. In this embodiment, the inlet temperature of the catalytic converter 113 is set to 160 to 200 ° C., and the exhaust gas from the dust collector 112 is allowed to flow directly to the catalytic converter 113 without raising the exhaust gas temperature from the dust collector 112 Disassemble and remove. As the material of the catalyst cell 41, in addition to titanium vanadium oxide, at least one metal oxide selected from vanadium, tungsten and molybdenum, and at least one metal oxide selected from titanium, silicon and zirconium It is also possible to use a compound obtained by supporting at least one of platinum, palladium, rhodium, ruthenium and iridium on the above-mentioned calcined product using a mixed and calcined catalyst. Further, a compound in which at least one of copper, iron, manganese, chromium, cobalt, cerium, and nickel is supported may be used as the above compound. By using these catalyst materials, harmful substances such as dioxins are decomposed into carbon dioxide, water, etc. to render them harmless, and no special secondary treatment is required.
 次に図5を参照して、サンプリング触媒ユニット32について説明する。サンプリング触媒ユニット32の構造は、図4に示す触媒ユニット31と基本的に同じであり、サンプリング触媒カセット51に触媒セル41が格子状に隙間無く配置されている。またサンプリング触媒カセット51の外面は、触媒槽221,221’に固定された固定カセット52の内面と接しており、取手53を上方に引っ張ることによりサンプリング触媒カセット51の外面を固定カセット52の内面に対してスライドさせて、サンプリング触媒カセット51を取り出すことが出来る。なお、サンプリング触媒ユニット32の構造は、触媒ユニット31と同じとして説明したが、排ガス中のダストがより付着・堆積しやすいように、サンプリング触媒ユニット32の目開きを触媒ユニット31の目開きよりも小さくするように構成しても良い。 The sampling catalyst unit 32 will now be described with reference to FIG. The structure of the sampling catalyst unit 32 is basically the same as that of the catalyst unit 31 shown in FIG. 4, and the catalyst cells 41 are arranged in a lattice shape without gaps in the sampling catalyst cassette 51. Further, the outer surface of the sampling catalyst cassette 51 is in contact with the inner surface of the fixed cassette 52 fixed to the catalyst tank 221, 221 ', and the outer surface of the sampling catalyst cassette 51 is made the inner surface of the fixed cassette 52 by pulling the handle 53 upward. The sampling catalyst cassette 51 can be taken out by sliding it. Although the structure of the sampling catalyst unit 32 has been described as the same as the catalyst unit 31, the openings of the sampling catalyst unit 32 are larger than those of the catalyst unit 31 so that the dust in the exhaust gas is more easily attached and accumulated. It may be configured to be smaller.
 次に図6を参照して触媒槽221の説明を続行する。図6は触媒槽221の側面図であり、61は上部グリット、62は下部グリットを示す。上部グリット61と下部グリット62は格子状の部材であり、それぞれ側板の上部および下部に固定されている。触媒ユニット31を触媒槽221(221’)から取り出す際は、上部グリットを固定しているナット(図示せず)を取り外して、上部グリット61全体を取り外してから、個々の触媒ユニット31を上方に引き出す。一方、サンプリング触媒カセット51を触媒槽221(221’)から取り出す際は、上部グリット61全体を取り外すことなく、より簡単にサンプリング触媒カセット51を触媒槽221(221’)から取り出すことが出来るように工夫されている。すなわち、上部グリット61のサンプリング触媒ユニット32の対応箇所は、特別に開閉可能なように構成されており、サンプリング触媒ユニット32に対して設けられた開閉可能なグリット(図示せず)をワンタッチで開けることにより、サンプリング触媒カセット51を容易に取り出すことができる。 Next, the description of the catalyst tank 221 is continued with reference to FIG. FIG. 6 is a side view of the catalyst tank 221, wherein 61 indicates an upper grit and 62 indicates a lower grit. The upper grit 61 and the lower grit 62 are grid-like members, and are fixed to the upper and lower portions of the side plate, respectively. When taking out the catalyst unit 31 from the catalyst tank 221 (221 ′), remove the nut (not shown) fixing the upper grit, remove the entire upper grit 61, and move the individual catalyst units 31 upward. Pull out. On the other hand, when taking out the sampling catalyst cassette 51 from the catalyst tank 221 (221 ′), the sampling catalyst cassette 51 can be taken out from the catalyst tank 221 (221 ′) more easily without removing the entire upper grit 61. It is devised. That is, the corresponding part of the sampling catalyst unit 32 of the upper grit 61 is specially configured to be able to open and close, and the openable grit (not shown) provided for the sampling catalyst unit 32 can be opened with one touch. Thus, the sampling catalyst cassette 51 can be easily removed.
