JP4556175B2 - A method for separating and recovering carbon monoxide from the product gas of a refinery hydrogen production system. - Google Patents

A method for separating and recovering carbon monoxide from the product gas of a refinery hydrogen production system. Download PDF

Info

Publication number
JP4556175B2
JP4556175B2 JP2004367605A JP2004367605A JP4556175B2 JP 4556175 B2 JP4556175 B2 JP 4556175B2 JP 2004367605 A JP2004367605 A JP 2004367605A JP 2004367605 A JP2004367605 A JP 2004367605A JP 4556175 B2 JP4556175 B2 JP 4556175B2
Authority
JP
Japan
Prior art keywords
gas
methane gas
tower
lean oil
absorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004367605A
Other languages
Japanese (ja)
Other versions
JP2006169476A (en
Inventor
昌弘 小川
祐作 瀧田
Original Assignee
昌弘 小川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昌弘 小川 filed Critical 昌弘 小川
Priority to JP2004367605A priority Critical patent/JP4556175B2/en
Publication of JP2006169476A publication Critical patent/JP2006169476A/en
Application granted granted Critical
Publication of JP4556175B2 publication Critical patent/JP4556175B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Gas Separation By Absorption (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Industrial Gases (AREA)

Description

本発明は、製油所水素製造装置の生成ガスからの一酸化炭素分離回収方法に関するものである。 The present invention relates to a method for separating and recovering carbon monoxide from product gas of a refinery hydrogen production apparatus.

