DK151056B - PROCEDURE FOR OPERATING A COOLING SYSTEM - Google Patents

PROCEDURE FOR OPERATING A COOLING SYSTEM Download PDF

Info

Publication number
DK151056B
DK151056B DK228673AA DK228673A DK151056B DK 151056 B DK151056 B DK 151056B DK 228673A A DK228673A A DK 228673AA DK 228673 A DK228673 A DK 228673A DK 151056 B DK151056 B DK 151056B
Authority
DK
Denmark
Prior art keywords
compressor
rotor
peripheral speed
oil
operated
Prior art date
Application number
DK228673AA
Other languages
Danish (da)
Other versions
DK151056C (en
Inventor
Lauritz Benedictus Schibbye
Original Assignee
Svenska Rotor Maskiner Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Svenska Rotor Maskiner Ab filed Critical Svenska Rotor Maskiner Ab
Publication of DK151056B publication Critical patent/DK151056B/en
Application granted granted Critical
Publication of DK151056C publication Critical patent/DK151056C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/08Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • F04B39/062Cooling by injecting a liquid in the gas to be compressed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/047Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

i 151056in 151056

OISLAND

Den foreliggende opfindelse angår en fremgangsmåde af den i indledningen til krav 1 angivne art.The present invention relates to a method of the kind set forth in the preamble of claim 1.

I store køleanlæg, f.eks. til frysehuse, kan kølemidlet komprimeres fra f.eks. 1,0 atm abs. til 5 18 atm. abs. Allerede på et tidligt stadium under ud viklingen af sådanne anlæg viste det sig nødvendigt at udføre kompressionen i to trin med henblik på at opnå en acceptabel virkningsgrad. Det viste sig også, at det var tilstrækkeligt som første trin at anvende 10 en kompressor, der havde et relativt lavt trykforhold på for eksempel 3:1, hvorved det til kompressoren i det andet trin tilførte volumen reduceres til i hovedsagen en tredjedel af det gasvolumen, som forlader fordamperen, og kompressoren i det første trin tjener her-15 ved som forstærker for det andet trin eller hovedkompressoren. De to kompressorer kan være af samme eller forskellig type.In large refrigeration systems, e.g. for freezer houses, the refrigerant can be compressed from e.g. 1.0 atm abs. to 5 18 atm. abs. Already at an early stage in the development of such plants it was found necessary to carry out the compression in two stages in order to obtain an acceptable efficiency. It was also found to be sufficient as a first step to use a compressor having a relatively low pressure ratio of, for example, 3: 1, thereby reducing the volume supplied to the compressor in the second stage to substantially one third of the gas volume. which leaves the evaporator and the compressor in the first stage serves as amplifier for the second stage or main compressor. The two compressors can be of the same or different type.

I den sidste tid er kompressorer af skruerotor-typen blevet anvendt i tiltagende grad indenfor køleområ-20 det, bl.a. på grund af den omstændighed, at skruerotor-kompressorer i forhold til deres størrelse er i stand til at arbejde med store gasrumfang ved høje trykforhold. Kompressorer til svært brug er udstyret med organer til indsprøjtning af relativt store mængder olie i arbejds-25 kammeret til tilvejebringelse af køling, tætning og smøring.Recently, screw rotor type compressors have been increasingly used in the refrigeration area, i.a. due to the fact that screw rotor compressors, relative to their size, are capable of working with high gas volumes at high pressure conditions. Heavy-duty compressors are equipped with means for injecting relatively large amounts of oil into the working chamber to provide cooling, sealing and lubrication.

De store oliemængder giver anledning til ventilationstab, dvs. af oliens strømning forårsagede friktionstab, der som bekendt forøges stærkt og progressivt 30 med hastigheden. Denne omstændighed gør det nødvendigt at drive skruekompressorer med olieindsprøjtning (olieskylning) med temmelig moderate hastigheder, idet man for eksempel giver spidserne af kamrotorens kamme en hastighed på omkring 30 m/sekund.The large amounts of oil cause ventilation losses, ie. of the flow of the oil caused friction losses which, as is well known, increase rapidly and progressively with the velocity. This circumstance makes it necessary to operate screw injectors with oil injection (oil flushing) at fairly moderate speeds, for example, giving the tips of the cam rotor a speed of about 30 m / second.