[ダスト除去装置の構成と動作]
 次に図7および図8を参照して本実施の形態によるダスト除去装置70の構成と動作について説明する。図7は本実施の形態によるダスト除去装置70の平面図、図8はこの装置70の側面図である。図7において、集塵機112からの排ガスは、フレーム75の内部に設けられた触媒槽221,221’(図示せず)に対して紙面垂直下向きに流入する。ここで222は、両端部でレール72に対してX方向に摺動しながら高圧空気などの高圧ガスを複数のノズルから噴出するダスト除去スプレー、71は連通する内部空間を介してダスト除去スプレー222に高圧ガスを供給するとともに、ダスト除去スプレー222同士を保持するダスト除去スプレー支持部である。
[Configuration and operation of dust removing device]
Next, the configuration and operation of the dust removing device 70 according to the present embodiment will be described with reference to FIGS. 7 and 8. FIG. 7 is a plan view of the dust removing device 70 according to the present embodiment, and FIG. 8 is a side view of the device 70. In FIG. 7, the exhaust gas from the dust collector 112 flows vertically downward in the drawing with respect to a catalyst tank 221, 221 ′ (not shown) provided inside the frame 75. Here, 222 is a dust removing spray that ejects high pressure gas such as high pressure air from a plurality of nozzles while sliding in the X direction with respect to the rail 72 at both ends, and 71 is a dust removing spray 222 via a communicating internal space The high pressure gas is supplied to the dust removal spray supporting portion for holding the dust removal sprays 222 together.
 また74はステージ73に載置され、ダスト除去スプレー222およびダスト除去スプレー支持部71をX方向に駆動するダスト除去スプレー用駆動装置であり、図2で説明したダスト除去スプレー用駆動モータ23を駆動源としている。ダスト除去スプレー用駆動装置74は図8に示すように、上段触媒セット22を構成するダスト除去スプレー222およびダスト除去スプレー支持部71を駆動するダスト除去スプレー用駆動装置74Aと、下段触媒セット(22’:図示せず)を構成するダスト除去スプレー(222’:図示せず)およびダスト除去スプレー支持部(71’:図示せず)を駆動するダスト除去スプレー用駆動装置74Bとを有するが、触媒カセットが3段以上の場合は、さらにダスト除去スプレー用駆動装置74C,74D,・・・を追加するように構成しても良い。 Reference numeral 74 denotes a dust removing spray driving device which is mounted on the stage 73 and drives the dust removing spray 222 and the dust removing spray supporting portion 71 in the X direction, and drives the dust removing spray drive motor 23 described in FIG. It is the source. As shown in FIG. 8, the dust removing spray driving device 74 includes a dust removing spray 222 that constitutes the upper catalyst set 22 and a dust removing spray driving device 74A that drives the dust removing spray supporting portion 71, and a lower catalyst set (22 'Has a dust removing spray (222': not shown) constituting a 'not shown' and a dust removing spray driving device 74B for driving a dust removing spray support (71 ': not shown) If there are three or more cassettes, dust removal spray drive devices 74C, 74D,... May be added.
 次にダスト除去装置70の動作について説明する。一日の火葬作業が終了し図1に記載の主燃炉11と再燃炉13からの排ガスが停止した後、作業員がダスト除去装置70の駆動開始ボタン(図示せず)を操作することにより図2に示すバルブ25が開放され、ダスト除去スプレー222により高圧空気などの高圧ガスを、ダスト除去スプレー222に設けた複数のノズルから触媒槽221を構成する触媒セルの上面に向けて下方向に噴出する。これとともに、ダスト除去スプレー用駆動装置74が駆動開始し、ダスト除去スプレー222およびダスト除去スプレー支持部71が手前の移動開始位置から奥方向に向かって移動する。ダスト除去スプレー222およびダスト除去スプレー支持部71がリミットスイッチ24,24’で設定された移動停止位置まで進行すると自動的に停止し、その後自動的に、ダスト除去スプレー222から高圧ガスを噴出しながら手前方向に引き返しリミットスイッチ24,24’で設定された移動開始位置で自動停止する。 Next, the operation of the dust removing device 70 will be described. After the day's cremation work is completed and the exhaust gases from the main furnace 11 and the refueling furnace 13 shown in FIG. 1 are stopped, the worker operates the drive start button (not shown) of the dust removing device 70 The valve 25 shown in FIG. 2 is opened, and a high pressure gas such as high pressure air is directed downward from the plurality of nozzles provided on the dust removal spray 222 toward the upper surface of the catalyst cell constituting the catalyst tank 221 by the dust removal spray 222 Spout. At the same time, the dust removing spray driving device 74 starts driving, and the dust removing spray 222 and the dust removing spray supporting portion 71 move from the movement start position on the near side toward the back direction. The dust removal spray 222 and the dust removal spray support 71 automatically stop when advancing to the movement stop position set by the limit switches 24 and 24 ', and then automatically eject high pressure gas from the dust removal spray 222 In the forward direction, it automatically stops at the movement start position set by the limit switches 24, 24 '.