従来、現在の一酸化炭素の工業的製造方法は、石炭、コークスを空気または水蒸気と反応させ水性ガスとしたのちそれを精製して得る方法である。
この従来技術では、多量のエネルギーを必要とし、また温暖化ガスである二酸化炭素の排出を増加させている。
一方、製油所での水素製造装置(HMU)は、原料ガスを、そのリフォーマーで水生ガス化反応により一酸化炭素(CO)を副生しこれを、高温CO変成リアクター及び、低温CO変成リアクターにてCO2に酸化し、その後CO2吸収セクションに送りCO2を除去して高純度の水素ガスを得る。この精製水素ガスは、製油所の脱硫反応や脱硝反応に使用されている。現在の水素製造装置は、国内外を問わず図4に示したプロセスフローを採用している。以下にその概要を説明する。
まず、ブタン22は脱硫部門23で脱硫されたのちスチーム24と混合される。このスチームは、図4に示すとおりボイラー給水(BFW)41を廃熱ボイラー42の余熱で発生させる。ブタンとスチーム比率をS/Cと呼ぶが理論値では4.0のところを実運転ではやや過剰の4.0〜5.0に調整されてリフォーマー25へと送られる。リフォーマー25では水生ガス化反応(C4H10+ 4H2O → 4CO + 9H2 - Q)が進行する。
リォーマー25では吸熱反応であるがその出口温度は、おおよそ780℃程度である。その後、前述したようにスチーム発生に利用された後370℃程度まで下げられ、高温変成リアクター(HTS)26に送られる。高温変成リアクターHTSでは水生ガスのCOがCO + H2O → CO2 + H2 + Qの反応によりCO2へと酸化される。
高温変成リアクターHTSでは発熱反応であるが、その高温変成リアクターHTS出口のガスからボイラー給水BFWの余熱等に廃熱回収43された後、220℃程度まで降温され低温変成リアクター(LTS)27に送られる。
低温変成リアクターLTSでも高温変成リアクターHTSと同様(2式)によりCOがCO2へと酸化される。その後更に廃熱回収44され冷却器45にて40℃まで降温された後、CO2ガス吸収塔28(カタカーブ等のCO2ガス吸収溶液を使用)へ送られC02は吸収除去される。除去できなかったCOあるいはCO2は、余熱46されメタネーター29にてCO + 3H2 → CH4 + H2 O + Qの反応によりメタンに変えられて最終的には95%H2,5%CH4の組成のプロダクトガスとなる。
その後、コンプレッサー47にて昇圧されて間接脱硫装置等に送られ重質油、軽質油の脱硫、脱硝反応に使用される。以上のようにリフォーマーで生成するCOを徹底的に除去している理由は、「間接脱硫装置の触媒組成に脱硝反応のためNiが使用される場合、COが存在すると猛毒で揮発性のNi(CO)4が生成されて安全上問題が大きいこと」である。
次に、CO2吸収セクションの概略説明を以下に行う。図4に示すようにCO2ガス吸収塔28にて吸収されたCO2ガスは、CO2吸収溶液(リッチ吸収溶液)とともに吸収溶液再生塔30に送られる。前期再生塔30は、ほぼ大気圧に近い運転圧力で運転されており、その塔頂からはCO2ガスが排出され、塔底からはCO2を含まない軽油や灯油のメタンガス吸収溶液(リーン吸収溶液)が再度CO2ガス吸収塔28にもどされる。
吸収溶液再生塔30の塔頂から排出されるCO2ガスは、水素製造装置のイニシャル建設時は全量大気放出されていた。1980年前後からドライアイスの需要が高くなりその一部を圧縮機31とチラー冷却32により液化炭酸ガス33となし、ドライアイス原料として販売されている。しかし、未だに、約半分(後述)は吸収溶液再生塔頂30から大気に放出されている。以上説明したように水素製造装置HMUにおける副生COから生成されるCO2の現在の処理方法では、ドライアイスの原料として使用されるとしても再生塔30から直接大気放出されるとしても、いずれの方法でも温暖化ガスの創出につながるものであり、水素製造装置HMUで副生するCOの新規な有効利用プロセスの開発が望まれている。
Conventionally, the current industrial production method of carbon monoxide is a method obtained by reacting coal or coke with air or steam to obtain water gas and then purifying it.
This conventional technique requires a large amount of energy and increases the emission of carbon dioxide, which is a greenhouse gas.
On the other hand, the hydrogen production unit (HMU) at a refinery produces carbon monoxide (CO) as a by-product of raw material gas by aquatic gasification reaction with its reformer, which is converted into a high-temperature CO conversion reactor and a low-temperature CO conversion reactor. oxidized to CO 2 Te to obtain a high-purity hydrogen gas and thereafter removing the feed CO 2 in the CO 2 absorbing section. This purified hydrogen gas is used in refinery desulfurization and denitration reactions. The current hydrogen production system uses the process flow shown in Fig. 4 regardless of whether it is in Japan or overseas. The outline will be described below.
First, butane 22 is desulfurized in the desulfurization section 23 and then mixed with steam 24. This steam generates boiler feed water (BFW) 41 by the residual heat of the waste heat boiler 42 as shown in FIG. The butane and steam ratio is called S / C, but the theoretical value of 4.0 is adjusted to 4.0 to 5.0, which is slightly excessive in actual operation, and sent to the reformer 25. In reformer 25, aquatic gasification reaction (C 4 H 10 + 4H 2 O → 4CO + 9H 2 -Q) proceeds.
Reomer 25 has an endothermic reaction, but its outlet temperature is about 780 ° C. Then, as described above, after being used for steam generation, the temperature is lowered to about 370 ° C. and sent to the high temperature transformation reactor (HTS) 26. In the high-temperature transformation reactor HTS, aquatic gas CO is oxidized to CO 2 by the reaction of CO + H 2 O → CO 2 + H 2 + Q.
Although it is an exothermic reaction in the high-temperature transformation reactor HTS, waste heat is recovered 43 from the gas at the outlet of the high-temperature transformation reactor HTS to the residual heat of the boiler feed water BFW, etc. It is done.
In the low temperature shift reactor LTS, CO is oxidized to CO 2 by the same formula (2) as the high temperature shift reactor HTS. After subsequently being cooled further to 40 ° C. in the waste heat recovery 44 to condenser 45, C0 2 is fed to a CO 2 gas absorption tower 28 (using CO 2 gas absorption solution such Katakabu) are absorbed and removed. The CO or CO 2 that could not be removed is preheated 46 and converted into methane by the reaction of CO + 3H 2 → CH 4 + H 2 O + Q in the methanator 29 and finally 95% H 2 , 5% CH Product gas with a composition of 4 .
Thereafter, the pressure is increased by the compressor 47 and sent to an indirect desulfurization apparatus or the like, which is used for desulfurization and denitration reactions of heavy oil and light oil. The reason why CO produced by the reformer is thoroughly removed as described above is that `` When Ni is used for the denitration reaction in the catalyst composition of indirect desulfurization equipment, if CO is present, it is extremely toxic and volatile Ni ( “CO) 4 is generated and there is a big safety problem”.
Next, a brief description of the CO 2 absorption section is given below. CO 2 gas is absorbed by the CO 2 gas absorption tower 28 as shown in FIG. 4 is sent to the absorption solution regenerator 30 together with the CO 2 absorbing solution (rich absorbent solution). The previous regeneration tower 30 is operated at an operating pressure close to atmospheric pressure, CO 2 gas is discharged from the top of the tower, and CO 2 free gas oil or kerosene methane gas absorbing solution (lean absorption) is discharged from the tower bottom. The solution is returned to the CO2 gas absorption tower 28 again.
All of the CO 2 gas discharged from the top of the absorption solution regeneration tower 30 was released into the atmosphere at the time of initial construction of the hydrogen production apparatus. Demand for dry ice has been increasing since around 1980, and a portion of it has been converted into liquefied carbon dioxide gas 33 by a compressor 31 and chiller cooling 32, and is sold as dry ice raw material. However, about half (described later) is still released from the top of the absorbing solution regeneration tower 30 to the atmosphere. As described above, in the current treatment method of CO 2 produced from by-product CO in the hydrogen production apparatus HMU, even if it is used as a raw material for dry ice or released directly from the regeneration tower 30 to the atmosphere, This method also leads to the creation of greenhouse gases, and the development of a new effective utilization process of CO produced as a by-product in the hydrogen production equipment HMU is desired.

