DK152056B - STABILIZED OIL-IN-WATER DISPERSIONS AND THEIR USE AS METAL WORKING LIQUID - Google Patents

STABILIZED OIL-IN-WATER DISPERSIONS AND THEIR USE AS METAL WORKING LIQUID Download PDF

Info

Publication number
DK152056B
DK152056B DK360277AA DK360277A DK152056B DK 152056 B DK152056 B DK 152056B DK 360277A A DK360277A A DK 360277AA DK 360277 A DK360277 A DK 360277A DK 152056 B DK152056 B DK 152056B
Authority
DK
Denmark
Prior art keywords
metal
complex
oil
copper
dispersions according
Prior art date
Application number
DK360277AA
Other languages
Danish (da)
Other versions
DK152056C (en
DK360277A (en
Inventor
Gerald L Maurer
Sudhir K Shringarpurey
Original Assignee
Nat Res Lab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/719,813 external-priority patent/US4129509A/en
Application filed by Nat Res Lab filed Critical Nat Res Lab
Publication of DK360277A publication Critical patent/DK360277A/en
Publication of DK152056B publication Critical patent/DK152056B/en
Application granted granted Critical
Publication of DK152056C publication Critical patent/DK152056C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/02Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/123Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/18Tall oil acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/22Acids obtained from polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/108Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/082Amides containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/042Sulfate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/085Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing carboxyl groups; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2225/00Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2225/00Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2225/02Macromolecular compounds from phosphorus-containg monomers, obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/09Complexes with metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/08Groups 4 or 14
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/10Groups 5 or 15
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/14Group 7
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/16Groups 8, 9, or 10
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/22Metal working with essential removal of material, e.g. cutting, grinding or drilling
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/24Metal working without essential removal of material, e.g. forming, gorging, drawing, pressing, stamping, rolling or extruding; Punching metal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/241Manufacturing joint-less pipes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/242Hot working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/243Cold working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/245Soft metals, e.g. aluminum
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/246Iron or steel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/247Stainless steel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/01Emulsions, colloids, or micelles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • C10N2070/02Concentrating of additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Colloid Chemistry (AREA)

Description

DK 152056BDK 152056B

Opfindelsen angår stabiliserede olie-i-vand-dispersioner omfattende et emulgeringsmiddel valgt blandt anioniske og ikke-io-niske midler og blandinger deraf, som giver elektronegativitet til dispersionens oliefase. Opfindelsen angår endvidere anvendelsen af sådanne dispersioner som metalbearbejdningsvæske.The invention relates to stabilized oil-in-water dispersions comprising an emulsifier selected from anionic and non-ionic agents and mixtures thereof which provide electronegativity for the oil phase of the dispersion. The invention further relates to the use of such dispersions as metal working fluid.

Metalbearbejdningsvæsker er velkendte inden for teknikken, hvor de tjener til at smøre og køle forskellige metaloverflader under metalbearbejdningsoperationer, såsom skæring, fræsning, drejning, boring, slibning, bratkøling og lignende. Hidtil har metalbearbejdningsvæsker ikke udvist nogen lang funktionel levetid. F.eks. nedbrydes olie- og vandemulsionerne eller dispersionerne ved brug sædvanligvis inden for et begrænset tidsrum, endog så kort som nogle 2Metalworking fluids are well known in the art where they serve to lubricate and cool various metal surfaces during metalworking operations such as cutting, milling, turning, drilling, grinding, quenching and the like. To date, metalworking fluids have not exhibited long functional life. Eg. the oil and water emulsions or dispersions are degraded by use usually for a limited period of time, even as short as some 2

DK 152056 BDK 152056 B

få uger«, Nedbrydningen af emulsionerne er blevet tilskrevet et antal årsager, som har forbindelse med metalbearbejdningsoperationer, herunder- bl.a. indførelsen af fremmed materiale, såsom slibestøv eller snavs, metalpartikler, polyvalente metalioner og bakterier, samt metalbearbejdningsbetingelser, herunder tryk og temperatur osv.A few weeks', The degradation of the emulsions has been attributed to a number of causes associated with metalworking operations, including the introduction of foreign material such as abrasive dust or dirt, metal particles, polyvalent metal ions and bacteria, and metal working conditions including pressure and temperature, etc.

Manglen på udstrakt stabilitet hos metalbearbejdningsvæsker har derfor medført alvorlige direkte og indirekte ulemper ved deres brug i metalbearbejdningsoperationer. F.eks. forøger metalbearbejdningsvæskers korte levetid arbejdet og materialeomkostningerne i forbindelse med håndtering og anvendelse af væskerne i metalbearbejdningssystemer. Endvidere forøger nedbrydningen af sådanne væsker slidet på metalbearbejdningsmaskinerne selv og formindsker redskabers levetid på grund af virkningssvigt hos metalbearbejdningsvæskerne. Blandt andre følgevirkninger af metalbearbejdningsvæskers nedbrydning er forøget kassation af arbejdsemner, nedsat produktion og forøgede omkostninger i forbindelse med stilstand, dyr opsamling af kasserede væsker, arbejds- og sundhedsproblemer i forbindelse med deres anvendelse og miljøforurening. Derfor er tilvejebringelsen af metalbearbejdningsvæsker med forøget levetid og stabiliseret over for nedbrydning på grund af metalbearbejdningsbetingelser blandt andre ønskelige egenskaber meget vigtig ikke kun for industrien, hvori de anvendes, men også for det miljø, hvori vi lever.The lack of extended stability in metalworking fluids has therefore led to serious direct and indirect disadvantages of their use in metalworking operations. Eg. Increases the short life of metalworking fluids increases the work and material costs associated with handling and using the fluids in metalworking systems. Furthermore, the degradation of such fluids increases the wear of the metalworking machines themselves and reduces the tool life due to failure of the metalworking fluids. Among other effects of metalworking liquids decomposition are increased disposal of workpieces, reduced production and increased costs associated with downtime, expensive collection of discarded liquids, work and health problems related to their use and environmental pollution. Therefore, the provision of metal working fluids with increased service life and stabilized against degradation due to metal working conditions among other desirable properties is very important not only for the industry in which they are used, but also for the environment in which we live.

Der er tidligere foretaget forskellige forsøg på at forbedre metalbearbejdningsvæsker og på at overvinde eller formindske direkte og indirekte ulemper forbundet med anvendelsen af sådanne metalbearbejdningsvæsker. Patentskrifter, som er repræsentative for den kendte teknik inden for dette område, er US patentskrifterne nr. 2 688 146, 3 240 701, 3 244 630 og 3 365 397. Disse patentskrifter og andres anstrengelser har i hovedsagen været rettet på at overvinde de faktorer, som medvirker til nedbrydning af emulsioner. Det er tilstrækkeligt at sige, at resultaterne af disse anstrengelser har været mindre end tilfredsstillende, og at der er behov for forbedrede metalbearbejdningsvæsker, som vil give nye resultater og overvinde de nuværende problemer og ulemper.Various attempts have been made in the past to improve metalworking fluids and to overcome or mitigate the direct and indirect disadvantages associated with the use of such metalworking fluids. Patents representative of the prior art in the art are U.S. Patents Nos. 2,688,146, 3,240,701, 3,244,630, and 3,365,397. These patents and the efforts of others have mainly been directed to overcoming the factors , which helps in the breakdown of emulsions. Suffice it to say that the results of these efforts have been less than satisfactory and that improved metalworking fluids are needed which will yield new results and overcome the current problems and disadvantages.

DK 152056 BDK 152056 B

33

Som angivet i dansk patentansøgning nr. 3601/77 er den antimikro-bielle aktivitet af visse metalkomplekser, f.eks. dialkalimetal-monokobber(II)-citraterne, blevet fastslået ved deres toxiske og vækstinhiberende virkning over for et antal mikroorganismer i olieemulsioner, der anvendes som kølemidler ved forskellige bearbejdningsoperationer. Metalkompleksernes effektivitet i industrielle kølevæsker blev fastslået i sådanne væsker, hvor en række mikroorganismer fandtes at formere sig. Som også angivet i den ovennævnte patentansøgning blev det specielt fundet, at metalkomplekserne var bemærkelsesværdigt effektive ved alkaliske pH-værdier, som forekommer under metalbearbejdningsbetingelser.As disclosed in Danish Patent Application No. 3601/77, the antimicrobial activity of certain metal complexes, e.g. the dialkali metal monocobes (II) citrates, have been determined by their toxic and growth inhibitory action against a number of microorganisms in oil emulsions used as refrigerants in various processing operations. The efficiency of metal complexes in industrial coolants was established in such fluids, where a number of microorganisms were found to multiply. As also stated in the aforementioned patent application, it was found in particular that the metal complexes were remarkably effective at alkaline pH values occurring under metalworking conditions.

Den foreliggende opfindelse udvider yderligere de ovennævnte erkendelser med hensyn til stabilisering af olie-i-vand-dispersioner ved tilsætning af en effektiv stabiliserende mængde af et metalkompleks af en metalion og en polyfunktionel organisk ligand.The present invention further extends the aforementioned findings regarding the stabilization of oil-in-water dispersions by the addition of an effective stabilizing amount of a metal complex of a metal ion and a polyfunctional organic ligand.

Disse metalkomplekser er angivet i den ovennævnte ansøgning.These metal complexes are listed in the above application.

Det stabiliserende metalkompleks har vist sig at have en meget uventet protoninduceret dissociationsevne i vand, som medfører kontrolleret frigørelse af metalion i olie-i-vand-dispersionerne og giver metalbearbejdningsstabilitet til disse. Denne dissociationsevne er repræsenteret ved en S-formet kurve på en retvinklet koordinatafbildning af den negative logaritme af metalionkoncentrationen over for den negative logaritme af hydrogenionkoncentra-tionen, dvs. et pM-pH-diagram. I overensstemmelse hermed er de stabiliserede olie-i-vand-dispersioner ifølge opfindelsen ejendommelige ved det i krav l's kendetegnende del anførte.The stabilizing metal complex has been found to have a very unexpected proton-induced dissociation ability in water which results in controlled release of metal ion into the oil-in-water dispersions and provides metalworking stability to them. This dissociation ability is represented by an S-shaped curve on a right-angled coordinate plot of the negative logarithm of the metal ion concentration versus the negative logarithm of the hydrogen ion concentration, ie. a pM pH diagram. Accordingly, the stabilized oil-in-water dispersions of the invention are characterized by the characterizing part of claim 1.

Helt uventet har det vist sig, at dispersionerne ifølge opfindelsen ved anvendelse som metalbearbejdningsvæsker kan stabiliseres over for angreb og nedbrydning af forskellige årsager.Unexpectedly, it has been found that the dispersions of the invention, when used as metal working liquids, can be stabilized against attack and degradation for various reasons.

F.eks. er de omhandlede metalkomplekser, som anført i den ovennævnte ansøgning, effektive som antimikrobielle midler i metalbearbejdningsemulsioner. Det er yderligere blevet påvist, at disse metalkomplekser giver andre stabiliserende egenskaber til metalbearbejdningsvæskerne og medfører forbedringer og fordele, som 4Eg. For example, the metal complexes in question, as set forth in the above application, are effective as antimicrobial agents in metalworking emulsions. It has further been demonstrated that these metal complexes provide other stabilizing properties to the metalworking fluids and bring improvements and advantages which 4

DK 152056BDK 152056B

hidtil ikke har kunnet opnås hos metalbearbejdningsvæsker. Denne stabilitet opnås ikke kun over for bakterier, men væskerne stabiliseres over for nedbrydning .af fysiske, kemiske og fysisk-ke-miske årsager forbundet med metalbearbejdningsbetingelser, herunder varme, tryk og ændringer i metalbearbejdningsmiljøets sammensætning som følge af metalbearbejdningspartikler, polyvalente ioner osv. Stabiliteten af metalbearbejdningsvæsker er ifølge opfindelsen blevet forbedret stærkt. F.eks. er væskers levetid som industrielle kølemidler blevet forlænget fra f.eks. nogle få uger til næsten et år eller mere, og de nuværende resultater tyder på, at levetiden kan forlænges næsten uendeligt. Metalkompleks-stabilisatorerne er i sig selv meget stabile ved relativt høje alkaliske pH-værdier af størrelsesordenen 9 eller 10 til omkring 12. Imidlertid udøver de stabiliserende komplekser i et alkalisk pH-område på fra omkring 7 til omkring 9, hvor metalbearbejdningsvæsker skal fungere, meget fordelagtige stabiliserende virkninger på metalbearbejdningsvæskerne. Det har i denne forbindelse også .vist sig, at der kan tilvejebringes metalbearbejdningsvæsker indeholdende meget små mængder stabiliserende metalkompleks, dvs. mængder som kan være under de mængder, der ville udøve biocid aktivitet, og at sådanne metalbearbejdningsvæsker alligevel kan være stabiliseret over for nedbrydning fra alle faktorer i metalbearbejdningsmiljøet.has not yet been achieved with metal working fluids. This stability is not only achieved against bacteria, but the liquids are stabilized against degradation for physical, chemical and physical-chemical reasons associated with metalworking conditions, including heat, pressure and changes in the composition of the metalworking environment due to metalworking particles, polyvalent ions, etc. According to the invention, metal working fluids have been greatly improved. Eg. the life of liquids as industrial refrigerants has been extended from e.g. a few weeks to almost a year or more, and current results suggest that life can be extended almost indefinitely. The metal complex stabilizers are themselves very stable at relatively high alkaline pHs of the order of 9 or 10 to about 12. However, the stabilizing complexes in an alkaline pH range of from about 7 to about 9, where metal working fluids are to function, are very advantageous stabilizing effects on the metalworking fluids. In this connection, it has also been found that metal working fluids containing very small amounts of stabilizing metal complex can be provided, i.e. amounts which may be below those which would exert biocidal activity and that such metalworking fluids may nevertheless be stabilized against degradation from all factors in the metalworking environment.

Således er opfindelsen rettet mod at give stabilitet til ellers nedbrydelige olie-i-vand-dispersioner, som er udsat for nedbrydning af en lang række årsager. F.eks. kan dispersionerne tilføres biostabilitet, ved indførelse af metalkomplekserne selv i mængder mindre end hidtil benyttede biocide mængder. På den anden side kan almen emulsionsstabilitet opnås ved indførelse af mængder af metalkompleks, som stabiliserer emulsionerne over for nedbrydning fra fremmede kilder, som metalpartikler, polyvalente metalioner og lignende. Endvidere kan dispersionerne gives yderst høj modstandsdygtighed over for tryk og varme ved anvendelse af de omhandlede stabilisatorer. Ifølge en anden side af opfindelsen reduceres andre grupperingers kemiske indvirkning på de emulgerede partikler, som ellers ville have tendens til at formindske stabiliteten. Disse og andre fordele ved opfindelsen skal forklares nærmere i den følgende beskrivelse.Thus, the invention is directed to providing stability to otherwise degradable oil-in-water dispersions which are subject to degradation for a variety of reasons. Eg. For example, the dispersions can be added to biostability by introducing the metal complexes even in amounts less than previously used biocidal amounts. On the other hand, general emulsion stability can be achieved by introducing amounts of metal complexes which stabilize the emulsions against degradation from foreign sources, such as metal particles, polyvalent metal ions and the like. Furthermore, the dispersions can be given extremely high resistance to pressure and heat by using the stabilizers in question. According to another aspect of the invention, the chemical effect of other groups is reduced on the emulsified particles which would otherwise tend to decrease stability. These and other advantages of the invention will be explained in more detail in the following description.

