DK156638B - PROCEDURE FOR THE PREPARATION OF AN AMMONIA SYNTHESIC GAS - Google Patents
PROCEDURE FOR THE PREPARATION OF AN AMMONIA SYNTHESIC GAS Download PDFInfo
- Publication number
- DK156638B DK156638B DK173280AA DK173280A DK156638B DK 156638 B DK156638 B DK 156638B DK 173280A A DK173280A A DK 173280AA DK 173280 A DK173280 A DK 173280A DK 156638 B DK156638 B DK 156638B
- Authority
- DK
- Denmark
- Prior art keywords
- nitrogen
- stream
- gas stream
- gas
- ammonia
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/025—Preparation or purification of gas mixtures for ammonia synthesis
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Industrial Gases (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
DK 156638 BDK 156638 B
Den foreliggende opfindelse angâr en fremgangsmâde til fremstilling af en ammoniaksyntesegas, som indeholder hydrogen og nitrogen, indebærende reaktion mellem car-bonhydrider og luft i en mængde, som er tilstrækkelig 5 stor til væsentligt at formindske mængden af carbonhy-driderne og til at give et st0kiometrisk overskud af nitrogen udover, hvad der kræves til ammoniaksyntese, be-handling af den opnâede râgasstr0m til fjernelse af car-bonoxider, t0rring af râgasstr0mmen og afk0ling af gas-10 str0mmen sâledes, at resterende carbonhydrider og nitrogen kondenseres derfra til opnâelse af syntesegasstr0m-men til ammoniakfremstilling.The present invention relates to a process for producing an ammonia synthesis gas containing hydrogen and nitrogen, containing hydrocarbon-air reaction in an amount sufficient to substantially reduce the amount of hydrocarbons and to provide a stoichiometric excess nitrogen in addition to what is required for ammonia synthesis, treatment of the obtained raw gas stream to remove carbon oxides, drying of the raw gas stream and cooling of the gas stream so that residual hydrocarbons and nitrogen are condensed therefrom to produce synthesis gas stream for ammonia production.
Kommerciel fremstilling af hydrogen udf0res hyppigt ved 15 hjælp af en række pâ hinanden f0lgende procestrin, som i hovedsagen omfatter: (i) fremstillingen af en gas indeholdende carbonoxider og hydrogen som hovedbestanddele ved omsætningen 20 af carbonhydrid-udgangsmaterialet. med oxygen og/eller luft og/eller vanddamp, (ii) oxidation af.carbonmonoxidet med damp til dannelse af carbondioxid og hydrogen (sâkaldt "shift con-25 version"), (iii) fjernelse af carbondioxidet, hvilket efterlader en stort set ren str0m af hydrogen, 30 (iv) en afsluttende oprensning til pâ passende mâde at fjerne tilbageværende urenheder.Commercial production of hydrogen is frequently carried out by a series of successive process steps, which generally comprise: (i) the preparation of a gas containing carbon oxides and hydrogen as major constituents of reaction 20 of the hydrocarbon starting material. (ii) oxidation of the carbon monoxide with steam to form carbon dioxide and hydrogen (so-called "shift con version"), (iii) removal of the carbon dioxide, leaving a substantially pure stream of hydrogen, (iv) a final purification to suitably remove any remaining impurities.
To hoved-varianter af denne rækkef0lge af bearbejdnings-trin, som for tiden er i anvendelse, er: 35 2Two main variants of this sequence of machining steps currently in use are: 35 2
DK 156638 BDK 156638 B
A. Katalytisk reforminq med vanddampA. Catalytic Reform with Water Vapor
Denne fremgangsmâde er for tiden begrænset pâ grund af tilgængeligheden af egnede katalysatorer til anvendelse 5 pâ naturgas, naphtha og lignende lette udgangsmateria-ler. Katalysatorerne er f0lsomme over for svovl, og som f0lge deraf raâ carbonhydridet grundigt befries for svovl forud for kontakt med katalysatoren. Det afsvovlede ud-gangsmateriale blandes med 2 til 4 mol damp/carbonatom 10 og f0res derpâ hen over katalysatoren, som den forlader ved h0j temperatur i form af en blanding hovedsagelig indeholdende hydrogen, carbonoxider, tilbagebleven me-than og ikke-omsat damp. Den varme, der er n0dvendig til at hæve reaktionskomponenternes temperatur til udgangs-15 temperaturen og til at tilvejebringe den endotermiske reaktionsvarme, tilf0res ved, at man indeslutter katalysatoren i r0r, som opvarmes pâ ydersiden i en ovn.This process is currently limited due to the availability of suitable catalysts for use in natural gas, naphtha and similar light starting materials. The catalysts are sensitive to sulfur and, as a result, the hydrocarbon is thoroughly freed of sulfur prior to contact with the catalyst. The desulfurized starting material is mixed with 2 to 4 moles of steam / carbon atom 10 and then passed over the catalyst as it leaves at high temperature in the form of a mixture mainly containing hydrogen, carbon oxides, residue and unreacted steam. The heat needed to raise the temperature of the reaction components to the initial temperature and to provide the endothermic reaction heat is supplied by enclosing the catalyst in tubes which are heated externally in an oven.