<現在の水素製造装置での一酸化炭素バランス>
現在の典型的な水素製造装置におけCOバランスの計算は、原料ブタン量=2200kg/h C4H10 Mw=58kg/kmol、原料ブタンモル流量=37.9kg−mol/hである。
リフォーマーでの反応は、C4H10+4H2O → 4CO+9H2 - Qであるから、これより1モルのC4H10に対し4モルのCOが生成する。
尚、COモル流量=4×37.9kmol/h=151.6kmol/hr
CO質量 流量 = (28kg/kmol)×(151.6kmol/hr)=4245kg/hr=4.2ton/hr=101.8ton/day
また余剰のCO流量の計算結果は、44.5/101.8=44wt%である。この時の液化炭酸製品量は、70ton/dayであった。従って、有効利用されているCOは、44.5ton/dayとなる。
このように液化炭酸製品として有効利用されているCOは、44wt%にすぎない。
以上に示したようにCO2に酸化され約半分は大気放出、残りの半分はドライアイスの原料として製油所構外へ出荷されている。前述したように水素製造装置HMUで副生するCOから生成されるCO2の現在の前期処理方法では、いずれの場合でも温暖化ガスの創出につながるものであり、環境保全、温暖化防止の観点から見れば望ましくない。
<Current carbon monoxide balance in hydrogen production equipment>
Calculation of the CO balance in the present typical hydrogen production apparatus is raw material butane amount = 2200 kg / h C 4 H 10 Mw = 58 kg / kmol, raw material butane molar flow rate = 37.9 kg-mol / h.
Since the reaction in the reformer is C 4 H 10 + 4H 2 O → 4CO + 9H 2 −Q, 4 mol of CO is produced from 1 mol of C 4 H 10 .
CO molar flow rate = 4 x 37.9 kmol / h = 151.6 kmol / hr
CO mass Flow rate = (28kg / kmol) x (151.6kmol / hr) = 4245kg / hr = 4.2ton / hr = 101.8ton / day
The calculation result of surplus CO flow is 44.5 / 101.8 = 44 wt%. The amount of liquefied carbonated product at this time was 70 ton / day. Therefore, the effective CO is 44.5 ton / day.
Thus, the amount of CO effectively used as a liquefied carbonic acid product is only 44 wt%.
As shown above, it is oxidized to CO 2 and about half is released into the atmosphere, and the other half is shipped outside the refinery as a raw material for dry ice. As mentioned above, the current treatment method for CO 2 generated from CO by-produced in the hydrogen production equipment HMU leads to the creation of greenhouse gases in any case. From the point of view, it is undesirable.

上記問題点を解決するために本発明を、開発したものであり、石油精製装置の水素製造装置HMUから生成される水生ガス(CO+H2)からCO2に酸化される前にCOガスを分離回収することを目的とする。
そこで本発明の特徴とするところは次の通りであり、水素製造装置HMUから放出されるCO2ガスをCOガスとして分離回収する新規プロセスを提案するものである。即ち、「石油精製装置の水素製造装置のリフォーマーの生成ガスから水素透過膜を用いた膜分離装置により水素を分離し、膜分離装置からの一酸化炭素とメタンガスを各々分離回収する際、上流の蒸留塔をメタンガス吸収塔とし、下流の蒸留塔をリーンオイル再生塔とし、膜分離装置からの一酸化炭素とメタンガスをメタンガス吸収塔の腹部に供給しながらリーンオイルをメタンガス吸収塔の塔頂に供給してメタンガスを吸収すると供にメタンガス吸収塔からの排気部から高濃度の一酸化炭素を回収する一方、メタンガス吸収塔の底部からのリーンオイルをリーンオイル再生塔に順次供給しながらメタンガスを蒸発させ排気回収し、リーンオイル再生塔の塔底液(リーンオイル)をメタンガス吸収塔の塔頂へ循環供給することを特徴とする製油所水素製造装置の生成ガスからの一酸化炭素分離回収方法。」である。
The present invention has been developed to solve the above-mentioned problems, and CO gas is separated and recovered before being oxidized to CO 2 from the aquatic gas (CO + H 2 ) generated from the hydrogen production equipment HMU of the petroleum refining equipment. The purpose is to do.
Therefore, the features of the present invention are as follows, and proposes a new process for separating and recovering CO 2 gas released from the hydrogen production apparatus HMU as CO gas. That is, “when separating hydrogen from a gas produced by a reformer of a hydrogen production device of a petroleum refining device by a membrane separation device using a hydrogen permeable membrane and separating and recovering carbon monoxide and methane gas from the membrane separation device, The distillation tower is the methane gas absorption tower, the downstream distillation tower is the lean oil regeneration tower, and lean oil is supplied to the top of the methane gas absorption tower while supplying carbon monoxide and methane gas from the membrane separator to the abdomen of the methane gas absorption tower. As the methane gas is absorbed, high-concentration carbon monoxide is recovered from the exhaust section from the methane gas absorption tower, while the lean oil from the bottom of the methane gas absorption tower is sequentially supplied to the lean oil regeneration tower to evaporate the methane gas. Oil refinery, which collects exhaust gas and circulates the bottom liquid (lean oil) of the lean oil regeneration tower to the top of the methane gas absorption tower Carbon monoxide separation and recovery method from the product gas of the hydrogen production apparatus. "A.

本発明は、上記構成により、前記水素製造装置からの、水素ガス、メタンガスと一酸化炭素の分離回収は、前記膜分離装置5と蒸留装置を用いて、前記膜分離装置5からは水素ガスを、メタンガス吸収塔7の塔頂からは一酸化炭素ガスを高純度で回収し、各リーンオイル再生塔8塔の塔頂からメタンガスを高純度で且つ高効率で回収してその有効利用を有利に実現し、同時に、製油所の水素製造装置HMUから大気に排出される温暖化ガスである二酸化炭素ガスを皆無に近く激減させるものである。 In the present invention, according to the above configuration, the separation and recovery of hydrogen gas, methane gas and carbon monoxide from the hydrogen production apparatus is performed using the membrane separation apparatus 5 and the distillation apparatus, and the hydrogen gas is supplied from the membrane separation apparatus 5. The carbon monoxide gas is recovered with high purity from the top of the methane gas absorption tower 7, and the methane gas is recovered with high purity and high efficiency from the top of each of the eight lean oil regeneration towers. At the same time, carbon dioxide gas, which is a warming gas emitted from the refinery hydrogen production equipment HMU to the atmosphere, will be drastically reduced.