35 Når skruekompressorer hidtil er blevet anvendt i begge trin af kompressorenheden i et køleanlæg, har de35 So far, when screw compressors have been used in both stages of the compressor unit in a refrigeration plant, they have

OISLAND

2 151056 enten begge været af typen med olieindsprøjtning til svært brug, eller kompressoren i det første trin eller hjæipekompressoren har været af den tørre, synkroniserede type. I begge tilfælde har virkningsgraden for 5 hjælpekompressoren været ret lav, for eksempel af størrelsesordenen 55%.2 have either been of the oil injection type for heavy use, or the compressor in the first stage or the auxiliary compressor has been of the dry, synchronized type. In both cases, the efficiency of the auxiliary compressor has been quite low, for example of the order of 55%.

Den i indledningen til krav 1 angivne fremgangsmåde til drift af et køleanlæg er eksempelvis kendt fra USA patentskrift nr. 3.481.532. Den heri om-10 handlede totrinskompressor er en kompressor med olieindsprøjtning, det vil sige, at det første trins peri-ferihastighed, som er størst, er begrænset til en forholdsvis lav værdi i sammenligning med, hvad der er tilfældet ved en tør kompressor. Heraf følger nødvendig-15 vis, at det andet trins periferihastighed vil blive unødigt lav, eftersom de indgående aksler i de to trin drives med samme omdrejningstal, og et bestemt slagvolumenforhold for de to trin skal opretholdes, hvilket er prisen for det heraf betingede, forenklede konstruk-20 tionsprincip.For example, the method of operating a refrigeration plant disclosed in the preamble of claim 1 is known from U.S. Patent No. 3,481,532. The two-stage compressor referred to herein is an oil injection compressor, that is, the first stage peripheral speed, which is greatest, is limited to a relatively low value in comparison with a dry compressor. It follows that the peripheral speed of the second stage will be unnecessarily low, since the incoming shafts in the two stages are driven at the same rpm and a certain stroke volume ratio for the two stages must be maintained, which is the price of the conditional, simplified design principle.

Det er opfindelsens formål at angive en fremgangsmåde til drift af et køleanlæg, ved hvilken der opnås en høj adiabatisk virkningsgrad for hjælpekompressoren og derved for kompressorenheden som et hele, og 25 hvorved det bliver muligt at anvende en skruerotorkom- pressor af simpel og pladsbesparende konstruktion som hj ælpekompres sor.SUMMARY OF THE INVENTION It is an object of the invention to provide a method for operating a refrigeration plant, in which a high adiabatic efficiency is obtained for the auxiliary compressor and thereby for the compressor unit as a whole, and thereby makes it possible to use a screw rotor compressor of simple and space-saving construction. auxiliary compressor.

Dette opnås ifølge opfindelsen ved det i den kendetegnende del af krav 1 angivne.This is achieved according to the invention by the method of claim 1.

30 Ved at de to trin således drives med uafhængigt af hinanden afpassede omdrejningstal, kan der naturligvis opnås såvel fordele som ulemper, men også, hvilket let vil indses, en indiskutabel forbedring af kompressorens virkningsgrad. Det for opfindelsen væsentlige er 35 imidlertid ikke begrænset hertil, men består i, at man i det første trin anvender en væsentlig højere periferiha- 3 151056Thus, by operating the two stages at independently matched rpm, there are of course advantages and disadvantages, but also, as will be readily apparent, an indisputable improvement in the efficiency of the compressor. However, what is essential to the invention is not limited thereto, but consists in using a substantially higher peripheral level in the first step.