Reformingsprocessen med vanddamp kan alternativt udf0res 20 helt eller delvis autotermisk ved tilsætning af luft og/eller oxygen til at tillade forbrænding inden i den katalytiske reaktor. Særligt ved fremstilling af ammoni-aksyntesegas ud fra naturgas suppleres den indirekte varmetilfprsel til reaktionskomponenterne i den primære 25 ... omdanner ved intern forbrænding af luft i den sekundære omdanner, som bl.a. leverer den nitrogen, som beh0ves til ammoniaksyntesen. Ved en anden reformingsproces med damp tilvejebringes al den h0jtemperaturopvarmning, der er n0dvendig, ved autotermisk forbrænding af oxygen el-30 1er af oxygenberiget luft i katalysatorzonen, og der findes slet ikke nogen indirekte opvarmet omdanner.Alternatively, the steam vapor reforming process may be carried out fully or partially autothermally by the addition of air and / or oxygen to allow combustion within the catalytic reactor. Particularly in the production of ammonia-synthesis gas from natural gas, the indirect heat supply to the reaction components of the primary 25 ... converter is supplemented by internal combustion of air in the secondary converter, which ia. supplies the nitrogen needed for ammonia synthesis. In another steam reforming process, all the high temperature heating required is provided by autothermal combustion of oxygen or oxygen of oxygen-enriched air in the catalyst zone, and no indirectly heated converter is present at all.
Gassen fra reformingsprocessen underkastes sâkaldt "shift conversion” af CO, fjernelse af CO2 og slutop-35 rensning, sâsom sâkaldt methanering, i afhængighed af de krav, der stilles til enkelte anvendelser.The gas from the reforming process is subjected to so-called "shift conversion" of CO, removal of CO2 and final purification, such as so-called methanation, depending on the requirements for individual applications.
,t DK 156638 B, t DK 156638 B
3 B. Partiel Oxidation3 B. Partial Oxidation
De partielle oxidationsomsætninger er baseret pà for-5 brænding af de tilf0rte carbonhydrider med en begrænset forsyning af oxygen eller luft. Eksemplerne omfatter nogle processer, sâsom de sâkaldte Texaco og Shell processer, der er i stand til at modtage aile typer af carbonhydrider lige fra naturgas til kul, samt andre sâsom 10 de sâkaldte Koppers-Totzek og Lurgi processer, der er specifikke for kul.The partial oxidation reactions are based on the combustion of the added hydrocarbons with a limited supply of oxygen or air. Examples include some processes, such as the so-called Texaco and Shell processes, which are capable of receiving all types of hydrocarbons ranging from natural gas to coal, and others such as the so-called Koppers-Totzek and Lurgi processes that are specific to coal.
Eftersom der ikke anvendes katalysator i disse processer, er svovlindholdet af de tilf0rte carbonhydrider ik-15 ke kritisk.Since no catalyst is used in these processes, the sulfur content of the added hydrocarbons is not critical.
De fremstillede gasser, der konuner fra de partielle oxi-dationsprocesser, indeholder hydrogen, carbonoxider, restindhold af methan og vanddamp i forskellige indbyr-20 des mængdeforhold, sanunen med svovlforbindelser, hoved-sageligt hydrogensulfid, i den udstrækning, svovlet er til stede i udgangsmaterialet, samt andre urenheder i spormængder. De producerede-gasser kan, særligt i til-fælde af Lurgi og andre processer, hvori kullet holdes i 25 forgasningsapparatet ved forholdsvis lave temperaturer, indeholde betydelige mængder af organisk materiale med st0rre molekylvægt sâsom benzol og tjærebestanddele.The gases produced from the partial oxidation processes contain hydrogen, carbon oxides, residual methane and water vapor in various proportions, the sulfur compound, mainly hydrogen sulfide, to the extent that the sulfur is present in the starting material. , as well as other impurities in trace amounts. The gases produced, especially in the case of Lurgi and other processes in which the coal is kept in the gasification apparatus at relatively low temperatures, may contain significant amounts of organic matter of greater molecular weight such as benzene and tar components.
0nskværdigheden af at befri den dannede gasstr0m for 30 urenheder i spormængder i forbindelse med vanskeligheden med at arbejde med en sâkaldt "shift" katalysator for lavtemperaturomdannelse af carbonmonoxid (ca. 200-250 °C) med svovlbelastede gasarter har hyppigt f0rt til valget af en vask med nitrogen til den endelige rensning 35 af gassen efter "shiff'-behandlingen og fjernelsen af carbondioxid og af hydrogensulfid svarende til anvendel- 4The desirability of releasing the resulting gas stream for 30 impurities in trace amounts in connection with the difficulty of working with a so-called "low" carbon monoxide conversion catalyst (about 200-250 ° C) with sulfur-laden gases has frequently led to the choice of a sink. with nitrogen for the final purification of the gas after the "shiff" treatment and the removal of carbon dioxide and of hydrogen sulfide corresponding to the use of 4
DK 156638 BDK 156638 B
sen af den sâkaldte methanering ved reforining med damp.of the so-called methanation by reforestation with steam.
Det vil forstâs, at ved anvendelsen af de ovenfor be-skrevne partielle oxidationsprocesser og af de autoter-5 miske reformingsprocesser med damp vil anvendelsen af luft som det interne oxideringsmiddel være begrænset af den udstrækning, hvori den sâledes fremstillede nitrogen er acceptabel i den producerede gasstr0m.It will be understood that by using the partial oxidation processes described above and by the autothermal steam reforming processes, the use of air as the internal oxidant will be limited by the extent to which the nitrogen thus produced is acceptable in the gas stream produced. .
