DK153166B - CLOTHED METAL ELECTRODE WITH IMPROVED BARRIER LAYER, PROCEDURE FOR PREPARING SUCH A ELECTRODE, AND USING THE ELECTRIC WIRE AS ANODE BY CHLOR ALKALIE ELECTROLYSIS - Google Patents
CLOTHED METAL ELECTRODE WITH IMPROVED BARRIER LAYER, PROCEDURE FOR PREPARING SUCH A ELECTRODE, AND USING THE ELECTRIC WIRE AS ANODE BY CHLOR ALKALIE ELECTROLYSIS Download PDFInfo
- Publication number
- DK153166B DK153166B DK423380AA DK423380A DK153166B DK 153166 B DK153166 B DK 153166B DK 423380A A DK423380A A DK 423380AA DK 423380 A DK423380 A DK 423380A DK 153166 B DK153166 B DK 153166B
- Authority
- DK
- Denmark
- Prior art keywords
- metal
- substrate
- film
- barrier layer
- oxide
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/055—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
- C25B11/057—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
- C25B11/061—Metal or alloy
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/34—Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/055—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
- C25B11/069—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of at least one single element and at least one compound; consisting of two or more compounds
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
- C25B11/093—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/10—Electrodes, e.g. composition, counter electrode
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Laminated Bodies (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Secondary Cells (AREA)
- Electrodes Of Semiconductors (AREA)
- Electrolytic Production Of Metals (AREA)
- Chemically Coating (AREA)
- Paints Or Removers (AREA)
- Apparatuses And Processes For Manufacturing Resistors (AREA)
- Liquid Crystal (AREA)
- Coils Or Transformers For Communication (AREA)
- Ceramic Capacitors (AREA)
- Electroluminescent Light Sources (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
DK 153166 BDK 153166 B
Opfindelsen angår elektrode, til brug i elektro-lytiske processer, hvilken elektrode omfatter et substrat af filmdannende metal med en porøs elektrokata-lytisk beklædning, der omfatter i det mindste eet pla-5 tingruppemetal og/eller oxid deraf eventuelt blandet med andre metaloxider i en mængde på mindst 2 g/m af platin-gruppemetaKler) pr. projiceret overfladeareal af substratet og hvor substratet under beklædningen har et forfremstillet barrierelag, der udføres af en oxidover-10 fladefladefilm, der er vokset op fra substratet.The invention relates to electrodes for use in electrolytic processes, the electrode comprising a film-forming metal substrate having a porous electrocatalytic coating comprising at least one metal group metal and / or oxide thereof optionally mixed with other metal oxides in a amount of at least 2 g / m 2 of platinum group metals) per projected surface area of the substrate and wherein the substrate underneath the coating has a prefabricated barrier layer formed by an oxide surface film grown from the substrate.
Med "filmdannende metal" menes et metal, der har den egenskab, at når det forbindes som anode i elektrolytten, hvori den beklædte anode derefter skal arbejde, dannes hurtigt en passiverende oxidfilm, der beskytter 15 det underliggende metal mod korrosion af elektrolytten.By "film-forming metal" is meant a metal which has the property that when connected as an anode in the electrolyte in which the coated anode is then to work, a passivating oxide film is rapidly formed which protects the underlying metal from corrosion of the electrolyte.
Disse metaller benævnes også ofte "ventilmetaller".These metals are also often referred to as "valve metals".
Eksempler på substrater er titan, tantal, zir-konium, niobium, wolfram, aluminium og legeringer, der indeholder et eller flere af disse metaller, såvel som 20 silicium-jern-legeringer.Examples of substrates are titanium, tantalum, zirconium, niobium, tungsten, aluminum and alloys containing one or more of these metals, as well as 20 silicon-iron alloys.
Ved tidlige forslag (se f.eks. engelsk patentbeskrivelse nr. 855.107 og 869.865) blev en titanelektrode med en beklædning af platingruppemetal forsynet med et inert barrierelag af titanoxid på beklædningens 25 porøse steder, idet dette barrierelag fortrinsvis blev dannet eller forstærket ved en varmebehandling. Senere, i engelsk patentbeskrivelse nr. 925.080,blev det inerte barrierelag af titanoxid forfremstillet ved elektroly- tisk behandling eller opvarmning af titansubstratet 30 i en oxiderende atmosfære inden påføringen af platin-gruppemetallet. Forfremstillingen af et sådant barrierelag blev også foreslået i engelsk patentbeskrivelse nr. 1.147.422 med henblik på at forbedre forankringen af en aktiv beklædning bestående af eller indeholdende ^ platingruppemetaloxider.In early proposals (see, for example, British Patent Specifications Nos. 855,107 and 869,865), a titanium electrode with a plating group metal coating was provided with an inert barrier layer of titanium oxide at the porous sites of the coating, this barrier layer being preferably formed or reinforced by a heat treatment. Later, in British Patent Specification No. 925,080, the inert barrier layer of titanium oxide was prepared by electrolytic treatment or heating of the titanium substrate 30 in an oxidizing atmosphere prior to application of the platinum group metal. The preparation of such a barrier layer was also proposed in English Patent Specification No. 1,147,422 to improve the anchoring of an active coating consisting of or containing platinum group metal oxides.
Senere gav udviklingen af beklædninger dannet af blandede krystaller eller faste opløsninger af medaflejrede oxider af filmdannende metaller og platin-Later, the development of coatings formed from mixed crystals or solid solutions of co-deposited oxides of film-forming metals and platinum
DK 153166 BDK 153166 B
2 gruppemetaller (se USA-patent nr. 3.632.498) kommercielt levedygtige elektroder, der revolutionerede chlor-alkaliindustrien,og som er blevet anvendt udstrakt ved andre anvendelser. Med disse elektroder blev der opnået 5 fremragende funktion uden behov for et forstærket eller forfremstillet inert barriere- eller forankringslag på substratet, og i dag er det alment accepteret, at de forfremstillede eller forstærkede inerte barriere-lag er skadelige for funktionen. Set bagud forekommer 10 de tidlige forslag med forfremstillede eller forstærkede inerte barrierelag at have været mislykkede forsøg på at undgå defekter, der nærmere var iboende i de tidligere beklædninger end i substratet.2 group metals (see U.S. Patent No. 3,632,498) to commercially viable electrodes that revolutionized the chlor-alkali industry and have been extensively used in other applications. With these electrodes excellent performance was achieved without the need for a reinforced or prefabricated inert barrier or anchoring layer on the substrate, and today it is widely accepted that the prefabricated or reinforced inert barrier layers are detrimental to the function. Looking back, the early proposals with prefabricated or reinforced inert barrier layers appear to have been unsuccessful attempts to avoid defects inherent in the prior coatings rather than in the substrate.
Ikke desto mindre er der stadig blevet fremsat 15 nogle forslag, der forsøger af forbedre inerte barrierelag, f.eks. ved at påføre et titanoxidbarrierelag 4+ fra en opløsning, der indeholder Ti -ioner. Igen har dette vist sig at forringe elektrodernes funktion.Nevertheless, some suggestions have been made to try to improve inert barrier layers, e.g. by applying a titanium oxide barrier layer 4+ from a solution containing Ti ions. Again, this has been shown to impair the functioning of the electrodes.
En anden angrebsvinkel har været at angive et 20 ikke-passiverende barrierelag eller mellemlag liggende under den aktive ydre beklædning. Typiske forslag har været dopede tindioxidunderlagj tynde underlag af et eller flere platinmetaller såsom en platin-iridium-Another angle of attack has been to indicate a non-passivating barrier layer or intermediate layer lying beneath the active outer lining. Typical proposals have been doped tin dioxide substrates thin substrates of one or more platinum metals such as a platinum iridium metal.
legering? underlag af cobaltoxid eller blyoxid og så 9 Salloy? substrate of cobalt oxide or lead oxide and so 9 S
videre. Skønt forskellige patenter har krævet marginale forbedringer ved disse elektroder i særlige anvendelser har ingen af disse forslag i praksis ført til nogen betydelig forbedring eller nogen udbredt kommerciel anvendelse.continue. Although various patents have required marginal improvements at these electrodes in particular applications, none of these proposals has in practice led to any significant improvement or widespread commercial use.