OISLAND

. stighed end den for en kompressor med olieindsprøjtning afpassede hastighed samtidig med, at man har indskrænket olietilførselen i dette trin til en så lav værdi, som kræves til opnåelse af tilfredsstillende smøring, men 5 ikke så lav, at man må gribe til synkroniseringstandhjul for at hindre skader på rotorerne. På grund af den væsentligt forhøjede periferihastiqhed opnås en radikal formindskelse af det første kompressortrins dimensioner, og som følge af den betydeligt mindre olietilførsel opnås 10 en reduktion af ventilationstabene eller de af oliens strømning forårsagende friktionstab og dermed en forbedring af kompressorens virkningsgrad.. speed than that of an oil injection compressor while reducing the oil supply in this step to such a low value as required to achieve satisfactory lubrication, but not so low as to require synchronizing gear wheels to prevent damage to the rotors. Due to the substantially increased peripheral speed, a radical reduction in the dimensions of the first compressor stage is achieved, and as a result of the considerably smaller oil supply, a reduction of the ventilation losses or the friction losses caused by the flow of oil is achieved and thus an improvement in the efficiency of the compressor.

Ved det i krav 2 angivne kan man hindre, at udstrømningstemperaturen af det gasformige kølemiddel, 15 som komprimeres af den første kompressor, overstiger en efter det aktuelle termodynamiske kredsløb afpasset temperatur.In accordance with claim 2, it can be prevented that the outflow temperature of the gaseous refrigerant, compressed by the first compressor, exceeds a temperature adapted to the current thermodynamic circuit.

Det foretrækkes som angivet i krav 3, at den første kompressor drives med en sådan hastighed, at 20 periferihastigheden af dens hanrotor er i det mindste dobbelt så høj, som periferihastigheden af hanrotoren i den anden kompressor.It is preferred as set forth in claim 3, that the first compressor is operated at such a rate that the peripheral speed of its male rotor is at least twice as high as the peripheral speed of the male rotor of the second compressor.

En udførelsesform for opfindelsen skal beskrives som eksempel i det følgende under henvisning til tegnin-25 gen, på hvilken der skematisk er vist et køleanlæg, som drives efter fremgangsmåden ifølge opfindelsen.An embodiment of the invention will be described by way of example in the following with reference to the drawing, in which is shown schematically a cooling system operated according to the method according to the invention.

Det på tegningen viste anlæg indbefatter en kompressorenhed bestående af en første kompressor eller lavtrykskompressor 10A og en anden kompressor eller høj-30 trykskompressor 10B. På konventionel måde har anlægget endvidere en olieadskiller 12, en kondensator 14, en fordamper 16, en oliekøler 18 og en oliepumpe 20. Kompressorerne, olieadskilleren, kondensatoren og fordamperen er forbundet i serie og danner et lukket kredsløb for 35 kølemidlet, og en drøvleventil 22 er indskudt i ledningen 24 mellem kondensatoren 14 og fordamperen 16.The plant shown in the drawing includes a compressor unit consisting of a first compressor or low pressure compressor 10A and a second compressor or high pressure compressor 10B. In conventional manner, the plant further has an oil separator 12, a capacitor 14, an evaporator 16, an oil cooler 18 and an oil pump 20. The compressors, oil separator, capacitor and evaporator are connected in series and form a closed circuit for the refrigerant and a throttle valve 22 is interposed in line 24 between capacitor 14 and evaporator 16.

151056 4151056 4

OISLAND

Begge kompressorer 10A og 10B er af typen med indgribende skruerotorer. Hver kompressor drives af en elektromotor 26, for eksempel af induktionstypen. Motorerne forudsættes i det foreliggende tilfælde at løbe 5 med samme hastighed. Kompressoren 10A drives af sin motor gennem en opgearingsmekanisme 28, hvis udgangshastighed for eksempel er to eller tre gange højere end indgangshastigheden. Kompressoren 10B drives direkte af sin motor.Both compressors 10A and 10B are of the type with engaging screw rotors. Each compressor is driven by an electric motor 26, for example of the induction type. In the present case, the motors are assumed to run 5 at the same speed. The compressor 10A is driven by its motor through a gear mechanism 28, for example, whose output speed is two or three times higher than the input speed. Compressor 10B is driven directly by its motor.