10 Ved den sædvanlige pâ naturgas baserede ammoniakproces er mængden af luft, som kan tilf0res den sekundære om-danner, sâledes begrænset til den nitrogentilf0rsel, der er n0dvendig i ammoniaksyntesetrinnet. Ved fremgangsmâ-derne involverende partiel oxidation og autotermisk re-15 forming er det ligeledes sædvanligvis n0dvendigt at be-tjene sig af i det mindste delvis tilf0rsel af oxida-tionsmiddel i form af stort.set ren oxygen, undtagen nâr processen anvendes alene til fremstilling af en brænd-selsgas af lav kvalitet. N0dvendigheden af en forsyning 20 af stort set ren oxygen betyder, at der ma tilvejebrin-ges et anlæg til fraktionering af luft. Den derved frem-komne ekstra kapitalomkostning og driftsomkostning f0rer til, at sâdanne processer forekommer mindre tiltrækkende som midler til fremstilling af gas med h0jt hydrogenind-25 hold, undtagen nâr carbonhydrid-udgangsmaterialet er me-get billigt, eller nâr man 0nsker fuldstændig fleksibi-litet med hensyn til kilden til det anvendte udgangsma-teriale.Thus, in the usual natural gas-based ammonia process, the amount of air that can be supplied to the secondary converter is limited to the nitrogen supply needed in the ammonia synthesis stage. Also, in the processes involving partial oxidation and autothermal reforming, it is usually necessary to rely on at least partial supply of oxidizing agent in the form of substantially pure oxygen, except when the process is used solely for the preparation of a low-quality fuel gas. The need for a supply of substantially pure oxygen means that a system for fractionating air must be provided. The resulting additional capital and operating costs result in such processes appearing less attractive as high hydrogen content gas generators, except when the hydrocarbon starting material is very cheap or when full flexibility is desired with respect to the source of the starting material used.
30 En undtagelse for denne begrænsning foreligger i den sâkaldte Braun "Purifier" procès til fremstilling af ammo-niak, der er omtalt i OSA patentskrift nr. 3 442 613.30 An exception to this limitation is found in the so-called Braun "Purifier" process for the manufacture of ammonia disclosed in OSA Patent No. 3,442,613.
Ved den beskrevne fremgangsmâde opnâr man en syntesegas-str0m ved primær reforming af methan og andet carbonhy-35 drid med vanddamp efterfulgt af en sekundær reforming ved hvilken luft er til stede i en tilstrækkelig stor 5In the process described, a synthesis gas stream is obtained by primary reforming of methane and other hydrocarbons with water vapor followed by a secondary reforming in which air is present in a sufficiently large volume.
DK 156638 BDK 156638 B
mængde til at tilvejebringe et st0kiometrisk overskud af nitrogen pâ fra 2 mol-% til 150 mol-% baseret pâ synte-segassens behov. Det overskydende nitrogen kondenseres i et trin efter reformingsenheden.amount to provide a stoichiometric excess of nitrogen of 2 mole% to 150 mole% based on the synthesis gas needs. The excess nitrogen is condensed in one step after the reforming unit.
55
Den foreliggende opfindelse har til formâl at tilvejebringe en fremgangsmâde til fremstilling af en gasstr0m, der er egnet til ammoniaksyntesen.The present invention aims to provide a process for producing a gas stream suitable for the ammonia synthesis.
10 Ved den foreliggende opfindelse tilvejebringes en frem-gangsmâde af den i krav l's indledning beskrevne art, og denne fremgangsmâde er ejendommelig ved det i krav l's kendetegnende del anf0rte.The present invention provides a method of the kind described in the preamble of claim 1, and this method is peculiar to the characterizing part of claim 1.
15 Opfindelsen er baseret pâ den kendsgerning, at blandin-ger af hydrogen og nitrogen adskilles let pâ grund af den store forskel i deres egenskaber, og at~man derfor kan regulere nitrogenindholdet i sâdanne blandinger med stor n0jagtighed. Den simpleste metode til at adskille 20 gasarterne er kryogenteknisk behandling, sk0nt andre ad-skillelsesmetoder, der er baseret pâ forskellen i gasar-ternes molekylst0rrelse, f.eks. différentielle adsorp-tionsmetoder eller diffusionsmetoder, ligeledes kan an-vendes. Opfindelsen tillader, at man kan anvende en 25 hvilken som helst gas, som overvejende indeholder hydrogen og nitrogen, og kilden til gassen kan derfor være afledt af partiel oxidation af olie, kul eller gas i luft.The invention is based on the fact that mixtures of hydrogen and nitrogen are readily separated due to the great difference in their properties, and that the nitrogen content of such mixtures can be controlled with great accuracy. The simplest method of separating the 20 gases is cryogenic treatment, although other methods of separation are based on the difference in the molecular size of the gases, e.g. differential adsorption or diffusion methods can also be used. The invention allows any gas containing predominantly hydrogen and nitrogen to be used, and the source of the gas may therefore be derived from partial oxidation of oil, coal or gas in air.
30 Ved en foretrukken udf0relsesform for opfindelsen ud- skilles den 0nskede mængde nitrogen i en kryogen-separa-tor. Den anvendte separator kan anvendes sâkaldt Joule Thomson nedk0ling og regenererende varmeudveksling, eks-pansionsanordninger til lavtemperaturarbejde, suppleren-35 de nedk0ling eller en hvilken som helst kombination der-af. Egnede kryogeniske separatorer er velkendte og kom-In a preferred embodiment of the invention, the desired amount of nitrogen is separated out in a cryogenic separator. The separator used can be used so-called Joule Thomson cooling and regenerating heat exchange, expansion devices for low temperature work, supplemental cooling or any combination thereof. Suitable cryogenic separators are well known and known in the art.