 以上説明したように、本実施の形態によるダスト除去装置70において、ダスト除去スプレー222に直線上に配置された複数のノズルは、触媒槽221(221’)の上面全体をスキャンしながら、触媒槽221を構成する全ての触媒セルに対して均等に高圧ガスを噴出する為、全ての触媒セルに対して付着するダスト・微粒子などを隈無く、かつムラ無く除去することが出来る。 As described above, in the dust removing apparatus 70 according to the present embodiment, the plurality of nozzles disposed on a straight line to the dust removing spray 222 scan the entire top surface of the catalyst tank 221 (221 ′) while the catalyst tank Since the high pressure gas is ejected uniformly to all the catalyst cells constituting the catalyst 221, dust, fine particles and the like adhering to all the catalyst cells can be removed uniformly and uniformly.
 本実施の形態によるダスト除去スプレー222に設けられているノズルの数をNとし、ダスト除去スプレー222に流入する高圧ガスの圧力をPとすると、ノズルから噴出する高圧ガスの圧力はおおよそP/Nに比例するが、仮にダスト除去スプレー222の駆動機構を設けず、メッシュ状にN×M(MはX方向に配置するダスト除去スプレー222の数)個のノズルから高圧ガスを噴出する方式の場合、ノズルからの噴出圧力は本実施の形態による噴出圧力の1/Mに低下する。またノズルからの噴出圧力を本実施の形態によるダスト除去スプレー222に設けられているノズルからの噴出圧力と同じにする場合は、ダスト除去スプレー222に供給する高圧ガスの圧力をM倍にしなければならず、ダスト除去装置が大型化するだけでなく、高圧を安定して維持することが困難である。一方、本実施の形態によるダスト除去スプレー222は、ダスト除去スプレー222自体を移動させ、触媒槽221(221’)の上面全体をまんべんなくスキャンしながら、触媒槽221(221’)を構成する全ての触媒セルに対して均等に高圧ガスを噴出する方法により、上記の問題を克服している。 Assuming that the number of nozzles provided in the dust removal spray 222 according to the present embodiment is N and the pressure of the high pressure gas flowing into the dust removal spray 222 is P, the pressure of the high pressure gas ejected from the nozzles is approximately P / N. In the case of a system in which high pressure gas is ejected from nozzles of N × M (M is the number of dust removing sprays 222 disposed in the X direction) in mesh form without providing a drive mechanism of the dust removing spray 222 temporarily. The ejection pressure from the nozzle is reduced to 1 / M of the ejection pressure according to the present embodiment. In addition, if the pressure from the nozzle is the same as the pressure from the nozzle provided to the dust removal spray 222 according to the present embodiment, the pressure of the high-pressure gas supplied to the dust removal spray 222 must be M times Not only does the dust removing device become larger, but it is difficult to stably maintain high pressure. On the other hand, the dust removal spray 222 according to the present embodiment moves the dust removal spray 222 itself and scans all over the top surface of the catalyst tank 221 (221 ') uniformly while configuring all of the catalyst tank 221 (221'). The above problem is overcome by the method of injecting high pressure gas evenly to the catalyst cell.