I den viste udførelsesform tilføres olie fra 10 oliepumpen 20 til begge kompressorer 10A og 10B gennem ledninger 30 og 32. Den til kompressoren 10A tilførte oliemængde er begrænset på en sådan måde, at den i det mindste ikke væsentligt overstiger, hvad der er nødvendigt for tilfredsstillende smøring af de relativt bevæ-15 gelige kontaktflader. Samtidig kan der automatisk opnås en vis tætningseffekt. Kompressoren 10B er af den olieskyllede type, i hvilken olien ikke blot tjener til smøring og tætning, men også tjener til at køle kølemidlet under dets kompression. Olieskyllede skruerotorkompres-20 sorer er almindelig kendte. I sådanne kompressorer er massen af oliestrømmen gennem kompressoren større end massen af gasstrømningen derigennem. Den til kompressoren 10B tilførte oliemængde er således mange gange større end den til kompressoren 10A tilførte.In the illustrated embodiment, oil from the oil pump 20 is supplied to both compressors 10A and 10B through lines 30 and 32. The amount of oil supplied to the compressor 10A is limited in such a way that it does not substantially exceed what is necessary for satisfactory operation. lubrication of the relatively movable contact surfaces. At the same time, a certain sealing effect can be obtained automatically. The compressor 10B is of the oil-rinsed type in which the oil not only serves to lubricate and seal, but also serves to cool the refrigerant during its compression. Oil rinsed screw rotor compressors are well known in the art. In such compressors, the mass of the oil flow through the compressor is greater than the mass of the gas flow therethrough. Thus, the amount of oil supplied to compressor 10B is many times greater than that applied to compressor 10A.

25 For at køle det gasformige kølemiddel, som er komprimeret af kompressoren 10A, tilføres der flydende kølemiddel til kompressoren fra kondensatoren 14 gennem en ledning 34. Det flydende kølemiddel indsprøjtes i kompressorens arbejdskammer på et sådant stadium af 30 kompressionen og i en sådan mængde, at temperaturen af det gasformige kølemiddel hindres i at stige over den Ønskede udstrømningstemperatur, hvis størrelse er bestemt ved kalkulationer, så at den passer til det aktuelle 35To cool the gaseous refrigerant compressed by compressor 10A, liquid refrigerant is supplied to the compressor from capacitor 14 through a conduit 34. The liquid refrigerant is injected into the compressor's working chamber at such a stage of compression and in such an amount that the temperature of the gaseous refrigerant is prevented from rising above the desired effluent temperature, the size of which is determined by calculations to fit the current

OISLAND

5 151056 termodynamiske kredsløb. Samtidig holdes kompressorens temperatur på en sådan højde, at de termiske deformationer af rotorerne og huset ikke volder nogen problemer.5 151056 thermodynamic circuits. At the same time, the temperature of the compressor is kept at such a height that the thermal deformations of the rotors and housing cause no problems.

Rotorerne i kompressoren 10A er lejret i anti-5 friktionslejer. På tegningen er der også vist indløb og udløb for et kølemedium, for eksempel vand, der cirkuleres gennem kondensatoren 14 og oliekøleren 18.The rotors in compressor 10A are housed in anti-friction bearings. The drawing also shows inlet and outlet for a refrigerant, for example water circulated through the capacitor 14 and the oil cooler 18.

Den ene eller begge kompressorer kan være udstyret med ventilglidere til regulering af kapaciteten, og 10 kompressoren 10B kan også være kølet ved hjælp af tilgang af flydende kølemiddel i tilslutning til kølingen ved hjælp af indsprøjtet olie*One or both compressors may be equipped with valve sliders to control the capacity, and the compressor 10B may also be cooled by supply of liquid refrigerant in connection with the cooling by means of injected oil *

Claims (3)