DK 156638 BDK 156638 B
6 mercielt tilgængelige. Det udskilte hydrogen, der inde-holder den 0nskede mængde nitrogen, forlader normalt den kryogene separator ved et liât lavere tryk end tilf0r-selstrykket, og den injiceres i et ammoniaksyntesesy-5 stem.6 commercially available. The secreted hydrogen containing the desired amount of nitrogen usually leaves the cryogenic separator at a slightly lower pressure than the feed pressure and it is injected into an ammonia synthesis system.
Nitrogenstrjammen forlader normalt den kryogene separator ved et noget lavere tryk end sit tilf0rselstryk, men den kan dog stadig afgive nyttig energi, nâr den opvarmes og 10 f0res gennem en ekspansionsturbine.The nitrogen stream usually leaves the cryogenic separator at a somewhat lower pressure than its supply pressure, but it can still deliver useful energy as it is heated and passed through an expansion turbine.
Fremgangsmâden if0lge den foreliggende opfindelse besid-der et antal fordele i sammenligning med den, der er om-tait i USA patentskrift nr. 3 442 613. Den if0lge opfin-15 delsen anvendte syntesegas kan være fremstillet ved par tiel oxidation f.eks. forbrænding af mange forskellige carbonhydrider inklusive kul, hvilket er mindre kom-plekst end fremstillingen ved hjælp af katalytisk refor-ming med vanddamp, og svovlindholdet i carbonhydrid-râ-20 materialet er ikke kritisk,-eftersom der ikke anvendes nogen katalysator. Forbrændingen kan udf0res i et enkelt trin, hvorved man undgâr anvendelsen af primære og se-kundære reformingsenheder. Mens den i forbrændingstrin-net anvendte luftmængde f0rer til nitrogen i en mængde 25 pâ mindst 200 mol-% i overskud i forhold til kravene til syntesegassen, sâ kan denne store mængde overskudsnitro-gen anvendes til fremstilling af nyttig kraft efter ad-skillelsestrinnet, eftersom den befinder sig ved et h0-jere tryk end ved den hidtil kendte teknik, hvorved det-' 30 te bidrager til 0konomien i det samlede System.The process of the present invention has a number of advantages as compared to that disclosed in United States Patent No. 3,442,613. The synthesis gas used in the invention may be produced by partial oxidation e.g. combustion of many different hydrocarbons including coal, which is less complex than the preparation by catalytic reforming with water vapor, and the sulfur content of the hydrocarbon raw material is not critical since no catalyst is used. The combustion can be carried out in a single step, avoiding the use of primary and secondary reform units. While the amount of air used in the combustion stage leads to nitrogen in an amount of 25 at least 200 mole% in excess of the synthesis gas requirements, this large amount of excess nitrogen can be used to produce useful power after the separation step, since it is at a higher pressure than the prior art, thereby contributing to the economy of the overall System.
I det f0lgende skal opfindelsen beskrives under henvis-ning til de vedlagte tegninger, hvori 35 fig. 1 viser et str0mskema for en fremgangsmâde if0lge den foreliggende opfindelse/ 7The invention will now be described with reference to the accompanying drawings, in which: FIG. 1 shows a flow chart of a method according to the present invention / 7
DK 156638 BDK 156638 B
fig. 2 viser et str0mskema for en alternativ fremgangs-mâde i overensstemmelse med den foreliggende opfindelse, °g 5 fig. 3 viser et diagram af en h0jtemperaturs, âben kredsl0bs gasturbine, der er egnet til anvendelse ved fremgangsmâden.FIG. 2 is a flow chart of an alternative method in accordance with the present invention; FIG. 3 shows a diagram of a high temperature open circuit gas turbine suitable for use in the process.
10 Idet der henvises til fig. 1 oxideres partielt naturgas, olie eller kul eller en kombination heraf med luft eller med luft, der er beriget med oxygen, og som i alminde-lighed er forvarmet og bragt under tryk. Den sâledes op-stâende gasstr0m indeholder hydrogen, nitrogen, carbon-15 oxider, methan og hydrogensulfid, dersom svovl er til stede, idet nitrogenen er til stede i et overskud pâ mindst 200 mol-% af det, der kræves-til-ammoniaksynte-sen. Processen til partiel oxidation udf0res ved et tryk op til 150 bar, i almindelighed 15 til 150 bar, for-20 trinsvis 30 til 100 bar, og ved en temperatur pâ 300 til 2000 °C, i almindelighed op til 1000 °C. Oxidationen kan udf0res ved atmosfærisk tryk, i hvilket tilfaelde gas-str0mmen kan bringes under tryk pâ et senere trin i be-handlingsprocessen.10 Referring to FIG. 1, natural gas, oil or coal, or a combination thereof is oxidized with air or with oxygen-enriched air, which is generally preheated and pressurized. The gas stream thus formed contains hydrogen, nitrogen, carbon oxides, methane and hydrogen sulfide if sulfur is present, the nitrogen being present in excess of at least 200 mole percent of the required-for-ammonia synthesis. late. The partial oxidation process is carried out at a pressure up to 150 bar, generally 15 to 150 bar, preferably 30 to 100 bar, and at a temperature of 300 to 2000 ° C, generally up to 1000 ° C. The oxidation can be carried out at atmospheric pressure, in which case the gas stream can be pressurized at a later stage in the treatment process.