本発明において、COガス分離装置の設備構成は流量制御器1、廃熱タービン発電機2、冷却器3、H2ガス/CH4/COガス分離装置4からなる。
H2ガス/CH4/COガス分離装置4の設備構成は、複数枚の高分子製水素透過膜を配列して構成した膜分離装置5と、水分離ドラム6、多段のダウンカマー付トレイ内設のメタンガス吸収塔7と、灯油や軽油などのリーンオイルを用い多段のダウンカマー付トレイ内設のリーンオイル再生塔8と、冷却器9と、塔頂ドラム10と、各リーンオイル再生塔8Top〜8Bottmのリボイラー熱交換器11とからなる。
又、メタンガス吸収塔7の好ましい塔圧は、1.0〜1.5MPaGの範囲に調整制御し、リーンオイル再生塔8Top〜8Bottmの好ましい塔圧として常圧を調整維持する。
本発明によるCO回収のH2ガス/CH4/COガス分離装置4の設備構成をCO Recovery Unit(CORU)と称して関係図に示す。
その他、本発明を実施するための好ましい設備構成とプロセスは、次の実施例と共に詳細に説明する。
In the present invention, the equipment configuration of the CO gas separation device includes a flow rate controller 1, a waste heat turbine generator 2, a cooler 3, and an H 2 gas / CH 4 / CO gas separation device 4.
The equipment configuration of the H 2 gas / CH 4 / CO gas separation device 4 consists of a membrane separation device 5 configured by arranging a plurality of polymer hydrogen permeable membranes, a water separation drum 6, and a multistage downcomer tray Methane gas absorption tower 7 installed, lean oil regeneration tower 8 installed in a tray with a multistage downcomer using lean oil such as kerosene and light oil, cooler 9, tower drum 10, and each lean oil regeneration tower 8Top -8 Bottm reboiler heat exchanger 11.
Moreover, the preferable tower pressure of the methane gas absorption tower 7 is adjusted and controlled in the range of 1.0 to 1.5 MPaG, and the normal pressure is adjusted and maintained as the preferable tower pressure of the lean oil regeneration tower 8Top to 8 Bottm.
The equipment configuration of the H 2 gas / CH 4 / CO gas separation device 4 for CO recovery according to the present invention is referred to as a CO Recovery Unit (CORU) and is shown in the relationship diagram.
In addition, the preferable equipment configuration and process for carrying out the present invention will be described in detail together with the following examples.

図1に示すプロセスは、製油所構内にCO回収設備を設置する実施例である。
本発明において、使用する原料ガスは、水素製造装置HMUのリフォーマー廃熱ボイラー出口(HTS入口)12からのガス(水生ガス)でありその一部を流量制御器1にて流量制御して取り出す。このガスは、一般的に温度、圧力は370℃、2.0MPaGと高温度、高圧であり、COガス分離装置で処理する前に廃熱タービン発電機2にてエンタルピーを下げ、発電機出口でガス温度を100℃程度まで下げた後冷却器3にて常温(40℃)まで冷却する。
その後、前期冷却されたガスをH2ガス/CH4ガス/COガス分離装置(以下単にガス分離装置4と言う)に連続して送る。ガス分離装置4の詳細は、図3と供に詳述する。
前記ガス分離装置4にて分離されたH2ガス13は、昇圧機にて圧力を上げて高温CO変成リアクター26の下流に戻し水素ガスとして有効利用する。また、分離されたCH4ガス14は製油所構内での燃料ガスとして利用する。本発明の目的であるCOガス15は、製油所構外に出荷し温暖化ガスであるCO2以外の化学製品の原料となす。
The process shown in FIG. 1 is an example in which a CO recovery facility is installed in a refinery.
In the present invention, the raw material gas to be used is a gas (aquatic gas) from the reformer waste heat boiler outlet (HTS inlet) 12 of the hydrogen production apparatus HMU, and a part thereof is taken out by controlling the flow rate with the flow rate controller 1. This gas generally has a high temperature and high pressure of 370 ° C and 2.0 MPaG, and this gas has a low enthalpy at the waste heat turbine generator 2 before being processed by the CO gas separator, and gas at the generator outlet. The temperature is lowered to about 100 ° C. and then cooled to room temperature (40 ° C.) with the cooler 3.
Thereafter, the gas cooled in the previous period is continuously sent to an H 2 gas / CH 4 gas / CO gas separator (hereinafter simply referred to as a gas separator 4). Details of the gas separation device 4 will be described together with FIG.
The H 2 gas 13 separated by the gas separation device 4 is increased in pressure by a booster and returned to the downstream side of the high-temperature CO shift reactor 26 to be effectively used as hydrogen gas. The separated CH 4 gas 14 is used as fuel gas in the refinery. The CO gas 15 which is the object of the present invention is shipped outside the refinery and used as a raw material for chemical products other than CO 2 which is a greenhouse gas.