11 主燃炉
12 主燃バーナ
13 再燃炉
14 前室
15 自動納棺装置
16 お別れ台
17 棺
18A 共通煙道
18B 排気ダクト
18C 排ガス補助冷却装置兼非常排気ダクト
19 発電システム
110 熱風回収熱交換器
111 吸気口
112 集塵機
113 触媒装置
114 排風機
115 排気筒
116 熱風回収路
21A,21B,21C ダクト
22 上段触媒セット
22’ 下段触媒セット
221,221’ 触媒槽
222,222’ ダスト除去スプレー
23,23’ ダスト除去スプレー用駆動モータ
24,24’ リミットスイッチ
25,25’ バルブ
31 触媒ユニット
32 サンプリング触媒ユニット
41 触媒セル
51 サンプリング触媒カセット
52 固定カセット
61 上部グリット
62 下部グリット
70 ダスト除去装置
71 ダスト除去スプレー支持部
72 レール
73 ステージ
74,74A,74B ダスト除去スプレー用駆動装置
75 フレーム
91,101 主燃焼室
92,102 再燃焼室
93 前段脱硝触媒層
94 後段脱硝触媒層
95 空気予熱器
96 集塵機
97 排気ファン
103 ガス冷却域
104 集塵手段
105 触媒層
1051 前段触媒層
1052 後段触媒層
111 ハニカム触媒
112 脱硝反応装置
113 排ガス
114,115 バルブ
116 ガス導入パイプ
117 洗浄水導入パイプ
118 ブロー用ノズル
11 main burner 12 main burner 13 reburner 14 front room 15 automatic loading device 16 farewell 17 17 18A common flue 18B exhaust duct 18C exhaust gas auxiliary cooling device and emergency exhaust duct 19 power generation system 110 hot air recovery heat exchanger 111 Intake port 112 Dust collector 113 Catalyst device 114 Exhaust fan 115 Exhaust air duct 116 Hot air recovery path 21A, 21B, 21C Duct 22 Upper catalyst set 22 'Lower catalyst set 221, 21 1' Catalyst tank 222, 222 'Dust removal spray 23, 23' dust Drive motor for removing spray 24, 24 'limit switch 25, 25' valve 31 catalyst unit 32 sampling catalyst unit 41 catalyst cell 51 sampling catalyst cassette 52 fixed cassette 61 upper grit 62 lower grit 70 dust removing device 71 dust removing spray support portion 2 Rails 73 Stages 74, 74A, 74B Drives for Dust Removal Spray 75 Frames 91, 101 Main Combustion Chambers 92, 102 Recombustion Chamber 93 First Stage DeNOx Catalyst Layer 94 Second Stage DeNOx Catalyst Layer 95 Air Preheater 96 Dust Collector 97 Exhaust Fan 103 Gas Cooling area 104 Collection means 105 Catalyst layer 1051 Pre-stage catalyst layer 1052 Post-catalyst layer 111 Honeycomb catalyst 112 DeNOx reaction apparatus 113 Exhaust gas 114, 115 Valve 116 Gas introduction pipe 117 Cleaning water introduction pipe 118 Blowing nozzle

Claims (18)

  1.  遺体を燃焼するための燃焼炉と、
     前記燃焼炉からの排ガスを集塵処理する集塵機と、
     前記集塵機の下流に配置され排ガスを浄化する触媒装置とを設けた火葬システムであって、
     前記触媒装置は、排ガスの上流側に配置される上流触媒セットと、
     前記上流触媒セットの下流側に配置される下流触媒セットとを有し、
     前記上流触媒セットおよび前記下流触媒セットは、それぞれ、
     高圧ガスを噴射して前記上流触媒セットに付着するダスト類を除去する上流ダストスプレーと、
     前記高圧ガスを噴射して前記下流触媒セットに付着するダスト類を除去する下流ダストスプレーと、を備えることを特徴とする火葬システム。
    A combustion furnace for burning the remains,
    A dust collector for collecting and treating exhaust gas from the combustion furnace;
    A cremation system provided with a catalyst device disposed downstream of the dust collector and purifying exhaust gas,
    The catalyst device comprises an upstream catalyst set disposed upstream of the exhaust gas;
    And a downstream catalyst set disposed downstream of the upstream catalyst set;
    The upstream catalyst set and the downstream catalyst set are each
    An upstream dust spray for injecting high pressure gas to remove dust adhering to the upstream catalyst set;
    And a downstream dust sprayer for injecting the high pressure gas to remove dust adhering to the downstream catalyst set.
  2.  前記上流ダストスプレーおよび前記下流ダストスプレーが、それぞれ前記上流触媒セットを構成する触媒槽の上面および前記下流触媒セットを構成する触媒槽の上面に沿って移動しながら、前記高圧ガスを噴射することを特徴とする請求項1記載の火葬システム。 Spraying the high-pressure gas while moving along the upper surface of the catalyst vessel constituting the upstream catalyst set and the upper surface of the catalyst vessel constituting the downstream catalyst set, respectively; The cremation system of Claim 1 characterized by the above-mentioned.