2525
Den sâledes opstâede gas f0res hen over en sàkaldt "shift"-katalysator, f.eks. jernoxid eller koboltmolyb-dat, i almindelighed ved en temperatur i omrâdet 200 til 500 °C til omdannelse af det tilstedeværende carbonmono-30 xid til carbondioxid og hydrogen. Gasstr0mmen behandles derpà for at fjerne carbondioxid og hydrogensulfid, der foreligger som urenheder. Der findes mange typer frem-gangsmàde til en sâdan gasfjernelse inklusive et skrub-bersystem med varm kaliumcarbonat, dvs. 70 til 110 °C 35 varm, samt den sâkaldte "Rectisol"-'proces. Svovlindhol-det af gassen kan være blevet fjernet ved et hvilket som 8The gas thus produced is passed over a so-called "shift" catalyst, e.g. iron oxide or cobalt molybdate, generally at a temperature in the range of 200 to 500 ° C to convert the carbon monoxide present to carbon dioxide and hydrogen. The gas stream is then treated to remove carbon dioxide and hydrogen sulfide which are present as impurities. There are many types of methods for such gas removal including a hot potassium carbonate scrubber system, ie. 70 to 110 ° C 35 hot, as well as the so-called "Rectisol" process. The sulfur content of the gas may have been removed by any of 8
DK 156638 BDK 156638 B
helst forudgâende trin. Carbonoxider, som mâtte være blevet tilbage, kan fjernes ved methanering, i alminde-lighed ved 250 til 450 °C. Den sâledes fremstillede gas bestar af en blanding af hydrogen og nitrogen med me-5 than, inerte gasser sâsom argon og vanddamp som hoved-forureningerne. Denne gas t0rres derpâ i f0rste omgang ved nedk0ling og derpâ ved kontakt med et t0rremiddel, f.eks. en molekylærsigte adsorbent (som ogsâ ville fjer-ne éventuelle tilbageblevne spor af carbondioxid). Den 10 t0rrede gas f0res derpâ til en kryogen adskiller for ni-trogen/hydrogen, f.eks. en, der anvender Joule Thomson nedk0ling og regenererende varmeudveksling. Gassen brin-ges i kontakt med varmevekslerelementer, som k0ler gassen til ca. 100 K. I den kryogeniske kondensator reduce-15 res nitrogenindholdet i hydrogenen til det niveau, der kræves til ammoniaksyntesegassen, og som typisk er 25 % N2 til ammoniaksyntesen. Den kryogene-kondensering af nitrogen vil f0re til en delvis sænkning af indholdet af methan og argon i tilf0rselsgassen, idet de fjernede 20 urenheder findes i spildstr0mmen af nitrogen. Den hydro-gen-nitrogenstr0m, som forlader kondensatoren ved et tryk, der er en smule mindre end tilf0rselstrykket for gasstr0mmen, indspr0jtes i ammoniaksyntesesystemet.preferably prior steps. Carbon oxides which may have remained can be removed by methanation, generally at 250 to 450 ° C. The gas thus produced consists of a mixture of hydrogen and nitrogen with methane, inert gases such as argon and water vapor as the main pollutants. This gas is then initially dried by cooling and then by contact with a desiccant, e.g. a molecular sieve adsorbent (which would also remove any remaining traces of carbon dioxide). The dried gas is then fed to a cryogenic nitrogen / hydrogen separator, e.g. one that uses Joule Thomson cooling and regenerating heat exchange. The gas is brought into contact with heat exchanger elements which cool the gas to approx. In the cryogenic capacitor, the nitrogen content of the hydrogen is reduced to the level required for the ammonia synthesis gas, which is typically 25% N 2 for the ammonia synthesis. The cryogenic condensation of nitrogen will lead to a partial reduction in the content of methane and argon in the feed gas, removing the 20 impurities found in the waste stream of nitrogen. The hydrogen nitrogen stream leaving the condenser at a pressure slightly less than the gas supply pressure is injected into the ammonia synthesis system.
25 Ved den udf0relsesform, der er afbildet i fig. 2, indbe-fatter nitrogen-kondensatoren en form for vask med fly-dende nitrogen til bortfjernelse af tilbageværende car-bonmonoxid ned til et niveau, der er acceptabelt ved ammoniaksyntesen. Dette middel g0r det muligt at give af-30 kald pâ methaneringen, og det tillader den bekvemme an-vendelse af et h0jere niveau af CO fra den sâkaldte "shift"-omdannelse, og den f0rer til en færdig syntese-gas, der stort set er fri for CH4 samt inerte gasarter.In the embodiment depicted in FIG. 2, the nitrogen capacitor includes a liquid nitrogen wash to remove residual carbon monoxide down to an acceptable level in ammonia synthesis. This agent allows the release of 30 methane emissions and allows for the convenient use of a higher level of CO from the so-called "shift" conversion, leading to a final synthesis gas which is largely is free of CH4 as well as inert gases.