20 Opfindelsen angår en elektrode med et filmdan nende metalsubstrat, der har en porøs ydre elektrokata- 2 lytisk beklædning, der indeholder mindst ca. 2 g/m (som platingruppemetal pr. projiceret overfladeareal af substratet) af mindst ét platingruppemetal og/ellerThe invention relates to an electrode with a film-forming metal substrate having a porous outer electrocatalytic coating containing at least about 20 cm. 2 g / m (as plate group metal per projected surface area of the substrate) of at least one plate group metal and / or
*3 C* 3 C
oxid deraf eventuelt blandet med andre metaloxider og et forbedret ikke-passiverende barrierelag, der udgøres af en oxidoverfladefilm, der er vokset op fra substra-oxide thereof optionally mixed with other metal oxides and an improved non-passivating barrier layer constituted by an oxide surface film grown from substrate
: DK 153166 B: DK 153166 B
3 tet, hvilket barrierelag forlænger elektrodens levetid med et givet indhold af ædelmetal eller reducerer den nødvendige mængde ædelmetal til opnåelse af en given levetid.3, which barrier layer extends the lifetime of the electrode with a given noble metal content or reduces the amount of precious metal required to achieve a given lifespan.
5 Ifølge opfindelsen er dette barrierelag en for fremstillet oxidoverfladefilm og med rhodium og/eller iridium inkorporeret i oxidoverfladefiLnen under dens dan-nelse i en mængde på op til 1 g/m (som metal) pr. projiceret overfladeareal af substratet.According to the invention, this barrier layer is a pre-prepared oxide surface film and with rhodium and / or iridium incorporated into the oxide surface film during its formation in an amount of up to 1 g / m projected surface area of the substrate.
1q Barrierelagets oxidoverfladefilm gøres ikke-pas- siverende ved optagelsen af rhodium og/eller iridium som metal eller som en forbindelse i almindelighed oxidet eller en delvist oxideret forbindelse.1q The oxide surface film of the barrier layer is rendered non-passivating by the uptake of rhodium and / or iridium as metal or as a compound generally the oxide or a partially oxidized compound.
Opfindelsen angår endvidere en fremgangsmåde til 15 fremstilling af en sådan elektrode, der er ejendommelig ved det i krav 11's kendetegnende del anførte.The invention further relates to a method for producing such an electrode which is characterized by the characterizing part of claim 11.
Opfindelsen angår endvidere en fremgangsmåde til fremstilling af en sådan elektrode, der er ejendommelig ved det i krav 13's kendetegnende del anførte.The invention further relates to a method of producing such an electrode which is characterized by the characterizing part of claim 13.
20 Den anvendte fortyndede syreopløsning, henholds vis opløsning, der angiver det filmdannenede metalsubstrat, vil i det følgende blive betegnet "maling".The dilute acid solution used, or certain solution indicating the film-formed metal substrate, will hereinafter be referred to as "paint".
Den anvendte maling vil typisk inkludere et organisk opløsningsmiddel såsom isopropylalkohol, en syre (især HC1, HBr eller HI) eller et andet middel (f.eks.The paint used will typically include an organic solvent such as isopropyl alcohol, an acid (especially HCl, HBr or HI) or another agent (e.g.
NaF), der angriber det filmdannende metal og fremmer dannelsen af filmdannende metaloxid under den efterfølgende varmebehandling, og et eller flere termoned-brydelige salte af iridium og/eller rhodium. I alminde-30 lighed vil denne opløsning indeholde ca.1-15 g/liter iridium og/eller rhodium (som metal) og være mindst fem gange mere fortyndet og fortrinsvis ca. ti eller flere gange fortyndet (udtrykt efter dets ædelmetalindhold) end den malingsopløsning, der kan anvendes til fremstil-35 lingen af de ydre porøse elektrokatalytiske oxidbeklædninger; dette betyder at mængden af iridium og/eller rhodium vil reduceres f.eks. til 1/5 eller 1/10 eller endog 1/100 af mængden af det tilsvarende platingruppe-NaF), which attacks the film-forming metal and promotes the formation of film-forming metal oxide during the subsequent heat treatment, and one or more thermon-degradable salts of iridium and / or rhodium. Generally, this solution will contain about 1 to 15 g / liter of iridium and / or rhodium (as metal) and be at least five times more diluted and preferably approx. diluted ten or more times (in terms of its noble metal content) than the paint solution that can be used to prepare the outer porous electrocatalytic oxide coatings; this means that the amount of iridium and / or rhodium will be reduced e.g. to 1/5 or 1/10 or even 1/100 of the amount of the corresponding plate group.
DK 153166BDK 153166B
4 metal i den maling, der anvendes til fremstilling af ydre beklædning, til omtrent den samme mængde opløsningsmiddel og syre.4 metal in the paint used for the manufacture of outer coatings for about the same amount of solvent and acid.
Virkningen af syren eller det andet middel, der 5 angriber eller korroderer det filmdannende metal og fremmer dannelsen af oxidfilmen under den efterfølgende varmebehandling er meget vigtig,uden et passende middel, der frembringer denne virkning, ville dannelse af oxid-overfladefilmen på det filmdannende metal i det væsent-lige blive forhindret eller hæmmet.The action of the acid or other agent which attacks or corrodes the film-forming metal and promotes the formation of the oxide film during the subsequent heat treatment is very important, without a suitable agent producing this effect, formation of the oxide surface film on the film-forming metal in it is substantially prevented or inhibited.
Det er blevet bemærket, at ved påføring af et lag af en given opløsningsmiddel/syre-blanding på en filmdannende metalbase, der tidligere er blevet udsat for den sædvanlige rensnings- og ætsningsbehandling, og 1 ζ derpå opvarmes efter tørring for at fjerne opløsningsmidlet vil en given mængde filmdannende metaloxid blive produceret. Denne procedure kan gentages et antal gange (i almindelighed fire eller fem gange for 4 mi HC1 i 60 ml isopropylalkohol påført en titanbase, tørret ^ og opvarmet til 500°C i ti minutter) inden væksten af filmdannende metaloxid under på hinanden følgende behandlinger bliver hæmmet. Det første lag af den dannede integrale oxidoverfladefilm vil være relativt porøs.It has been noted that by applying a layer of a given solvent / acid mixture to a film-forming metal base previously subjected to the usual purification and etching treatment, and then heating ζ after drying to remove the solvent, a given amount of film-forming metal oxide being produced. This procedure can be repeated a number of times (generally four or five times for 4 ml of HCl in 60 ml of isopropyl alcohol applied to a titanium base, dried and heated to 500 ° C for ten minutes) before the growth of film-forming metal oxide during successive treatments is inhibited. . The first layer of the formed integral oxide surface film will be relatively porous.
Dette gør det muligt for det derefter påførte lag af o c: syremalingen at trænge igennem dette første porøse lag under tørringsfasen, således at syren angriber det underliggende filmdannende metal. Ioner af det filmdannende metal afgives således fra basen til omdannelse til oxid under den efterfølgende opvarmning, idet detteThis allows the then applied layer of o c: the acid paint to penetrate this first porous layer during the drying phase, so that the acid attacks the underlying film-forming metal. Thus, ions of the film-forming metal are released from the base to convert to oxide during the subsequent heating, this being
OQOQ
oxid delvist dannes i det første lags porer. Den resulterende oxidfilms porøsitet reduceres således efter hver belægningscyklus, indtil der ikke kan omdannes mere filmdannende metal fra basen til oxid. Der kan således fremstilles en ekstremt stabil relativt kom-pakt og ugennemtrængelig film af filmdannende metaloxid ved påføringen af et begrænset antal belægninger af syremaling efterfulgt af tørring og opvarmning.oxide partially forms in the pores of the first layer. Thus, the porosity of the resulting oxide film is reduced after each coating cycle until no more film-forming metal can be converted from the base to oxide. Thus, an extremely stable relatively compact and impervious film of film-forming metal oxide can be prepared by the application of a limited number of coatings of acid paint followed by drying and heating.