  3.  前記上流ダストスプレーおよび前記下流ダストスプレーが、前記上流ダストスプレーおよび前記下流ダストスプレーの両端または一端に設けられたレールを摺動しながら移動することを特徴とする請求項2記載の火葬システム。 The cremation system according to claim 2, wherein the upstream dust spray and the downstream dust spray slide on rails provided at both ends or one end of the upstream dust spray and the downstream dust spray.
  4.  前記上流ダスト除去スプレーおよび前記下流ダストスプレーの移動開始位置と移動停止位置とは移動開始/停止手段で設定され、前記上流ダスト除去スプレーおよび前記下流ダストスプレーが前記移動開始位置から前記移動停止位置まで到達すると自動的に停止し、その後、前記移動開始位置に自動的に戻ることを特徴とする請求項2乃至請求項3記載の火葬システム。 The movement start position and movement stop position of the upstream dust removal spray and the downstream dust spray are set by movement start / stop means, and the upstream dust removal spray and the downstream dust spray move from the movement start position to the movement stop position The cremation system according to any one of claims 2 to 3, wherein the cremation system is automatically stopped when it arrives, and then automatically returned to the movement start position.
  5.  前記上流ダストスプレーおよび前記下流ダストスプレーの少なくともいずれかが、火葬運転中に作動することを特徴とする請求項1乃至請求項4記載の火葬システム。 The cremation system according to any one of claims 1 to 4, wherein at least one of the upstream dust sprayer and the downstream dust sprayer operates during a cremation operation.
  6.  前記上流触媒セットにおける排ガスの流入口と流出口の排ガスの圧力差を測定するための圧力センサを設け、前記圧力差が所定値以上に達した際にアラーム信号が出力されることを特徴とする請求項1乃至請求項5記載の火葬システム。 A pressure sensor is provided to measure the pressure difference between the exhaust gas inlet and outlet of the upstream catalyst set, and an alarm signal is output when the pressure difference reaches a predetermined value or more. The cremation system according to any one of claims 1 to 5.
  7.  前記上流触媒セットにおける排ガスの流入口と流出口の排ガスの圧力差を測定するための圧力センサを設け、前記圧力差が所定値以上に達した際に、前記上流ダストスプレーが自動的に作動開始することを特徴とする請求項1乃至請求項6記載の火葬システム。 A pressure sensor is provided to measure the pressure difference between the exhaust gas inlet and outlet exhaust gas in the upstream catalyst set, and the upstream dust spray is automatically started when the pressure difference reaches a predetermined value or more. The cremation system according to any one of claims 1 to 6, wherein:
  8.  前記上流触媒セットまたは前記下流触媒セットは、前記上流触媒セットまたは前記下流触媒セットに対して着脱可能なように触媒ユニットが設けられ、かつ前記触媒ユニットが格子状に配列されて構成され、前記触媒ユニットを構成する触媒セルの形状はハニカム形状、円筒形状、円柱形状、パイプ形状、板形状、リボン形状、波板形状、矩形のいずれかであって、かつストレートフロー構造をなし、前記触媒セルの目開きは7mm~11mmであることを特徴とする請求項1乃至請求項7記載の火葬システム。 The upstream catalyst set or the downstream catalyst set is provided with a catalyst unit so as to be removable from the upstream catalyst set or the downstream catalyst set, and the catalyst units are arranged in a grid, and the catalyst is configured The shape of the catalyst cell constituting the unit is any one of a honeycomb shape, a cylindrical shape, a cylindrical shape, a pipe shape, a plate shape, a ribbon shape, a ribbon shape, a corrugated plate shape and a rectangle and has a straight flow structure. The cremation system according to any one of claims 1 to 7, wherein the opening is 7 mm to 11 mm.
  9.  前記上流触媒セットを構成する第1の触媒セルの目開きが、前記下流触媒セットを構成する第2の触媒セルの目開きと同じか、大きいことを特徴とする請求項1乃至請求項8記載の火葬システム。 The opening of the first catalyst cell constituting the upstream catalyst set is the same as or larger than the opening of the second catalyst cell constituting the downstream catalyst set. Cremation system.
  10.  前記上流触媒セットまたは前記下流触媒セットは、前記上流触媒セットまたは前記下流触媒セットに対して着脱可能なように触媒ユニットが設けられ、かつ前記触媒ユニットが格子状に配列されて構成され、前記触媒ユニットの一部が前記上流触媒セットまたは前記下流触媒セットの触媒性能を評価するサンプリング触媒ユニットとして構成されていることを特徴とする請求項1乃至請求項9記載の火葬システム。 The upstream catalyst set or the downstream catalyst set is provided with a catalyst unit so as to be removable from the upstream catalyst set or the downstream catalyst set, and the catalyst units are arranged in a grid, and the catalyst is configured The cremation system according to any one of claims 1 to 9, wherein a part of the unit is configured as a sampling catalyst unit for evaluating the catalytic performance of the upstream catalyst set or the downstream catalyst set.