Det rene nitrogen, der er n0dvendigt til vaskningen, kan 35 bekvemt hentes ucL fra det i den kryogene separator kon- „ .The pure nitrogen needed for washing can be conveniently recovered from that contained in the cryogenic separator.
denserede nitrogen, og der ville sâledes ikke være nogen 9densified nitrogen and thus there would be no 9
DK 156638 BDK 156638 B
afhængighed af en ydre kilde for flydende nitrogen, som det er tilfasldet ved de klassiske vaskeanlæg med nitrogen. Det er ligeledes muligt, at den kryogene kondensa-tion af nitrogen anbringes f0r methaneringsprocessen, 5 som vist pâ fig. 1.dependence on an external source of liquid nitrogen, as is the case with the classic nitrogen washing plants. It is also possible that the cryogenic condensation of nitrogen is applied to the methanation process, as shown in FIG. First
Ved aile udf0relsesformer er det fordelagtigt, at spild-str0mmen af nitrogen udledes fra den kryogene kondensa-tor ved mere eller mindre omgivelsernes temperatur samt 10 ved et forh0jet tryk pâ op til 50 bar, i almindelighed 5 til 10 bar, eftersom den derpâ kan opvarmes til en pas-sende tilf0rselstemperatur i en h0jtemperatursturbine og deri blive ekspanderet til omtrent atmosfæretryk, hvor-ved der dannes en nyttig andel af den kraft, der er n0d-15 vendig til at komprimere gasstr0mmen, f.eks. til at kom-primere procesluften anvendt i den partielle oxidation eller i reformingstrinnene-under anvendelse af vanddamp.In all embodiments, it is advantageous for the waste stream of nitrogen to be discharged from the cryogenic condenser at more or less ambient temperature and at an elevated pressure of up to 50 bar, generally 5 to 10 bar, since it can be heated thereon. to a suitable supply temperature in a high temperature turbine and therein is expanded to about atmospheric pressure, thereby forming a useful proportion of the force necessary to compress the gas stream, e.g. to compress the process air used in the partial oxidation or in the reforming steps-using water vapor.
Spildstr0mmen af nitrogen kan opvarmes til turbinens 20 indgangstemperatur, f.eks. 500 til 2000 °C, i almindelighed 500 til 1000 °C, ved indirekte vafmeveksling og/-eller ved direkte forbrænding af sâdant indhold, der er brændbart, f.eks. spor af methan, hydrogen, carbonmono-xid med supplerende luft samt med yderligere brændsel, 25 om 0nsket, i str0mskemaet f0r turbinen.The waste stream of nitrogen can be heated to the inlet temperature of the turbine 20, e.g. 500 to 2000 ° C, generally 500 to 1000 ° C, by indirect heat exchange and / or by direct combustion of such combustible contents, e.g. traces of methane, hydrogen, carbon monoxide with supplemental air, and with additional fuel, if desired, 25 in the turbine flow diagram.
I det ekspansionsturbine-arrangement, der er vist pâ fig. 3, udg0r ekspansionsturbinen for den varme gastur-bineelementet i en gasturbiné med âbent kredsl0b. Nitro-30 genen blandes med supplerende brændstof og tilf0res for-brændingskammeret af gasturbinen som brændsel. Samtidig dermed udtages den procesluft, der kræves til den partielle oxidation eller til reformingsbehandlingerne, fra udl0bet fra gasturbinens kompressionsdel. Ved dette mid-35 del opnâs stort set ligevægt mellem massebalancen i kom-pressordelen og i ekspansionsdelen i gasturbinen, og derIn the expansion turbine arrangement shown in FIG. 3, constitutes the expansion gas turbine for the hot gas turbine element in an open-circuit gas turbine. The nitro gene is mixed with supplementary fuel and fed to the combustion chamber of the gas turbine as fuel. At the same time, the process air required for the partial oxidation or the reforming treatments is extracted from the outlet of the gas turbine compression section. By this means, a large equilibrium is obtained between the mass balance in the compressor part and in the expansion part in the gas turbine, and
DK 156638 BDK 156638 B
10 tilvejebringes effektive midler til kompression og eks-pansion under anvendelse af allerede udarbejdede syste-mer for industrielt udstyr.10, effective means of compression and expansion are provided using already developed systems for industrial equipment.
5 Spildstr0m af nitrogen kan alternativt ekspanderes ved en lav temperatur, f.eks. omgivelsernes temperatur, til fremstillingen af kraft, og den kan anvendes til nedk0-ling af 0nskede dele i ammoniaksyntese-anlægget.Alternatively, nitrogen wastewater can be expanded at a low temperature, e.g. ambient temperature, to produce power, and it can be used to cool desired parts in the ammonia synthesis plant.
10 Dersom det er muligt at udvikle overskudsstr0mmen af carbondioxid fra anlægget til fjernelse af den sure gas direkte til atmosfæren i uren form, sâ er det bekvemt at anvende spildstr0mmen af nitrogen, der befinder sig under tryk, fra den kryogene separator til at strippe en 15 væsentlig del af carbondioxiden fra vaskeopl0sningen for derpâ at f0re de forenede str0mme af nitrogen og carbondioxid, der stadig befinder sig ved h0jt tryk, til op-varmning og til pâf0lgende ekspansion under ud0velse af arbejde.10 If it is possible to develop the excess stream of carbon dioxide from the plant to remove the acidic gas directly to the atmosphere in impure form, then it is convenient to use the pressurized waste stream of nitrogen from the cryogenic separator to strip a 15 a substantial part of the carbon dioxide from the wash solution to carry the combined streams of nitrogen and carbon dioxide, which are still at high pressure, for heating and subsequent expansion during work.