図2に示すプロセスは、製油所構外にCO回収設備を設置する実施例である。
実施例1と同様、本発明において、使用する原料ガスは、水素製造装置HMUのリフォーマー廃熱ボイラー出口(HTS入口)12からのガス(水生ガス)でありその一部を流量制御器1にて流量制御して取り出す。このガスは、一般的に温度、圧力は370℃、2.0MPaGと高温度、高圧であり、COガス分離装置4で処理する前に廃熱タービン発電機2にてエンタルピーを下げ、発電機出口でガス温度を100℃程度まで下げた後、冷却器3にて常温(40℃)まで冷却する。
その後、前記冷却されたガス16をH2ガス/CH4ガス/COガス分離装置4に連続的に送気する。ガス分離装置CORUの詳細は、図3と供に詳述する。
本例は、前記冷却されたガス16を製油所構外に出荷して製油所構外に設置したガス分離装置4にてH2ガス、CH4ガス及びCOガスとして分離精製してそれぞれのガスを、有効利用することを目的とする。
The process shown in FIG. 2 is an example in which a CO capture facility is installed outside the refinery.
As in Example 1, in the present invention, the raw material gas used is a gas (aquatic gas) from the reformer waste heat boiler outlet (HTS inlet) 12 of the hydrogen production apparatus HMU, and a part thereof is flow rate controller 1. Take out by controlling the flow rate. This gas generally has a high temperature and high pressure of 370 ° C and 2.0 MPaG, and this gas has a low enthalpy in the waste heat turbine generator 2 before being processed by the CO gas separation device 4, and at the generator outlet. After the gas temperature is lowered to about 100 ° C., the cooler 3 is cooled to room temperature (40 ° C.).
Thereafter, the cooled gas 16 is continuously supplied to the H 2 gas / CH 4 gas / CO gas separator 4. Details of the gas separation unit CORU will be described in conjunction with FIG.
In this example, the cooled gas 16 is shipped outside the refinery and separated and purified as H 2 gas, CH 4 gas and CO gas by the gas separation device 4 installed outside the refinery, The purpose is to use it effectively.

図3に示すプロセスは、実施例2と実施例3に示すガス分離装置4の具体例の詳細である。本例で使用する原料ガスは、水素製造装置HMUの廃熱ボイラー出口12(HTS入口)からのガス(水生ガス)の一部を流量制御器1にて流量制御して取り出したガス(リフォーマー出口ガス)であり、前記廃熱タービン発電機2及び前記冷却器3にて冷却後、ガス分離装置4にてCOガスを分離回収するものである。前記冷却器3で冷却されたガス16は、水分分離ドラム6に入り水分が除去され、膜分離装置5に入る。膜分離装置5では、高分子製の水素ガス透過膜を多段に設置して膜分離速度の差より水素ガス13がCH4ガス、COガスより分離される。CH4ガスとCOガスとは膜分離速度に差がないために膜技術では分離できない。即ち、水素ガス13のみと、CH4/COの混合ガス17とが分離される。前記CH4/CO混合ガス17は、最上流段のメタンガス吸収塔7の中腹に連続的に送られる。
メタンガス吸収塔7は、内部に複数段のシーブトレイが段状に設置されその塔頂に灯油や軽油等のリーンオイル18を入れてフラッシングしガス中のメタンガスCH4を吸収し、塔頂排気部からCOガス15を頂部排気部から回収すると供に、リーンオイル18中のメタンガスCH4濃度を高濃度にして、内部に複数段のシーブトレイを段状に設置したリーンオイ再生塔8の腹部に供給してメタンガスを蒸発回収しリーンオイを再生する工程に渡すのである。この際、メタンガス吸収塔7の塔頂へのリーンオイ供給はリーンオイ再生塔8の塔底に溜まった再生リーンオイル(塔底液)を冷却機21を経由して連続的に再循環供給する。
リーンオイル再生塔は内部にリボイラー熱交換器11から入熱してメタンガス吸収塔で吸収したリーンオイル中のメタンガスCH4を蒸発させ頂部から排出しながらリーンオイル中のメタンガスを抜き取りリーンオイルを再生する。頂部から排出したメタンガスCH4は、液化冷却器9を介してのリーンオイ再生塔8に付設した頂ドラム10に収容しここからCH4ガス14を回収する。
ここで各メタンガス吸収塔7の塔圧は1.0〜1.5MPaの範囲に制御し、リーンオイ再生塔8の塔圧は常圧に調整する。
The process shown in FIG. 3 is details of a specific example of the gas separation device 4 shown in the second and third embodiments. The raw material gas used in this example is the gas (aquatic gas) from the waste heat boiler outlet 12 (HTS inlet) of the hydrogen production device HMU, which is extracted by controlling the flow rate with the flow controller 1 (reformer outlet) Gas), and after being cooled by the waste heat turbine generator 2 and the cooler 3, the gas separation device 4 separates and recovers the CO gas. The gas 16 cooled by the cooler 3 enters the water separation drum 6 to remove the water and enters the membrane separation device 5. In the membrane separator 5, polymer hydrogen gas permeable membranes are installed in multiple stages, and the hydrogen gas 13 is separated from CH 4 gas and CO gas by the difference in membrane separation speed. CH 4 gas and CO gas cannot be separated by membrane technology because there is no difference in membrane separation speed. That is, only the hydrogen gas 13 and the CH 4 / CO mixed gas 17 are separated. The CH 4 / CO mixed gas 17 is continuously sent to the middle of the uppermost methane gas absorption tower 7.
In the methane gas absorption tower 7, a plurality of sheave trays are installed in a step shape, and lean oil 18 such as kerosene or light oil is added to the top of the tower to flush and absorb the methane gas CH 4 in the gas. While collecting the CO gas 15 from the top exhaust part, the methane gas CH 4 concentration in the lean oil 18 is made high and supplied to the abdomen of the lean oy regeneration tower 8 in which a plurality of sheave trays are installed in stages. The methane gas is recovered by evaporation and passed to the process of regenerating lean oil. At this time, the lean oil supply to the top of the methane gas absorption tower 7 continuously recycles the regenerated lean oil (column bottom liquid) accumulated at the bottom of the lean oil regeneration tower 8 via the cooler 21.
The lean oil regeneration tower regenerates the lean oil by extracting the methane gas in the lean oil while evaporating the methane gas CH 4 in the lean oil that has been input from the reboiler heat exchanger 11 and absorbed in the methane gas absorption tower and discharged from the top. The methane gas CH 4 discharged from the top is accommodated in the top drum 10 attached to the lean oy regeneration tower 8 via the liquefier cooler 9, and the CH 4 gas 14 is recovered therefrom.
Here, the tower pressure of each methane gas absorption tower 7 is controlled in the range of 1.0 to 1.5 MPa, and the tower pressure of the lean oy regeneration tower 8 is adjusted to normal pressure.