  11.  前記サンプリング触媒ユニットは、前記上流触媒セットまたは前記下流触媒セットの中央部に配置されることを特徴とする請求項10記載の火葬システム。 The cremation system according to claim 10, wherein the sampling catalyst unit is disposed at a central portion of the upstream catalyst set or the downstream catalyst set.
  12.  前記触媒ユニットおよび前記サンプリング触媒ユニットをカバーする格子状のグリットが前記上流触媒セットまたは前記下流触媒セットに設けられ、前記サンプリング触媒ユニットに対応する前記グリッドは開閉可能に構成されることを特徴とする請求項10または請求項11記載の火葬システム。 A grid grit covering the catalyst unit and the sampling catalyst unit is provided on the upstream catalyst set or the downstream catalyst set, and the grid corresponding to the sampling catalyst unit is configured to be openable and closable. The cremation system of Claim 10 or Claim 11.
  13.  前記触媒装置で排ガスと接触する材料が酸化チタンバナジウム、またはチタン、ケイ素、ジルコニウムから選択された少なくとも一種の金属酸化物と、バナジウム、タングステン、モリブデンから選択された少なくとも一種の金属酸化物とを混合焼成した触媒のいずれかを含むことを特徴とする請求項1乃至請求項12記載の火葬システム。 In the catalyst device, at least one metal oxide selected from titanium vanadium oxide or titanium, silicon, and zirconium and at least one metal oxide selected from vanadium, tungsten, and molybdenum are mixed with the exhaust gas in the catalytic device. 13. The cremation system according to any one of the preceding claims, characterized in that it comprises any of the calcined catalysts.
  14.  遺体を燃焼するための燃焼炉と、
     前記燃焼炉からの排ガスを集塵処理する集塵機と、
     前記集塵機の下流に配置され排ガスを浄化する触媒装置とを設けた火葬システムを用いる火葬方法であって、
     排ガスの上流側に配置される上流触媒セットで、少なくとも脱硝、脱臭、ダイオキシン類の分解のいずれかの排ガス処理を行う第1の工程と、
    前記上流触媒セットの下流側に配置される下流触媒セットで前記第1の工程で処理された排ガス処理を行う第2の工程と、
     高圧ガスを噴射して前記上流触媒セットに付着するダスト類を除去する第3の工程と、
     前記高圧ガスを噴射して前記下流触媒セットに付着するダスト類を除去する第4の工程と、を備えることを特徴とする火葬方法。
    A combustion furnace for burning the remains,
    A dust collector for collecting and treating exhaust gas from the combustion furnace;
    A cremation method using a cremation system provided downstream of the dust collector and provided with a catalyst device for purifying exhaust gas,
    A first step of performing exhaust gas treatment of at least any of denitration, deodorization, and decomposition of dioxins with an upstream catalyst set disposed upstream of the exhaust gas;
    A second step of treating the exhaust gas treated in the first step with a downstream catalyst set disposed downstream of the upstream catalyst set;
    A third step of injecting high pressure gas to remove dust adhering to the upstream catalyst set;
    And F. a fourth step of injecting the high pressure gas to remove dust adhering to the downstream catalyst set.
  15.  前記第3の工程および前記第4の工程は、高圧噴射手段を前記上流触媒セットを構成する触媒槽の上面および前記下流触媒セットを構成する触媒槽の上面に沿ってそれぞれ移動しながら、前記高圧噴射手段から前記高圧ガスを噴射することを特徴とする請求項14記載の火葬方法。 In the third and fourth steps, the high pressure injection means is moved along the upper surface of the catalyst vessel constituting the upstream catalyst set and the upper surface of the catalyst vessel constituting the downstream catalyst set, respectively. The cremation method according to claim 14, wherein the high pressure gas is injected from an injection means.
  16.  前記第3の工程および前記第4の工程のうち少なくとも一つの工程は、火葬運転中に実行されることを特徴とする請求項14または請求項15記載の火葬方法。 The cremation method according to claim 14 or 15, wherein at least one of the third step and the fourth step is performed during a cremation operation.
  17.  前記上流触媒セットにおける排ガスの流入口と流出口の排ガスの圧力差を測定し、前記圧力差が所定値以上に達した際にアラーム信号を出力することを特徴とする請求項14乃至請求項16記載の火葬方法。 The pressure difference between the exhaust gas at the inlet and the outlet of the exhaust gas in the upstream catalyst set is measured, and an alarm signal is output when the pressure difference reaches a predetermined value or more. The cremation method of description.