2020
Sammenfattende frembyder det ovenfor beskrevne System til luftoxidation, nitrogenkondensation, nitrogenekspan-sion f0lgende fordele sammenlignet med den kendte teknik indbefattende oxidation af udgangsmaterialerne: 25 1. undtagelse af anlæg til luftfraktionering, oxygen-kompressorer, r0rledninger, etc., 2. i mange tilfælde kan opnâs en reduktion i det samlede 30 energiforbrug til anlæggets kompressorer, 3. der kan opnâs en betydelig reduktion i det samlede anlægs samlede energibehov, idet man tager hensyn til den potentielle h0je effekt af gasekspansionen for 35 den spildstr0m, der indeholder nitrogen, samt den dertil knyttede konventionelle varmegenvinding.In summary, the above-described System for Air Oxidation, Nitrogen Condensation, Nitrogen Expansion provides the following advantages over the prior art including oxidation of the starting materials: 1. Exemption from air fractionation plants, oxygen compressors, pipelines, etc., 2. In many cases, a reduction in the total energy consumption of the compressors of the plant is obtained; 3. a significant reduction in the total energy demand of the plant can be obtained, taking into account the potential high effect of the gas expansion for the waste stream containing nitrogen and the associated conventional heat recovery.
De i denne forbindelse anf0rte tryk er relative tryk.The pressures quoted in this connection are relative pressures.
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB7914200 | 1979-04-24 | ||
GB7914200 | 1979-04-24 |
Publications (3)
Publication Number | Publication Date |
---|---|
DK173280A DK173280A (en) | 1980-10-25 |
DK156638B true DK156638B (en) | 1989-09-18 |
DK156638C DK156638C (en) | 1990-01-29 |
Family
ID=10504734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK173280A DK156638C (en) | 1979-04-24 | 1980-04-23 | PROCEDURE FOR THE PREPARATION OF AN AMMONIA SYNTHESIC GAS |
Country Status (14)
Country | Link |
---|---|
JP (1) | JPS5938161B2 (en) |
AU (1) | AU543957B2 (en) |
BE (1) | BE882949A (en) |
CA (1) | CA1160844A (en) |
DE (1) | DE3015640A1 (en) |
DK (1) | DK156638C (en) |
FR (1) | FR2454998A1 (en) |
GB (1) | GB2048840B (en) |
IN (1) | IN154518B (en) |
IT (1) | IT1141316B (en) |
NL (1) | NL8002358A (en) |
NO (1) | NO156603C (en) |
SE (1) | SE449740B (en) |
ZA (1) | ZA802258B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4524056A (en) * | 1983-07-05 | 1985-06-18 | Foster Wheeler Energy Corporation | Process for the production of ammonia |
US4624841A (en) * | 1984-01-23 | 1986-11-25 | Toyo Engineering Corporation | Process for refining an ammonia synthesis gas |
US4592860A (en) * | 1984-02-07 | 1986-06-03 | Union Carbide Corporation | Process and apparatus for ammonia synthesis gas production |
WO1986000286A1 (en) * | 1984-06-30 | 1986-01-16 | Stamicarbon B.V. (Licensing Subsidiary Of Dsm) | Process for preparing ammonia |
NO171966C (en) * | 1991-01-23 | 1993-05-26 | Norsk Hydro As | PROCEDURE FOR PURIFICATION OF SYNTHESIC GAS FOR AMMONIA PRODUCTION |
JP4013007B2 (en) * | 1998-08-28 | 2007-11-28 | 大阪瓦斯株式会社 | Method and apparatus for producing hydrogen-nitrogen mixed gas |
DE10055818A1 (en) * | 2000-11-10 | 2002-05-23 | Ammonia Casale Sa | Catalytic production of ammonia, especially for direct conversion into urea, using nitrogen-hydrogen starting gas mixture obtained from natural gas by autothermal reforming and catalytic conversion |
WO2006015231A2 (en) * | 2004-07-29 | 2006-02-09 | Fluor Technologies Corporation | Improved ammonia plant |
DE102004049774B4 (en) * | 2004-10-12 | 2007-04-26 | Lurgi Ag | Process for the production of urea from natural gas |
DE102011008931B4 (en) * | 2011-01-20 | 2016-08-18 | Hans Walter Kirchner | Water vapor-air over-pressure gasification with cryogenic gas separation |
CN103641069B (en) * | 2013-11-25 | 2015-07-01 | 张周卫 | Low-temperature flash evaporation gas-liquid separator for waste nitrogen |
CN109516445B (en) * | 2018-12-05 | 2021-07-23 | 四川大学 | Closed circulation process for preparing nitric acid by combining electrolysis water and air separation |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3442613A (en) * | 1965-10-22 | 1969-05-06 | Braun & Co C F | Hydrocarbon reforming for production of a synthesis gas from which ammonia can be prepared |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2795559A (en) * | 1954-04-01 | 1957-06-11 | Texas Co | Production of hydrogen-nitrogen mixtures |
US2866321A (en) * | 1954-08-06 | 1958-12-30 | Chemical Construction Corp | Purification of gases by partial condensation |
DE1135020B (en) * | 1960-04-14 | 1962-08-23 | Linde Eismasch Ag | Process and device for the low-temperature decomposition of a hydrogen-rich gas mixture |