以上の実施例によるガス処理工程により、水素ガスは膜分離装置を透過して、COガスはメタンガス吸収塔の最下流段7の塔頂から、メタンガスCH4は各リーンオイル再生塔8の塔頂から高純度で回収して製品化することができる。しかも一酸化炭素COの回収率は、従来の44%に比し98%と極めて高い回収率を得ることが出来た。 Through the gas treatment process according to the above embodiment, hydrogen gas permeates the membrane separator, CO gas from the top of the most downstream stage 7 of the methane gas absorption tower, and methane gas CH 4 from the top of each lean oil regeneration tower 8. Can be recovered and commercialized with high purity. Moreover, the recovery rate of carbon monoxide CO was 98%, which was very high compared to the conventional 44%.

以上説明したように本発明は、製油所の水素製造装置における副生COを温暖化ガスであるCO2に酸化する前に回収し、多量のCO2を大気放出することなく、反応性に富むCOを回収し資源化することを目的とする。COガスの価格は、現在の物流形態と製造法では、570万円/tonと非常に高価なものであり、CO2の価格10万円/tonと比較すると本発明による経済効果は非常に大きくまた、水素製造装置から放出されている地球温暖化の一因となっているCO2を最小に低減でき環境保全に大きく貢献するものであり、また、反応性に富むCOは多種多様な合成反応原料となりうる等極めて経済的であるなどの幾多の効果を呈し、この種産業上の利用可能性多大なものがある。 As described above, the present invention recovers by-product CO in a refinery hydrogen production apparatus before it is oxidized to CO 2 , which is a greenhouse gas, and is rich in reactivity without releasing a large amount of CO 2 into the atmosphere. The purpose is to capture and recycle CO. The price of CO gas is very expensive at 5.7 million yen / ton in the current distribution form and manufacturing method. Compared with the price of 100,000 yen / ton in CO 2 , the economic effect of the present invention is very large. In addition, CO 2 that contributes to global warming emitted from hydrogen production equipment can be reduced to a minimum and contribute greatly to environmental conservation. There are many effects such as being extremely economical such as being a raw material, and there is a great deal of industrial applicability.

製油所構内の水素製造装置HMUにCO回収設備を設置するプロセスを示す説明図。Explanatory drawing showing the process of installing CO recovery equipment in the hydrogen production equipment HMU inside the refinery. 製油所構外にCO回収設備を設置するプロセス示す説明図。Explanatory diagram showing the process of installing CO recovery equipment outside the refinery. H2ガス/CH4ガス/COガス分離装置(CO Recovery Unit)のガス処理プロセスフローを示す説明図Explanatory diagram showing the gas treatment process flow of the H 2 gas / CH 4 gas / CO gas separation device (CO Recovery Unit) 従来の水素製造装置プロセスを示す説明図。Explanatory drawing which shows the conventional hydrogen production apparatus process.