  18.  前記上流触媒セットにおける排ガスの流入口と流出口の排ガスの圧力差を測定し、前記圧力差が所定値以上に達した際に、前記第3の工程または前記第4の工程が自動的に作動開始することを特徴とする請求項14乃至請求項17記載の火葬方法。 The pressure difference between the exhaust gas inlet and outlet exhaust gas in the upstream catalyst set is measured, and when the pressure difference reaches a predetermined value or more, the third step or the fourth step operates automatically. The cremation method according to any one of claims 14 to 17, wherein the method is started.
PCT/JP2014/061663 2013-05-01 2014-04-25 Cremation system and cremation method WO2014178337A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014545999A JP5721914B2 (en) 2013-05-01 2014-04-25 Cremation system and cremation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-096412 2013-05-01
JP2013096412 2013-05-01

Publications (1)

Publication Number Publication Date
WO2014178337A1 true WO2014178337A1 (en) 2014-11-06

Family

ID=51843467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061663 WO2014178337A1 (en) 2013-05-01 2014-04-25 Cremation system and cremation method

Country Status (2)

Country Link
JP (1) JP5721914B2 (en)
WO (1) WO2014178337A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105709587A (en) * 2016-04-26 2016-06-29 威海航泰环保设备有限公司 Smoke desulfuration and deacidification device of remains cremation machine
CN106907373A (en) * 2017-04-27 2017-06-30 浙江海洋大学东海科学技术学院 Hydraulic control panel
CN108144445A (en) * 2017-12-25 2018-06-12 中国能源建设集团华东电力试验研究院有限公司 SCR denitration system catalyst abrasion analysis of causes system based on performance test
CN111214949A (en) * 2019-11-29 2020-06-02 北京首钢冷轧薄板有限公司 Denitration catalytic device anti-blocking monitoring method, device, system and storage medium
WO2021215372A1 (en) * 2020-04-20 2021-10-28 三菱パワー株式会社 Inspection catalyst and removable structure in actual reactor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114733347A (en) * 2021-04-29 2022-07-12 派尔实验装备有限公司 Application method of VOCS catalytic oxidation spraying system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52141480A (en) * 1976-05-21 1977-11-25 Mitsubishi Heavy Ind Ltd Catalytic gas/solid reactor
JPS5676227A (en) * 1979-11-27 1981-06-23 Mitsubishi Heavy Ind Ltd Soot blowing method
JPH0226620A (en) * 1988-07-14 1990-01-29 Mitsubishi Heavy Ind Ltd Dust removing device of denitrification apparatus
JPH0425937U (en) * 1990-06-15 1992-03-02
JPH11248140A (en) * 1998-02-27 1999-09-14 Babcock Hitachi Kk Apparatus and method for treating exhaust gas
JPH11304132A (en) * 1998-04-17 1999-11-05 Babcock Hitachi Kk Apparatus and method for treating exhaust gas
JP2000288401A (en) * 1999-04-02 2000-10-17 Babcock Hitachi Kk Abrasion loss detecting method of catalyst
JP2001170452A (en) * 1999-10-04 2001-06-26 Nippon Shokubai Co Ltd Treating device for waste gas
JP2002095919A (en) * 2000-09-21 2002-04-02 Ishikawajima Harima Heavy Ind Co Ltd Clogging preventing device of denitration apparatus
JP2002310410A (en) * 2001-04-06 2002-10-23 Nippon Shokubai Co Ltd Treating device for exhaust gas
JP2007061667A (en) * 2005-08-29 2007-03-15 Hitachi Zosen Corp Flow velocity control device in high-dust denitration reactor
JP2010264401A (en) * 2009-05-15 2010-11-25 Ihi Corp Flue gas denitration apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830345A (en) * 1981-08-19 1983-02-22 Mitsubishi Heavy Ind Ltd Catalyst activation method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52141480A (en) * 1976-05-21 1977-11-25 Mitsubishi Heavy Ind Ltd Catalytic gas/solid reactor
JPS5676227A (en) * 1979-11-27 1981-06-23 Mitsubishi Heavy Ind Ltd Soot blowing method
JPH0226620A (en) * 1988-07-14 1990-01-29 Mitsubishi Heavy Ind Ltd Dust removing device of denitrification apparatus
JPH0425937U (en) * 1990-06-15 1992-03-02
JPH11248140A (en) * 1998-02-27 1999-09-14 Babcock Hitachi Kk Apparatus and method for treating exhaust gas
JPH11304132A (en) * 1998-04-17 1999-11-05 Babcock Hitachi Kk Apparatus and method for treating exhaust gas