DK 152056 EDK 152056 E

55

Teorierne eller de bagved liggende årsager til de omhandlede metalkompleks-stabilisatorers temmelig uventede aktiviteter er blevet udforsket. Selv om ansøgerne ikke ønsker at være begrænset af teoretiske overvejelser, antages det, at de kan være til hjælp for en dybere forståelse af de fordele og uventede resultater, som opnås ifølge opfindelsen. Det antages, at olie-i-vand-dispersioner kan være bionedbrydelige, kemisk nedbrydelige på grund af kemiske stoffer i væskemedierne, fysisk nedbrydelige på grund af betingelser, såsom mekaniske kræfter, eller nedbrydelige som følge af kombinationer af to eller flere sådanne faktorer. Som bekendt indeholder sådanne olie-i-vand-dispersioner emulgeringsmidler, og disse emulgeringsmidler er typisk af den "anioniske" og/eller "ikke-ioniske" type. Emulgeringsmidlerne muliggør på grund af deres hydrofile-hydrofobe natur suspensionen af oliepartiklerne i en kontinuert fase af væsken. Elektronegative grupperinger, f.eks. carboxyl-og sulfonatgrupper i emulgeringsmidlet, giver elektronegative overfladeladninger til oliedråben. Den kombinerede elektronegativitet af en sådan emulgeret partikel betegnes almindeligvis som zeta-potentialet. I hovedsagen er zeta-potentialet forbundet med den kraft og afstand, over hvilken de emulgerede partikler kan frastøde hverandre og således forhindre flokkulering. Dette er selvfølgelig en oversimplificering af sådanne olie-i-vand-dispersioner, Ikke desto mindre kunne man måske have ventet, at indførelse af en højt ladet divalent metalkation eller en lignende gruppering i de stabiliserende metalkomplekser ville skade emulsionens stabilitet og måske forårsage flokkulering på grund af neutralisering af emulsionsdråbernes stærkt elektronegative karakter.The theories or the underlying causes of the rather unexpected activities of the metal complex stabilizers in question have been explored. Although applicants do not wish to be limited by theoretical considerations, it is believed that they may assist in a deeper understanding of the benefits and unexpected results obtained by the invention. It is believed that oil-in-water dispersions can be biodegradable, chemically degradable due to chemicals in the liquid media, physically degradable due to conditions such as mechanical forces, or degradable due to combinations of two or more such factors. As is known, such oil-in-water dispersions contain emulsifiers, and these emulsifiers are typically of the "anionic" and / or "nonionic" type. Due to their hydrophilic-hydrophobic nature, the emulsifiers allow the suspension of the oil particles in a continuous phase of the liquid. Electronegative groupings, e.g. carboxyl and sulfonate groups in the emulsifier provide electronegative oil droplet charges. The combined electronegativity of such an emulsified particle is commonly referred to as the zeta potential. Essentially, the zeta potential is associated with the force and distance over which the emulsified particles can repel each other and thus prevent flocculation. This is, of course, an oversimplification of such oil-in-water dispersions. Nevertheless, one might have expected that introduction of a highly charged divalent metal cation or similar grouping into the stabilizing metal complexes would impair the stability of the emulsion and perhaps cause flocculation due to of neutralizing the highly electronegative nature of the emulsion droplets.

I bredere forstand tilvejebringer opfindelsen således stabilisering af olie-i-vand-dispersioner ved tilsætning af en polyvalent metalion, som danner en koordinativ binding med det elektronegative emulgeringsmiddel. De stabiliserende.virkninger af en sådan koordinationsdannelse virkeliggøres, fordi elektronegativiteten stadig eksisterer til at forhindre deemulgering, medens de andre modtagelige steder i emulgeringsmidlet nu er 6Thus, in a broader sense, the invention provides for the stabilization of oil-in-water dispersions by the addition of a polyvalent metal ion which forms a coordinate bond with the electronegative emulsifier. The stabilizing effects of such coordination are realized because the electronegativity still exists to prevent demulsification, while the other susceptible sites in the emulsifier are now 6

DK 152056 BDK 152056 B

blokeret over for enzymatisk nedbrydning* og til at lade metalionen overføres som et grænsesmøremiddel til grænsefladen mellem værktøj og arbejdsemne«, Denne stabilisering tilskrives den emulgerede dråbes stærkt elektronegative karakter, som enten frembringer eller medvirker til dissociationen af metalkomplekset og muliggør koordinationen af metalkationen med de elektronegative enheder i de emulgerede dråber, f.eks. carboxylgrupperne, sulfonatgrupperne eller de alkoholiske hydroxygrupper i emulgeringsmidlerne. Denne blokering af disse biofølsomme eller funktionelle grupper forhindrer den enzymatiske nedbrydning af disse strukturer, som almindeligvis er forbundet med den mikrobielle metabolisme. Imidlertid er det helt uventet, at indførelsen af metalkomplekserne eller indførelsen af sådanne metalioner har vist sig ikke at frembringe deemulgering af de elektronega-tivt ladede emuisionsdråber. Dette skyldes, at mængden af positivt ladede ioner, som forbinder sig med oliedråbens elektronegative overflade, selv om den er tilstrækkelig til at give biostabilitet, ikke er tilstrækkelig til at formindske partiklens elektronegativitet til deemulgeringspunktet. Derfor er dannelsen af koordinative strukturer med emulgeringsmidler en hidtil ukendt metode til stabilisering af emulsioner.blocked to enzymatic degradation * and to transfer the metal ion as an interface lubricant to the interface between tool and workpiece ', This stabilization is attributed to the highly electronegative nature of the emulsified droplet, which either generates or contributes to the dissociation of the metal complex and allows for the coordination of the metal with the metal ion. units in the emulsified droplets, e.g. the carboxyl groups, the sulfonate groups or the alcoholic hydroxy groups in the emulsifiers. This blocking of these bio-sensitive or functional groups prevents the enzymatic degradation of these structures, which are commonly associated with microbial metabolism. However, it is quite unexpected that the introduction of the metal complexes or the introduction of such metal ions has been found not to produce demulsification of the electronically charged emission droplets. This is because the amount of positively charged ions that connect to the electronegative surface of the oil droplet, although sufficient to provide biostability, is not sufficient to reduce the electronegativity of the particle to the demulsification point. Therefore, the formation of co-ordinating structures with emulsifiers is a novel method of stabilizing emulsions.

Det har også vist sig, at indførelsen af de omhandlede metalkompleks-stabilisatorer giver anledning til yderst høj varme- og trykmodstandsdygtighed af emulsionen under metalbearbejdningsprocedurer. En sådan høj varme- og trykmodstandsdygtighed frembringes af de koordinative strukturer af metalioner og emulgeringsmidler i de stabiliserede dispersioner ifølge opfindelsen. Disse egenskaber udvises af metalkationen eller metalkomplekset, som transporteres til og derpå forbindes med de elektronegative grupperinger i de emulgerede dråber som nævnt ovenfor. De emulgerede dråber bringes kontinuerligt i intim kontakt med grænsefladerne mellem værktøj og arbejdsemne ved metalbearbejdningsprocedurer. F.eks. indtræder kobber, som er forbundet med de emulgerede dråber ved grænsefladen, under metalbearbejdningsprocessens varme og tryk i en oxidations-reduktions-proces, som tjener til at smøre metaloverfladerne, men uden nedbrydning af emulsionen til en ubrugelig tilstand. Endvidere bliver dispersionen i praksis, måske på grund af dannelsen af 7It has also been found that the introduction of the metal complex stabilizers in question gives rise to extremely high heat and pressure resistance of the emulsion during metalworking procedures. Such high heat and pressure resistance is produced by the coordinate structures of metal ions and emulsifiers in the stabilized dispersions of the invention. These properties are exhibited by the metal cation or metal complex which is transported to and then associated with the electronegative groupings in the emulsified droplets as mentioned above. The emulsified droplets are continuously brought into intimate contact with the interfaces between the tool and workpiece during metalworking procedures. Eg. For example, copper associated with the emulsified droplets at the interface undergoes the heat and pressure of the metalworking process in an oxidation-reduction process which serves to lubricate the metal surfaces, but without degrading the emulsion to a useless state. Furthermore, the dispersion becomes in practice, perhaps due to the formation of 7

DK 152056 BDK 152056 B

højreaktive kationer ved værktøjs-arbejdsemne-grænsefladen i enhver bearbejdningsoperation, som involverer metalliske substrater, ladet med metalioner, som ved udskiftning har tendens til at erstatte kationerne i metalkomplekset og yderligere lader dem vandre og forbindes med elektronegative strukturer i den emulgerede partikel, altså faktisk overtrækker den med kation.highly reactive cations at the tool-workpiece interface in any machining operation involving metallic substrates, charged with metal ions which, upon replacement, tend to replace the cations in the metal complex and further allow them to migrate and bond with electronegative structures in the emulsified particle, thus actually coating the one with cation.

Selv om metalkompleks-stabilisatorens kemiske natur er sådan, at den er højopløselig i vandige systemer, dissocieres den let på grund af dens enestående protondissocieringsevne ved metal-bearbejdningsbetingelsernes pH-værdi, således at metalionen bliver transporteret til emulsionens oliefase fra den vandige fase. Dette overraskende fænomen er blevet demonstreret ved tofase ekstraktion af et olie-i-vand-emulsionssystem behandlet med metalkomplekset i koncentrationer, som er et godt stykke under dem, som findes at være biocide i naturen. Nærmere betegnet har man undersøgt emulsioner behandlet med dinatrium-monokobber(ii)-citrat i en koncentration svarende til fra omkring 50 til omkring 100 mg Cu++ pr. liter emulsion, f.eks. 1/10 - 1/5 af den-biocide dosering i et bestemt medium. Undersøgelse af blandingen af metalkompleks og emulsion ved to-fase-ekstraktion under anvendelse af chloroform eller andre chlorerede carbonhydrider afslører, at kobberet er til stede i den organiske fase. Selv om den eksakte mekanisme af denne reaktion ikke er blevet nøjagtigt opklaret, er ikke desto mindre biostabiliteten, den kemiske stabilitet og fysisk-kemiske stabiliteter, som tilføres ved behandlingen af emulsioner med de omhandlede metalkomplekser, blevet iagttaget empirisk. Endvidere må biostabiliteten, som tilføres ved hjælp af mindre end biocide eller biostatiske mængder af de omhandlede metalkomplekser, anses for særligt bemærkelsesværdig og må være forbundet med reaktionen af grupperinger i den organiske fase, som gør dem ufølsomme for bakterieangreb i modsætning til en direkte kationreaktion med mikroorganismeenheder forbundet med den vandige fase.Although the chemical nature of the metal complex stabilizer is such that it is highly soluble in aqueous systems, it is readily dissociated due to its unique proton dissociation ability at the pH of the metalworking conditions, so that the metal ion is transported to the oil phase of the emulsion from the aqueous phase. This surprising phenomenon has been demonstrated by two-phase extraction of an oil-in-water emulsion system treated with the metal complex at concentrations well below those found to be biocidal in nature. More specifically, emulsions treated with disodium monocobes (ii) citrate have been investigated at a concentration of from about 50 to about 100 mg Cu ++ per day. liter of emulsion, e.g. 1/10 - 1/5 of the biocidal dosage in a particular medium. Examination of the mixture of metal complex and emulsion by two-phase extraction using chloroform or other chlorinated hydrocarbons reveals that the copper is present in the organic phase. However, although the exact mechanism of this reaction has not been precisely elucidated, the biostability, chemical stability and physicochemical stability afforded by the treatment of emulsions with the metal complexes in question have been empirically observed. Furthermore, the biostability supplied by less than biocidal or biostatic amounts of the metal complexes in question must be considered particularly remarkable and must be associated with the reaction of organic phase groupings which render them insensitive to bacterial attack as opposed to a direct cation reaction with microorganism units associated with the aqueous phase.

Det er tidligere blevet bemærket, at polyvalente metalkationer kan dannes i metalbearbejdningsvæsker ved bearbejdningsprocessen, såsom kationer af jern, aluminium og lignende. På den anden side kan andre sådanne polyvalente metalkationer, såsom calcium og mag- 8It has been previously noted that polyvalent metal cations can be formed in metal working fluids by the machining process, such as cations of iron, aluminum and the like. On the other hand, other such polyvalent metal cations, such as calcium and mag

DK 152056BDK 152056B

nesium, være til stede i det vandige medium, der anvendes i metalbearbejdningsvæsker. Disse ioner kan betegnes som henholdsvis "frembragte ioner", dvs. de der dannes ved bearbejdningsoperationer, eller "oprindelige ioner", dvs. de der fra starten er til stede i metalbearbejdningsvæskernes vandige medier. Disse poly-valente kationer skader normalt metalbearbejdningsprocesserne og medvirker endvidere til de emulgerede partiklers ustabilitet. Det er imidlertid blevet fastslået empirisk, at de her omhandlede stabilisatorer gør emulsionerne stabile over for indvirkning af sådanne polyvalente metalioner. Således har de stabiliserende komponenter i olie-i-vand-dispersionerne ifølge opfindelsen tendens til efter dissociation ikke kun at give stabilitet til de emulgerede partikler på grund af deres forbindelse med dem, men også til at kompleksere uønskede polyvalente ioner i medierne.nesium, be present in the aqueous medium used in metal working fluids. These ions can be referred to as "generated ions", ie. those formed by machining operations, or "native ions", i.e. those present from the start in the aqueous media of the metalworking fluids. These polyvalent cations usually damage the metalworking processes and further contribute to the instability of the emulsified particles. However, it has been empirically established that the present stabilizers make the emulsions stable to the action of such polyvalent metal ions. Thus, the stabilizing components of the oil-in-water dispersions of the invention tend to post-dissociate not only stability to the emulsified particles due to their association with them, but also to complex undesirable polyvalent ions in the media.

Metalkomplekserne, der anvendes som stabilisatorer i dispersionerne ifølge opfindelsen, frigiver store mængder metalion fra deres ko-ordinative strukturer ved en pH-værdi på fra omkring 4 til omkring 9 og mest foretrukkent ved en pH-værdi på fra omkring 7 til omkring 9 eller 10, dvs. de værdier, som normalt mødes i metalbearbejdningsvæsker. På grund af deres enestående dissociationsevne som demonstreret ved en S-formet kurve på et pM-pH-diagram, yder disse midler efter behov en kontrolleret frigivelse af metalioner ved en pH-værdi, som er forenelig med metalbearbejdningsbetingelser. Endvidere inhiberes på grund af metalkompleksernes organiske ligand natur, som påpeget ovenfor, aktiviteten af andre polyvalente metalkationer eller andre fremmede grupperinger, som er til stede i metalbearbejdningsvæsker, og som ellers kunne virke skadeligt på stabiliteten af metalbearbejdningsemulsionerne.The metal complexes used as stabilizers in the dispersions of the invention release large amounts of metal ion from their coordinate structures at a pH of from about 4 to about 9 and most preferably at a pH of from about 7 to about 9 or 10. , ie the values usually met in metalworking fluids. Because of their unique dissociation ability as demonstrated by an S-shaped curve on a pM pH diagram, these agents provide, as needed, a controlled release of metal ions at a pH compatible with metalworking conditions. Furthermore, due to the organic ligand nature of the metal complexes, as pointed out above, the activity of other polyvalent metal cations or other foreign groupings present in metalworking liquids and which could otherwise adversely affect the stability of the metalworking emulsions is inhibited.

Derfor må de omhandlede metalkompleks-stabilisatorer skelnes fra andre metalkomplekser, hvori metalkationer er blevet komplekseret med organiske ligander, repræsenteret ved ethylendiamintetraeddike-syre (EDTA), diethylentriaminpentaeddikesyre (DTPA) eller andre aminosyrer eller lignende, som har relativt høj stabilitet eller kemisk inehthed og ikke stiller metalionen til rådighed i mængder, som koordinerer med de elektronegative emulgeringsmidler i nogen væsentlig grad, og derfor ikke kan give stabilitet til emulsionen.Therefore, the metal complex stabilizers in question must be distinguished from other metal complexes in which metal cations have been complexed with organic ligands represented by ethylenediaminetetraacetic acid (EDTA), diethylenetriamine pentaacetic acid (DTPA) or other amino acids or the like having relatively high stability or chemical content and provides the metal ion in quantities which coordinate with the electronegative emulsifiers to a significant degree and therefore cannot provide stability to the emulsion.