符号の説明Explanation of symbols

1 流量制御弁
2 廃熱タービン発電機
3,9,21 冷却器
4 H2ガス/CH4/COガス分離装置 CO Recovery Unit(CORU)
5 水素透過用の膜分離装置
6 水分分離ドラム
7 メタンガス吸収塔
8 リーンオイル再生塔
10 塔頂ドラム
11 リボイラー熱交換器
12 水素製造装置リフォーマー出口
13 H2ガス回収
14 CH4ガス回収
15 COガス回収
16 リフォーマー出口冷却ガス
17 CH4,CO混合ガス
18 リーンオイル
19, 20 配管
22 ブタンガス
23 脱硫部門
24 スチーム
25 リフォーマー
26 高温CO変成リアクター
27 低温CO変成リアクター
28 CO2ガス吸収塔
29 メタネーター
30 吸収液再生塔
31 圧縮機
32 チラー冷却設備
33 液化炭酸

1 Flow control valve 2 Waste heat turbine generator 3,9,21 Cooler 4 H 2 gas / CH 4 / CO gas separator CO Recovery Unit (CORU)
5 Hydrogen separator membrane separator 6 Moisture separation drum 7 Methane gas absorption tower 8 Lean oil regeneration tower 10 Tower drum 11 Reboiler heat exchanger 12 Hydrogen production equipment reformer outlet 13 H 2 gas recovery 14 CH 4 gas recovery 15 CO gas recovery 16 Reformer outlet cooling gas 17 CH 4 , CO mixed gas 18 Lean oil 19, 20 Pipe 22 Butane gas 23 Desulfurization department 24 Steam 25 Reformer 26 High temperature CO conversion reactor 27 Low temperature CO conversion reactor
28 CO 2 gas absorption tower 29 Methanator 30 Absorption liquid regeneration tower 31 Compressor 32 Chiller cooling equipment 33 Liquefied carbonic acid

Claims (1)

石油精製装置の水素製造装置のリフォーマーの生成ガスから水素透過膜を用いた膜分離装置により水素を分離し、膜分離装置からの一酸化炭素とメタンガスを各々分離回収する際、上流の蒸留塔をメタンガス吸収塔とし、下流の蒸留塔をリーンオイル再生塔とし、膜分離装置からの一酸化炭素とメタンガスをメタンガス吸収塔の腹部に供給しながらリーンオイルをメタンガス吸収塔の塔頂に供給してメタンガスを吸収すると供にメタンガス吸収塔からの排気部から高濃度の一酸化酸素を回収する一方、メタンガス吸収塔の底部からのリーンオイルをリーンオイル再生塔に順次供給しながらメタンガスを蒸発させ排気回収し、リーンオイル再生塔の塔底液(リーンオイル)をメタンガス吸収塔の塔頂へ循環供給することを特徴とする製油所水素製造装置の生成ガスからの一酸化炭素分離回収方法。 When separating hydrogen from the product gas of the reformer of a hydrogen production unit of an oil refinery by a membrane separator using a hydrogen permeable membrane, and separating and recovering carbon monoxide and methane gas from the membrane separator, an upstream distillation column is used. A methane gas absorption tower, a downstream distillation tower as a lean oil regeneration tower, while supplying carbon monoxide and methane gas from a membrane separator to the abdomen of the methane gas absorption tower, supplying lean oil to the top of the methane gas absorption tower In addition to the recovery of high-concentration oxygen monoxide from the exhaust section from the methane gas absorption tower, the lean oil from the bottom of the methane gas absorption tower is sequentially supplied to the lean oil regeneration tower while the methane gas is evaporated and recovered. The refinery hydrogen is characterized by circulating and supplying the bottom liquid (lean oil) of the lean oil regeneration tower to the top of the methane gas absorption tower. Carbon monoxide separation and recovery process of the product gas of the apparatus.
JP2004367605A 2004-12-20 2004-12-20 A method for separating and recovering carbon monoxide from the product gas of a refinery hydrogen production system. Expired - Fee Related JP4556175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004367605A JP4556175B2 (en) 2004-12-20 2004-12-20 A method for separating and recovering carbon monoxide from the product gas of a refinery hydrogen production system.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004367605A JP4556175B2 (en) 2004-12-20 2004-12-20 A method for separating and recovering carbon monoxide from the product gas of a refinery hydrogen production system.

Publications (2)

Publication Number Publication Date
JP2006169476A JP2006169476A (en) 2006-06-29
JP4556175B2 true JP4556175B2 (en) 2010-10-06

Family

ID=36670566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004367605A Expired - Fee Related JP4556175B2 (en) 2004-12-20 2004-12-20 A method for separating and recovering carbon monoxide from the product gas of a refinery hydrogen production system.

Country Status (1)