DK 153166 BDK 153166 B
55
For at fremstille barrierelag i elektroden ifølge opfindelsen inkluderer hver påført malingslag en sådan lille mængde af iridium- og/eller rhodiumforbindelsen, at elektrokatalysatoren, der dannes ved termodeSccmpositiai 5 fuldstændigt bliver inkorporeret i den integrale overfladefilm af filmdannende metaloxid, der dannes hver gang. I almindelighed vil hvert påført malingslag inde- 2 holde højst ca. 0,2 g/m iridium og/eller rhodium pr. projiceret overfladeareal af basen,i almindelighed 10 meget mindre. Yderligere påføring af yderligere lag af den fortyndede maling standses efter det antal belægninger efter hvilke vækst af oxidoverfladefilmen på det filmdannende metal ophører eller hæmmes. Således kan den optimale mængde elektrokatalytisk middel i 15 den fortyndede maling og det optimale antal lag, der skal påføres for at frembringe et tilfredsstillende kompakt impermeabelt barrierelag bestemmes ganske let for ethvert særligt substrat,opløsningsmiddel/syre og elektrolytisk materiale. I mange tilfælde vil der 20 påføres to til ti lag af den meget fortyndede maling hvert efterfulgt af tørring og opvarmning fra ca. 400 til 600°C i ca. 5 til 10 minutter med den mulige undtagelse af det afsluttende lag, der kan opvarmes i et længere tidsrum - muligvis adskillige timer eller 2^ dage ved 450-600°C i luft eller i reducerende atmosfære (f.eks. ammoniak/hydrogen).To prepare barrier layers in the electrode of the invention, each applied paint layer includes such a small amount of the iridium and / or rhodium compound that the electrocatalyst formed by the thermocouple 5 is completely incorporated into the integral surface film of film-forming metal oxide formed each time. In general, each applied paint layer will contain at most approx. 0.2 g / m iridium and / or rhodium per ml. projected surface area of the base, generally 10 much smaller. Further application of additional layers of the diluted paint is stopped after the number of coatings after which the growth of the oxide surface film on the film-forming metal ceases or is inhibited. Thus, the optimum amount of electrocatalytic agent in the diluted paint and the optimum number of layers to be applied to produce a satisfactorily compact impermeable barrier layer can be determined quite easily for any particular substrate, solvent / acid and electrolytic material. In many cases, 20 to 10 layers of the very diluted paint will each be applied, followed by drying and heating from approx. 400 to 600 ° C for approx. 5 to 10 minutes, with the possible exception of the final layer, which can be heated for a prolonged period of time - possibly several hours or 2 ^ days at 450-600 ° C in air or in a reducing atmosphere (eg, ammonia / hydrogen).
Set med det blotte øje eller under et mikroskop bevarer barrierelag, der er fremstillet på denne måde på en ætset eller ikke ætset titanbase,i almindelighed den samme række distinktive kendetegn som titanoxid-film fremstillet på samme måde,og som ikke indeholder iridium- og/eller rhodiumelektrokatalysatoren, typisk en klar blå, gul og/eller rød "interferens "-filmfarve.Viewed with the naked eye or under a microscope, barrier layers made in this way on an etched or non-etched titanium base generally retain the same set of distinctive features as titanium oxide films made in the same manner and which do not contain iridium and / or the rhodium electrocatalyst, typically a clear blue, yellow and / or red "interference" film color.
Den fortyndede sure malingsopløsning, der anvendes til at fremstille barrierelaget ved fremgangsmåden ifølge opfindelsen inkluderer fortrinsvis kun en termo- 35The dilute acidic paint solution used to prepare the barrier layer by the process of the invention preferably includes only one thermosetting agent.
DK 153166BDK 153166B
6 nedbrydelig iridium- og/eller rhodiumforbindelse, eftersom den filmdannende metloxidkomponent fås fra basen.6, degradable iridium and / or rhodium compound since the film-forming metal oxide component is obtained from the base.
Den fortyndede maling kan imidlertid indeholde små mængder andre komponenter såsom andre platingruppemetaller 5 {ruthenium, palladium, platin, osmium, især ruthenium), guld-, sølv-, tin-, chrom-, cobalt-, antimon-, molybden-, jern-, nikkel-, mangan-, wolfram, vanadium-, titan-, tantal-, zirconium-, niobium-, bismuth-, lanthan-, tellur-, phosphor-, bor-, beryllium-, natrium-, lithium-, calcium-, 10 strontium-, bly- og kobberforbindelser samt blandinger deraf. Såfremt der anvendes en ringe mængde af en forbindelse af et filmdannende metal, vil det for at bidrage til doping af overfladefilmen i almindelighed være et metal, der er forskelligt fra det filmdannende metal-15 substrat. Der er blevet opnået fremragende resultater med iridium-/rutheniumforbindelser med et vægtforhold på ca. 2:1 som metal. Når sådanne additiver inkluderes i sammensætningen af den fortyndede maling, vil de naturligvis findes i en mængde, der er forenelig med den 20 lille mængde af hovedelektrokatalysatoren, dvs. en iridium- og/eller rhodiumforbindelse, således at i det væsentlige alt af hovedelektrokatalysatoren og additivet inkorporeres i overfladefilmen af filmdannende metaloxid. Under alle omstændigheder er den totale 25 mængde af iridium og/eller rhodium og andre metaller under 1 g/m og i almindelighed under 0,5 g/m ,og det ekstra metal vil være til stede i en mindre mængde end rhodiummet og/eller iridiummet. Disse iridium-/rhodium-forbindelser og andre metalforbindelser kan være termo-20 nedbrydelige til dannelse af metallet eller oxidet, men i intet af tilfældene er det nødvendigt at fortsætte til fuldstændig dekomposition, f.eks. har barrierelag der indeholder delvis nedbrudt iridiumchlorid, der indeholder op til ca. 5 vægt% af det originale chlorfvist 35 fremragende egenskaber. Barrierelag, der indeholder så lidt som 0,1 til 0,3 g/m (som metal) iridium- og/ eller rhodiumoxid/chlorid i deres overfladefilm, giverHowever, the diluted paint may contain small amounts of other components such as other platinum group metals 5 (ruthenium, palladium, platinum, osmium, especially ruthenium), gold, silver, tin, chromium, cobalt, antimony, molybdenum, iron, nickel, manganese, tungsten, vanadium, titanium, tantalum, zirconium, niobium, bismuth, lanthanum, tellurium, phosphorus, boron, beryllium, sodium, lithium, calcium , 10 strontium, lead and copper compounds and mixtures thereof. If a small amount of a film-forming metal compound is used, in order to contribute to doping the surface film, it will generally be a metal different from the film-forming metal substrate. Excellent results have been obtained with iridium / ruthenium compounds having a weight ratio of approx. 2: 1 as metal. Of course, when such additives are included in the diluted paint composition, they will be present in an amount compatible with the small amount of the main electrocatalyst, ie. an iridium and / or rhodium compound, so that substantially all of the main electrocatalyst and additive are incorporated into the surface film of film-forming metal oxide. In any case, the total 25 amount of iridium and / or rhodium and other metals is below 1 g / m and generally below 0.5 g / m, and the additional metal will be present in a smaller amount than the rhodium and / or iridiummet. These iridium / rhodium compounds and other metal compounds may be thermally degradable to form the metal or oxide, but in neither case is it necessary to proceed to complete decomposition, e.g. has barrier layers containing partially degraded iridium chloride containing up to approx. 5% by weight of the original chlorophyll 35 excellent properties. Barrier layers containing as little as 0.1 to 0.3 g / m (as metal) iridium and / or rhodium oxide / chloride in their surface film provide
DK 153166 BDK 153166 B
7 fremragende resultater. Undersøgelser har vist, at et 2 barrierelag, der indeholder 0,5 til 0,6 g/m (som metal) iridium frembringer en optimal virkning udtrykt ved den forøgede levetid af de beklædte elektroder.7 great results. Studies have shown that a 2 barrier layer containing 0.5 to 0.6 g / m (as metal) iridium produces an optimum effect expressed by the increased life of the coated electrodes.