JP2000288401A (en) * 1999-04-02 2000-10-17 Babcock Hitachi Kk Abrasion loss detecting method of catalyst
JP2001170452A (en) * 1999-10-04 2001-06-26 Nippon Shokubai Co Ltd Treating device for waste gas
JP2002095919A (en) * 2000-09-21 2002-04-02 Ishikawajima Harima Heavy Ind Co Ltd Clogging preventing device of denitration apparatus
JP2002310410A (en) * 2001-04-06 2002-10-23 Nippon Shokubai Co Ltd Treating device for exhaust gas
JP2007061667A (en) * 2005-08-29 2007-03-15 Hitachi Zosen Corp Flow velocity control device in high-dust denitration reactor
JP2010264401A (en) * 2009-05-15 2010-11-25 Ihi Corp Flue gas denitration apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105709587A (en) * 2016-04-26 2016-06-29 威海航泰环保设备有限公司 Smoke desulfuration and deacidification device of remains cremation machine
CN105709587B (en) * 2016-04-26 2018-06-08 威海航泰环保设备有限公司 A kind of remains Cremation Machine flue gas desulfurization deacidifying device
CN106907373A (en) * 2017-04-27 2017-06-30 浙江海洋大学东海科学技术学院 Hydraulic control panel
CN108144445A (en) * 2017-12-25 2018-06-12 中国能源建设集团华东电力试验研究院有限公司 SCR denitration system catalyst abrasion analysis of causes system based on performance test
CN108144445B (en) * 2017-12-25 2020-06-05 中国能源建设集团华东电力试验研究院有限公司 SCR deNOx systems catalyst wearing and tearing reason analytic system based on performance test
CN111214949A (en) * 2019-11-29 2020-06-02 北京首钢冷轧薄板有限公司 Denitration catalytic device anti-blocking monitoring method, device, system and storage medium
WO2021215372A1 (en) * 2020-04-20 2021-10-28 三菱パワー株式会社 Inspection catalyst and removable structure in actual reactor

Also Published As

Publication number Publication date
JPWO2014178337A1 (en) 2017-02-23
JP5721914B2 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
WO2014178337A1 (en) Cremation system and cremation method
CN106166443B (en) For purifying the method and system of the exhaust gas containing nitrogen oxides
EP1877162B1 (en) Process for purifying exhaust gases and apparatus for purifying exhaust gases
KR100769667B1 (en) Processing system for exhaust gas of incinerator
KR100914476B1 (en) Air pollution-free cremator
US7758831B2 (en) Systems and methods for removing materials from flue gas via regenerative selective catalytic reduction
WO2006073083A1 (en) Cement kiln firing waste gas treating apparatus and treating method
KR102266312B1 (en) Method for cleaning process off- or engine exhaust gas
CN104492257B (en) A kind of smoke gas comprehensive treatment system
KR200423884Y1 (en) Processing system for exhaust gas of incinerator
CN115738706A (en) Nitrogen oxide purifier for coal-fired boiler
CN111659249A (en) Low ammonia escape desulfurization denitration dust collector
TWI613400B (en) Cremation system and cremation method
CN112007509A (en) Treatment process for dedusting and denitration of tail gas of rotary kiln
CN104492258B (en) Two-stage SCR catalytic oxidation device
KR100921977B1 (en) A purification apparatus of cremator combustion gas
EP2374524A1 (en) System used in incinerator for reducing NOx
CN216726656U (en) Ash removal device for SCR denitration reactor
KR102497527B1 (en) Simultaneous removal system of Perfluorinated Compounds and Nitrous Oxide
CN210021575U (en) Flue gas treatment system suitable for garbage mineralization furnace
KR102594138B1 (en) Regenerative oxidation apparatus with scr and sncr function
KR200349267Y1 (en) VOCs MIST COMBUSTION SYSTEM FOR REGENERATIVE THERMAL OXIDIZER SYSTEM
CN115634557A (en) Pollutant collaborative purification system for waste incineration flue gas
CN111167308A (en) Desulfurization, denitrification and dust removal integrated flue gas treatment device and method for cement kiln
JP2001314720A (en) High-rate filtration bag filter

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014545999

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14792195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14792195

Country of ref document: EP

Kind code of ref document: A1