GB1134621A (en) * | 1965-01-20 | 1968-11-27 | Humphreys & Glasgow Ltd | Improvements in or relating to the manufacture of ammonia |
US3572046A (en) * | 1965-10-22 | 1971-03-23 | Braun & Co C F | Apparatus for purification of raw ammonia synthesis gas |
CH482916A (en) * | 1967-09-12 | 1969-12-15 | Prvni Brnenska Strojirna Zd Y | Control device of a combined gas and steam turbine system |
FR2118300A6 (en) * | 1970-12-16 | 1972-07-28 | Cem Comp Electro Mec | Hydrocarbon conversion - to produce ammonia synthesis gases with waste gases driving a gas turbine |
DE2235323B2 (en) * | 1972-07-19 | 1974-11-28 | Metallgesellschaft Ag, 6000 Frankfurt | Process for the production of synthesis gas for ammonia synthesis by pressure gasification of coal with water vapor and air |
JPS5137078A (en) * | 1974-09-24 | 1976-03-29 | Taiyo Kaken Co | Tadanko kisosetsushokusochi |
US3929429A (en) * | 1974-09-26 | 1975-12-30 | Texaco Inc | Fuel gas from solid carbonaceous fuels |
-
1980
- 1980-04-16 ZA ZA00802258A patent/ZA802258B/en unknown
- 1980-04-17 AU AU57562/80A patent/AU543957B2/en not_active Expired
- 1980-04-23 DE DE19803015640 patent/DE3015640A1/en not_active Ceased
- 1980-04-23 NL NL8002358A patent/NL8002358A/en not_active Application Discontinuation
- 1980-04-23 NO NO801174A patent/NO156603C/en unknown
- 1980-04-23 FR FR8009135A patent/FR2454998A1/en active Granted
- 1980-04-23 IT IT21606/80A patent/IT1141316B/en active
- 1980-04-23 CA CA000350435A patent/CA1160844A/en not_active Expired
- 1980-04-23 GB GB8013446A patent/GB2048840B/en not_active Expired
- 1980-04-23 SE SE8003073A patent/SE449740B/en not_active IP Right Cessation
- 1980-04-23 DK DK173280A patent/DK156638C/en active IP Right Grant
- 1980-04-24 BE BE0/200348A patent/BE882949A/en not_active IP Right Cessation
- 1980-04-24 JP JP55054827A patent/JPS5938161B2/en not_active Expired
- 1980-07-29 IN IN552/DEL/80A patent/IN154518B/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3442613A (en) * | 1965-10-22 | 1969-05-06 | Braun & Co C F | Hydrocarbon reforming for production of a synthesis gas from which ammonia can be prepared |
Also Published As
Publication number | Publication date |
---|---|
SE8003073L (en) | 1980-10-25 |
DE3015640A1 (en) | 1980-11-06 |
DK156638C (en) | 1990-01-29 |
NO801174L (en) | 1980-10-27 |
GB2048840B (en) | 1983-12-21 |
JPS55144401A (en) | 1980-11-11 |
ZA802258B (en) | 1981-04-29 |
NL8002358A (en) | 1980-10-28 |
BE882949A (en) | 1980-10-24 |
GB2048840A (en) | 1980-12-17 |
AU543957B2 (en) | 1985-05-09 |
IN154518B (en) | 1984-11-03 |
AU5756280A (en) | 1980-10-30 |
CA1160844A (en) | 1984-01-24 |
JPS5938161B2 (en) | 1984-09-14 |
DK173280A (en) | 1980-10-25 |
FR2454998B1 (en) | 1983-11-18 |
NO156603B (en) | 1987-07-13 |
FR2454998A1 (en) | 1980-11-21 |
IT1141316B (en) | 1986-10-01 |
NO156603C (en) | 1987-10-21 |
IT8021606A0 (en) | 1980-04-23 |
SE449740B (en) | 1987-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4409196A (en) | Synthesis gas for ammonia production | |
AU2018364702B2 (en) | Systems and methods for production and separation of hydrogen and carbon dioxide | |
JP4556175B2 (en) | A method for separating and recovering carbon monoxide from the product gas of a refinery hydrogen production system. | |
US4733528A (en) | Energy recovery | |
WO2020221642A1 (en) | Atr-based hydrogen process and plant | |
US4725380A (en) | Producing ammonia synthesis gas | |
JPH0253365B2 (en) | ||
EP0011404A1 (en) | Integrated process for synthesis of methanol and of ammonia | |
CN102431971A (en) | Method and apparatus for adjustably treating a sour gas | |
RU2707088C2 (en) | Method and system for producing methanol using partial oxidation | |
JPS59205336A (en) | Manufacture of oxygen addition organic compounds such as methanol | |
JPS6036321A (en) | Manufacture of ammonia from carbon-containing supply flow | |
UA119697C2 (en) | Process for making ammonia | |
DK156638B (en) | PROCEDURE FOR THE PREPARATION OF AN AMMONIA SYNTHESIC GAS | |
US4159201A (en) | Process for producing a carbon monoxide-rich gas | |
US5770630A (en) | Manufacture of organic liquids | |
JPH06505692A (en) | Manufacturing method of high purity carbon monoxide | |
EP0212889B1 (en) | Producing ammonia synthesis gas | |
CA2877924A1 (en) | System and process for producing ammonia using an ion transport membrane, gasifier, and ammonia synthesis unit | |
JP4473223B2 (en) | Improved shift conversion arrangement and method. | |
US3584998A (en) | Process for making ammonia | |
EP0207620A2 (en) | Energy recovery | |
WO1996019642A1 (en) | Igcc/refinery utilities unit | |
JPH03242302A (en) | Production of hydrogen and carbon monoxide | |
JPS60258294A (en) | Desulfurization refining of natural gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PBP | Patent lapsed | ||
B1 | Patent granted (law 1993) |