5 Forøgelse af iridiummængden udover disse værdier forøger ikke levetiden yderligere.Increasing the amount of iridium beyond these values does not further increase the service life.
Såfremt der anvendes et titansubstrat,har oxid-overfladefilmen vist sig for det meste at være rutil-titandioxid;formodentlig katalyseres dannelsen af rutil f.eks. ved ca. 400-500°C af rhodiummet og/eller iridiummet i den fortyndede belægningsopløsning.If a titanium substrate is used, the oxide surface film has been found to be mostly rutile-titanium dioxide, presumably catalyzing the formation of rutile e.g. at about. 400-500 ° C of the rhodium and / or iridium in the diluted coating solution.
Efter dannelse af det forbedrede barrierelag, der er impermeabelt for elektrolyt og udviklet oxygen påføres den porøse ydre elektrokatalytiske beklædning ^ under anvendelse af standardteknikker, f.eks. ved oven på det forfremstillede barrierelag at påføre et antal lag af en relativt koncentreret opløsning, der indeholder en termonedbrydelig platingruppemetalforbindelse og opvarmning. Hvert påført ydre lag vil indeholde mindst 20 0,4 g/m^ af platingruppemetallet pr. projiceret område af substratet og belægningsproceduren gentages til opbygning af en effektiv ydre beklædning, der indehol-der mindst ca. 2 g/m af platingruppemetal (ler): i almindelighed i oxidform. Beklædningskomponenterne kan 25 vælges til at give en beklædning, der i det væsentlige består af en fast opløsning af mindst eet oxid af et filmdannende metal og mindst eet platingruppemetaloxid som beskrevet i USA-patent nr. 3.632.498. Beklædningen er med fordel en fast opløsning af ruthenium- og titan-5° oxider med et ruthenium:titan atanforhold på fra 1:1 til 1:4. I dette tilfælde består beklædningen af adskillige ovenpå hinanden liggende lag, der typisk har et mikro-krakeleret udseende og er ganske porøs. Anvendelse af et forbedret barrrierelag i elektroden ifølge opfin-35 delsen sammen med en sådan beklædning forbedrer betydeligt funktionen af elektroden under standard accelererede levetidsundersøgelser ved oxygenudviklingsbetingel-After forming the improved barrier layer impermeable to electrolyte and oxygen developed, the porous outer electrocatalytic coating is applied using standard techniques, e.g. by applying on top of the prefabricated barrier layer a plurality of layers of a relatively concentrated solution containing a thermally degradable plate group metal compound and heating. Each applied outer layer will contain at least 20 0.4 g / m 2 of the plate group metal per The projected area of the substrate and the coating procedure are repeated to build an effective outer coating containing at least approx. 2 g / m of plate group metal (clay): generally in oxide form. The coating components may be selected to provide a coating consisting essentially of a solid solution of at least one oxide of a film-forming metal and at least one plate group metal oxide as disclosed in U.S. Patent No. 3,632,498. The coating is advantageously a solid solution of ruthenium and titanium-5 ° oxides with a ruthenium: titanium atane ratio of from 1: 1 to 1: 4. In this case, the coating consists of several superimposed layers which typically have a micro-cracked appearance and are quite porous. The use of an improved barrier layer in the electrode of the invention together with such cladding significantly improves the functioning of the electrode during standard accelerated lifetime studies under oxygen evolution conditions.
DK 153166 BDK 153166 B
8 ser. Det kan forudses, at under betingelserne for normal kommerciel fremstilling af chlor, vil den forbedrede elektrode have en væsentligt længere levetid, eftersom det er kendt, at en af årsagerne til sammen-5 brud af disse elektroder efter udstrakt anvendelse ved chlorfremstilling skyldes oxygens virkning på substratet. Det vil også være muligt at opnå den samme levetid med en mærkbar reduktion i tykkelsen af den ydre beklædning, hvilket muliggør en besparelse i mængden af an-10 vendt beklædningsmateriale og i det arbejde og energiforbrug, der anvendes til fremstiling.8 ser. It can be predicted that under the conditions of normal commercial production of chlorine, the improved electrode will have a significantly longer life, since it is known that one of the causes of the breakdown of these electrodes after extensive use in chlorine production is due to the effect of oxygen on the substrate. It will also be possible to achieve the same lifetime with a noticeable reduction in the thickness of the outer garment, which allows for a reduction in the amount of clothing used and in the work and energy consumption used for manufacturing.
Den ydre beklædning kan også dannes af et eller flere platingruppemetaller, f.eks. en platin-iridium-legering, der er anvendelig til chloratfremstilling ^ og i begrænset udstrækning i skillevægs- eller membranceller til chlorfremstilling. Med konventionelle Pt/Ir-beklædte elektroder skal beklædningerne være relativt tykke (mindst ca. 5 g/m ) for at undgå passiviseringsproblemer. Med det omhandlede forbedrede barrierelag kan der anvendes tyndere og mere porøse lag af platinmetallerne, uden at der opstår problemer på grund af oxidation af substratet eller de ulemper, der er forbundne med de hidtil kendte passive barrierelag af titanoxid .The outer covering may also be formed from one or more sheet metal metals, e.g. a platinum-iridium alloy useful for chlorate production ^ and to a limited extent in partition or membrane cells for chlorine production. With conventional Pt / Ir coated electrodes, the coatings should be relatively thick (at least about 5 g / m) to avoid passivation problems. With the present improved barrier layer, thinner and more porous layers of the platinum metals can be used without any problems due to oxidation of the substrate or the disadvantages associated with the known passive barrier layers of titanium oxide.
^ Det er også muligt at påføre den ydre beklædning ved plasmasprøjtning af en fast opløsning af et oxid af et filmdannende metal og et platingruppemetaloxid.It is also possible to apply the outer coating by plasma spraying of a solid solution of an oxide of a film-forming metal and a platinum group metal oxide.
F.eks. kan der fremstilles et pulver af en fast opløsning ved flammesprøjtning som beskrevet i USA-patent nr. 3.677.975, og dette pulver plasmasprøjtes derpå på basen. Alternativt påføres beklædningen ved plasmasprøjtning af mindst et oxid af et filmdannende metal ovenpå det forfremstillede barrierelag med efterfølgende inkorporering af platingruppemetal(ler) og/eller oxider deraf i det plasmasprøjtede oxid af filmdannende metal, f.eks. efter fremgangsmåden i USA-patent nr.Eg. For example, a solid solution powder can be prepared by flame spraying as described in U.S. Patent No. 3,677,975, and this powder is then sprayed onto the base. Alternatively, the coating is applied by plasma spraying of at least one oxide of a film-forming metal on top of the prefabricated barrier layer with subsequent incorporation of plate group metal (s) and / or oxides thereof into the plasma-sprayed oxide of film-forming metal, e.g. in accordance with the method of U.S. Pat.
4.140.813. Det forbedrede barrierelag forøger igen levetiden og muliggør en reduktion af ædelmetalindholdet4140813. The improved barrier layer again increases the service life and enables a reduction in the precious metal content
DK 153166 BDK 153166 B
9 i beklædningen.9 in the garment.
Ved en foretrukken fremgangsmåde til massefremstilling af elektroderne udsættes et sæt elektrodesubstrater sammen for en serie forbehandlinger inklusive 5 ætsning og dannelse af barrierelaget ved dypning af substratsættet i den nævnte fortyndede opløsning og opvarmning af substratsættet/og derefter påføres den ydre elektrokatalytiske beklædning på substraterne en ad gangen. Denne procedure fjerner den ulempe , der 10 i kommercielle elektrodebeklædningsanlæg er forbundet med en’"flaskehals" mellem ætsebadét og beklædningslinien. Ved den sædvanlige massefremstillingsprocedure forbehandles et sæt substrater med sandblæsning efterfulgt af ætsning, rensning og tørring, og disse substra-15 ter beklædes derpå individuelt på en beklædnings/bag-ningslinie. Det har således været nødvendigt at synkronisere ætsningen med beklædningen/bagningen, fordi de ætsede substrater ikke kan efterlades i lange tidsrum (mere end ca. 2 dage) uden skade for elektrodefunktio-nen på grund af luftoxidation af substratet inden beklædning, især hvis støv eller snavs forankres i den tynde oxidfilm. Ved forbeklædning af substratsættene med et forbedret barrierelag umiddelbart efter ætsning undgås denne flaskehalsvirkning, og de overfladebehand- n c lede substrater kan opbevares uden risiko for yderligere oxidation. Alt støv eller snavs, der kan sætte sig på barrierelaget, kan let blæses af inden beklædning, eftersom det ikke forankres i filmen.In a preferred method of mass-making the electrodes, a set of electrode substrates is subjected to a series of pretreatments including etching and formation of the barrier layer by dipping the substrate set into said diluted solution and heating the substrate set / and then applying the outer electrocatalytic coating to the substrates. . This procedure removes the disadvantage associated with commercial electrode apparel systems with a "bottleneck" between the etching bath and the clothing line. In the usual mass-making procedure, a set of substrates with sandblasting is pre-treated followed by etching, cleaning and drying, and these substrates are then individually coated on a coating / baking line. Thus, it has been necessary to synchronize the etching with the coating / baking because the etched substrates cannot be left for long periods (more than about 2 days) without damage to the electrode function due to air oxidation of the substrate prior to coating, especially if dust or dirt is anchored in the thin oxide film. By pre-coating the substrate sets with an improved barrier layer immediately after etching, this bottleneck effect is avoided and the surface-treated substrates can be stored without the risk of further oxidation. Any dust or dirt that can settle on the barrier layer can easily be blown off prior to cladding as it is not anchored in the film.
Yderligere er dyppepåføringsproceduren på etFurther, the dip application procedure is one
O AO A
substratsæt, der er stablet mod hinanden tilfredsstillende til fremstilling af det forbedrede barrierelags oxidfilm, der vokser op fra substratet. En tilsvarende håndtering er ikke tilfredsstillende til påføring af de konventionelle beklædninger, hvor en tilføjet tyk- 3 5 kelse ved hver påført beklædning skal opbygges op over og ovenpå basen af filmdannende metal og dens meget tynde oxidoverfladefilm.substrate sets stacked against each other satisfactorily to produce the enhanced barrier layer oxide film growing from the substrate. Corresponding handling is not satisfactory for the application of the conventional coatings, where an added thickness must be built up over and above the film-forming metal base and its very thin oxide surface film with each applied coat.
DK 153166 BDK 153166 B
1010
Elektrodebasen kan være en plade af ethvert filmdannende metal, skønt titan foretrækkes af omkostningsgrunde. Stænger, rør og ekspanderede net af titan eller andre filmdannende metaller kan ligeledes over-5 fladebehandles ved den omhandlede fremgangsmåde. Der kan også anvendes titan eller andet filmdannende metal, der er lagt på en ledende kerne. Til de fleste anvendelser vil basen være ætset inden overfladebehandlingen for at give en ujævn overflade, der giver god foran-1 0 kring af den efterfølgende påførte elektrokatalytiske beklædning. Det er også muligt at overfladebehandle porøs, sintret eller overfladesprøjtet titan med den fortyndede malingsopløsning på samme måde, men det porøse titan vil fortrinsvis blot være et overfladelag 1 5 på en ikke porøs base.The electrode base may be a sheet of any film-forming metal, although titanium is preferred for cost reasons. Rods, tubes and expanded grids of titanium or other film-forming metals can also be surface treated by the method of the invention. Titanium or other film-forming metal applied to a conductive core may also be used. For most applications, the base will be etched prior to the surface treatment to provide an uneven surface that provides good front coverage of the subsequent electrocatalytic coating applied. It is also possible to surface-treat porous, sintered or surface-sprayed titanium with the diluted paint solution in the same way, but the porous titanium will preferably merely be a surface layer 15 on a non-porous base.
Elektroderne med et forbedret barrierelag ifølge opfindelsen er fremragende egnede som anoder til chlor-alkalielektrolyse. Disse elektroder har også vist fremragende funktion ved anvendelse til elektro- 20 udvinding i en blandet chlorid-sulfatelektrolyt, der giver blandet chlor- og oxygenudvikling.The electrodes with an improved barrier layer according to the invention are excellent as anodes for chlor-alkali electrolysis. These electrodes have also shown excellent performance when used for electro-recovery in a mixed chloride-sulfate electrolyte providing mixed chlorine and oxygen evolution.
Opfindelsen belyses nærmere i de efterfølgende eksempler.The invention is further illustrated in the following examples.
2525
Eksempel 1Example 1
Titanplader med målene 7,5 x 2 cm, der er til- (5) gængelige under handelsnavnet "Contimet^30" blev affedtet, renset i vand, tørret og ætset i en 1/2 time i oxalsyre. En malingsopløsning bestående af 6 ml n-pro-30 panol, 0,4 ml HC1 (koncentreret) og 0,1 g iridium- og/eller rhodiumchlorid blev derpå påført med pensel på begge sider af pladerne i fire tynde lag. Pladerne blev tørret for at afdampe opløsningsmidlet og derpå opvarmet i luft til 500°C i 10 minutter efter hver 35 af de første tre lag og i 30 minutter efter det afsluttende lag. Dette giver et rhodium- og/eller iridiumind-hold (beregnet som metal) på ca. 0,2 til 0,3 g/m i7.5 x 2 cm titanium plates available for (5) under the trade name "Contimet ^ 30" were degreased, purified in water, dried and etched for 1/2 hour in oxalic acid. A paint solution consisting of 6 ml of n-propanol, 0.4 ml of HCl (concentrated) and 0.1 g of iridium and / or rhodium chloride was then applied with a brush on both sides of the plates in four thin layers. The plates were dried to evaporate the solvent and then heated in air to 500 ° C for 10 minutes after each of the first three layers and for 30 minutes after the final layer. This gives a rhodium and / or iridium content (calculated as metal) of approx. 0.2 to 0.3 g / m in
DK 153166 BDK 153166 B
11 barrierelaget afhængigt af mængden af opløsning i hvert påført lag bestemt ved vægtmåling.11, the barrier layer depending on the amount of solution in each applied layer determined by weight measurement.
En titanoxid-rutheniumoxid fast opløsning med et titan:ruthenium atanforhold på ca. 2:1 blev derpå 5 påført ved med pensel at påføre en opløsning bestående af 6 ml n-propanol, 0„4 ml HC1 (koncentreret), 3 ml butyltitanat og 1 g RæCl^ og opvarmning i luft ved 400°C i 5 minutter. (Bemærkning: Denne opløsning er ti gange mere koncentreret udtrykt ved ædelmetal:pro-10 panolopløsningsmiddel end den fortyndede opløsning, der anvendes til fremstilling af barrierelaget). Denne procedure blev gentaget indtil beklædningen havde en tyk- 2 2 kelse på ca. 10 g/m (dvs. ca. 4 g/m Ru-metal).A titanium oxide-ruthenium oxide solid solution with a titanium: ruthenium atane ratio of approx. 2: 1 was then applied 5 by brushing with a solution consisting of 6 ml of n-propanol, 0 ° 4 ml of HCl (concentrated), 3 ml of butyl titanate and 1 g of RaCl 2 and heating in air at 400 ° C for 5 minutes. . (Note: This solution is ten times more concentrated in precious metal: propanol pan solvent than the diluted solution used to prepare the barrier layer). This procedure was repeated until the garment had a thickness of approx. 10 g / m (i.e. about 4 g / m Ru metal).
Således fremstillede elektroder udsættes for 15 sammenlignende elektrokemiske undersøgelser med tilsvarende elektroder (a) med et TiO^ barrierelag fremstillet efter den samme fremgangsmåde men med en maling, der udelukkende består af 6 ml n-propanol og 0,4 ml HC1 (koncentreret) og (b) uden noget barrierelag. De 20 første resultater antyder, at elektroden ifølge opfindelsen får levetiden forøget med en faktor 2-10 ved accelererede levetidsundersøgelser som anoder under oxygenudviklingsbetingelser og bør ved chlor-alkalielektrolyse have en levetid, der er mange gange længere end sammen-25 ligningsanode (a) og betydeligt længere end sammenligningsanode (b) .Electrodes thus prepared are subjected to 15 comparative electrochemical studies with corresponding electrodes (a) with a TiO 2 barrier layer prepared by the same procedure but with a paint consisting solely of 6 ml of n-propanol and 0.4 ml of HCl (concentrated) and ( b) without any barrier layer. The first 20 results suggest that the electrode of the invention is increased by a factor of 2-10 by accelerated lifetime studies as anodes under oxygen evolution conditions and should have a life span many times longer than the comparison anode (a) and by chlor-alkali electrolysis; significantly longer than comparison anode (b).
Eksempel 2Example 2
En titanplade blev affedtet, renset i vand, tør-50 ret, ætset og derpå overfladebehandlet som i eksempel 1 med en malingsopløsning indeholdende iridium- og rutheniumchlorider i vægtforhold på 2:1 (som metal). Behandlingen blev gentaget fire gange indtil den danne-de titandioxidfilm indeholdt en mængde på 0,2 g/m Ir 55 og 0,1 g/ία Ru, begge beregnet som metal. Varmebehandlingen blev udført ved 400°C i 10 minutter efter hvert påført lag. Derpå blev der påført en ydre beklædning afA titanium plate was degreased, purified in water, dried, etched and then surface treated as in Example 1 with a paint solution containing 2: 1 by weight iridium and ruthenium chlorides (as metal). The treatment was repeated four times until the titanium dioxide film formed contained an amount of 0.2 g / m Ir 55 and 0.1 g / µl Ru, both calculated as metal. The heat treatment was carried out at 400 ° C for 10 minutes after each layer applied. Then an outer covering was applied
DK 153166 BDK 153166 B
1212
TiC^.RuC^ som i eksempel 1. De samme elektrokemiske sammenligningsundersøgelser har givet de samme lovende begyndelsesresultater som i eksempel 1.TiC ^ .RuC ^ as in Example 1. The same electrochemical comparison studies have yielded the same promising initial results as in Example 1.
5 Eksempel 3Example 3
Titanplader blev affedtet, renset i vand, tørret og ætset som i eksempel 1 og behandlet med en iridium-chloridopløsning svarende til den i eksempel 1. Opløsningen blev påført i fire tynde lag, og pladerne blev 10 tørret for at afdampe opløsningsmidlet og derpå opvarmet til 480°C i 10 minutter ved afslutningen af hver påføring. Iridiumkoncentrationen blev varieret til at 2 give et indhold på 0,3, 0,6 og 0,8 g/m iridium (beregnet som metal) i barrierelaget.Titanium plates were degreased, purified in water, dried and etched as in Example 1 and treated with an iridium chloride solution similar to that of Example 1. The solution was applied in four thin layers and the plates were dried to evaporate the solvent and then heated to room temperature. 480 ° C for 10 minutes at the end of each application. The iridium concentration was varied to give a content of 0.3, 0.6 and 0.8 g / m iridium (calculated as metal) in the barrier layer.
1515
En beklædning af titandioxid-rutheniumdioxid fast opløsning blev derpå påført som i eksempel 1, bortset fra at beklædningstykkelsen svarede til 20 g/m (ca. 8 g/m Ru metal). Disse elektroder blev udsat for accelererede levetidsundersøgelser under oxygen- 20 udviklingsbetingelser. Levetidsforøgelsen i sammenligning med levetiden af en tilsvarende elektrode uden et barrierelag (eller med et barrierelag af TiC^, der ikke indeholder iridium) var som følger:A titanium dioxide-ruthenium dioxide solid solution coating was then applied as in Example 1, except that the coating thickness was 20 g / m (about 8 g / m Ru metal). These electrodes were subjected to accelerated lifetime studies under oxygen evolution conditions. The lifetime increase in comparison with the life of a corresponding electrode without a barrier layer (or with a barrier layer of TiC 2 containing no iridium) was as follows:
Ir i barrierelag Levetidsforøgelse 25 (g/m^) (faktor) 0,3 2 0,6 5 0,8 5Ir in barrier layer Lifetime increase 25 (g / m 2) (factor) 0.3 2 0.6 5 0.8 5
Til sammenligning viser en tilsvarende beklædt elektrode uden barrierelag, men med tilsætning af 0,6 g iridium dispergeret i beklædningen, kun en marginal levetidsforøgelse.In comparison, a similar coated electrode without barrier layers, but with the addition of 0.6 g of iridium dispersed in the coating, shows only a marginal lifetime increase.
DK 153166BDK 153166B
1313
Eksempel 4Example 4
Der blev fremstillet elektroder på tilsvarende vis som i eksempel 1, men under anvendelse af sn fortyndet maling, der indeholdt forskellige platingruppe-5 metaller inklusiv palladium, platin og ruthenium alene, såvel som rhodium og iridium som beskrevet tidligere til fremstilling af barrierelaget. Disse elektroder blev udsat for levetidssammenligningsundersøgelser som oxygenudviklingsanoder. Kun elektroderne med et bar-10 rierelag, der indeholdt Rh og/eller Ir viste en markant forøgelse i levetid ved denne undersøgelse; kombinationer af Rh og/eller Ir med mindre mængder af de andre platingruppemetaller eller deres forbindelser, især Ru og Pd frembragte også væsentlige forbedringer.Electrodes were prepared in a similar manner to Example 1, but using snow-diluted paint containing various platinum group metals including palladium, platinum and ruthenium alone, as well as rhodium and iridium as described previously to prepare the barrier layer. These electrodes were subjected to lifetime comparison studies such as oxygen evolution anodes. Only the electrodes with a bar-10 barrier layer containing Rh and / or Ir showed a marked increase in lifetime in this study; combinations of Rh and / or Ir with smaller amounts of the other platinum group metals or their compounds, in particular Ru and Pd, also produced significant improvements.
1515
Eksempel 5Example 5
Titanplader blev forsynet med barrierelag, der 2 indeholdt ca. 0,2 g/m iridium og/eller rhodium efter fremgangsmåden i eksempel 1. De blev derpå malet med 20 en opløsning, der indeholdt 0,5 g iridiumchlorid og 1 g platinchlorid i 10 ml isopropylalkohol og 10 ml linalool, og opvarmet i en ovn til 350°C. Der blev derpå passeret en ammoniak/hydrogen-blanding i ca. 30 sekunder for at frembringe en beklædning, der indeholdt 70% Pt og 30% 25 Ir. Belægningsproceduren blev gentaget til opbygning af en beklædning, der indeholdt 4 g/m af Pt/Ir-legeringen.Titanium sheets were provided with barrier layers containing 2 approx. 0.2 g / m iridium and / or rhodium according to the procedure of Example 1. They were then ground with a solution containing 0.5 g iridium chloride and 1 g platinum chloride in 10 ml isopropyl alcohol and 10 ml linalool, and heated in a oven to 350 ° C. An ammonia / hydrogen mixture was then passed for approx. 30 seconds to produce a garment containing 70% Pt and 30% 25 Ir. The coating procedure was repeated to build a coating containing 4 g / m of the Pt / Ir alloy.
22
For tilsvarende elektroder beklædt med mindre end 7 g/m af Pt/Ir-legeringen, men uden det forbedrede barrierelag, har det været rapporteret, at drift ved forhøjet 30 strømtæthed frembringer passivisering og at mindst 2 7 g/m skal påføres for at opnå tilfredsstillende drift i udstrakte tidsrum. Dette problem løses tilsyneladende med elektroden ifølge opfindelsen, der arbejder 2 tilfredsstillende med en beklædning på 4 g/m .For similar electrodes coated with less than 7 g / m of the Pt / Ir alloy, but without the improved barrier layer, it has been reported that operation at elevated 30 current density causes passivation and that at least 27 g / m must be applied to achieve satisfactory operation for extended periods. This problem is apparently solved with the electrode according to the invention, which works 2 satisfactorily with a coating of 4 g / m.
DK 153166 B ^ 14DK 153166 B ^ 14
Eksempel 6Example 6
Titanplader blev forsynet med barrierelag, der o indeholdt ca. 0,2 g/m iridium og/eller rhodium efter fremgangsmåden i eksempel 1. Derpå blev der plasmasprøj- 2 5 tet et lag på ca. 400 g/m titanoxid på barrierelaget under anvendelse af standardteknikker. Det plasmasprøjtede titanoxidlag blev derpå beklædt med lag, der inde-2 holdt 2 g/m (som metal) rutheniumoxid og/eller iridiumoxid i forskellige forhold ved maling med en opløs-10 ning af 6 ml propanol og 1 g RuCl^ og/eller IrCl^ og opvarmning i luft til 500 C i 10 minutter efter hvert lag. Indledende elektrokemiske undersøgelser antyder, at disse elektroder bør have en ekstremt lang levetid som anoder i kviksølv-chlor-alkaliceller, der arbejder 15 ved store strømtætheder. Ud fra de data,der er offentliggjort i USA-patent nr. 4.140.813 forekommer det, at elektroden ifølge opfindelsen vil opnå den samme fremragende levetid med så lidt som 1/5 af ædelmetalindholdet.Titanium sheets were provided with barrier layers containing o. 0.2 g / m iridium and / or rhodium according to the procedure of Example 1. Thereafter, a plasma spray of a layer of approx. 400 g / m 2 of titanium oxide on the barrier layer using standard techniques. The plasma sprayed titanium oxide layer was then coated with layers containing 2 g / m 2 (as metal) ruthenium oxide and / or iridium oxide in various ratios by painting with a solution of 6 ml of propanol and 1 g of RuCl 2 and / or IrCl 2 and heating in air to 500 C for 10 minutes after each layer. Initial electrochemical studies suggest that these electrodes should have an extremely long life as anodes in mercury-chloro-alkaline cells operating at high current densities. From the data published in U.S. Patent No. 4,140,813, it appears that the electrode of the invention will achieve the same excellent service life with as little as 1/5 of the precious metal content.
2020
Eksempel 7Example 7
Titanplader blev forsynet med barrierelag, der indeholdt ca. 0,3 g/m iridium, rhodium og iridium/ru- thenium i et 2:1 vægtforhold efter fremgangsmåden i 25 eksempel 1 (bortset fra at den afsluttende opvarmning i nogle tilfælde blev forlænget i adskillige timer.Titanium sheets were provided with barrier layers containing approx. 0.3 g / m iridium, rhodium and iridium / ruthenium in a 2: 1 weight ratio according to the procedure of Example 1 (except that in some cases the final heating was prolonged for several hours.
En vandig opløsning, der indeholdt iridiumchlo-rid og tantalchlorid (med Ir og Ta metaller i ens vægtforhold) blev påført med pensel på begge sider af pla-30 derne i 5, 10 og 15 lag. Hvert påført lag indeholdt ca.An aqueous solution containing iridium chloride and tantalum chloride (with Ir and Ta metals in equal weight ratio) was applied with brush on both sides of the plates in 5, 10 and 15 layers. Each applied layer contained approx.
0,5 g/m iridium. Efter hvert lag blev pladerne tørret og opvarmet i luft i 10 minutter ved 450°C og i 1 time efter det afsluttende lag. Den resulterende beklædning var en fast opløsning af iridium- og tantaloxider, der indeholdt ca. 2,5, 5 og 7,5 g/m^ iridium. Elektroderne blev afprøvet som anoder i 10%'s svovlsyre ved 60°C0.5 g / m iridium. After each layer, the plates were dried and heated in air for 10 minutes at 450 ° C and for 1 hour after the final layer. The resultant coating was a solid solution of iridium and tantalum oxides containing approx. 2.5, 5 and 7.5 g / m 2 iridium. The electrodes were tested as anodes in 10% sulfuric acid at 60 ° C
Claims (22)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB7934856 | 1979-10-08 | ||
GB7934856 | 1979-10-08 |
Publications (3)
Publication Number | Publication Date |
---|---|
DK423380A DK423380A (en) | 1981-04-09 |
DK153166B true DK153166B (en) | 1988-06-20 |
DK153166C DK153166C (en) | 1988-12-19 |
Family
ID=10508363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK423380A DK153166C (en) | 1979-10-08 | 1980-10-07 | COATED METAL ELECTRODE WITH IMPROVED BARRIER LAYER, PROCEDURE FOR PREPARING SUCH A ELECTRODE, AND USING THE ELECTRODE AS ANODE BY CHLOR ALKALIE ELECTROLYSIS |
Country Status (17)
Country | Link |
---|---|
EP (1) | EP0027051B1 (en) |
JP (1) | JPS5658984A (en) |
KR (1) | KR860001050B1 (en) |
AT (1) | ATE8414T1 (en) |
AU (1) | AU540213B2 (en) |
BR (1) | BR8006373A (en) |
DD (1) | DD153397A5 (en) |
DE (1) | DE3068540D1 (en) |
DK (1) | DK153166C (en) |
ES (2) | ES495705A0 (en) |
FI (1) | FI68090C (en) |
GR (1) | GR70316B (en) |
IS (1) | IS1141B6 (en) |
MX (1) | MX159655A (en) |
NO (1) | NO155702C (en) |
SU (1) | SU1292670A3 (en) |
ZA (1) | ZA806185B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1190186A (en) * | 1980-08-18 | 1985-07-09 | Henri B. Beer | Electrode with mixed oxide interface on valve metal base and stable outer coating |
DE3270207D1 (en) * | 1981-04-06 | 1986-05-07 | Eltech Systems Corp | Recoating of electrodes |
EP0103014A1 (en) * | 1982-03-11 | 1984-03-21 | Engelhard Corporation | PROMOTION OF Pt-Ir CATALYTIC ELECTRODES WITH LEAD, TANTALUM, RUTHENIUM AND OXYGEN |
JPS58171589A (en) * | 1982-03-31 | 1983-10-08 | Ishifuku Kinzoku Kogyo Kk | Electrode for electrolysis and its manufacture |
CH649315A5 (en) * | 1982-09-22 | 1985-05-15 | Bbc Brown Boveri & Cie | Method of producing an electrode, and electrode for an electrochemical cell |
JPS6022075B2 (en) * | 1983-01-31 | 1985-05-30 | ペルメレック電極株式会社 | Durable electrolytic electrode and its manufacturing method |
JPH0726240B2 (en) * | 1989-10-27 | 1995-03-22 | ペルメレック電極株式会社 | Electrolytic pickling or electrolytic degreasing method for steel sheet |
LU88516A1 (en) * | 1993-07-21 | 1996-02-01 | Furukawa Electric Co Ltd | Electrode for generating oxygen - obtd. by coating and depositing titanium cpd. on surface of base material, applying pyrolysis to titanium cpd., under oxygen@-contg. atmos. |
JP3810043B2 (en) | 1998-09-30 | 2006-08-16 | ペルメレック電極株式会社 | Chrome plating electrode |
EP1620582B1 (en) * | 2003-05-07 | 2016-12-21 | De Nora Tech, Inc. | Smooth surface morphology anode coatings |
CN1849414B (en) * | 2003-10-08 | 2011-01-26 | 阿克佐诺贝尔公司 | Electrode |
DE102010043085A1 (en) * | 2010-10-28 | 2012-05-03 | Bayer Materialscience Aktiengesellschaft | Electrode for electrolytic chlorine production |
CN212729805U (en) * | 2017-10-16 | 2021-03-19 | 株式会社村田制作所 | Biological signal sensor |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL122179C (en) * | 1959-02-06 | 1966-12-15 | ||
GB1206863A (en) * | 1968-04-02 | 1970-09-30 | Ici Ltd | Electrodes for electrochemical process |
US3775284A (en) * | 1970-03-23 | 1973-11-27 | J Bennett | Non-passivating barrier layer electrodes |
GB1351741A (en) * | 1970-03-25 | 1974-05-01 | Marston Excelsior Ltd | Electrodes |
US3926773A (en) * | 1970-07-16 | 1975-12-16 | Conradty Fa C | Metal anode for electrochemical processes and method of making same |
US3711385A (en) * | 1970-09-25 | 1973-01-16 | Chemnor Corp | Electrode having platinum metal oxide coating thereon,and method of use thereof |
DE2255690C3 (en) * | 1972-11-14 | 1985-01-31 | Conradty GmbH & Co Metallelektroden KG, 8505 Röthenbach | Anode for electrochemical processes |
NL7502841A (en) * | 1975-03-11 | 1976-09-14 | Stamicarbon | METHOD OF MANUFACTURING A METAL ELECTRODE. |
US4112140A (en) * | 1977-04-14 | 1978-09-05 | The Dow Chemical Company | Electrode coating process |
-
1980
- 1980-10-03 BR BR8006373A patent/BR8006373A/en not_active IP Right Cessation
- 1980-10-04 SU SU802990890A patent/SU1292670A3/en active
- 1980-10-06 GR GR63063A patent/GR70316B/el unknown
- 1980-10-06 AU AU62984/80A patent/AU540213B2/en not_active Expired
- 1980-10-07 ZA ZA00806185A patent/ZA806185B/en unknown
- 1980-10-07 KR KR1019800003849A patent/KR860001050B1/en not_active IP Right Cessation
- 1980-10-07 DE DE8080303526T patent/DE3068540D1/en not_active Expired
- 1980-10-07 IS IS2586A patent/IS1141B6/en unknown
- 1980-10-07 DK DK423380A patent/DK153166C/en not_active IP Right Cessation
- 1980-10-07 NO NO802985A patent/NO155702C/en unknown
- 1980-10-07 ES ES495705A patent/ES495705A0/en active Granted
- 1980-10-07 AT AT80303526T patent/ATE8414T1/en not_active IP Right Cessation
- 1980-10-07 MX MX184224A patent/MX159655A/en unknown
- 1980-10-07 EP EP80303526A patent/EP0027051B1/en not_active Expired
- 1980-10-07 FI FI803173A patent/FI68090C/en not_active IP Right Cessation
- 1980-10-07 JP JP14035180A patent/JPS5658984A/en active Granted
- 1980-10-08 DD DD80224371A patent/DD153397A5/en unknown
-
1981
- 1981-08-14 ES ES504762A patent/ES8205887A1/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
KR830004461A (en) | 1983-07-13 |
DK153166C (en) | 1988-12-19 |
ZA806185B (en) | 1981-09-30 |
BR8006373A (en) | 1981-04-14 |
MX159655A (en) | 1989-07-25 |
JPS5658984A (en) | 1981-05-22 |
DE3068540D1 (en) | 1984-08-16 |
AU540213B2 (en) | 1984-11-08 |
NO802985L (en) | 1981-04-09 |
SU1292670A3 (en) | 1987-02-23 |
ATE8414T1 (en) | 1984-07-15 |
NO155702B (en) | 1987-02-02 |
IS2586A7 (en) | 1981-04-09 |
EP0027051B1 (en) | 1984-07-11 |
KR860001050B1 (en) | 1986-08-01 |
FI68090B (en) | 1985-03-29 |
DD153397A5 (en) | 1982-01-06 |
DK423380A (en) | 1981-04-09 |
ES8205882A1 (en) | 1982-06-16 |
EP0027051A1 (en) | 1981-04-15 |
ES504762A0 (en) | 1982-06-16 |
ES8205887A1 (en) | 1982-06-16 |
NO155702C (en) | 1987-05-13 |
AU6298480A (en) | 1981-04-16 |
IS1141B6 (en) | 1983-12-05 |
GR70316B (en) | 1982-09-10 |
JPS6160147B2 (en) | 1986-12-19 |
FI68090C (en) | 1985-07-10 |
FI803173L (en) | 1981-04-09 |
ES495705A0 (en) | 1982-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4331528A (en) | Coated metal electrode with improved barrier layer | |
US3773555A (en) | Method of making an electrode | |
US3948751A (en) | Valve metal electrode with valve metal oxide semi-conductive face | |
US7247229B2 (en) | Coatings for the inhibition of undesirable oxidation in an electrochemical cell | |
KR100227556B1 (en) | Electrolytic electrode | |
US4070504A (en) | Method of producing a valve metal electrode with valve metal oxide semi-conductor face and methods of manufacture and use | |
US6251254B1 (en) | Electrode for chromium plating | |
KR100735588B1 (en) | Cathode for electrolysing aqueous solutions | |
DK153166B (en) | CLOTHED METAL ELECTRODE WITH IMPROVED BARRIER LAYER, PROCEDURE FOR PREPARING SUCH A ELECTRODE, AND USING THE ELECTRIC WIRE AS ANODE BY CHLOR ALKALIE ELECTROLYSIS | |
US7811426B2 (en) | Oxygen evolution electrode | |
EP0715002B1 (en) | Stable coating solutions for preparing electrocatalytic mixed oxide coatings on metal substrates or metal-coated conductive substrates, and a method for the preparation of dimensionally stable anodes using such solutions | |
US4318795A (en) | Valve metal electrode with valve metal oxide semi-conductor face and methods of carrying out electrolysis reactions | |
JP2019119930A (en) | Chlorine generating electrode | |
US4223049A (en) | Superficially mixed metal oxide electrodes | |
NO161812B (en) | Cathode for aqueous electrolysis. | |
KR20110081251A (en) | Cathode member and bipolar plate for hypochlorite cells | |
CA1088026A (en) | Stable electrode for electrochemical applications | |
JP3653296B2 (en) | Electrode for electrolysis and method for producing the same | |
US7790233B2 (en) | Method for the formation of a coating of metal oxides on an electrically-conductive substrate, resultant activated cathode and use thereof for the electrolysis of aqueous solutions of alkaline metal chlorides | |
US5004626A (en) | Anodes and method of making | |
NO861978L (en) | CATALYTIC COMPOSITION MATERIALS, SPECIFICALLY FOR ELECTROLYSE ELECTRODES, AND MANUFACTURING METHOD. | |
JPS6134519B2 (en) | ||
JPH02179891A (en) | Anode for generate oxygen and production thereof | |
EP2055807B1 (en) | Oxygen Evolution Electrode | |
JPH10287991A (en) | Oxygen generating electrode and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUP | Patent expired |