Country Link
JP (1) JP4556175B2 (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090165376A1 (en) 2007-12-28 2009-07-02 Greatpoint Energy, Inc. Steam Generating Slurry Gasifier for the Catalytic Gasification of a Carbonaceous Feedstock
CN101910371B (en) 2007-12-28 2014-04-02 格雷特波因特能源公司 Processes for making syngas-derived products
US8297542B2 (en) 2008-02-29 2012-10-30 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
US8709113B2 (en) 2008-02-29 2014-04-29 Greatpoint Energy, Inc. Steam generation processes utilizing biomass feedstocks
US20090217575A1 (en) 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Biomass Char Compositions for Catalytic Gasification
WO2009111332A2 (en) 2008-02-29 2009-09-11 Greatpoint Energy, Inc. Reduced carbon footprint steam generation processes
CA2716135C (en) 2008-02-29 2013-05-28 Greatpoint Energy, Inc. Particulate composition for gasification, preparation and continuous conversion thereof
US8286901B2 (en) 2008-02-29 2012-10-16 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
US8366795B2 (en) 2008-02-29 2013-02-05 Greatpoint Energy, Inc. Catalytic gasification particulate compositions
CN101981163B (en) * 2008-04-01 2014-04-16 格雷特波因特能源公司 Processes for the separation of methane from a gas stream
CA2718536C (en) 2008-04-01 2014-06-03 Greatpoint Energy, Inc. Sour shift process for the removal of carbon monoxide from a gas stream
WO2010033850A2 (en) 2008-09-19 2010-03-25 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
KR101256288B1 (en) 2008-09-19 2013-04-23 그레이트포인트 에너지, 인크. Processes for gasification of a carbonaceous feedstock
US8502007B2 (en) 2008-09-19 2013-08-06 Greatpoint Energy, Inc. Char methanation catalyst and its use in gasification processes
KR101275429B1 (en) 2008-10-23 2013-06-18 그레이트포인트 에너지, 인크. Processes for gasification of a carbonaceous feedstock
WO2010078298A1 (en) 2008-12-30 2010-07-08 Greatpoint Energy, Inc. Processes for preparing a catalyzed coal particulate
WO2010078297A1 (en) 2008-12-30 2010-07-08 Greatpoint Energy, Inc. Processes for preparing a catalyzed carbonaceous particulate
US8728182B2 (en) 2009-05-13 2014-05-20 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8268899B2 (en) 2009-05-13 2012-09-18 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
CA2759961C (en) 2009-05-13 2013-12-17 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
WO2011049858A2 (en) 2009-10-19 2011-04-28 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
CA2773845C (en) 2009-10-19 2014-06-03 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
AU2010339952B8 (en) 2009-12-17 2013-12-19 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
WO2011106285A1 (en) 2010-02-23 2011-09-01 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
KR101440710B1 (en) 2010-04-26 2014-09-17 그레이트포인트 에너지, 인크. Hydromethanation of a carbonaceous feedstock with vanadium recovery
CA2793893A1 (en) 2010-05-28 2011-12-01 Greatpoint Energy, Inc. Conversion of liquid heavy hydrocarbon feedstocks to gaseous products
JP2013535565A (en) 2010-08-18 2013-09-12 グレイトポイント・エナジー・インコーポレイテッド Hydromethanation of carbonaceous feedstock
JP6124795B2 (en) 2010-11-01 2017-05-10 グレイトポイント・エナジー・インコーポレイテッド Hydrogenation methanation of carbonaceous feedstock.
US8648121B2 (en) 2011-02-23 2014-02-11 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with nickel recovery
CN103582693A (en) 2011-06-03 2014-02-12 格雷特波因特能源公司 Hydromethanation of a carbonaceous feedstock
WO2013052553A1 (en) 2011-10-06 2013-04-11 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
WO2014055349A1 (en) 2012-10-01 2014-04-10 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
CN104685039B (en) 2012-10-01 2016-09-07 格雷特波因特能源公司 Graininess low rank coal raw material of agglomeration and application thereof
CN104704204B (en) 2012-10-01 2017-03-08 格雷特波因特能源公司 Method for producing steam from original low rank coal raw material
IN2015DN02940A (en) 2012-10-01 2015-09-18 Greatpoint Energy Inc
US10464872B1 (en) 2018-07-31 2019-11-05 Greatpoint Energy, Inc. Catalytic gasification to produce methanol
US10344231B1 (en) 2018-10-26 2019-07-09 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
US10435637B1 (en) 2018-12-18 2019-10-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
US10618818B1 (en) 2019-03-22 2020-04-14 Sure Champion Investment Limited Catalytic gasification to produce ammonia and urea

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166122A (en) * 2000-11-30 2002-06-11 Tokyo Gas Co Ltd Method for refining and storing hydrogen
JP2002226867A (en) * 2001-01-31 2002-08-14 Mitsubishi Kakoki Kaisha Ltd Apparatus for producing hydrogen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166122A (en) * 2000-11-30 2002-06-11 Tokyo Gas Co Ltd Method for refining and storing hydrogen
JP2002226867A (en) * 2001-01-31 2002-08-14 Mitsubishi Kakoki Kaisha Ltd Apparatus for producing hydrogen

Also Published As

Publication number Publication date
JP2006169476A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP4556175B2 (en) A method for separating and recovering carbon monoxide from the product gas of a refinery hydrogen production system.
AU2018364702B2 (en) Systems and methods for production and separation of hydrogen and carbon dioxide
US10611634B2 (en) Polygeneration production of hydrogen for use in various industrial processes
CN102431971B (en) Method and apparatus for adjustably treating a sour gas
EP2867484B1 (en) Polygeneration production of power and fertilizer through emissions capture
JP6263029B2 (en) Methane production method, methane production apparatus, and gasification system using the same
US9278312B2 (en) System for recovering high-purity CO2 from gasification gas containing CO, CO2, COS and H2S
CN115210204A (en) Method for producing methanol from carbon dioxide and hydrogen using the amount of carbon dioxide
DK156638B (en) PROCEDURE FOR THE PREPARATION OF AN AMMONIA SYNTHESIC GAS
AU2021286875B2 (en) Method for the production of hydrogen
JPH03242302A (en) Production of hydrogen and carbon monoxide
US8241603B1 (en) Process and system for removing sulfur from sulfur-containing gaseous streams
JPS60258294A (en) Desulfurization refining of natural gas
RU2758773C2 (en) Method for producing formaldehyde-stabilised urea
WO2013033711A1 (en) Integration of ft system and syn-gas generation
DK200600943A (en) Hydrogen production plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060623

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140730

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees