DK152177B - PROCEDURE FOR REMOVAL OF SULFUR Dioxide FROM A GAS FLOW - Google Patents

PROCEDURE FOR REMOVAL OF SULFUR Dioxide FROM A GAS FLOW Download PDF

Info

Publication number
DK152177B
DK152177B DK132480AA DK132480A DK152177B DK 152177 B DK152177 B DK 152177B DK 132480A A DK132480A A DK 132480AA DK 132480 A DK132480 A DK 132480A DK 152177 B DK152177 B DK 152177B
Authority
DK
Denmark
Prior art keywords
slurry
solids
circuit
water
absorber
Prior art date
Application number
DK132480AA
Other languages
Danish (da)
Other versions
DK152177C (en
DK132480A (en
Inventor
Robert Joseph Gleason
Mark Richman
Paul Edmund Cooke
Original Assignee
Cottrell Res Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cottrell Res Inc filed Critical Cottrell Res Inc
Publication of DK132480A publication Critical patent/DK132480A/en
Publication of DK152177B publication Critical patent/DK152177B/en
Application granted granted Critical
Publication of DK152177C publication Critical patent/DK152177C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/48Sulfur dioxide; Sulfurous acid
    • C01B17/50Preparation of sulfur dioxide
    • C01B17/60Isolation of sulfur dioxide from gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)

Description

DK 152177 BDK 152177 B

Den foreliggende opfindelse angår en fremgangsmåde til fjernelse af svovldioxyd fra en gasstrøm, ved hvilken der bruges et nyt dobbeltkredsløb -SC^- rensningssystem til afsvovling af røggasser? i dette system 5 udnytter man rensningsvandet optimalt, hvorved opslæmningens koncentration kontrolleres til opnåelse af effektivitet med hensyn til fjernelse af S02 og afkøling.The present invention relates to a process for removing sulfur dioxide from a gas stream using a new double-cycle -SC ^ - flue gas desulfurization system? In this system 5, the purification water is optimally utilized, whereby the concentration of the slurry is controlled to achieve efficiency with respect to removal of SO2 and cooling.

Vask eller skrubning af kedel-røggasser med opslæmninger af kalksten (CaCO^) eller kalcinerede kalk-10 stensprodukter, kalk og hydratiseret kalk, er en kendt fremgangsmåde til fjernelse af svovldioxyd (SC>2) fra disse forbrændingsgasser. Standardsystemet behøver imidlertid væsentlige mængder supplementsvand, rensningsvand i drift og forøger derfor anlæggets samlede behov 15 for vand. Da egnede kvaliteter vand i mange tilfælde kun står til rådighed for anlægget i begrænsede mængder, er det afgørende at vaskesystemet bruger den mindst mulige mængde supplementsvand eller genbrugsvand af høj kvalitet.Washing or scrubbing boiler flue gases with slurries of limestone (CaCO3) or calcined limestone products, lime and hydrated lime, is a known method for removing sulfur dioxide (SC> 2) from these combustion gases. However, the standard system needs significant amounts of supplement water, purification water in operation and therefore increases the total water needs of the plant 15. Since in many cases suitable water quality is only available to the system in limited quantities, it is crucial that the washing system uses the least possible amount of supplemental water or high quality recycled water.

20 Supplementsvand behøves i svovldioxyd-vaskesy- stemer for at erstatte vand der først og fremmest mistes på to områder: 1) vand som er mistet ved fordampning ved afkøling og nedsættelse af temperaturen af de røggasser der går ind i skrubberen; og 2) vand der tabes 25 med afgivelsen af det faste spildprodukt, der består af en opslæmning af uomsat reagens, kalciumsulfit-hydrater og kalciumsulfat-hydrater, som udgår af systemet. De totale behov for supplementsvand for systemet kan derfor minimeres ved at man nedsætter disse vandtab.20 Supplementary water is needed in sulfur dioxide washing systems to replace water that is lost primarily in two areas: 1) water lost by evaporation by cooling and lowering the temperature of the flue gases entering the scrubber; and 2) water lost with the release of the solid waste product consisting of a slurry of unreacted reagent, calcium sulfite hydrates and calcium sulfate hydrates exiting the system. The total need for supplementary water for the system can therefore be minimized by reducing these water losses.

30 Det har nu vist sig at man ved at kontrollere re cirkuleret vand fra et afvandingssystem og selektiv udnyttelse af strømme med højt og med lavt indhold af faststof fra absorptionssystemet kan kontrollere køler-opslæmningens koncentration og nedsætte behovet for nyt· 35 DK 152177& 2 supplementsvand. I den toløkkede proces (dobbeltkreds-løbprocessen) er hoved-absorptionssystemet incl. demi-sterne,der er tilbøjelige til at afsætte aflejringer og til korrosion, adskilt fra processens fordampnings-køle-5 kredsløb. Alt det recirkulerede vand returneres til fordampnings-kølekredsløbet og intet til det kredsløb som indeholder demisterne og de primære absorptionssektioner. Under varierende tilførselshastigheder af SC>2 kan imidlertid det recirkulerede vand til kølekredslø-10 bet være i overskud eller være i utilstrækkelig mængde for den evaporative materialebalance i kølekredsløbet (quencher loop). For at kompensere for begge disse slags ubalance er det nødvendigt at anvende en separator og strømningskontrol mellem de to kredsløb for at forøge 15 eller nedsætte vandbalancestrømmen til kølekredsløbet samtidig med at man holder absorptionskredsløbet (absorber loop) i den rigtige driftsbalance. Normalt skal opslæmningens sammensætning kontrolleres til at tillade mere end 3% reaktionsprodukter af kalciumssulfit og kal-20 ciumsulfat tilsammen i kølekredsløbet. For at opnå en effektiv absorption af svovldioxyd må desuden kalciumbasen holdes på over et minimumsniveau. Typisk drives absorberen med faststofindhold på mellem 6 og 14%.30 It has now been found that by controlling recirculated water from a drainage system and selectively utilizing high and low solids streams from the absorption system, the concentration of the cooler slurry can be reduced and the need for new · 35 DK 152177 & 2 supplemented water can be controlled. In the two-stage process (the double-circuit running process) the main absorption system incl. the demistors, which are prone to deposition and to corrosion, separate from the evaporative cooling-5 circuit of the process. All the recycled water is returned to the evaporative cooling circuit and nothing to the circuit containing the demister and primary absorption sections. However, at varying feed rates of SC> 2, the recirculated water to the cooling circuit may be in excess or be in insufficient quantity for the evaporative material balance in the cooling circuit (quencher loop). To compensate for both these kinds of imbalance, it is necessary to use a separator and flow control between the two circuits to increase or decrease the water balance flow to the cooling circuit while keeping the absorber loop in the correct operating balance. Usually, the composition of the slurry must be controlled to allow more than 3% reaction products of calcium sulfite and calcium sulfate together in the refrigeration circuit. Furthermore, in order to achieve effective absorption of sulfur dioxide, the calcium base must be kept above a minimum level. Typically, the absorber is operated with a solids content of between 6 and 14%.

Fremgangsmåden ifølge opfindelsen er ejendommelig 25 ved det i krav 1's kendetegnende del angivne. Forskellige fordelagtige udførelsesformer for fremgangsmåden ifølge opfindelsen er angivet i kravene 2 til 5.The process according to the invention is characterized by the characterizing part of claim 1. Various advantageous embodiments of the method of the invention are set forth in claims 2 to 5.

Den dobbelte kredsløbsproces muliggør drift af demisterne og de primære absorbersektioner i et fuldstæn-30 dig åbent kredsløb, hvorved der undgås recirkulation af forurenet vand og anvendelsen af yderligere demister-vaskevand maximeres. Elimination af recirkuleret vand i disse sektioner nedsætter den skorpedannelse, belægning, skældannelse og ukontrolleret krystallisation, der hæm-35 mer kontinuerlig drift af SC^-fjernelsessystemet. Dette tillader også brug af mindre kostbare materialer end der ellers ville behøves for at forhindre angreb af opløsteThe dual circuit process allows operation of the demister and primary absorber sections in a fully open circuit, thereby avoiding the recirculation of contaminated water and maximizing the use of additional demister wash water. Elimination of recycled water in these sections decreases the crustal formation, coating, scaling and uncontrolled crystallization that inhibits continuous operation of the SC ^ removal system. This also allows the use of less expensive materials than would otherwise be needed to prevent the attack of solutes

DK 152177 BDK 152177 B

3 kemikalier såsom klorider.3 chemicals such as chlorides.

Anvendelse af recirkuleret vand fra afvandingssystemet i det andet kredsløb, kølesektionen, tillader drift af det samlede system i lukket kredsløb således at 5 alt det til rådighed stående vand udnyttes i processen og ikke går til spilde.Use of recycled water from the drainage system in the second circuit, the cooling section, allows operation of the entire closed circuit system so that all available water is utilized in the process and does not go to waste.

Fremgangsmåden ifølge opfindelsen skal i det følgende belyses nærmere under henvisning til tegningen, på hvilken 10 fig. 1 viser et forenklet strømningsdiagram for systemet og fig. 2 en skematisk gengivelse, delvis i snit, af et flertrins-absorptionstårn der egner sig til udøvelse af fremgangsmåden ifølge opfindelsen.The method according to the invention will now be described in more detail with reference to the drawing, in which FIG. 1 shows a simplified flow diagram of the system and FIG. 2 is a schematic, partly in section, of a multistage absorption tower suitable for carrying out the method of the invention.

15 I fig. 1 angiver henvisningstallet 10 generelt et system til udøvelse af fremgangsmåden ifølge opfindelsen, og systemet har et flertrinskøler-absorbertårn 12 der vil blive beskrevet mere udførligt i forbindelse med fig. 2, og hvilket tårn har en køler 14 og en absorber 20 16.In FIG. 1, reference numeral 10 generally indicates a system for carrying out the method of the invention, and the system has a multistage cooler absorber tower 12 which will be described in greater detail in connection with FIG. 2, and which tower has a cooler 14 and an absorber 20.

Pile 18a, 18b og 18c angiver henholdsvis en gasstrøm til køleren 14, en gasstrøm fra køleren 14 til absorberen 16 og den for S02 befriede afgangsgas fra absorberen 16.Arrows 18a, 18b and 18c respectively indicate a gas flow to the cooler 14, a gas flow from the cooler 14 to the absorber 16, and the exhaust gas released from the absorber 16 for SO2.

Andre primære komponenter i systemet af en absor- 25 bertank 20, en køletank 22, et afvandingssystem 24, en absorber-separator 26, pumper 28, 30 og 32, der hver har en vandindgang med vandlukke angivet med henvisningstallene 34a, 34b og 34c for pumperne henholdsvis 32, 30 og 28.Other primary components of the system of an absorber tank 20, a cooling tank 22, a drainage system 24, an absorber separator 26, pumps 28, 30 and 32, each having a water inlet with a water closure indicated by reference numerals 34a, 34b and 34c for pumps 32, 30 and 28 respectively.

30 De primære væske/opslæmnings-ledninger for syste met er: en ledning 36 fra absorbertanken 20 til pumpen 28; en ledning 38 som udgør den primære absorberfødeled-ning fra pumpem 28 til absorberen 16; en sekundær absorberf ødeledning 40 fra absorbertanken 20 til pumpen 30; 35 en sekundær absorberfødeledning 42 fra pumpen 30 til absorberen 16; en ledning 44 som er en afgrening af ledningen 42 og fører fra den sekundære absorberfødeled-The primary liquid / slurry lines for the system are: a conduit 36 from the absorber tank 20 to the pump 28; a line 38 constituting the primary absorber feed line from pump 28 to absorber 16; a secondary absorber destruction 40 from the absorber tank 20 to the pump 30; 35 a secondary absorber feed line 42 from pump 30 to absorber 16; a conduit 44 which is a branch of conduit 42 and leads from the secondary absorber feeder

DK 152177 BDK 152177 B

4 ning til separatoren 26; en ledning 46 fra absorberen 16 til absorbertanken 20; en demistor-vaskevandsledning 48 til flertrinskøler-absorbertårnet 12; en reagens-fødeledning 50 til absorbertanken 20; en udgangsledning 52 5 fra absorberseparatoren 26 til absorbertanken 20; en udgangsledning 54 fra absorberseparatoren 26; en overløbsledning 56 fra absorbertanken 20 til køletanken 22; en ledning 58 fra køletanken 22 til pumpen 32; en køler-fødeledning 60 fra pumpen 32 til køleren 14; en køler-10 returledning 62 fra køleren 14 til køletanken 22; en afgangsledning 64 fra køletanken 22 til afvandingssystemet 24; en ledning 66 fra afvandingssystemet 24 til køletanken 22; og en afgangsledning 68 fra afvandingssystemet 24.4 to the separator 26; a conduit 46 from absorber 16 to absorber tank 20; a demistor wash water line 48 for the multistage cooler absorber tower 12; a reagent feed line 50 to absorber tank 20; an output line 52 from the absorber separator 26 to the absorber tank 20; an output line 54 from the absorber separator 26; an overflow line 56 from the absorber tank 20 to the cooling tank 22; a conduit 58 from the cooling tank 22 to the pump 32; a cooler feed line 60 from pump 32 to cooler 14; a cooler-10 return line 62 from cooler 14 to cooling tank 22; a discharge line 64 from the cooling tank 22 to the drainage system 24; a conduit 66 from the drainage system 24 to the cooling tank 22; and a discharge line 68 from the drainage system 24.

15 I fig. 2 ses det at flertrinskøler-absorbertår net 12 har en lodret forløbende skal 70 med røggasindgang 72 ved den nederste ende og en udgang 73 for SC^-befriet røggas ved den øverste ende. Under røggasindgangen 72 er der en sump eller køletank 22 forsynet med en 20 sump-omrøringsmekanisme der generelt er betegnet 76.In FIG. 2, it is seen that multi-stage cooler absorber net 12 has a vertical extending shell 70 with flue gas inlet 72 at the lower end and an outlet 73 for SC 2 -free flue gas at the upper end. Below the flue gas inlet 72 there is a sump or cooling tank 22 provided with a 20 sump stirring mechanism generally designated 76.

I fig. 2 er kølesektionen generelt betegnet 14 og absorbersektionen generelt betegnet 16. Kølesektionen har et antal fordelerrør 80 som er forbundet med ledningen 60 fra pumpen 32, idet hvert af fordelerrørene er 25 forsynet med et antal udsprøjtningsdyser 82. Ved en fore-trukken udførelsesform er kølesektionerne 14 af cyklontype, og de røggasser der går ind gennem indgangen 72 bringes til at strømme tangentielt opad. Den i fig. 1 viste returledning 62 er i virkeligheden returnering un-30 der tyngdekraftens indvirkning af behandlingsvæsken fra fordelerrørene 80 til køletanken 22.In FIG. 2, the cooling section is generally designated 14 and the absorber section is generally designated 16. The cooling section has a plurality of distributor tubes 80 connected to the conduit 60 from the pump 32, each of the distribution tubes 25 being provided with a plurality of spray nozzles 82. In a preferred embodiment, the cooling sections 14 of cyclone type, and the flue gases entering through the entrance 72 are caused to flow tangentially upward. The FIG. 1, the return line 62 shown is in fact return under the influence of gravity on the treatment liquid from the distribution tubes 80 to the cooling tank 22.

Mellem kølesektionen 14 og absorbersektionen 16 er der en gas/væske-kugleseparator som generelt er betegnet 84. Separatoren 84 opsamler vandet fra demisteren 35 og opslæmningsvæsken fra absorberen, og den samlede væske dirigeres fra separatoren 84 til returnering til absorbertanken ved hjælp af ledningen 46. Over kuglesepa- DK 152177 BL .Between the cooling section 14 and the absorber section 16, there is a gas / liquid ball separator generally designated 84. The separator 84 collects the water from the demister 35 and the slurry liquid from the absorber, and the total liquid is routed from the separator 84 for return to the absorber tank by line 46. Over ball soap DK 152177 BL.

5 ratoren 84 er der et antal fordelerrør betegnet 86 og 86a, der hver er forbundet med de primære og sekundære absorberfødeledninger 38 og 42.In the rotor 84, there are a plurality of distributor tubes designated 86 and 86a, each connected to the primary and secondary absorber feed lines 38 and 42.

99

Hvert af fordelerrørene 86 og 86a er forsynet 5 med et antal dyser 88 af udsprøjtningstypen, og mellem fordelerrørene 86 og 86a er der en konventionel tårnpakning 90. Over fordelerrøret 86a er der anbragt en nedre demister 92 og en øvre demistor 94. Vaskevand til den nedre demister leveres gennem et fordelerrør 96 med ud-10 mundinger 98 af sprøjtetypen. Den øvre demistor 94 er også forsynet med et vaskevandsorgan, nemlig et fordelerrør 100 forsynet med udgangsåbninger 102 af sprøjte-typen.Each of the manifolds 86 and 86a is provided with a plurality of nozzles 88 of the spray type, and between the manifolds 86 and 86a is a conventional tower gasket 90. Above the manifold 86a, a lower demister 92 and an upper demistor 94 are disposed. demister is delivered through a distributor tube 96 with outlets 10 of the syringe type. The upper demistor 94 is also provided with a wash water means, namely a manifold 100 provided with syringe-type outlet openings 102.

Absorber-separatoren 26 og afvandingssystemet 24, 15 begge vist i fig. 1, kan have form af hydrokloner, fortykkere, centrifuger eller vakuumfiltre.The absorber separator 26 and the drainage system 24, 15 both shown in FIG. 1 may be in the form of hydroclones, thickeners, centrifuges or vacuum filters.

Som vist på tegningen har dobbeltkredsløbet et kølekredsløb A i hvilket næsten hele fordampningsvandtabet forekommer, og et absorptionskredsløb B (der 20 indbefatter demisterne 92-94), hvori gasserne passerer først gennem kølekredsløbet og derefter gennem absorptionskredsløbet. Reagensstrømmen sker i modstrøm til gasstrømmen så den først passerer gennem absorptionskredsløbet. Faststoffer fjernes fra systemet på følgen-25 de måde: Faste reaktionsprodukter mellem det ’kalciumbaserede reagens og svovldioxyd såvel som noget uomsat reagens føres fra absorbertanken 20 i absorptionskredsløbet B til kølekredsløbet A sammen med noget vand gennem ledningen 56 med temmelig konstant koncentration.As shown in the drawing, the double circuit has a cooling circuit A in which almost all of the evaporation water loss occurs and an absorption circuit B (including the demistors 92-94), in which the gases pass first through the cooling circuit and then through the absorption circuit. The reagent stream is countercurrent to the gas stream so that it first passes through the absorption circuit. Solids are removed from the system as follows: Solid reaction products between the calcium-based reagent and sulfur dioxide, as well as some unreacted reagent, are fed from the absorption tank 20 in the absorption circuit B to the cooling circuit A along with some water through the conduit 56 of fairly constant concentration.

30 Opslæmning fødes også til kredsløbet A gennem lednin-ge 44, absorberseparatoren 26 og ledningen 54. De faste stoffer cirkuleres derefter gennem kølekredsløbet A, hvori der dannes yderligere reaktionsprodukter efterhånden som koncentrationen af uomsat reagens aftager. De· 35 faste stoffer afgives derefter fra køleren til afvandingssystemet 24 og til endelig deponering af spildmateriale.Slurry is also fed to circuit A through conduit 44, absorber separator 26, and conduit 54. The solids are then circulated through refrigeration circuit A, forming additional reaction products as the concentration of unreacted reagent decreases. The · 35 solids are then released from the cooler to the drainage system 24 and for final disposal of waste material.

Supplementsvand går ind i absorptionskredsløbetSupplement water enters the absorption circuit

DK 152177BDK 152177B

6 som (1) vand der kommer ind sammen med reagenset gennem ledningen 50; (2) små mængder vand til opslæmningspumpens pakbøsninger ved 34c og 34b; og (3) demister-vaskevand gennem ledningen 48. Supplementsvand går ind i kølekreds-5 løbet som (1) små mængder frisk supplementsvnd til opslæmningspumpers og omrøreres pakbøsninger ved henholdsvis 34a og 34d; (2) køler-supplementsvand (recirkuleret vand) gennem ledningen 66, hvilket erstatter det meste af fordampningenstabene; og (3) vand der ledsager affalds-10 stofferne fra absorptionskredsløbet, ved 56'.6 as (1) water entering the reagent through conduit 50; (2) small amounts of water for the slurry pump packing bushes at 34c and 34b; and (3) demister wash water through conduit 48. Supplemental water enters the cooling circuit 5 as (1) small amounts of fresh supplementary water for slurry pumps and agitator packing bushings at 34a and 34d, respectively; (2) cooler supplement water (recirculated water) through conduit 66, replacing most of the evaporation losses; and (3) water accompanying the waste materials from the absorption circuit at 56 '.

Når procesbehovene for køler-supplementsvand tilfredsstilles af det recirkulerede vand, der frembringes af opslæmningens-afvandingssystemet og det der afgår fra absorberkredsløbet, opnås der optimal vandudnyttelse.When the process requirements for cooler-supplement water are satisfied by the recirculated water produced by the slurry-dewatering system and that leaving the absorber circuit, optimum water utilization is achieved.

15 Når mængden af udviklet recirkuleret vand oversti ger kølerens behov for supplementsvand, må koncentrationen af faststof i afgangsvæsken fra absorberkredsløbet forøges. Dette opnås ved standardkontroller på absorberseparatoren 26, der dirigerer strømmen med højt faststof-20 indhold, et faststofindhold i området 10 til 50%, så det strømmer gennem ledningen 54 og blandes med den opslæmning som strømmer gennem ledningen 56, mens strømmen med lavt indhold af faststof, med et faststofindhold i området 3 til 10%, returneres til absorbertanken 20.15 When the amount of developed recirculated water exceeds the radiator's need for supplementary water, the concentration of solids in the exhaust fluid from the absorber circuit must be increased. This is achieved by standard controls on the absorber separator 26 which directs the high solids 20 stream, a solids content in the range of 10 to 50%, so that it flows through conduit 54 and mixes with the slurry flowing through conduit 56, while the low content stream solid, with a solids content in the range of 3 to 10%, is returned to the absorber tank 20.

25 Absorberkredsløbet arbejder i så fald som et åbent system som afleverer opslæmning med højt faststofindhold til kølekredsløbet. Set under ét udgør de to kredsløb naturligvis et lukket kredsløbsystem.In this case, the absorber circuit operates as an open system that delivers a high solids slurry to the cooling circuit. Taken together, the two circuits naturally constitute a closed circuit system.

For de arbejdsbetingelser hvor mængden af dannet 30 recirkuleret vand er mindre end behovene for supplementsvand i køleren, er det ønskeligt at forøge vandindholdet eller nedsætte faststofindholdet i den opslæmning der afgår fra absorberen, og det sker ved at man dirigerer den strøm med lavt faststofindhold, som udgår fra separato-35 ren 26, så den i ledningen 56' blandes med den opslæmning som afgår fra absorbertanken. Samtidig kan der sættes vand til absorberkredsløbet som demistor-vaskevandFor those working conditions where the amount of recycled water formed is less than the need for supplement water in the cooler, it is desirable to increase the water content or decrease the solids content of the slurry leaving the absorber, and this is done by directing the low solids stream which starting from separator 26 so as to mix in line 56 'with the slurry leaving the absorber tank. At the same time, water can be added to the absorber circuit as demistor wash water

DK 152177BDK 152177B

7 i forhold til det samlede behov for frisk supplementsvand.7 in relation to the total need for fresh supplement water.

Som beskrevet ovenfor er det nødvendigt at variere den mængde vand der afgår med de afgående faststoffer 5 fra absorberkredsløbet, dvs. koncentrationen af afgangsopslæmningen, uden at påvirke balancen mellem faststof og kemikalier i absorberkredsløbet. Dette gøres ved anvendelse af faststof/væskeseparationsorganet 26 og kontroller som går i handelen. Dette organ behandler en por-10 tion af absorberkredsløbets opslæmning til udvikling af to strømme, en strøm med højt faststofindhold og en strøm med lavt faststofindhold. Den ene eller begge disse strømme kan kombineres gennem en eller flere ledninger 54 med en passende mængde ubehandlet absorberkredsløbs-15 opslæmning 56 til frembringelse af en strøm 56', der har den ønskede koncentration i den opslæmning som strømmer ind i køletanken 22. På denne måde kan der opnås vidt forskellige faststofindhold fra absorber-afgangsstrømmen.As described above, it is necessary to vary the amount of water leaving with the outgoing solids 5 from the absorber circuit, i. the concentration of the leaving slurry, without affecting the balance of solids and chemicals in the absorber circuit. This is done using the solid / liquid separation means 26 and commercially available controls. This means processes a portion of the absorber circuit slurry to develop two streams, a high solids stream and a low solids stream. One or both of these streams can be combined through one or more lines 54 with a suitable amount of untreated absorber circuit slurry 56 to produce a stream 56 'having the desired concentration in the slurry flowing into the cooling tank 22. In this way a wide variety of solids content can be obtained from the absorber-discharge stream.

20 Eftersom anlæggets driftsbetingelser, dvs. be lastningsfaktor og indhold af S02 i gassen, stadig varierer, ændrer sig også hastigheden af faststofdannelse i absorber-kredsløbet og den mængde vand som behøver at gå ind i kølekredsløbet. For at muliggøre det for absorp-25 tionssystemet at reagere i overensstemmelse med procesbehovene for vand kontra faststoffer i opslæmningen, benyttes der et processignal. Dette signal sætter S02-mas-sestrømningen ind i absorptionstårnet, absorberopslæmningens massefylde eller en hvilken som helst anden pro-30 cesvariabel, der ændrer sig med ændret SC^-massestrøm- ning til absorptionstårnet, i relation til den udkrævede koncentration af opslæmnings-afgang fra absorptionskredsløbet til køletanken. Signalet går som input til et ikke vist kontrolorgan som opretholder koncentrationen af 35 faststofafgang til køletanken på det ønskede niveau.20 Since the plant's operating conditions, ie. load factor and content of SO2 in the gas, still varying, also changes the rate of solids formation in the absorber circuit and the amount of water that needs to enter the cooling circuit. To enable the absorption system to react in accordance with the process requirements for water versus solids in the slurry, a process signal is used. This signal inserts the SO 2 mass flow into the absorption tower, the density of the absorber slurry, or any other process variable that changes with altered SC 2 mass flow to the absorption tower relative to the required slurry outlet concentration. the absorption circuit for the cooling tank. The signal acts as an input to a control device not shown which maintains the concentration of solids discharge to the cooling tank at the desired level.

Claims (5)

1. Fremgangsmåde til fjernelse af svovldioxyd fra en gasstrøm, kendetegnet ved at man _ a) i et første kredsløb afkøler gasstrømmen med en 5 alkaliholdig første vandig opslæmning, b) leder afløbet fra køleren ind i en kølevæskelager beholder, c) i et andet kredsløb vasker den afkølede gasstrøm ^ q med en anden vandig opslæmning, der er adskilt fra den første vandige opslæmning og indeholder et alkali, i en svovl-dioxydabsorber og til slut d) regulerer det tilbageførte vand og den selektive udnyttelse af strømme med højere og med lavere faststofind- ^ hold fra en separator, idet man i) i et væske/faststof-koncentreringsorgan adskiller den fra svovldioxydabsorberen afgivne vandige opslæmning i en overløbsstrøm med lavt faststofindhold og en underløbsstrøm med højt faststof- 2Q indhold, ii) fører den del af den vandige opslæmning, der har højt faststofindhold, ind i kølevæskelagerbehol-deren, iii) kontinuerligt afvander en del af køleopslæmnin- 22 gen fra kølevæskelagerbeholderen og til slut iv) fjerner faststofferne fra afvandingen mens vandet ledes til kølevæskelagerbeholderen.A process for removing sulfur dioxide from a gas stream, characterized in that - a) in a first circuit, the gas stream is cooled with an alkaline-containing first aqueous slurry, b) directs the drain from the cooler into a coolant storage vessel, c) in a second circuit. washes the cooled gas stream with a second aqueous slurry separated from the first aqueous slurry containing an alkali, in a sulfur dioxide absorber and finally d) regulates the recirculated water and the selective utilization of higher and lower streams solids content of a separator, i) separating in a liquid / solid concentrator the aqueous slurry emitted from the sulfur dioxide absorber in a low solids overflow stream and a high solids underflow stream, ii) conducting that portion of the aqueous high solids slurry into the coolant storage tank; iii) continuously drain a portion of the coolant slurry 22 from coolant storage tank clean and finally iv) removes the solids from the dewatering while the water is fed to the coolant storage tank. 2. Fremgangsmåde ifølge krav 1, kendetegnet ved at man i trin d) indfører frisk vand og en koncentre- 2Q ret opslæmning af alkaliske faststoffer ind i den fra kølevæskelagerbeholderen tilførte del af vaskeopslæmningen, med henblik på at undgå ophobning af opløste kalciumsulfat-forbindelser i afløbet fra køleren i trin b) og tilvejebringelse af et i det væsentlige åbent kredsløbsystem i 35 afløbet fra køleren i trin b).Process according to claim 1, characterized in that in step d) fresh water and a concentrated slurry of alkaline solids are introduced into the portion of the washing slurry supplied from the coolant storage tank, in order to avoid the accumulation of dissolved calcium sulphate compounds in the drain from the cooler in step b) and providing a substantially open circuit system in the drain from the cooler in step b). 3. Fremgangsmåde ifølge krav 1 eller 2, kendetegnet ved at man fjerner en del af den første op- DK 152177 B slæmning i trin a), udtrækker vand fra den og på ny returnerer den til den første opslæmning i trin a).Method according to claim 1 or 2, characterized in that part of the first slurry in step a) is removed, water is extracted from it and again it is returned to the first slurry in step a). 4. Fremgangsmåde ifølge krav 1, kendetegnet ved at koncentrationen af alkaliske faststoffer i den kon- 5 centrerede, i afløbet fra køleren i trin b) indførte opslæmning, holdes i området 30-40%, mens koncentrationen af alkaliske faststoffer i den fra den anden opslæmning i trin b) fjernede opslæmning holdes i området 5-15%.Process according to claim 1, characterized in that the concentration of alkaline solids in the concentrated slurry introduced in the drain from the cooler in step b) is kept in the range of 30-40%, while the concentration of alkaline solids in the second slurry in step b) removed slurry is kept in the range of 5-15%. 5. Fremgangsmåde ifølge krav 1, kendetegnet 10 ved at man til nedsættelse af den mængde vand der må sættes til vaskekredsløbet til opretholdelse af faststofindholdet på en ønsket værdi, og til forøgelse af den mængde vand der sættes til vaskekredsløbet ved at udtage opslæmningsportioner med lavt indhold af alkaliske faststoffer 15 og tilbageføre opslæmningsportioner med højere indhold af alkaliske faststoffer, regulerer den mængde vand, der sættes både til vaskekredsløbet og til kølekredsløbet, ved selektivt at fjerne opslæmningsportioner fra vaskeopslæmningskredsløbet i trin a) med højere indhold af alkaliske 20 faststoffer og tilbageførsel af opslæmningsportioner til vaskeopslæmningskredsløbet med lavere indhold af alkaliske faststoffer. 25 30 35Method according to claim 1, characterized in that the amount of water allowed to be added to the washing circuit is maintained to maintain the solids content at a desired value and to increase the amount of water added to the washing circuit by taking out slurry portions of low content. of alkaline solids 15 and returning slurry portions with higher content of alkaline solids regulates the amount of water added to both the washing circuit and to the cooling circuit by selectively removing slurry portions from the washing slurry circuit in step a) with higher content of alkaline solids and recirculating portions of for the washing slurry circuit with lower alkaline solids content. 25 30 35
DK132480A 1979-03-30 1980-03-27 PROCEDURE FOR REMOVAL OF SULFUR Dioxide FROM A GAS FLOW DK152177C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US2557779A 1979-03-30 1979-03-30
US2557779 1979-03-30

Publications (3)

Publication Number Publication Date
DK132480A DK132480A (en) 1980-10-01
DK152177B true DK152177B (en) 1988-02-08
DK152177C DK152177C (en) 1988-07-11

Family

ID=21826867

Family Applications (1)

Application Number Title Priority Date Filing Date
DK132480A DK152177C (en) 1979-03-30 1980-03-27 PROCEDURE FOR REMOVAL OF SULFUR Dioxide FROM A GAS FLOW

Country Status (14)

Country Link
JP (1) JPS6057364B2 (en)
AT (1) AT379322B (en)
AU (1) AU532453B2 (en)
BE (1) BE882464A (en)
CA (1) CA1129181A (en)
CH (1) CH638404A5 (en)
DE (1) DE3011592A1 (en)
DK (1) DK152177C (en)
ES (1) ES8102833A1 (en)
FR (1) FR2452466A1 (en)
GB (1) GB2050325B (en)
IT (1) IT1193525B (en)
SE (1) SE450553B (en)
ZA (1) ZA801607B (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3240317C2 (en) * 1982-10-30 1986-06-12 Gottfried Bischoff Bau kompl. Gasreinigungs- und Wasserrückkühlanlagen GmbH & Co KG, 4300 Essen Process for the production of calcium sulphate dihydrate in the course of the desulphurisation of flue gases from power plant boiler systems
DE3433707A1 (en) * 1983-06-18 1986-04-03 Hölter, Heinz, Dipl.-Ing., 4390 Gladbeck Apparatus for introducing scrubbed flue gases into a cooling tower
JPS6058230A (en) * 1983-09-09 1985-04-04 Babcock Hitachi Kk Waste gas desulfurization and apparatus thereof
JPS60172335A (en) * 1984-02-20 1985-09-05 Babcock Hitachi Kk Wet type stack gas desulfurization apparatus
DE3435472A1 (en) * 1984-09-27 1986-03-27 Hölter, Heinz, Dipl.-Ing., 4390 Gladbeck Water flushing for demister packages downstream of flue gas desulphurisation plants
DE3437965A1 (en) * 1984-10-17 1986-04-24 Knauf-Research-Cottrell GmbH & Co Umwelttechnik KG, 8715 Iphofen METHOD AND DEVICE FOR SEPARATING SO (DOWN ARROW) 3 (DOWN ARROW), SULFURIC ACID AND SULFURIC ACID LEAVES FROM SMOKE GASES
DE3632896A1 (en) * 1986-09-27 1988-04-07 Krc Umwelttechnik Gmbh METHOD FOR WET REMOVING SULFUR DIOXIDE
DE3721684A1 (en) * 1987-07-01 1989-01-12 Krc Umwelttechnik Gmbh METHOD FOR WET REMOVING SULFUR DIOXIDE
CA2030480A1 (en) * 1989-12-12 1991-06-13 William Downs Chloride controls in fossil fuel fired wet scrubbing process
DE4345364C2 (en) * 1993-09-15 1997-10-02 Steinmueller Gmbh L & C Gas scrubbing esp. desulphurisation process
DE4338379C2 (en) * 1993-11-10 1999-02-18 Steinmueller Gmbh L & C Process for removing sulfur dioxide from a gas stream
US5451250A (en) * 1994-05-11 1995-09-19 The Babcock & Wilcox Company Method of convert a double-loop flue gas desulfurization system to a single-loop system
DE19730228A1 (en) * 1997-07-15 1999-01-21 Abb Patent Gmbh Removing pollutant gas from combustion plant exhaust gas
DE10346519A1 (en) * 2003-10-02 2005-05-04 Uhde Gmbh Process for the removal of ammonia and dust from an exhaust gas resulting from the production of fertilizers
WO2007075485A2 (en) 2005-12-19 2007-07-05 Fluor Technologies Corporation Two-stage quench scrubber
EP1912723A4 (en) * 2006-05-03 2011-08-03 Snc Lavalin Europ N V Sa Gas quench and scrubber draw-off system
EA201000896A1 (en) 2007-12-28 2011-06-30 Калера Корпорейшн CO BINDING METHODS
US20100239467A1 (en) 2008-06-17 2010-09-23 Brent Constantz Methods and systems for utilizing waste sources of metal oxides
CA2700768C (en) 2008-07-16 2014-09-09 Calera Corporation Co2 utilization in electrochemical systems
US7993500B2 (en) 2008-07-16 2011-08-09 Calera Corporation Gas diffusion anode and CO2 cathode electrolyte system
CA2700770C (en) 2008-09-30 2013-09-03 Calera Corporation Co2-sequestering formed building materials
US8869477B2 (en) 2008-09-30 2014-10-28 Calera Corporation Formed building materials
US7815880B2 (en) 2008-09-30 2010-10-19 Calera Corporation Reduced-carbon footprint concrete compositions
US9133581B2 (en) 2008-10-31 2015-09-15 Calera Corporation Non-cementitious compositions comprising vaterite and methods thereof
WO2010093716A1 (en) 2009-02-10 2010-08-19 Calera Corporation Low-voltage alkaline production using hydrogen and electrocatlytic electrodes
JP2012519076A (en) 2009-03-02 2012-08-23 カレラ コーポレイション Gas flow complex contaminant control system and method
US20110247336A9 (en) 2009-03-10 2011-10-13 Kasra Farsad Systems and Methods for Processing CO2
US20140072483A1 (en) * 2012-09-10 2014-03-13 Mitsubishi Heavy Industries, Ltd. Desulfurization device and particulate collection system
CN104984655A (en) * 2015-06-05 2015-10-21 中电投远达环保工程有限公司 Slurry gathering device assembly used in wet desulfurization tower
EP3135364B1 (en) 2015-08-31 2021-04-21 Steinmüller Engineering GmbH Method for exhaust gas desulfurization
CN105251336B (en) * 2015-10-21 2017-12-01 中冶华天工程技术有限公司 Sodalime double alkali method double circulation desulphurization technique and system
CN106039755B (en) * 2016-07-22 2018-03-02 京能(锡林郭勒)发电有限公司 A kind of flue gas condensing water pumping system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3632306A (en) * 1969-02-18 1972-01-04 Chemical Construction Corp Removal of sulfur dioxide from waste gases
US3907523A (en) * 1972-12-26 1975-09-23 Krebs Engineers Method for removing SO{HD 2 {B from gases
DE2650755A1 (en) * 1975-11-24 1977-05-26 Rockwell International Corp METHOD OF ABSORPTION OF SULFUR OXIDES FROM HOT GASES
GB1529804A (en) * 1974-12-11 1978-10-25 Exxon Research Engineering Co Purification of pollutant-containing gases
GB1547945A (en) * 1975-10-09 1979-07-04 Pfizer Process and apparatus for reducing the so2 content of a hot fiue gas

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3396514A (en) * 1966-11-07 1968-08-13 Babcock & Wilcox Co Gas cleaning system
JPS5112026B2 (en) * 1971-11-30 1976-04-15
GB1410037A (en) * 1972-10-04 1975-10-15 Mitsubishi Heavy Ind Ltd Desulphurizing of gases
DE2249874C3 (en) * 1972-10-11 1979-01-18 Mitsubishi Jukogyo K.K., Tokio Process for removing sulfur dioxide from combustion exhaust gases
US3995006A (en) * 1973-04-05 1976-11-30 The Babcock & Wilcox Company Sulphur dioxide absorption system
DE2735566A1 (en) * 1977-08-06 1979-02-22 Metallgesellschaft Ag METHOD FOR REMOVING FLUOROUS COMPOUNDS AND SULFUR DIOXIDE FROM EXHAUST GASES

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3632306A (en) * 1969-02-18 1972-01-04 Chemical Construction Corp Removal of sulfur dioxide from waste gases
US3907523A (en) * 1972-12-26 1975-09-23 Krebs Engineers Method for removing SO{HD 2 {B from gases
GB1529804A (en) * 1974-12-11 1978-10-25 Exxon Research Engineering Co Purification of pollutant-containing gases
GB1547945A (en) * 1975-10-09 1979-07-04 Pfizer Process and apparatus for reducing the so2 content of a hot fiue gas
DE2650755A1 (en) * 1975-11-24 1977-05-26 Rockwell International Corp METHOD OF ABSORPTION OF SULFUR OXIDES FROM HOT GASES

Also Published As

Publication number Publication date
CH638404A5 (en) 1983-09-30
DE3011592C2 (en) 1988-11-17
AT379322B (en) 1985-12-27
ZA801607B (en) 1981-07-29
DK152177C (en) 1988-07-11
ES489860A0 (en) 1981-02-16
JPS55142529A (en) 1980-11-07
ATA162880A (en) 1985-05-15
SE8002289L (en) 1980-10-01
IT1193525B (en) 1988-07-08
IT8021045A0 (en) 1980-03-28
JPS6057364B2 (en) 1985-12-14
ES8102833A1 (en) 1981-02-16
CA1129181A (en) 1982-08-10
AU5657380A (en) 1980-10-02
BE882464A (en) 1980-07-16
DK132480A (en) 1980-10-01
AU532453B2 (en) 1983-09-29
FR2452466A1 (en) 1980-10-24
GB2050325A (en) 1981-01-07
SE450553B (en) 1987-07-06
DE3011592A1 (en) 1980-10-30
GB2050325B (en) 1983-02-16
FR2452466B1 (en) 1983-04-01

Similar Documents

Publication Publication Date Title
DK152177B (en) PROCEDURE FOR REMOVAL OF SULFUR Dioxide FROM A GAS FLOW
US4431617A (en) Methods for removing malodorous sulfur compounds from pulp mill flue gases and the like by using green liquor
DK174385B1 (en) Process for desulfurizing flue gas
CA1245037A (en) Method and apparatus for flue-gas cleaning
NO323638B1 (en) Scrubber for treatment of exhaust gas
US8226754B2 (en) Low cost wet lime/limestone/sodium FGD system
CN102764580B (en) A kind of apparatus and method of white clay/carbide slag-gypsum wet flue gas desulfurizing
CZ292126B6 (en) Process for the desulfurization of waste gas containing sulfur dioxide
CN1309456C (en) Hopper type current-collecting device of flue-gas desulphurization system by shunting method or external inforced oxidizing process
CA1105371A (en) Flue gas scrubbing additive utilization
US4322392A (en) SO2 Scrubbing system for flue gas desulfurization
US4351804A (en) Sulfur dioxide scrubber with hydroclone separator
US4250152A (en) Sulfur dioxide scrubber with hyroclone separator
US3273961A (en) Regeneration of magnesium bisulphite pulping liquor and absorption of sulphur dioxide during regeneration
US4187279A (en) Device for recovering sodium chemicals from green liquor and flue gases
DK155724B (en) PROCEDURE FOR THE PREPARATION OF CALCIUM SULPHATE DIHYDRATE IN CONNECTION WITH DESULATURATION OF ROEGGAS FROM POWER PLANT
CN209735292U (en) Water-saving and desulfurization comprehensive treatment system for flue gas
CN208320458U (en) Wet desulfurization system and its desulfurizing waste water processing device
JPH09141050A (en) Method for washing inside of gas absorber of smoke desulfirization plant and device therefor
CN210613331U (en) Desulfurizing device for controlling water balance by continuously utilizing filtrate for pulping
CN213865387U (en) Carbon disulfide production system
CN112591750B (en) Carbon disulfide separation and purification system
US3844879A (en) System for removing sodium chloride contaminants from a magnesium base pulping process
CN112408392B (en) Carbon disulfide warehousing and transportation system
CN112239208B (en) Carbon disulfide production system

Legal Events

Date Code Title Description
PBP Patent lapsed