9 DK 152056 B9 DK 152056 B

Sådanne kendte komplekser yder heller ikke en kontrolleret frigørelse af metalion eller en dissociationsevne repræsenteret ved en S-formet kurve i et pM-pH diagram. Snarere har sådanne kendte metalkomplekser på grund af deres stabilitet og kemiske inerthed tendens til at dissocieres i mindre grad på en ret lineær måde. Endvidere tilvejebringer opfindelsen komplekser, som er opløselige i vand i høje koncentrationer på grund af deres ioniske karakter og alligevel forbliver i den stabile form. Denne opløsningsevne, især i alkaliske medier som i dette tilfælde, muliggør fremstillingen af koncentrater, som er i stand til i et emulsionssystem efter behov at producere den metalion, der giver emulsionen metalbearbejdningsstabilitet. En sådan opløselighedsevne må skelnes fra de hidtil kendte metalforbindelser bestående af metalkationiske og anioniske komponénter, som er praktisk taget uopløselige i sådanne medier, og fra de metalkomplekser, som, selv om de kan være opløselige, binder metalionen i en så kompleks tilstand, at den kun dissocieres svagt og derfor næppe står til rådighed for frigørelse af metalion til koordination med den emulgerede partikel.Also, such known complexes do not provide a controlled release of metal ion or a dissociation ability represented by an S-shaped curve in a pM pH diagram. Rather, such known metal complexes, due to their stability and chemical inertia, tend to dissociate to a lesser extent in a rather linear fashion. Furthermore, the invention provides complexes which are soluble in water at high concentrations due to their ionic nature and yet remain in their stable form. This solubility, especially in alkaline media such as in this case, allows the preparation of concentrates capable of producing, as needed, the metal ion that provides the emulsion with metal working stability. Such solubility can be distinguished from the known metal compounds consisting of metal cationic and anionic components which are practically insoluble in such media, and from the metal complexes which, although soluble, bind the metal ion in such a complex state that it is only weakly dissociated and therefore hardly available for release of metal ion for coordination with the emulsified particle.

Ved udtrykket "metalbearbejdningsvæsker" skal i denne beskrivelse som indenfor teknikken i almindelighed forstås de væsker, der anvendes til at smøre, afkøle, rense og inhibere nedbrydning af metaloverflader under metalbearbejdningsprocessen. Disse væsker er velkendte for fagfolk indenfor metalbearbejdningsteknikken. Der er to grundlæggende metalbearbejdningsområder, nemlig mekaniske operationer, der henfører til skæring, boring, rivning, drejning, fræsning, rømning, slibning osv. sammen med formning, bøjning, vals-ning, trækning o. lign., og ikke-mekaniske operationer, der henfører til vaskning, bratkøling efter varmebehandling og lignende.The term "metalworking fluids" in this specification, as in the art, is generally understood to mean the fluids used to lubricate, cool, cleanse, and inhibit degradation of metal surfaces during the metalworking process. These fluids are well known to those skilled in the metalworking art. There are two basic metalworking areas, namely mechanical operations relating to cutting, drilling, grinding, turning, milling, escaping, grinding etc. along with forming, bending, rolling, drawing and the like, and non-mechanical operations, relating to washing, quenching after heat treatment and the like.

Det vil i almindelighed accepteres, at metalbearbejdningsvæsker ved mekaniske operationer udøver smørende, kølende, rensende og rust-inhiberende funktioner, medens de ved ikke-mekaniske operationer hovedsageligt udøver rensende, rustinhiberende og kølende funktioner.It is generally accepted that metal working fluids perform mechanical, lubricating, cooling, cleaning, and rust-inhibiting functions in mechanical operations, while in non-mechanical operations, they perform primarily cleansing, rust-inhibiting, and cooling functions.

De stabiliserede dispersioner ifølge opfindelsen er som nævnt afThe stabilized dispersions of the invention are as mentioned by

10 DK 152056 BDK 152056 B

olie-i-vand-typen. Disse dispersioner er i hovedsagen blevet betegnet som olieemulsioner eller opløselige olier indenfor teknikken. Sådanne væsker er hovedsageligt karakteriseret ved to faser, dvs. et væske-i-væske system, hvori der er en dispers fase og en kontinuert fase. Hvor partikelstørrelsen af den disperse fase er af en størrelsesorden på mere end 0,1 pm, er de klassisk blevet betegnet "emulsioner". Hvor partikelstørrelsen er i et kolloidalt område på omkring 1 nm til omkring 0,1 jum, kan dispersionen være af kollo-idal natur. Hvad enten man ønsker at karakterisere dem som grove emulsioner eller kolloidale suspensioner, består væskerne således hovedsageligt af organiske og vandige faser, dvs. af et to-fase system bestående af én væske i en anden væske, hvormed den første væske ikke er blandbar. Endvidere anvendes betegnelsen "olie" i denne beskrivelse til at identificere en stor klasse af stoffer, hvad enten de er af mineralsk, vegetabilsk, animalsk eller ether i sk oprindelse. De olier, som anvendes til metalbearbejdningsformål, er imidlertid sædvanligvis afledt fra klassen af mineralolier, enten jordolie eller jordoliederivat og især fra smøremiddelklassen. Disse dispersioner inkluderer emulgeringsmidler, typisk af den anioniske eller ikke-ioniske type. I tilfælde af de anioniske midler har aniondelen den molære karakter, som kræves til at frembringe de ønskede overfladeaktive virkninger, og den giver elektronegativitet til de suspenderede oliedråber eller partikler. I tilfælde af de ikke-ioniske midler gives oliepartiklen elektronegativitet på grund af en høj tæthed af iboende elektronegativitet. Mest almindeligt er de emulgeringsmidler, som anvendes i metalbearbejdningsemulsionerne, anioniske og/eller ikke-ioniske overfladeaktive midler. De anioniske overfladeaktive midler indeholder en negativt ladet ionholdig del og en oliedispergerbar eller oleophil del i molekylet. Det overfladeaktive middel kan tilhøre (1) gruppen af forsæbede fedtsyrer eller sæber eller (2) gruppen af forsæbede petroleumsolier, som natriumsalte eller organiske sulfonater eller sulfater eller (3) gruppen af forsæbede estere, alkoholer eller glycoler, hvoraf de sidstnævnte er velkendte som anioniske syntetiske overfladeaktive midler. Eksempler på disse anioniske overfladeaktive midler inkluderer alkylarylsulfonaterne eller aminsaltene deraf, såsom sulfonater af dodecylbenzen eller diethanolaminsalte af dodecylbenzensulfonsyre, sulfaterne af lige-oil-in-water type. These dispersions have generally been referred to as oil emulsions or soluble oils in the art. Such fluids are mainly characterized by two phases, viz. a liquid-in-liquid system wherein there is a dispersed phase and a continuous phase. Where the particle size of the dispersed phase is of a magnitude greater than 0.1 µm, they have been classically termed "emulsions". Where the particle size is in a colloidal range of about 1 nm to about 0.1 µm, the dispersion may be of colloidal nature. Thus, whether to characterize them as coarse emulsions or colloidal suspensions, the liquids consist mainly of organic and aqueous phases, ie. of a two-phase system consisting of one liquid in another liquid, with which the first liquid is immiscible. Furthermore, the term "oil" in this specification is used to identify a large class of substances, whether of mineral, vegetable, animal or ether origin. However, the oils used for metalworking purposes are usually derived from the class of mineral oils, either petroleum or petroleum derivative and especially from the lubricant class. These dispersions include emulsifiers, typically of the anionic or nonionic type. In the case of the anionic agents, the anion moiety has the molar character required to produce the desired surfactant effects and provides electronegativity to the suspended oil droplets or particles. In the case of the nonionic agents, the oil particle is given electronegativity due to a high density of inherent electronegativity. Most commonly, the emulsifiers used in the metalworking emulsions are anionic and / or nonionic surfactants. The anionic surfactants contain a negatively charged ionic moiety and an oil dispersible or oleophilic moiety in the molecule. The surfactant may belong to (1) the group of saponified fatty acids or soaps or (2) the group of saponified petroleum oils, such as sodium salts or organic sulfonates or sulfates or (3) the group of saponified esters, alcohols or glycols, the latter of which are well known as anionic synthetic surfactants. Examples of these anionic surfactants include the alkylarylsulfonates or amine salts such as sulfonates of dodecylbenzene or diethanolamine salts of dodecylbenzenesulfonic acid, the sulfates of

11 DK 152056 B11 DK 152056 B

kædede primære alkoholer eller fedtalkoholer som er produkter af Oxoprocessen (dvs. natriumlaurylsulfat). En forsætet let petroleumsolie, såsom sulfoneret petroleumdestillationsrest (f.eks. mahogany oil) ér almindelig. I almindelighed er hovedparten af de overfladeaktive midler eller emulgeringsmidler af den "anioniske". type: alkalimetal- eller aminsalte af organiske syrer. Hyppigt anvendes sulfonsyrer, hvor strukturen af den organiske del ikke er velkendt, som i tilfælde af familien "petro-leumsulfonater". De fleste af disse sulfonater indeholder mange kemiske grupperinger. Det klassenavn, som gives til de fleste af dem, er "alkylarylsulfonat". Dette betyder simpelthen, at et al-kanisk carbonhydrid er bundet til en aromatisk carbonhydridkerne (sædvanligvis benzen eller naphthalen), og den aromatiske del er blevet sulfoneret. Eksempler på forsæbede fedtsyrer (Cg-C2er natrium- eller kaliumsaltene af myristinsyre, palmitinsyre, stearinsyre., oliesyre eller linolsyre eller blandinger deraf. I denne klasse af anioniske overfladeaktive midler er også alkalimetal- og jordalkalimetalsaltene af neutrale phosphorsyreestere af oxyalkylerede (oxyethylerede) højere alkylphenoler eller ali-phatiske monovalente alkoholer. Eksempler er kalium- og natriumsaltene af phosphatestere af isodecylalkohol-ethylenoxid-additionsprodukter. Således inkluderer anioniske overfladeaktive midler eller emulgeringsmidler i denne beskrivelse sæber eller syntetiske overfladeaktive midler fra klassen af alkalimetal-, jordalkali-metal- og aminsalte af de organiske sulfonater, phosphater eller sulfater.chained primary alcohols or fatty alcohols which are products of the Oxo process (i.e. sodium lauryl sulfate). A presumed light petroleum oil such as sulfonated petroleum distillation residue (eg mahogany oil) is common. Generally, the majority of the surfactants or emulsifiers are of the "anionic". type: alkali metal or amine salts of organic acids. Sulfonic acids are frequently used where the structure of the organic part is not well known, as in the case of the "petro-sulfonates" family. Most of these sulfonates contain many chemical groups. The class name given to most of them is "alkylarylsulfonate". This simply means that an alcanic hydrocarbon is bonded to an aromatic hydrocarbon core (usually benzene or naphthalene) and the aromatic moiety has been sulfonated. Examples of saponified fatty acids (Cg-C2 are the sodium or potassium salts of myristic acid, palmitic acid, stearic acid, oleic acid or linoleic acid or mixtures thereof. Also, in this class of anionic surfactants, the alkali metal and alkaline earth metal salts of neutral phosphoric acid esters are higher). Examples are the potassium and sodium salts of phosphate esters of isodecyl alcohol-ethylene oxide addition products. Thus, anionic surfactants or emulsifiers in this specification include soaps or synthetic surfactants from the class of alkali metal, ammonium metal and alkaline earth metal the organic sulfonates, phosphates or sulfates.

De egnede ikke-ioniske overfladeaktive midler har almindeligvis hydrophile dele eller sidekæder, sædvanligvis af polyoxyalkylen-type. Den olieopløselige eller- dispergerbare del af molekylet | er afledt fra fedtsyrer, alkoholer, amider eller aminer. Ved pas- i sende valg af udgangsmaterialerne og regulering af polyoxyalkylen-kædens længde kan de overfladeaktive dele af ikke-ioniske overfladeaktive midler varieres som det er velkendt. Egnede eksempler på ikke-ioniske overfladeaktive midler inkluderer alkylphenoxy-polyoxyethylenglycoler, f.eks. ethylenoxidadditionsprodukter af octyl-, nonyl-, eller tridecylphenol og lignende. Disse nævnte ikke-ioniske overfladeaktive midler fremstilles sædvanligvis vedThe suitable nonionic surfactants generally have hydrophilic moieties or side chains, usually of a polyoxyalkylene type. The oil-soluble or dispersible portion of the molecule | is derived from fatty acids, alcohols, amides or amines. By appropriately selecting the starting materials and controlling the length of the polyoxyalkylene chain, the surfactant portions of nonionic surfactants can be varied as is well known. Suitable examples of nonionic surfactants include alkylphenoxy-polyoxyethylene glycols, e.g. ethylene oxide addition products of octyl, nonyl, or tridecylphenol and the like. These said nonionic surfactants are usually prepared by

I DK 152056 BI DK 152056 B

12 omsætning af alkylphenol med ethylenoxid. Andre specifikke eksempler på ikke-ioniske overfladeaktive midler inkluderer glycerol-monooleat, oleylmonoisopropanolamid, sorbitoldioleat, alkylolamider fremstillet ved omsætning af alkanolamider, såsom monoisopropanol-amin, diethanolamin eller monobutanolamin med fedtsyrer, såsom oliesyre, pelargonsyre, laurinsyre og elaidinsyre.12 reaction of alkyl phenol with ethylene oxide. Other specific examples of nonionic surfactants include glycerol monooleate, oleyl monoisopropanolamide, sorbitol dioleate, alkylolamides prepared by reaction of alkanolamides such as monoisopropanolamine, diethanolamine or monobutanolamine with fatty acids such as oleic acid, pelargonic acid, lauric acid and lauric acid.

Metalbearbejdningsvæskerne sammensættes typisk som det er velkendt indenfor teknikken ved en kombination af en smøreolie, såsom en opløsningsmiddelraffineret paraffin- eller napthenolie, et emulgeringsmiddel af den ovennævnte anioniske type og specielle additiver, herunder almindeligvis rustbeskyttende midler og lignende. Indenfor industrien kaldes sådanne blandinger indeholdende additiverne almindeligvis "neat oil", og den olieblanding blandes derpå med tilstrækkeligt vand til at give en emulsion. Volumenet af vand vil variere afhængigt af de forskellige faktorer. F.eks. kan oliefasen variere over brede områder på fra omkring 1 til omkring 95 vægt^ eller mere, idet resten er vandfase og andre mængder af emulgeringsmidler og additiver. Sædvanligvis kan mængden af emulgeringsmiddel være indenfor området fra omkring 5 til omkring 50 vægt%. I smøre- og skæreolier blandes olieblandingen med et tilstrækkeligt volumen vand til at give en emulsion, som indeholder fra omkring 90 til omkring 99 % vand, og fra omkring lo til omkring 1 volumen^ olieblanding. Ingredienserne i "neat oil"-blandingen er sædvanligvis fra omkring 30 til omkring 90 % smøreolie, fra omkring 10 til omkring 25 % emulgeringsmiddel og resten eventuelt additiver af den ovennævnte type.The metal working fluids are typically composed as is well known in the art by a combination of a lubricating oil, such as a solvent-refined paraffin or napthenic oil, an emulsifier of the aforementioned anionic type and special additives, including generally anti-rusting agents and the like. In the industry, such mixtures containing the additives are commonly called "neat oil" and the oil mixture is then mixed with sufficient water to give an emulsion. The volume of water will vary depending on the various factors. Eg. For example, the oil phase may vary over wide ranges of from about 1 to about 95% by weight or more, the remainder being aqueous phase and other amounts of emulsifiers and additives. Usually, the amount of emulsifier may be in the range of from about 5 to about 50% by weight. In lubricating and cutting oils, the oil mixture is mixed with a sufficient volume of water to give an emulsion containing from about 90 to about 99% water, and from about 100 to about 1 volume of oil mixture. The ingredients in the neat oil mixture are usually from about 30 to about 90% of lubricating oil, from about 10 to about 25% of emulsifier and the rest optionally additives of the above type.

Den stabiliserende metalion er til stede i smøreolieblandingen i en effektiv mængde til at give metalbearbejdningsstabilitet.The stabilizing metal ion is present in the lubricating oil mixture in an effective amount to provide metalworking stability.

Denne effektive mængde kan variere afhængigt af et antal faktorer, herunder det bestemte metal, som bearbejdes, pH-værdien, forureninger og mængderne af olie- og vandfase, emulgeringsmiddel, metalbearbejdningskationer, det bestemte metalkompleks og lignende. I almindelighed indeholdes den stabiliserende metalion f.eks. i en emulsion, dannet ud fra "neat oil"-blandingenThis effective amount can vary depending on a number of factors including the particular metal being processed, the pH, the contaminants and the amounts of oil and water phase, emulsifying agent, metal working cations, the particular metal complex and the like. Generally, the stabilizing metal ion is contained e.g. in an emulsion formed from the "neat oil" mixture

DK 152056BDK 152056B

13 som nævnt ovenfor, indenfor et område på fra omkring 10 til omkring 500 mg metalion pr. liter oliefase. Metalkomplekset, som leverer metalionen, sættes til den vandige fase. Efter en sådan tilsætning vandrer metalionen, som forklaret ovenfor, til dannelse af koordinative bindinger med emulgeringsmidlet og etablerer en ligevægt mellem olie- og vandfasen. Efterhånden som metalionen under metalbearbejdningen udtømmes fra den ene eller den anden fase, tilsættes mere kompleks for at opretholde den effektive stabiliserende mængde. Nærmere betegnet vil der i en skære- eller smøreolieemulsion til brug ved bearbejdning af jern og indeholdende omkring 97 volumen! vand og omkring 3 volumen! olie som nævnt ovenfor med omkring 10-15 ! emulgeringsmiddel, og hvor dinatrium-monokobber(II)-citrat anvendes som stabiliseringsmiddel, med 500 mg kobber pr. liter vandig fase opnås en toxisk virkning over for bakterier. Imidlertid kan der som nævnt ovenfor tilføres emulsionen metalbearbejdningsstabilitet med så lidt som 10-100 mg af kobberkationen pr. liter vandig fase eller et godt stykke under toxicitetsniveauet. Med 500 mg kobber pr. liter vandig fase opnås en toxisk virkning overfor bakterier. Men der kan også anvendes mængder af metalkompleks udenfor disse områder.13 as mentioned above, within a range of from about 10 to about 500 mg of metal ion per day. liter of oil phase. The metal complex which supplies the metal ion is added to the aqueous phase. After such addition, the metal ion, as explained above, migrates to form coordinative bonds with the emulsifier and establishes an equilibrium between the oil and water phases. As the metal ion depletes from one or the other phase during the metalworking, more complex is added to maintain the effective stabilizing amount. Specifically, in a cutting or lubricating oil emulsion for use in machining iron and containing about 97 volumes! water and about 3 volumes! oil as mentioned above by about 10-15! emulsifier, and where disodium monocobal (II) citrate is used as a stabilizer, with 500 mg of copper per a liter of aqueous phase achieves a toxic effect against bacteria. However, as mentioned above, the emulsion can be added to metalworking stability with as little as 10-100 mg of the copper cation per minute. liter of aqueous phase or well below the toxicity level. With 500 mg of copper per a liter of aqueous phase achieves a toxic effect against bacteria. However, amounts of metal complex outside these areas can also be used.

De ifølge opfindelsen anvendte stabilisatorer kan tilføres emulsionen på en række måder. F.eks. kan det stabiliserende metalkompleks sættes til emulsionens vandige fase før fremstillingen, hvorefter "neat oil"-blandingen indeholdende olien, emulgeringsmidlet og additiverne kan tilsættes til dannelse af emulsionen, eventuelt med nogen omrøring. På den anden side kan emulsionen dannes først, og det stabiliserende metalkompleks derpå tilsættes den dannede emulsion. Emulsionen dannes således, at metalkomplekset ikke nedbrydes. Specielt i tilfælde af metalkomplekser af zink-, nikkel-og kobbercitrat er disse relativt stabile under alkaliske betingelser op til omkring pH 12, men giver alligevel den ønskede stabiliserende virkning til metalbearbejdningsemulsionen ved en alkalisk pH-værdi på op til omkring 9 eller 10. Således indstilles pH-værdien på den alkaliske side fra omkring 7 til omkring 10 i væskerne for at metalkomplekset ikke først nedbrydes, og således at der opnås en pH-værdi midt i området på omkring 8,5.The stabilizers used according to the invention can be applied to the emulsion in a number of ways. Eg. For example, the stabilizing metal complex may be added to the aqueous phase of the emulsion prior to preparation, after which the "neat oil" mixture containing the oil, emulsifier and additives may be added to form the emulsion, optionally with some stirring. On the other hand, the emulsion can be formed first and the stabilizing metal complex thereafter added to the emulsion formed. The emulsion is formed so that the metal complex does not degrade. Especially in the case of metal complexes of zinc, nickel and copper citrate, these are relatively stable under alkaline conditions up to about pH 12, but still provide the desired stabilizing effect to the metalworking emulsion at an alkaline pH of up to about 9 or 10. Thus For example, the pH value on the alkaline side is adjusted from about 7 to about 10 in the liquids so that the metal complex is not first degraded, so that a pH value is reached in the middle of about 8.5.

1414

DK 152056BDK 152056B

I en for tiden foretrukken udførelsesform indeholder de stabiliserede dispersioner ifølge opfindelsen et monometalkompleks af en divalent metalion og en polyfunktionel organisk ligand i et forhold mellem metallet og liganden på 1:1, hvilket kompleks har en dissociationsevne repræsenteret ved en S-formet kurve på et pM-pH-diagram. Et specifikt eksempel på metalkomplekset er dialkalimetal-monokobber(II)-citrat, såsom dinatrium-, dikalium- eller dilithium-monokobber(II)-citrat. Disse dialkalimetal-monokobber(II)-citrater har en dissociationsevne repræsenteret ved S-formet kurve, hvorved kurven fra to retninger mødes i et punkt indenfor pH-området fra omkring 7 til omkring 9. Det er blevet påvist, at disse monokobber(II)-komplekser er meget stabile i basiske medier med en pH-værdi af størrelsesordenen fra omkring 9 til omkring 12, dvs. har en effektiv stabilitets- 12 konstant, af størrelsesordenen fra omkring 10 til omkring 1013. Imidlertid er for disse monokobber(II)-citrat-komplek ser ved en pH-værdi på omkring 7-8 af størrelsesordenen fra 5 8 omkring 10 til omkring 10 . Derfor er den effektive stabilitetskonstant for monokobber(II)-citrat-komplekset ved en pH-værdi omkring 7-8 betydeligt lavere (fra tusind til flere hundrede-tusinde gange lavere) og en væsentlig koncentration af fri Cu++ er til rådighed for toxisk eller stabiliserende aktivitet. F.eks. er omkring 10 % af kobberet i komplekset i den ioniserede tilstand ved omkring pH 7, medens tilnærmelsesvis 0,1 % af kobberet er ioniseret ved omkring pH 9. Dette ville ikke være tilfældet for et EDTA- eller polyamin-kompleks af et polyvalent metal, såsom kobber, da dets stabilitetskonstant (10^ - 10^) kun ville variere lidt indenfor det normale pH-område fra 7 til 9. Sådanne EDTA-komplekser udviser en pH-effekt på stabilitetskonstanten, men den repræsenteres af en glat monoton kurve, som når en begrænsende effekt ved protoninduceret dissociation ved pH-værdier på fra omkring 7 til omkring 9 og kun giver fra omkring 0,001 % ioner ved omkring pH 7 til så lidt som 0,00001 % ioner ved omkring pH 9. Det skal forstås, at de stabiliserende eller antimikrobielle komplekser vil virke over et pH-område fra omkring 3 til omkring 12. Over ca. pH 12 har komplekserne tendens til at nedbrydes af de alkaliske medier, idet de udfældes fra medierne som vandhol- 15In a presently preferred embodiment, the stabilized dispersions of the invention contain a monometal complex of a divalent metal ion and a polyfunctional organic ligand in a metal-to-ligand ratio of 1: 1, which complex has a dissociation ability represented by an S-shaped curve on a pM -Ph-diagram. A specific example of the metal complex is dialkali metal monocobes (II) citrate such as disodium, dipotassium or dilithium monocobes (II) citrate. These dialkali metal monocobes (II) citrates have a dissociation ability represented by S-shaped curve, whereby the two-direction curve meets at a point within the pH range from about 7 to about 9. It has been shown that these monocobes (II) Complexes are very stable in basic media with a pH of the order of about 9 to about 12, i.e. has an effective stability 12 constant, of the order of about 10 to about 1013. However, for these monocobal (II) citrate complexes at a pH of about 7-8 of the order of about 5 to about 10 to about 10 . Therefore, at a pH of about 7-8, the effective stability constant of the monocobic (II) citrate complex is significantly lower (from one thousand to several hundred thousand times lower) and a substantial concentration of free Cu ++ is available for toxic or stabilizing activity. Eg. about 10% of the copper in the complex is in the ionized state at about pH 7, while approximately 0.1% of the copper is ionized at about pH 9. This would not be the case for an EDTA or polyamine complex of a polyvalent metal, such as copper, since its stability constant (10 ^ - 10 ^) would vary only slightly within the normal pH range from 7 to 9. Such EDTA complexes exhibit a pH effect on the stability constant, but it is represented by a smooth monotonous curve which reaching a limiting effect of proton-induced dissociation at pH values of from about 7 to about 9 and yielding only from about 0.001% ions at about pH 7 to as little as 0.00001% ions at about pH 9. It should be understood that the stabilizing or antimicrobial complexes will operate over a pH range from about 3 to about 12. Above approx. At pH 12, the complexes tend to be degraded by the alkaline media as they precipitate from the media as water-containing media.

DK 152056 BDK 152056 B

dige metaloxider. Under ca. pH 6, dvs. fra omkring 3 til omkring 6, resulterer metalkompleksets ustabilitet i en høj koncentration af den frie Cu++ i opløsning, som vil påvirke biostabiliteten og andre stabiliserende funktioner som nævnt ovenfor. I midterområdet på fra omkring 7 til omkring 9 er den kontrollerede frigørelse mest effektiv. Således yder disse komplekser kontrolleret frigørelse af metalion på fra omkring 10 % til omkring 0,1 % af det komplekserede metal i pH-området fra omkring 7 til omkring 9, således at metalionen derpå er til rådighed for koordination og for antimikrobielle og stabiliserende funktioner.dense metal oxides. Below approx. pH 6, i.e. from about 3 to about 6, the instability of the metal complex results in a high concentration of the free Cu ++ in solution which will affect the biostability and other stabilizing functions mentioned above. In the middle range of about 7 to about 9, the controlled release is most effective. Thus, these complexes provide controlled release of metal ion from about 10% to about 0.1% of the complexed metal in the pH range from about 7 to about 9, so that the metal ion is then available for coordination and for antimicrobial and stabilizing functions.

Det er klart, at andre metalkomplekser af polyfunktionelle organiske ligander vil svare til modellen ifølge opfindelsen, når de udviser den beskrevne dissociationsevne, karakteriseret ved en S-formet kurve på et standard pM-pH-diagram. F.eks. kan det foretrukne monometal-polyfunktionel-organisk-ligand-kompleks til anvendelse i dispersionerne ifølge opfindelsen baseres på andre metalioner af monovalent eller polyvalent art, især divalente og polyvalente kationer, såsom zink, nikkel, chrom, bismuth, kviksølv, sølv, cobalt og andre lignende metal- eller tungmetalkationer. Komplekserne af tungere metaller antages at være mere toxiske end komplekserne af de lettere metaller. Andre polyfunktionelle organiske ligander kan anvendes i stedet for citronsyre, som er eksemplificeret ved den foretrukne udførelsesform af opfindelsen. Blandt andre polyfunktionelle ligander kan nævnes den bredere klasse af a- eller P-hydroxypolycarboxylsyrer, inden for hvilken citronsyren falder. Også andre funktionelt substituerede syrer, såsom os- eller P-aminosyrer, sulfhydrosyrer, phosphinolsyrer osv., kan anvendes i den molekylære model af de omhandlede metalkomplekser, hvorved der kan opnås lignende resultater. Alment fra et metalkompleksformel-synspunkt svarer monometalkomplekset af kobber og citronsyre til en kompleksformel gengivet ved en af de følgende strukturformler (A) og (B).It is clear that other metal complexes of polyfunctional organic ligands will correspond to the model of the invention when exhibiting the dissociation ability described, characterized by an S-shaped curve on a standard pM pH chart. Eg. For example, the preferred monometal-polyfunctional-organic-ligand complex for use in the dispersions of the invention may be based on other monovalent or polyvalent metal ions, especially divalent and polyvalent cations such as zinc, nickel, chromium, bismuth, mercury, silver, cobalt and others. similar metal or heavy metal cations. The complexes of heavier metals are believed to be more toxic than the complexes of the lighter metals. Other polyfunctional organic ligands may be used in place of citric acid exemplified by the preferred embodiment of the invention. Other polyfunctional ligands include the wider class of α- or β-hydroxypolycarboxylic acids within which the citric acid falls. Other functionally substituted acids, such as oxo or β-amino acids, sulfhydro acids, phosphinolic acids, etc. can also be used in the molecular model of the metal complexes in question, whereby similar results can be obtained. Generally from a metal complex formula point of view, the metal and citric acid monometric complex corresponds to a complex formula represented by one of the following structural formulas (A) and (B).

1616

DK 152056BDK 152056B

(Λ) · —Ο α /" \ \ - ru J \ .Η η ο' Α i(Λ) · —Ο α / "\ \ - ru J \ .Η η ο 'Α i

-ϋ CIU-C-O-ϋ CIU-C-O

* \\ ο (Β) V°\ /“>° \ - CH / /CU-H20 . / Ch2 - C - <Γ 2 -° CH- I 2 C =0 0_* \\ ο (Β) V ° \ / “> ° \ - CH // CU-H20. / Ch2 - C - <Γ 2 - ° CH- I 2 C = 0 0_

Formen (A) antages at røre den foretrukne form ud fra overvejelser med hensyn til fri energi. En enkelt proton indført i kompleksstrukturen med formen (A) eller (B) forhindrer dannelsen af stabile 5- eller 6-leddede koordinative ringe. Ved indførelsen af en proton kan der kun dannes T'-leddede ringe, ved koordination af acetat-elektrondonorerne, og sådanne 7-leddede ringstrukturer er ustabile. Derfor dissocieres kompleksmolekylet og frigiver metalionen til dens toxiske eller stabiliserende virkninger. Til sammenligning kræver metalkomplekser af EDTA eller andre poly-aminer fire eller flere protoner, og derfor større surhed, til at dissociere komplekset. Dette forklarer denne lille pH-virkning som udvises af sådanne komplekser i et pM-pH-diagram.Form (A) is assumed to touch the preferred form from free energy considerations. A single proton introduced into the complex structure of the form (A) or (B) prevents the formation of stable 5- or 6-membered coordinate rings. Upon introduction of a proton, only T'-linked rings can be formed by coordination of the acetate electron donors, and such 7-membered ring structures are unstable. Therefore, the complex molecule is dissociated and releases the metal ion to its toxic or stabilizing effects. In comparison, metal complexes of EDTA or other polyamines require four or more protons, and therefore greater acidity, to dissociate the complex. This explains this small pH effect exhibited by such complexes in a pM pH diagram.

Strukturformerne (A) og (B) kan mere alment gengives ved de følgende modeller:The structural forms (A) and (B) can be more generally reproduced by the following models:

DK 152056 BDK 152056 B

17 (MODEL Λ)17 (MODEL Λ)

MM

(R)---x:(R) --- X:

. Y. Y

ly (MODEL B) —Zj(ly (MODEL B) - Z (

(Ri--X: M(R 1 - X: M

(R) I de ovenstående modeller repræsenterer de fuldt optrukne linier en kemisk binding mellem elementer i molekylets skeletstruktur, X, Y og Z repræsenterer elektronpar-donorer, (R) repræsenterer enhver element- eller molekylåret eller gruppe, M- repræsenterer et metal, og protonaffiniteten af X er større end af Z,.Y eller R. Det vil derfor indses, at andre Lewis-base-protonpar og andre metalioner kan indføres i disse strukturmodeller i stedet for oxygen, divalent kobber eller for den sags skyld carbonatomerne til opnåelse af en molekylmodel, som på lignende måde vil dissocieres efter indførelsen af en proton eller grupperinger, der opfører sig på lignende måde, som vist ved den S-formede kurve på et pM-pH-diagram., Molekylmodelleme er således alternative udtryk for de antimikrobielle eller stabiliserende midler ifølge opfindelsen.(R) In the above models, the fully drawn lines represent a chemical bond between elements in the skeletal structure of the molecule, X, Y and Z represent electron pair donors, (R) represent any element or molecule year or group, M- represents a metal, and the proton affinity of X is greater than that of Z, Y or R. It will therefore be appreciated that other Lewis base proton pairs and other metal ions can be introduced into these structural models instead of oxygen, divalent copper or, for that matter, the carbon atoms to obtain a molecule model that will similarly dissociate following the introduction of a proton or groupings that behave similarly as shown by the S-shaped curve on a pM pH diagram. Thus, the molecular models are alternative terms for the antimicrobial or stabilizers according to the invention.

Opfindelsen og dens forskellige udførelsesformer og fordele vil blive nærmere belyst i den efterfølgende detaljerede beskrivelse og tegningen, som belyser fremstillingen af komplekserne cg deres aktivi tet.The invention and its various embodiments and advantages will be elucidated in the following detailed description and drawings which illustrate the preparation of the complexes and their activity.

18 DK 152056 B18 DK 152056 B

FREMSTILLING AF KOMPLEKSERPREPARATION OF COMPLEXES

A. Dilithium-monokobber(II)-citrat 10 mmol lithiumcitrat blev opløst i 10 ml vand. Til denne opløsning sattes gradvis under omrøring 10 mmol kobber(II)-chlorid (CuClp*2HpO). Der dannedes en dybblå opløsning. Denne blev neutraliseret til en pH-værdi på omkring 7 med 10 mmol lithium-hydroxid (LiOH'HpO). Ved inddampning til tørhed gav denne opløsning et dybt blåt, halvkrystallinsk fast stof. Dette faste stof blev formalet til et fint pulver, og lithiumchloridet blev éxtra-heret med 50 ml tørt methanol, fem gange ved 35°C. Det blå faste stof, som forblev tilbage, blev vacuumbehandlet til fjernelse af methanol og tørret. Der blev gjort et forsøg på at krystallisere saltet fra systemet af vand og organisk opløsningsmiddel, men øjensynligt på grund af saltets yderst hygroskopiske natur og det ioniserede molekyles høje negative ladning var det opnåede faste stof mikrokrystallinsk til amorft. Den følgende formel foreslås for 1:1 komplekset af kobber og citrat, baseret på den i det følgende beskrevne opklaring af strukturen og analyser:A. Dilithium Monocobes (II) Citrate 10 mmol of lithium citrate was dissolved in 10 ml of water. To this solution was gradually added, with stirring, 10 mmol of copper (II) chloride (CuClp * 2HpO). A deep blue solution formed. This was neutralized to a pH of about 7 with 10 mmol of lithium hydroxide (LiOH'HpO). Upon evaporation to dryness, this solution gave a deep blue, semi-crystalline solid. This solid was ground to a fine powder and the lithium chloride was extracted with 50 ml of dry methanol, five times at 35 ° C. The remaining blue solid was vacuum treated to remove methanol and dried. An attempt was made to crystallize the salt from the water and organic solvent system, but apparently due to the highly hygroscopic nature of the salt and the high negative charge of the ionized molecule, the solid obtained was microcrystalline to amorphous. The following formula is proposed for the 1: 1 complex of copper and citrate, based on the clarification of the structure and analyzes described below:

Li2CuC6H407«XH?0Li2CuC6H407 'XH? 0

Afhængigt af hydratiseringsgraden foreslås de følgende formelvægte (FV) og tilsvarende procentindhold af kobber:Depending on the degree of hydration, the following formula weights (FV) and corresponding copper content are suggested:

LigCuCgH^cyXHgOLigCuCgH ^ cyXHgO

FV.: 265,51 for X=0, % Cu = 23,93 FV.: 283,55 for X=l, % Cu = 22,41 FV.: 301,54 for X=2, % Cu = 21,07 FV.: 319,56 for X=3, % Cu = 19,88FV: 265.51 for X = 0,% Cu = 23.93 FV: 283.55 for X = 1,% Cu = 22.41 FV: 301.54 for X = 2,% Cu = 21, 07 FV: 319.56 for X = 3,% Cu = 19.88

Det iagttagne kobberindhold af forskelligt tørrede prøver af det faste kompleks -varierede fra 20 til 23?$. Forbindelsen (fast 1:1 kompleks) var yderst opløselig i vand. Der kunne let fremstilles en opløsning så stærk som to molær. 0o til en pK-værdi på 11,5 var der ingen virkning på forbindelsens opløselighed i vand. Ud over denne pH-værdi blev komplekset nedbrudt til et grønbrunt bundfald, sandsynligvis vandholdige kobberoxider. DetThe observed copper content of variously dried samples of the solid complex ranged from 20 to 23 $. The compound (solid 1: 1 complex) was highly soluble in water. A solution as strong as two molars could easily be prepared. 0o to a pK value of 11.5, there was no effect on the solubility of the compound in water. In addition to this pH, the complex was decomposed to a greenish brown precipitate, probably aqueous copper oxides. That

19 DK 152056B19 DK 152056B

faste 1:1 kompleks kan anvendes som antimikrobielt eller stabiliserende middel med eller uden fjernelse af det under fremstillingen dannede lithiumchlorid.solid 1: 1 complex can be used as antimicrobial or stabilizing agent with or without removal of the lithium chloride formed during manufacture.

B. Dinatrium--monokobber( II /-citrat (l) Ækvimolære opløsninger af kobberchlorid og natriumcitrat opløstes i vand som under A ovenfor til opnåelse af en dybblå opløsning med en pH-værdi på omkring 5* En 50 ml aliquot af denne opløsning anbragtes i en skilletragt. Der tilsattes et lige så stort volumen vandfri acetone, og tragten blev rystet til blanding af faserne. Ved henstand udskiltes et to-faset-system. En blå væskefase hvilede på bunden af tragten i et reduceret volumen på tilnærmelsesvis 25 ml, medens toplaget (tilnærmelsesvis 75 ml) var svagt uklart og farveløst, medens det var krystalklart før omrystningen. Den blå væske (olieagtig, viskøs) blev fjernet fra tragten gennem stophanen og opsamlet i en anden skilletragt. Den uklare overvæske anbragtes i et bægerglas og blev inddampet til tørhed over et dampbad. Der sattes omkring 25 ml vandfri acetone til den anden skilletragt, hvorved der næsten øjeblikkeligt dannedes en plastik-lignende masse på bunden af tragten til forskel fra den olieagtige væske, som var der før. Overvæsken fra den plastiske masse blev anbragt i et andet bægerglas og mærket overvæske 2. Tilsætningen af destilleret vand til den plastik-lignende masse resulterede i øjeblikkelig genopløsning af materialet. Det totale volumen af det genopløste stof blev indstillet til 25 ml, hvilket igen resulterede i dannelsen af en viskøs, olieagtig væske. Efter inddampning af overvæske 1 til tørhed viste mikroskopisk undersøgelse af den tørre remanens tilstedeværelsen af afgjorte rigelige mængder natrium-chlorid-krystaller. Inddampning af overvæske 2 gav en meget findelt pulverformet remanens indeholdende et lille antal tydelige natriumchloridkrystaller. Analyse af den to gange extraherede blå olieagtige opløsning for kobberindhold viste, at opløsningen ' indeholdt tilnærmelsesvis 125 mg kobber pr. ml og derved repræsenterede et koncentrat af metalkomplekset, som oprindeligt havde indeholdt tilnærmelsesvis 65 mg pr. ml. Den store reduktion af mængden af natriumchlorid i overvæske 2 viste, at hovedmængden af det forurenende saltbiprodukt var blevet fjernet;·. En portion af koncentratet blev inddampet, og der blev iagttaget afgjort krystallinsk materiale.B. Disodium Monocobes (II / Citrate (1)) Equimolar solutions of copper chloride and sodium citrate were dissolved in water as under A above to obtain a deep blue solution having a pH of about 5 * A 50 ml aliquot of this solution was placed An equal volume of anhydrous acetone was added and the funnel was shaken to mix the phases. On standing, a two-phase system was separated. A blue liquid phase rested on the bottom of the funnel in a reduced volume of approximately 25 ml. while the top layer (approximately 75 ml) was slightly cloudy and colorless, while crystal clear before shaking, the blue liquid (oily, viscous) was removed from the funnel through the stopcock and collected in another separating funnel. evaporated to dryness over a steam bath, about 25 ml of anhydrous acetone was added to the second separating funnel, forming almost immediately a plastic-like mass on the bottom n of the hopper unlike the oily liquid that was there before. The plastic mass supernatant was placed in another beaker and labeled supernatant 2. The addition of distilled water to the plastic-like mass resulted in immediate re-dissolution of the material. The total volume of the redissolved substance was adjusted to 25 ml, which in turn resulted in the formation of a viscous oily liquid. After evaporation of supernatant 1 to dryness, microscopic examination of the dry residue showed the presence of precipitated copious amounts of sodium chloride crystals. Evaporation of supernatant 2 gave a very finely divided powdery residue containing a small number of clear sodium chloride crystals. Analysis of the twice-extracted blue oily solution for copper content showed that the solution contained approximately 125 mg of copper per liter. and thus represented a concentrate of the metal complex, which originally contained approximately 65 mg per ml. ml. The large reduction in the amount of sodium chloride in supernatant 2 showed that the major amount of the contaminating salt by-product had been removed; A portion of the concentrate was evaporated and crystalline material was observed.

20 DK 152056BDK 152056B

(2) Procedurerne i det foregående afsnit (l) blev gentaget, undtagen at der var en pH-indstilling af den først dannede blå opløsning fra omkring pH 5 til omkring pH 7 med KOH-cpløsning til • neutralisering af det dannede HC1. Efter extraktion og inddamp-ning som ovenfor blev der opnået et koncentrat af metalkomplekset, som efter inddampning gav afgjort krystallinsk materiale.(2) The procedures in the previous section (1) were repeated except that there was a pH adjustment of the first blue solution formed from about pH 5 to about pH 7 with KOH solution to neutralize the resulting HCl. After extraction and evaporation as above, a concentrate of the metal complex was obtained which, after evaporation, gave the crystalline material.

(5) Ækvimolære mængder kobbersulfat og natriumcitrat som i afsnit (1) blev kombineret efterfulgt af pH-indstilling til omkring pH 7 med NaOH. Ekstraktion og inddampning af den resulterende blå opløsning som beskrevet ovenfor gav et amorft pulver, som ikke havde nogen visuelt skelnelig krystallinsk struktur.(5) Equimolar amounts of copper sulfate and sodium citrate as in section (1) were combined followed by pH adjustment to about pH 7 with NaOH. Extraction and evaporation of the resulting blue solution as described above gave an amorphous powder which had no visually discernible crystalline structure.

Den følgende formel foreslås for det i afsnit (1). - (3) ovenfor fremstillede dinatrium-monokobber(ll)-citrat, baseret på den i det følgende beskrevne opklaring af strukturen og analyser: j\ra2CuC6H207-XH20 C. Dinatrium-monozink-citratThe following formula is proposed for it in section (1). - (3) disodium monocobes (II) citrate prepared above, based on the structure and assays described hereinafter: 2CuC6H207-XH20 C. Disodium monozinc citrate

Under anvendelse af de følgende ingredienser fremstilledes et zinkkompleks analogt med kobberkomplekset under B ovenfor: 50 ml koldt vand 29,4 g trinatriumcitrat-dihydrat 13»6 g zinkchlorid (ZnCl2) koncentreret HC1Using the following ingredients, a zinc complex was prepared analogous to the copper complex under B above: 50 ml of cold water 29.4 g of trisodium citrate dihydrate 13 »6 g of zinc chloride (ZnCl2) concentrated HCl

NaOH-pillerNaOH-pellets

Zinkchloridet blev formalet til fine partikler i en morter og derpå opløst i vand. pH-værdien blev indstillet til mellem 0,5 og 1,0 med saltsyre. Natriumcitratet tilsattes langsomt under tilsætning af saltsyre for at holde pH-værdien under 1,0. Efter at alt materialet var opløst blev opløsningen neutraliseret langsomt med NaOH-piller. Det materiale, som forblev i opløsning ved pH 7,2, blev dekanteret, indstillet til en pH-værdi på 8,5-9,0 og derpå ekstraheret med et dobbelt volumen af en 50:50 methancl/acetone-opløsning. Materialet blev opsamlet på en Biichner-tragt under anvendelse af Whatman nr. 42 filterpapir. Alternativt kan opløsningen vacuum-tørres ved. 70°C.The zinc chloride was ground to fine particles in a mortar and then dissolved in water. The pH was adjusted to between 0.5 and 1.0 with hydrochloric acid. The sodium citrate was added slowly with the addition of hydrochloric acid to keep the pH below 1.0. After all the material was dissolved, the solution was slowly neutralized with NaOH pills. The material which remained in solution at pH 7.2 was decanted, adjusted to a pH of 8.5-9.0 and then extracted with a double volume of a 50:50 methane / acetone solution. The material was collected on a Biichner funnel using Whatman No. 42 filter paper. Alternatively, the solution may be vacuum dried at. 70 ° C.

2121

DK 152056BDK 152056B

Do Dinatrium-mononikkel-citrat.Do Disodium Mononickel Citrate.

Der fremstilledes et nikkelkompleks .under anvendelse af de. følgende ingredienser: 40 ml koldt vand 38.4 g vandfri citronsyre 47.5 g nikkelchlorid (NiCl?), fint formaletA nickel complex was prepared using them. the following ingredients: 40 ml cold water 38.4 g anhydrous citric acid 47.5 g nickel chloride (NiCl?), finely ground

NaOH-flagerNaOH flakes

Citronsyren blev opløst i vandet. Nikkelsaltet tilsattes langsomt under konstant indstilling af pH-værdien. Efter at alt materialet var i opløsning tilsattes NaOH-flagerne langsomt (for at formindske varmeudviklingen) til indstilling af pH-værdien til mellem 4,0-5,0. Udbyttet var omkring 100 ml indholdende omkring 117 mg/ ml Ni++.The citric acid was dissolved in the water. The nickel salt was added slowly with constant pH adjustment. After all the material was in solution, the NaOH flakes were added slowly (to reduce the heat generation) to adjust the pH to between 4.0-5.0. The yield was about 100 ml containing about 117 mg / ml Ni ++.

E. Dinatrium-monokviksølv-citrat.E. Disodium mono-mercury silver citrate.

Der fremstilledes et kviksølvkompleks under anvendelse af de følgende ingredienser: 40 ml vandA mercury complex was prepared using the following ingredients: 40 ml of water

VV

2,2 g kviksølvoxid (HgO) 1,9 g vandfri citronsyre2.2 g mercury oxide (HgO) 1.9 g anhydrous citric acid

NaOH-pillerNaOH-pellets

Citronsyren blev opløst i vandet, og opløsningen blev opvarmet til højst 50°C. Kviksølvoxidet tilsattes langsomt under kraftig omrøring og fik lov at reagere, indtil opløsningen var klar. pE-værdien blev indstillet til 8,5-9,0 med NaOH-piller, idet man sikredé, at temperaturen ikke kom over 50°C. Materialet blev krystalliseret ved en af de metoder, som er beskrevet for zink-komplekset under C ovenfor.The citric acid was dissolved in the water and the solution heated to a maximum of 50 ° C. The mercury oxide was added slowly with vigorous stirring and allowed to react until the solution was clear. The pE value was adjusted to 8.5-9.0 with NaOH pills, ensuring that the temperature did not exceed 50 ° C. The material was crystallized by one of the methods described for the zinc complex under C above.

BESTEMMELSE AF METÅLXOMPLEKS-DISSOCIATIONDETERMINATION OF METAL COMPLEX DISSOCIATION

Dissociationsevnen af det ovenfor fremstillede 1:1 kobber-cltrat-kompleks blev bestemt over et pK-område på 3-12 ved anvendelseThe dissociation ability of the 1: 1 copper-cltrate complex prepared above was determined over a pK range of 3-12 using

22 DK 152056 B22 DK 152056 B

af en kobber(II)-ion-specifik elektrode (Orion Copper(II) Specific Electrode). Prøver på 50 ml 1:1 kobber-citrat-opløsning (0,0068 molær) blev indstillet til pH 3> 4, 5> 6, 7, 8, 9, 10, 11 og 12, hvorefter koncentrationen, af fri kobberion hver gang blev bestemt ved anvendelse af den kobberion-specifikke elektrode. Der blev opnået følgende værdier for fri-kobberion-koncentrationer ved de angivne pH-værdi er, og de negative logaritmer af kobber-ion-kon-centrationerne blev beregnet.of a copper (II) ion specific electrode (Orion Copper (II) Specific Electrode). Samples of 50 ml of 1: 1 copper-citrate solution (0.0068 molar) were adjusted to pH 3> 4, 5> 6, 7, 8, 9, 10, 11 and 12, then the concentration of free copper ion each time was determined using the copper ion specific electrode. The following values for free copper ion concentrations were obtained at the indicated pH values and the negative logarithms of the copper ion concentrations were calculated.

TABELTABLE

pH Cu*"1- pHpH Cu * + 1- pH

3 ’ 3,2 X 10"3 2,495 4 9,0 X 10“4 3,046 5 2,5 X 10~4 3,602 6 ' 5,3 X 10"5 4,276 7 1,0 X 10~5 5,000 8 8,0 X 10~8 7,097 9 8,8 X 10“12 11,055 10 9,·6 X 10“13 12,018 11 3,3 X 10“13 12,482 12 1,34 X 10~13 12,8733 '3.2 X 10 "3 2.495 4 9.0 X 10" 4 3,046 5 2.5 X 10 ~ 4 3,602 6' 5.3 X 10 "5 4,276 7 1.0 X 10 ~ 5 5,000 8 8, 0 X 10 ~ 8 7,097 9 8.8 X 10 "12 11,055 10 9, · 6 X 10" 13 12,018 11 3.3 X 10 "13 12,482 12 1.34 X 10 ~ 13 12,873

23 DK 152056 B23 DK 152056 B

Ud fra disse data konstrueredes en pH-kurve til angivelse af afhængigheden mellem koncentrationen af fri Cu^-ion og pH-værdien som vist på tegningen. Tegningen er en cartesiansk koordinatafbildning (opfyldt optrukket sort linie) af den negative logaritme af metalionkoncentrationen (pM) overfor den negative logaritme af hydrogenionkoncentrationen (pH) ved de i den ovenstående tabel anførte punkter. Denne afbildning er en S-formet kurve, som er repræsentativ for metalkompleksets proton-inducerede dissociations evne. I pH-området fra omkring 9 til omkring 12 er komplekset meget stabilt, og koncentrationen af fri Cu++ er lav. Ved en pH-værdi på omkring 7 er komplekset relativt ustabilt, og dissociationen til fri Cu++ er betydelig, hvilket muliggør antimikro-biel eller stabiliserende funktion. I området fra omkring 7 til omkring 9 er Cu++-ionen tilgængelig for kontrolleret frigørelset der sker fra omkring 10% til omkring 0,1$ dissociation af Cu++ fra komplekset. Denne uventede dissociation/pH-opførsel gør komplekserne yderst effektive som antimikrobielle midler eller stabiliserende midler for metalbearbejdningsvæsker.From this data, a pH curve was constructed to indicate the dependence between the free Cu 2 ion concentration and the pH value as shown in the drawing. The drawing is a Cartesian coordinate plot (met drawn black line) of the negative logarithm of the metal ion concentration (pM) versus the negative logarithm of the hydrogen ion concentration (pH) at the points listed in the above table. This image is an S-shaped curve representative of the proton-induced dissociation ability of the metal complex. In the pH range from about 9 to about 12, the complex is very stable and the concentration of free Cu ++ is low. At a pH of about 7, the complex is relatively unstable and the dissociation to free Cu ++ is considerable, enabling antimicrobial or stabilizing function. In the range of about 7 to about 9, the Cu ++ ion is available for controlled release, which occurs from about 10% to about 0.1 $ dissociation of Cu ++ from the complex. This unexpected dissociation / pH behavior makes the complexes extremely effective as antimicrobial agents or stabilizers for metalworking fluids.

Til sammenligning repræsenteres en Cu++-EDTA-kompleks-kurve ved den punkterede linie på tegningen som rapporteret af a. Ringbom, "Complexation in Analytical Chemistry”, J. Wiley & Sons, N.Y., 1963, side 360. Som vist repræsenteres pH-virkningen på Cu-EDTA-komplekset ved en glat, monoton kurve, som når en begrænsende virkning ved proton-induceret dissociation ved omkring pH 7-9, hvorved den f.eks. kun yder fra omkring 0,001$ til omkring 0,00001$ ioniseret metal.In comparison, a Cu ++ EDTA complex curve is represented by the dotted line in the drawing as reported by a. Ringbom, "Complexation in Analytical Chemistry", J. Wiley & Sons, NY, 1963, page 360. As shown, the pH effect is represented. on the Cu-EDTA complex by a smooth, monotonous curve, which reaches a limiting effect by proton-induced dissociation at about pH 7-9, for example, providing only from about 0.001 $ to about 0.00001 $ ionized metal .

Komplekser i forholdet 1 mol metal: 1 mol citrat kan have været foreslået at eksistere i fortyndede opløsninger i M, Bobtelsky and J. Jordan, J.Amer Chem. Soc., Vol. 67 (1945). side 1824. Imidlertid har ingen rapporteret de bemærkelsesværdige antimikrobielle eller emulsions-stabiliserende aktiviteter af disse derivater \f eller deres evner til at danne koordinat!ve strukturer med emul~ gerede smådråber. Endvidere er der også ifølge opfindelsen fundet yderligere enestående fordele ved sådanne komplekser i metalbearbejdningsvæsker som forklaret i det følgende.Compounds in the ratio of 1 mole of metal: 1 mole of citrate may have been proposed to exist in dilute solutions in M, Bobtelsky and J. Jordan, J.Amer Chem. Soc., Vol. 67 (1945). however, no one has reported the remarkable antimicrobial or emulsion-stabilizing activities of these derivatives or their ability to form coordinate structures with emulsified droplets. Furthermore, according to the invention, further unique advantages of such complexes in metal working liquids have been found as explained below.

24 DK 152056 B24 DK 152056 B

Yderligere er der ifølge opfindelsen fremstillet faste metalkomplekser af dialkalimetal-monokobber(II)-citraterne, og sådanne faste former er overraskende og uventede. Det har også vist sig muligt at fremstille højkoncentrerede opløsninger af sådanne metalkomplekser. Arten af disse komplekser er definitivt blevet fastslået ved anvendelse af analytiske kriterier, nemlig: (1) molfor-holdsmetoden indført af Yoe and Jones (Yoe, J.H, & Jones, A.L.: I d. Eng. Chern. Anal. Edition 16; 111, (1944); (2) metoden med kontinuert variation, som tilskrives Job og som modificeret af Vosburgh and Cooper (Vosburg, W.C. & Cooper, G.R.: j. Am. Chem.Further, according to the invention, solid metal complexes of the dialkali metal monocobes (II) citrates have been prepared, and such solid forms are surprising and unexpected. It has also been found possible to prepare highly concentrated solutions of such metal complexes. The nature of these complexes has been definitively determined using analytical criteria, namely: (1) the molar ratio method introduced by Yoe and Jones (Yoe, JH, & Jones, AL: in Chern. Anal. Edition 16; 111 , (1944); (2) the continuous variation method attributed to Job and modified by Vosburgh and Cooper (Vosburg, WC & Cooper, GR: j. Am. Chem.

Soc., 63; 437, (1941); (3) kompleksdannelsens afhængighed af pH og (4) bestemmelse af kompleksets øjensynlige stabilitetskonstant. Spektrofotometriske undersøgelser, herunder synlig og ultraviolet mikroskopi, pH-bestemmelser såvel som infrarød-spektro-skopiske målinger anvendtes som et yderligere middel til bekræftelse af de ovennævnte erkendelser vedrørende dannelsen og den molekylære sammensætning af 1:1 kobber(II)-citrat-KompleKset.Soc., 63; 437, (1941); (3) the dependence of the complex on pH and (4) the determination of the apparent stability constant of the complex. Spectrophotometric studies, including visible and ultraviolet microscopy, pH determinations as well as infrared spectroscopic measurements were used as an additional means to confirm the aforementioned findings regarding the formation and molecular composition of the 1: 1 copper (II) citrate complex.

De her anvendte 1:1 kobber-citrat-komplekser er stærkt opløselige, hvilket viser, at sådanne komplekser er af ionisk natur.The 1: 1 copper-citrate complexes used here are highly soluble, showing that such complexes are ionic in nature.

Dette understøttes yderligere af den iagttagelse, at farvebåndet af en opløsning af komplekset vandrede mod anoden (den positive elektrode) ved elektroforese-forsøg. Synlige og UV spektre viser dannelse af 1:1 forbindelse. Den samlede reaktion for kompleksdannelsen med strukturformen (3) synes at være: 25This is further supported by the observation that the color band of a solution of the complex migrated toward the anode (the positive electrode) by electrophoresis experiments. Visible and UV spectra show formation of 1: 1 compound. The overall reaction for the complex formation with the structural form (3) appears to be:

DK 152056BDK 152056B

+ . ' ' æ + | ~CN i *»—·* · o 0 u+. + + ~ CN i * »- · * · o 0 u

CMCM

tc O utc O u

N\j-UN \ j-U

/ \ o o \/ 3/ \ o o \ / 3

L_^_IL _ ^ _ In

« A«A

VV

CMCM

— O- Oh

1 CM r— O W i—i t“^ O ffi co n1 CM r— O W i — i t “^ O fi co n

o * I · Io * I · I

CM J *P -PCM J * P -P

K f—1 tf r-ι rCK f — 1 tf r-ι rC

O cm p cm UO cm p cm U

is / I -P I -Pis / I -P I -P

rj -P -H -P -Hrj -P -H -P -H

/ \ <d u cd ,υ, O K 0) -y Ο Μ -Η π ·Η J—, I i πί o cm u ίΓ 4. o*-* P P P 3 * ! ^ ^ ^ ^ CM 4* + 3 +/ \ <d u cd, υ, O K 0) -y Ο Μ -Η π · Η J—, I i πί o cm u ίΓ 4. o * - * P P P 3 *! ^^^^ CM 4 * + 3 +

O Μ It IIO Μ It II

tn u-i — — Λ 44 i—( CM 3 0) v—'tn u-i - - Λ 44 i— (CM 3 0) v— '

DK 152056 BDK 152056 B

26 Således ses, at i stedet for kompleksering af -C00“ grupperne alene ioniseres alkoholen, -OH og involveres i koordinationen.26 Thus, instead of complexing the -C00 groups, it is seen that the alcohol alone, -OH and is involved in the coordination.

Dette danner en stabil 5-leddet og sandsynligvis β-leddet ring. Således trækkes reaktionen til højre (stabiliseres) af OH” (base), da produktet H+ derved fjernes, efterhånden som reaktionen skrider fren. Dette resulterer i 'den meget høje effektive stabilitetskonstant Keff* Keff ior en så-dan reaktion er ρΗ-afhængig, men forbundet med den absolutte stabilitetskonstant K ^ ved ligningerne: _ ICu-citrat 1 eff (Pu++1 CcitratThis forms a stable 5-membered and probably β-membered ring. Thus, the reaction is pulled to the right (stabilized) by OH ”(base) as the product H + is thereby removed as the reaction proceeds. This results in the very high effective stability constant Keff * Keff ior such a reaction is ρΗ-dependent, but associated with the absolute stability constant K ^ by the equations: _ ICu-citrate 1 eff (Pu ++ 1 Citrate

K _ {Cu-citrat J Ch+JK _ {Cu-citrate J Ch + J

abS |Cu++ I [citrat-3]abS | Cu ++ I [citrate-3]

Kabs = Kef£ ' lK+>Kabs = Kef £ 'lK +>

Det har vist sig, at K for 1:1 komplekset har en konstant værdi 1 *2 8.DS * på omkring 10 (et stærkt kompleks) over et pH-område fra omkring S til-på -omkring 12. Den øjensynlige værdi af K ^ falder skarpt ved pH 7-9, og ved pH-værdier under ca. 7 er der et yderligere fald, hvilket viser, at komplekset eksisterer i endelige koncentrationer selv ved pH 3-7.It has been found that the K for the 1: 1 complex has a constant value of 1 * 2 8.DS * of about 10 (a strong complex) over a pH range from about S to about 12. The apparent value of K ^ decreases sharply at pH 7-9, and at pH values below ca. 7 there is a further decrease, which shows that the complex exists in final concentrations even at pH 3-7.

2727

DK 152056BDK 152056B

Et andet vigtigt træk ved de omhandlede komplekser antages at være medvirkende til at gøre det muligt for dem at fungere som meget effektive baktericider. Dette eksemplificeres, hvor bakterier vokser i et medium med en pH-værdi på f.eks. fra omkring 9 til omkring 11, og der indføres et diaikalimetal-monokobber(II)-citrat-kompleks. Som forklaret ovenfor gør det alkaliske pH-miljø monokobber(II)-citrat-komplekset meget stabilt.Another important feature of the present complexes is believed to be to enable them to function as highly effective bactericides. This is exemplified where bacteria grow in a medium having a pH of e.g. from about 9 to about 11, and a diaicalimetal monocobes (II) citrate complex is introduced. As explained above, the alkaline pH environment makes the monocobal (II) citrate complex very stable.

Der fremsættes den hypotese, at den frie kobberion på grund af den umiddelbare tilknytning til celleoverfladen ikke kan forventes at transporteres igennem cellemembranen overhovedet eller i bedste fald ikke så let som kompleksformen. På den anden side transporteres komplekset let igennem cellemembranen, muligvis på grund af (1) dets organiske natur, som kunne tjene som et metabolisk substrat, hvoraf bakterievæksten eller- formeringen afhænger, eller (2) kompleksets lave dianioniske blandingstæthed, som forøger permeabiliteten igennem bakteriecellevæggen. Efter transport igennem cellemembranen forventes det, at komplekset vil være udsat for et pH-miljø af størrelsesordenen omkring 7.It is hypothesized that due to its direct association with the cell surface, the free copper ion cannot be expected to be transported through the cell membrane at all or at best not as easily as the complex form. On the other hand, the complex is readily transported through the cell membrane, possibly due to (1) its organic nature, which could serve as a metabolic substrate upon which bacterial growth or propagation depends, or (2) the low dianionic mixture density of the complex which increases permeability through the bacterial cell wall. . After transport through the cell membrane, the complex is expected to be exposed to a pH environment of the order of about 7.

Derfor er det bestemte kompleks efter transporten meget ustabilt og labilt, og kobberionen frigøres rigeligt cg hurtigt til denaturering af celleprotein eller anden metabolisk indvirkning på de intracellulære biokemiske reaktioner, hvorved den fremkalder celledød. I modsætning hertil er andre kendte komplekser, hvor de kan transporteres under sådanne omstændigheder, temmelig stabile og kinetisk inerte og vil ikke være effektive, fordi kobberet er for tæt bundet, selv ved den intracellulære pH-værdi på tilnærmelsesvis 7» til at det kan være stærkt toxisk.Therefore, the particular complex after transport is very unstable and labile and the copper ion is liberated abundantly and rapidly to denature cell protein or other metabolic effect on the intracellular biochemical reactions, thereby causing cell death. In contrast, other known complexes, where they can be transported under such circumstances, are fairly stable and kinetically inert and will not be effective because the copper is too tightly bound, even at the intracellular pH of about 7 highly toxic.

De her omhandlede metalkomplekser har enestående antimikrobiel-le egenskaber i sammenligning med de hidtil kendte forbindelser.The metal complexes at issue here have unique antimicrobial properties as compared to the known compounds.

F.eks. er dannelsen af tungmetalsalte af carboxylsyrer ganske almindelig. Imidlertid er disse med undtagelse af salte af syrer med lav molekylvægt sædvanligvis uopløselige i vand. Dette demonstreres ved det i litteraturen angivne dikobber(il)-citrat, (Cu2citrat)2 · 5H2O. Denne forbindelse dannes ved opvarmning af en stærkt basisk opløsning af natriumcitrat med Cu++. Dikobbercitratet (et forhold på 2 kobberatomer til 1 citration) udfældes af opløsningen. DetteEg. the formation of heavy metal salts by carboxylic acids is quite common. However, with the exception of low molecular weight salts, these are usually insoluble in water. This is demonstrated by the dicobs (1l) citrate, (Cu2citrate) 2 · 5H2O indicated in the literature. This compound is formed by heating a strongly basic solution of sodium citrate with Cu ++. The di-copper citrate (a ratio of 2 copper atoms to 1 citration) is precipitated by the solution. This

28 DK 152056 B28 DK 152056 B

dikobbercitrat har følgende egenskaber: (1) uopløselighed i vand ψ·|· (idet den samlede nettoladning af forbindelsen er 0? 2Cu og ci--4 trat )? reaktionen er: 2Cu++ + citrat' ^ ^ CU2Citrat Ί' + H+ og forskydes til fuldførelse ved reaktion af produktet H* med 0H“ i basiske medier, (2) lysegrøn farve i fast form og (3) elementanalyse på i det væsentlige 2Cu til 1 citrat. Dikobbercitrat-ets uopløselighed har også begrænset denne forbindelses effektivitet som baktericid, og selv om den tidligere er blevet foreslået til farmaceutiske anvendelser, har dens brug været begrænset.dicobber citrate has the following properties: (1) water insolubility ψ · | · (with the total net charge of the compound being 0? 2Cu and ci - 4 trat)? the reaction is: 2Cu ++ + citrate ^^ CU2Citrate Ί '+ H + and offset to completion by reaction of the product H * with 0H "in basic media, (2) light green solid color and (3) elemental analysis of essentially 2Cu to 1 citrate. The insolubility of the dicob citrate ether has also limited the efficacy of this compound as a bactericide and, although previously suggested for pharmaceutical applications, its use has been limited.

Metalbearbejdningsvæsker kan som forklaret ovenfor sammensættes ud fra mange forskellige typer af ingredienser,· Se f.eks. de ovennævnte patentskrifter og "American Society of Tool Engineers - Tool Engineer’s Handbook", First Edition, 1953, side 357 og følgende.Metalworking fluids can be composed, as explained above, from many different types of ingredients. the aforementioned patents and "American Society of Tool Engineers - Tool Engineer's Handbook", First Edition, 1953, page 357 et seq.

De følgende udførelseseksempler tjener til nærmere at belyse opfindelsen.The following embodiments serve to illustrate the invention in more detail.

Eksempel 1Example 1

Der fremstilles en skæreolie ved blanding af følgende ingredienser på volumenbasis: 1% Natriumxylensulfonat 9% Naphthensulfonat 90% Mineralolie, ca. 300 vis.A cutting oil is prepared by mixing the following ingredients on a volume basis: 1% Sodium xylene sulfonate 9% Naphthenesulfonate 90% Mineral oil, approx. 300 fish.

Denne blanding anvendes derpå til at fremstille en 3 volumen% emulsion ved blanding med vand, og pH-værdien indstilles til 8,5- 8,9 ved tilsætning af syre. Derpå sættes dinatrium-monokobber (II)-citrat til emulsionen til_opnåelse af 100_mg/liter Cu++ i den vandige fase. Når en sådan metalbearbejdningsvæske anvendes ved metalskæringsoperationer, har det vist sig, at alle de tidligere omtalte fordele kan opnås.This mixture is then used to prepare a 3 volume% emulsion by mixing with water and the pH is adjusted to 8.5-8.9 by the addition of acid. Then, disodium monocobic (II) citrate is added to the emulsion to obtain 100 µmg / liter Cu ++ in the aqueous phase. When such a metalworking fluid is used in metal cutting operations, it has been found that all the advantages mentioned above can be obtained.

2929

DK 152056BDK 152056B

Eksempel 2Example 2

En slibevæske fremstilles ved anvendelse af de samme trin som i eksempel 1 med tilsvarende resultater, undtagen at emulsionsingredienserne blev erstattet af 50% naphthensulfonat, 15% mineralolie (ca. 100 vis.) og 35% tallolie.An abrasive liquid is prepared using the same steps as in Example 1 with similar results except that the emulsion ingredients were replaced by 50% naphthenesulfonate, 15% mineral oil (about 100 vis) and 35% tall oil.

Med det formål at påvise koordinationen af metalioner med de emulgerede dråber til opnåelse af de tidligere omtalte stabiliseringsaktiviteter udførtes de følgende forsøg.In order to demonstrate the coordination of metal ions with the emulsified droplets to achieve the stabilization activities mentioned earlier, the following experiments were performed.

Forsøg 1Experiment 1

Relation af kobberkoncentrationen i olie- og vandfaserne til procenten af olie i emulsionen og til den oprindelige koncentration af metalkompleks._Relation of the copper concentration in the oil and water phases to the percentage of oil in the emulsion and to the initial concentration of metal complex._

Metoder:methods:

Der fremstilledes emulsioner, som indeholdt 2,5, 5,0 og 10,0% olie i vand. 10 ml af hver emulsion blev pipetteret ind i 16 x 100 ml reagensglas. Prøver på 1 ml af hver blev udtaget. Dinatrium-mono-kobber(II)-citrat (i det følgende betegnet "metalkompleks") sattes til hvert af disse reagensglas til opnåelse af slutkoncentrationer på 50, 100 og 150 ppm Cii++. Prøver på 1 ml udtoges umiddelbart efter at metalkomplekset og emulsionerne var blandet.Emulsions containing 2.5, 5.0 and 10.0% oil in water were prepared. 10 ml of each emulsion was pipetted into 16 x 100 ml test tubes. Samples of 1 ml of each were taken. Disodium mono-copper (II) citrate (hereinafter referred to as "metal complex") was added to each of these test tubes to give final concentrations of 50, 100 and 150 ppm Cii ++. Samples of 1 ml were taken immediately after the metal complex and the emulsions were mixed.

Prøver blev udtaget igen efter 1 time med blanding af og til i dette tidsrum.Samples were sampled again after 1 hour of mixing occasionally during this time.

Olieprøverne blev extraheret ved tilsætning af et lige så stort volumen dichlorethan og 1 dråbe mættet kaliumchloridopløsning, blanding og centrifugering i 5 min. ved tophastighed på en bordcentrifuge. 0,5 ml af det organiske (bund) lag og 0,1 ml af det vandige lag blev overført til forskellige reagensglas, og der sattes 4,9 ml vand til den vandige prøve. 0^2 ml kobber reagens nr. 1 sattes til hvert reagensglas under blanding, og derpå tilsattes 0,2 ml reagens nr. 2. Alle reagensglassene blev omrystet godt, og 30The oil samples were extracted by adding an equal volume of dichloroethane and 1 drop of saturated potassium chloride solution, mixing and centrifuging for 5 min. at top speed of a table centrifuge. 0.5 ml of the organic (bottom) layer and 0.1 ml of the aqueous layer were transferred to different test tubes and 4.9 ml of water was added to the aqueous sample. 0 ^ 2 ml of Copper Reagent # 1 was added to each test tube under mixing and then 0.2 ml of Reagent # 2 was added. All the tubes were well shaken and 30 ml.

DK 152056BDK 152056B

der sattes 5,0 ml vand til glassene indeholdende den organiske ekstrakt. Glassene indeholdende den organiske fase blev igen rystet, og det organiske materiale fik lov at bundfældes. Absor- banser af glassene blev aflæst ved 700 nm overfor de relevante blindprøver (organisk eller vandig ekstrakt af emulsioner uden tilsat metalkompleks).5.0 ml of water was added to the vials containing the organic extract. The glasses containing the organic phase were again shaken and the organic material was allowed to settle. Absorbances of the glasses were read at 700 nm against the relevant blank samples (organic or aqueous extract of emulsions without added metal complex).

Resultater og konklusionerResults and conclusions

Forsøgsresultaterne er sammenfattet i den nedenstående tabel. Procenten af kobber i hver fase blev bestemt ved korrigering af AyQQ for volumenforskelle mellem de organiske og vandige ekstrakter og addition af A^qq værdierne for hver fase. Procenten af "total A^qq” i hver fase ansloges at stå i direkte forhold til procenten af total kobber i hver fase:The test results are summarized in the table below. The percentage of copper in each phase was determined by correcting AyQQ for volume differences between the organic and aqueous extracts and adding the A ^ qq values for each phase. The percentage of "total A ^ qq" in each phase was estimated to be directly proportional to the percentage of total copper in each phase:

Tabel 1Table 1

Procent total kobber i hver fase som funktion af tiden τ (minutter), procenten af olie og den oprindelige kobberkoncentration.Percent total copper in each phase as a function of time τ (minutes), the percentage of oil and the original copper concentration.

50 ppm metalkomplex som Cu++ % total Cu++_50 ppm metal complex as Cu ++% total Cu ++

Organisk fase Vandig fase % olie TQ Tg0 TQ Tg0 2,5 0,9 0,0 99,1 100,0 5,0 13,0 22,7 87,0 77,5 10,0_19,2 25,9_80,8 74,1 31Organic phase Aqueous phase% oil TQ Tg0 TQ Tg0 2.5 0.9 0.0 99.1 100.0 5.0 13.0 22.7 87.0 77.5 10.0_19.2 25.9_80.8 74.1 31

DK 152056BDK 152056B

100 ppm metalkomplex som Cu++ % total Cu++_ % olie Organisk fase Vandig fase T0 T60 T0 T60 2.5 0,8 3,6 99,2 96,4 5.0 10,6 12,2 89,4 87,8 10.0 12,7 15,6 87,5 86,4 150 ppm metalkomplex som Cu++ % total Cu+,f_ % olie Organisk fase Vandig fase T0 T60 T0 T60 2.5 1,0 1,0 99,0 99,0 5.0 8,4 11,7 91,6 88,3 10.0 11,9 12,6 88,1 87,4100 ppm metal complex as Cu ++% total Cu ++ _% oil Organic phase Aqueous phase T0 T60 T0 T60 2.5 0.8 3.6 99.2 96.4 5.0 10.6 12.2 89.4 87.8 10.0 12, 7 15.6 87.5 86.4 150 ppm metal complex as Cu ++% total Cu +, f_% oil Organic phase Aqueous phase T0 T60 T0 T60 2.5 1.0 1.0 99.0 99.0 5.0 8.4 11.7 91.6 88.3 10.0 11.9 12.6 88.1 87.4

Resultaterne viste klart, at ved enhver metalkompleks-koncentration forøgedes procenten af total kobber i den organiske fase langsomt med tiden. Denne virkning var mest udpræget i prøverne indeholdende 5,0% olie i emulsionen. Adsorptionen af Cu++ i olielaget viser sig i enzymologisk terminologi at være af første orden med hensyn til koncentration af både olie og metalkompleks, idet koncentrationen af kobber i olien flader ud ved. oliens mætningspunkt.The results clearly showed that at any metal complex concentration, the percentage of total copper in the organic phase increased slowly over time. This effect was most pronounced in the samples containing 5.0% oil in the emulsion. The adsorption of Cu ++ in the oil layer appears to be of first order in enzymological terminology with respect to both oil and metal complex concentration, with the concentration of copper in the oil leveling off. the saturation point of the oil.

En Michaelis-Menten kurve forventes for overføringshastigheden af Cu*4’ til oliefasen som forklaret nedenfor.A Michaelis-Menten curve is expected for the transfer rate of Cu * 4 'to the oil phase as explained below.

Ved en given tid og metalkompleks-koncentration stod procenten af totalt kobber i den organiske fase i direkte forhold til procenten af olie i emulsionen. Korrelationen var mest åbenbar i prøverneAt a given time and metal complex concentration, the percentage of total copper in the organic phase was directly proportional to the percentage of oil in the emulsion. The correlation was most evident in the samples

DK 152056 BDK 152056 B

32 med 50 ppm metalkompleks. Mængden af kobber i den organiske fase var afhængig af koncentrationen af olie i prøven, hvilket viser, at kobberet blev bundet eller koordineret direkte til oliepartiklernes overflade.32 with 50 ppm metal complex. The amount of copper in the organic phase was dependent on the concentration of oil in the sample, showing that the copper was bound or coordinated directly to the surface of the oil particles.

Efterhånden som metalkompleks-koncentrationen blev forøget, fandtes ikke en tilsvarende forøgelse i procenten af Cu++ i den organiske fase. Dette fænomen antyder flere forskellige mekanismer for Cu++-overføring til olien. Størrelsen af oliepartiklerne i emulsionen er bestemt ikke ensartet. Derfor var det totale overfladeareal af oliepartikler i 10,0 % olieemulsionen ikke fire gange så stort som overfladearealet i 2,5% olieemulsionen. Variationen i partikelstørrelse påvirker mængden af kobber, som kan overføres til det organiske lag. Der kan eksistere en ligevægt mellem kobber i olie- og vandfasen. "Ligevægtskonstanterne" for overførsel i begge retninger kan bestemmes af koncentrationer af metalkompleks i den vandige fase, dvs. reaktantkoncentrationen, og koncentrationer af organiske kobber- og citratsalte. Overførslen af metalkompleks kan beskrives som følger: k-. Jl3_vAs the metal complex concentration was increased, there was no corresponding increase in the percentage of Cu ++ in the organic phase. This phenomenon suggests several different mechanisms of Cu ++ transfer to the oil. The size of the oil particles in the emulsion is certainly not uniform. Therefore, the total surface area of oil particles in the 10.0% oil emulsion was not four times as large as the surface area in the 2.5% oil emulsion. The variation in particle size affects the amount of copper that can be transferred to the organic layer. An equilibrium may exist between copper in the oil and water phases. The "equilibrium constants" for transfer in both directions can be determined by concentrations of metal complex in the aqueous phase, i.e. the reactant concentration, and concentrations of organic copper and citrate salts. The transfer of metal complex can be described as follows: k-. Jl3_v

Metalkompleks ^ Cu++ + Nacitrat= ~Λ Cu+t .olie= χ+++ citrat*Metal Complex ^ Cu ++ + Nacitrate = ~ Λ Cu + t. Oil = χ +++ citrate *

2 4 U H2 4 U H

Cu++ olie= X+++ + citrat" hvor X+++ er enhver simpel eller kompleks kation, som bærer tre positive ladninger, k-^ bestemmes af dissociationskonstanten for metalkompleks ved pH 9> og k^ af adsorptionshastigheden af kobber inde i oliefasen og affiniteten af nitrat og di- og trivalente kationer for hverandre. Øjensynligt er k^kj og k^k4, eftersom med stærkt forøget tid og forskydning næsten alt kobber er blevet fundet i den organiske fase. Antydningerne af et ligevægtsforhold og en tidsafhængighed for adsorption korrelerer godt med Michaelis-Menten-lignende kurver.Cu ++ oil = X +++ + citrate "where X +++ is any simple or complex cation carrying three positive charges, k- ^ is determined by the dissociation constant of metal complex at pH 9> and k ^ by the adsorption rate of copper inside the oil phase and the affinity of nitrate and - and trivalent cations for each other. Apparently k ^ k and k ^ k4, since with greatly increased time and displacement almost all copper has been found in the organic phase. -like curves.

3333

DK 152056BDK 152056B

Forsøg 2Experiment 2

Relation af kobberkoncentration i olie-og vandfaserne til findeling af oliepartikler.______________Relation of copper concentration in the oil and water phases to comminution of oil particles.

Metoder;methods;

Et 50% oliekoncentrat blev findelt ved at sendes tre gange gennem en homogenisator ved 55 MPa. Oliepartiklerne fandtes at være under 0,1 pn i diameter. Det samme koncentrat, uhomogeniseret, fandtes at have et bredt område for oliepartikelstørrelse på 0,8-3 pm, hvor gennemsnitsdiameteren var tilnærmelsesvis 1,5 pn .A 50% oil concentrate was comminuted by passing three times through a homogenizer at 55 MPa. The oil particles were found to be below 0.1 µm in diameter. The same concentrate, homogenized, was found to have a wide range of oil particle size of 0.8-3 µm, with the average diameter being approximately 1.5 µm.

De to koncentrater blev blandet med ledningsvand til opnåelse af 10% olie-i-vand emulsioner, da denne procent olieemulsion i det forudgående forsøg fandtes at give den største adsorptionshastighed af Cu++ ind i oliefasen. Der blev udtaget en prøve på 2 ml af hver emulsion og centrifugeret til fjernelse af alt storpar-tikelmateriale. Hver emulsion tilsattes metalkompleks svarende til et indhold på 100 ppm Cu++, og prøver på 2 ml blev udtaget og centrifugeret øjeblikkeligt. Aliquoter på 1 ml af overvæskerne blev udtaget og prøvet som beskrevet i forsøg 1. Emulsionerne blev rystet forsigtigt i en time, og prøver på 2 ml blev udtaget og behandlet som beskrevet ovenfor efter 10, 30 og 60 minutter.The two concentrates were mixed with tap water to obtain 10% oil-in-water emulsions, as this percentage of oil emulsion in the previous experiment was found to give the highest adsorption rate of Cu ++ into the oil phase. A sample of 2 ml of each emulsion was taken and centrifuged to remove all large particulate matter. Each emulsion was added to a metal complex corresponding to a content of 100 ppm Cu ++, and samples of 2 ml were taken and centrifuged immediately. Aliquots of 1 ml of the supernatants were taken and tested as described in Experiment 1. The emulsions were shaken gently for one hour and 2 ml samples were taken and treated as described above after 10, 30 and 60 minutes.

Resultater;results;

Forsøgsresultaterne er sammenfattet i den nedenstående tabel. Procenten af kobber i hver fase blev bestemt som beskrevet i forsøg 1 .The test results are summarized in the table below. The percentage of copper in each phase was determined as described in Experiment 1.

3434

DK 152056 BDK 152056 B

-P-P

bO 0 O 3 ø xl oibO 0 O 3 ø xl oi

•H H• H H

+> s is ts H cn Q) ·«·>·>»+> s is ts H cn Q) · «·> ·>»

«η bo co cr\ in H«Η bo co cr \ in H

0 O 00 IS 00 000 O 00 IS 00 00

s Is I

•3 I• 3 I

+3 *1 ω H w+3 * 1 ω H w

cOcO

a ‘h -p o ω to bo S3 -P -Hø ø ø xi ω _a 'h -p o ω to bo S3 -P -Hø ø ø xi ω _

CQ Ol 3 H LT\ S (S OCQ Ol 3 H LT \ S (S O

ø H ro S ~ 1ø H ro S ~ 1

ch ·Η >0 VO H NOch · Η> 0 VO H NO

+5 bo 00 00 S S+5 above 00 00 S S

u o ø + x a > t1 2 ,3 SØ Λu o ø + x a> t1 2, 3 SØ Λ

OHOH

H ft h a 3 ø oH ft h a 3 ø o

0 -P.X0 -P.X

,0 OH, 0 OH

fit -P 0 -Pfit -P 0 -P

O +3 0) +> 0 3 bo s a ωO +3 0) +> 0 3 bo s a ω

Η 3 ø WΗ 3 ø W

ØH Og HEH And H

+J 3 O ft 3 IA ro O) H+ J 3 O ft 3 IA ro O) H

o ø 3 ft P ?^TJT«r +3tQ ft bO Η O ·ί tt)o ø 3 ft P? ^ TJT «r + 3tQ ft bO Η O · ί tt)

Η O O H C\l Η HΗ O O H C \ l Η H

+) 3 O S+) 3 O S

3 0 H 0 O3 0 H 0 O

0 bO 01 fil0 bO 01 file

O O ØSO O ØS

° I 1 * 1 % 1 •Η 0 ·· S3 CM 0 0 bO 01 Η 3 Η ΙΟ ΙΟ ΙΟ Ο 0 0 3 Λ 1> Λ° I 1 * 1% 1 • Η 0 ·· S3 CM 0 0 bO 01 Η 3 Η ΙΟ ΙΟ ΙΟ Ο 0 0 3 Λ 1> Λ

fit 0 ΚΛ CO LCO Sfit 0 ΚΛ CO LCO S

φ bO Η Η CM CMφ bO Η Η CM CM

* i ο Λ 3* i ο Λ 3

Xj Η Ο Ο Ο ΟXj Η Ο Ο Ο Ο

Η a Η to VOΗ a Η to VO

+)w 35+) w 35

DK 152056BDK 152056B

En sammenligning af disse resultater med resultaterne fra forsøg 1 viste, at der var blevet adsorberet betydeligt mere kobber i den organiske fase af det homogeniserede materiale og noget mere i den organiske fase af det uhomogeniserede materiale. Hvis koncentrationen af metalkompleks, som sattes til disse prøver, især til det homogeniserede materiale, var blevet forøget, ville der kunne forventes et højere kobberindhold i det organiske lag. I en cirkulerende metalbearbejdningskølevæske med høje koncentrationer af divalente kationersåsom Mg"*"*" og Ca"*""*\ som konkurrerer om citratdelen, skulle reaktionshastigheden for kobberadsorption (k-^ og k^) være højere.A comparison of these results with the results of Experiment 1 showed that significantly more copper had been adsorbed in the organic phase of the homogenized material and somewhat more in the organic phase of the homogenized material. If the concentration of metal complex added to these samples, especially to the homogenized material, had been increased, a higher copper content in the organic layer would be expected. In a circulating metalworking coolant with high concentrations of divalent cation such as Mg "*" * "and Ca" * "" * \ competing for the citrate portion, the reaction rate of copper adsorption (k- ^ and k ^) should be higher.

Resultaterne af dette forsøg viser ganske godt gyldigheden af en Michaelis-Menten analyse af kobberadsorptionshastigheden. Den største optagelseshastighed af kobber i den organiske fase af den homogeniserede prøve forekommer i de første 10 minutter efter at metalkomplekset er blevet tilsat kølevæsken. Fra 10 til 60 minutter bemærkes en lavere kobberadsorptionshastighed. Mere er blevet optaget af de homogeniserede end af de uhomogeniserede oliepartikler.The results of this experiment show quite well the validity of a Michaelis-Menten copper adsorption rate analysis. The greatest uptake rate of copper in the organic phase of the homogenized sample occurs in the first 10 minutes after the metal complex has been added to the coolant. From 10 to 60 minutes a lower copper adsorption rate is noted. More has been absorbed by the homogenized than by the unhomogenized oil particles.

I den homogeniserede olieprøve ses en langt højere begyndelseshastighed for kobberadsorption på grund af oliepartiklernes enorme overfladeareal. Disse virkninger bekræfter, at kobberadsorption til olie også er et overfladefænomen, dvs. at kobberet bindes til oliepartiklernes overflade snarere end at blive inkorporeret i dem.In the homogenized oil sample, a much higher initial rate of copper adsorption is seen due to the enormous surface area of the oil particles. These effects confirm that copper adsorption to oil is also a surface phenomenon, ie. that the copper binds to the surface of the oil particles rather than being incorporated into them.

Claims (10)

1. Stabiliserede olie-i-vand-dispersioner omfattende et emulgeringsmiddel valgt blandt anioniske og ikke-ioniske midler og blandinger deraf, som giver elektronegativitet til dispersionens oliefase, kendetegnet ved, at dispersionerne tillige indeholder et metalkompleks af en polyvalent metalion og en polyfunktionel organisk ligand, hvilket kompleks har en protoninduceret dissociationsevne i vand repræsenteret ved en S-formet kurve på en retvinklet koordinatafbildning af den negative logaritme af metalionkoncentrationen over for den negative logaritme af hydrogenionkoncentrationen, således at der frembringes en kontrolleret frigørelse af metalion, som giver stabilitet til dispersionen.1. Stabilized oil-in-water dispersions comprising an emulsifier selected from anionic and nonionic agents and mixtures thereof which give electronegativity to the oil phase of the dispersion, characterized in that the dispersions also contain a metal complex of a polyvalent metal ion and a polyfunctional organic ligand. which has a proton-induced dissociation ability in water represented by an S-shaped curve on a right-angled coordinate plot of the negative logarithm of the metal ion concentration versus the negative logarithm of the hydrogen ion concentration to produce a controlled release of metal ion which provides stability to the dispersion. 2. Dispersioner ifølge krav 1, kendetegnet ved, at de har en alkalisk pH-værdi op til omkring 12.Dispersions according to claim 1, characterized in that they have an alkaline pH of up to about 12. 3. Dispersioner ifølge krav 1, kendetegnet ved, at de har en alkalisk pH-værdi inden for området fra omkring 7 til omkring 9.Dispersions according to claim 1, characterized in that they have an alkaline pH within the range of from about 7 to about 9. 4. Dispersioner ifølge krav 1, kendetegnet ved, at den kontrollerede frigørelse af metalion er således, at fra omkring 10 til omkring 0,1 vægt% af metalionen i komplekset frigøres over et pH-område fra omkring 7 til omkring 9.Dispersions according to claim 1, characterized in that the controlled release of metal ion is such that from about 10 to about 0.1% by weight of the metal ion in the complex is released over a pH range from about 7 to about 9. 5. Dispersioner ifølge krav 1, kendetegnet ved, at metalkomplekset er et kompleks af en divalent metalion og en polyfunktionel organisk ligand i et forhold på 1:1.Dispersions according to claim 1, characterized in that the metal complex is a complex of a divalent metal ion and a polyfunctional organic ligand in a ratio of 1: 1. 6. Dispersioner ifølge krav 5, kendetegnet ved, at metallet er valgt blandt kobber, nikkel og kviksølv, og at liganden er citronsyre. DK 152056BDispersions according to claim 5, characterized in that the metal is selected from copper, nickel and mercury and that the ligand is citric acid. DK 152056B 7. Dispersioner ifølge krav 5, kendetegnet ved, at den organiske ligand er en a-hydroxypolycarboxylsyre.Dispersions according to claim 5, characterized in that the organic ligand is an α-hydroxypolycarboxylic acid. 8. Dispersioner ifølge krav 1, kendetegnet ved, at metalkomplekset er et dialkalimetal-monokobber(II)-citrat.Dispersions according to claim 1, characterized in that the metal complex is a dialkali metal monocobes (II) citrate. 9. Dispersioner ifølge krav 1, kendetegnet ved, at metalkomplekset er indeholdt i en mængde, som giver fra omkring 10 til omkring 500 mg metalion pr. liter vandig fase.Dispersions according to claim 1, characterized in that the metal complex is contained in an amount which provides from about 10 to about 500 mg of metal ion per minute. liter of aqueous phase. 10. Anvendelse af stabiliserede olie-i-vand-dispersioner ifølge ethvert af de forudgående krav som metalbearbejdningsvæske.Use of stabilized oil-in-water dispersions according to any one of the preceding claims as a metal working fluid.
DK360277A 1976-09-01 1977-08-12 STABILIZED OIL-IN-WATER DISPERSIONS AND THEIR USE AS METAL WORKING LIQUID DK152056C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US71981376 1976-09-01
US05/719,813 US4129509A (en) 1975-07-21 1976-09-01 Metalworking fluid compositions and methods of stabilizing same

Publications (3)

Publication Number Publication Date
DK360277A DK360277A (en) 1978-03-02
DK152056B true DK152056B (en) 1988-01-25
DK152056C DK152056C (en) 1988-07-11

Family

ID=24891460

Family Applications (1)

Application Number Title Priority Date Filing Date
DK360277A DK152056C (en) 1976-09-01 1977-08-12 STABILIZED OIL-IN-WATER DISPERSIONS AND THEIR USE AS METAL WORKING LIQUID

Country Status (18)

Country Link
JP (1) JPS5330608A (en)
AR (1) AR217443A1 (en)
AT (1) AT364063B (en)
AU (1) AU511646B2 (en)
BE (1) BE857770A (en)
BR (1) BR7705779A (en)
CA (1) CA1087156A (en)
CH (1) CH625829A5 (en)
DE (1) DE2738040C2 (en)
DK (1) DK152056C (en)
ES (1) ES461962A1 (en)
FR (1) FR2363622A1 (en)
GB (1) GB1591457A (en)
IT (1) IT1192193B (en)
MX (1) MX4743E (en)
NL (1) NL181878C (en)
NO (1) NO147387C (en)
SE (2) SE431343B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4505830A (en) * 1981-09-21 1985-03-19 The Lubrizol Corporation Metal working using lubricants containing basic alkali metal salts
NL9300718A (en) * 1993-04-27 1994-11-16 Lantor Bv Fibre web for a belt filter, and method of filtering a liquid for use in metal working
CN111560280B (en) * 2020-05-19 2022-05-31 浙江工业大学 Method for regulating and controlling permeability of lubricating liquid of friction interface

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE489476C (en) * 1926-01-03 1930-01-17 Carl Alfred Braun Process for the production of highly stable emulsions
NL86363C (en) * 1954-12-28
DE1039476B (en) * 1955-03-25 1958-09-25 Gerbstoffwerk Oberlahnstein A Process for the production of impregnation dispersions
US2975132A (en) * 1956-06-18 1961-03-14 California Research Corp Emulsifiable lubricant compositions
US2907714A (en) * 1957-07-12 1959-10-06 Shell Dev Water-in-oil lubricant and hydraulic fluid
GB1009197A (en) * 1961-08-30 1965-11-10 Lubrizol Corp Stable water-in-oil emulsion
US3365397A (en) * 1965-02-01 1968-01-23 Mobil Oil Corp Soluble oil compositions for metal working
DE1594398A1 (en) * 1965-03-29 1970-08-06 Dow Chemical Co Lubricant stabilization for recovery when rolling aluminum and its alloys
US3681492A (en) * 1969-10-30 1972-08-01 Allergan Pharma A bactericidal stabilized ascorbic acid composition
GB1325851A (en) * 1971-01-13 1973-08-08 Alcan Res & Dev Process for control of lubricants in an aluminium rolling mill

Also Published As

Publication number Publication date
AR217443A1 (en) 1980-03-31
SE431343B (en) 1984-01-30
SE8300937D0 (en) 1983-02-21
IT1192193B (en) 1988-03-31
MX4743E (en) 1982-08-27
SE8300937L (en) 1983-02-21
NO147387B (en) 1982-12-20
FR2363622B1 (en) 1984-01-27
ATA613077A (en) 1981-02-15
SE437672B (en) 1985-03-11
NL181878B (en) 1987-06-16
BR7705779A (en) 1978-08-08
GB1591457A (en) 1981-06-24
DE2738040C2 (en) 1986-06-12
NL7709189A (en) 1978-03-03
CH625829A5 (en) 1981-10-15
JPS5330608A (en) 1978-03-23
CA1087156A (en) 1980-10-07
DK152056C (en) 1988-07-11
AU511646B2 (en) 1980-08-28
DE2738040A1 (en) 1978-03-02
ES461962A1 (en) 1978-12-01
DK360277A (en) 1978-03-02
NL181878C (en) 1987-11-16
FR2363622A1 (en) 1978-03-31
AU2844377A (en) 1979-03-08
BE857770A (en) 1978-02-13
JPS6317879B2 (en) 1988-04-15
NO147387C (en) 1983-03-30
NO772831L (en) 1978-03-02
AT364063B (en) 1981-09-25
SE7709144L (en) 1978-03-02

Similar Documents

Publication Publication Date Title
US4129509A (en) Metalworking fluid compositions and methods of stabilizing same
US4180473A (en) Method of transporting metal ions
WO2018032853A1 (en) Micro-emulsion cutting fluid and preparation process therefor
DE69808968T2 (en) BIOCIDAL COMPOSITIONS AND TREATMENTS
US8702975B2 (en) Process, method, and system for removing heavy metals from fluids
CN107502437B (en) Semi-synthetic water-soluble cutting fluid for stainless steel and preparation method thereof
Fuller et al. Extraction of chromium and zinc from cooling tower blowdown by liquid membranes
EP2753720B1 (en) Processes for recovering organic solvent extractant from solid-stabilized emulsions formed in hydrometallurgical solvent extraction circuits
Amin et al. Precipitation of iron from wet process phosphoric acid using oxalic acid and potassium hexyl xanthate (PHX)
DK152056B (en) STABILIZED OIL-IN-WATER DISPERSIONS AND THEIR USE AS METAL WORKING LIQUID
Haddou et al. Use of cloud point extraction with ethoxylated surfactants for organic pollution removal
EP0075243B1 (en) Process for regenerating aqueous degreasing and cleaning solutions
CN112852519B (en) Environment-friendly high-performance metal working fluid and preparation method thereof
Binnal et al. Application of liquid emulsion membrane technique for the removal of As (V) from aqueous solutions
AU772577B2 (en) Use of lamellar crystallites as extreme pressure additives in aqueous lubricants, lamellar crystallites and method for obtaining same
CN108559600B (en) Emulsion for fine processing of steel workpiece, preparation method and post-treatment process thereof
MXPA03006878A (en) Method for cold rolling metals using an aqueous lubricant comprising at least a carboxylic acid, a phosphate ester and a wax.
KR102322225B1 (en) Method for separating oil and water in wasted cutting oil
JP3148395B2 (en) Lubricant composition
Othman et al. Sustainable Green Synergistic Emulsion Liquid Membrane Formulation for Metal Removal from Aqueous Waste Solution
RU2355744C1 (en) Concentrate of lubricant-cooling liquid for mechanical treatment of metals
Ismael et al. Adsorption of copper from aqueous solutions by using natural clay
JP2882868B2 (en) Water-soluble lubricant for copper-based metal processing
Fouad et al. Emulsion liquid membrane extraction of cadmium using tri octyl phosphine oxide as a carrier: analytical process optimization by using Taguchi design method
WO2022013902A1 (en) Metalworking fluid with a low impact on health, safety in workplace and environment

Legal Events

Date Code Title Description
PBP Patent lapsed