151056 O Patentkrav.151056 O Patent Claims. 1. Fremgangsmåde til drift af et køleanlæg indbefattende en kondensator (14), en fordamper (16), en første kompressor (10A) udgørende et lavtrykstrin og 5 en anden kompressor (10B) udgørende et højtrykstrin, hvilke kompressorer (ΙΟΑ,ΙΟΒ) hver er af skruerotorty-pen og har en første rotor drevet af en motor (26) og en anden rotor drevet gennem direkte kontakt mellem dens kamme og den første rotors kamme, hvorhos hanrotoren i 10 den første kompressor (10A) har en periferihastighed, som er højere end periferihastigheden for hanrotoren i den anden kompressor (10B) , som får tilført den smøreoliemængde, som kræves til såvel køling og tætning af kompressoren som til smøring af i forhold til hinanden 15 bevægelige kontaktflader, kendetegnet ved, at den første kompressor (10A) drives med et omdrejningstal, som er højere end det, hvormed den anden kompressor (10B) drives, og at der til den første kompressor (10A) tilføres en smøreoliemængde, som i sig selv er utilstrækkelig 20 til at medføre nogen nævneværdig køling eller tætning af kompressoren, men tilstrækkelig til at dække behovet til opnåelse af en tilfredsstillende smøring af i forhold til hinanden bevægelige kontaktflader i kompressoren.A method of operating a cooling system including a capacitor (14), an evaporator (16), a first compressor (10A) constituting a low pressure stage and a second compressor (10B) comprising a high pressure stage, said compressors (ΙΟΑ, ΙΟΒ) each is of the screw rotor type and has a first rotor driven by a motor (26) and a second rotor driven through direct contact between its cam and the first rotor cam, the male rotor of the first compressor (10A) having a peripheral speed which is higher than the peripheral speed of the male rotor in the second compressor (10B), which is supplied with the amount of lubricating oil required for both cooling and sealing of the compressor as well as for lubrication of movable contact surfaces, characterized in that the first compressor (10A) is operated at a rpm higher than that at which the second compressor (10B) is operated, and a supply of lubricating oil, which in itself is insufficient to produce a lubricating oil, is added to the first compressor (10A). and also appreciable cooling or sealing of the compressor, but sufficient to cover the need to obtain a satisfactory lubrication of contact surfaces which are movable relative to each other in the compressor. 2. Fremgangsmåde ifølge krav 1, kendete g-25 net ved, at flydende kuldemedium udtages fra kondensatoren (14) og indsprøjtes i rotorsporene i den første kompressor (10A) under en sådan del af kompressionen og i en sådan mængde, at temperaturen af det gasformige kuldemedium hindres i at stige over en ønsket udstrøm- 30 ningstemperatur.2. A method according to claim 1, characterized in that liquid refrigerant is withdrawn from the capacitor (14) and injected into the rotor grooves of the first compressor (10A) during such part of the compression and in such an amount that gaseous refrigerants are prevented from rising above a desired effluent temperature. 3. Fremgangsmåde ifølge krav 1 eller 2, kendetegnet ved, at den første kompressor (10A) drives med en sådan hastighed, at periferihastigheden af dens hanrotor er i det mindste dobbelt så høj som peri- 35 ferihastigheden af hanrotoren i den anden kompressor (10B).Method according to claim 1 or 2, characterized in that the first compressor (10A) is operated at such a rate that the peripheral speed of its male rotor is at least twice as high as the peripheral speed of the male rotor in the second compressor (10B). ).
DK228673A 1972-04-27 1973-04-26 PROCEDURE FOR OPERATING A COOLING SYSTEM DK151056C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1965572 1972-04-27
GB1965572A GB1434927A (en) 1972-04-27 1972-04-27 Refrigeration plants

Publications (2)

Publication Number Publication Date
DK151056B true DK151056B (en) 1987-10-19
DK151056C DK151056C (en) 1988-07-11

Family

ID=10132972

Family Applications (1)

Application Number Title Priority Date Filing Date
DK228673A DK151056C (en) 1972-04-27 1973-04-26 PROCEDURE FOR OPERATING A COOLING SYSTEM

Country Status (17)

Country Link
JP (1) JPS5316537B2 (en)
AR (1) AR206199A1 (en)
AU (1) AU475831B2 (en)
BR (1) BR7303085D0 (en)
CH (1) CH563003A5 (en)
CS (1) CS207321B2 (en)
DD (1) DD103312A5 (en)
DE (1) DE2318400C3 (en)
DK (1) DK151056C (en)
FR (1) FR2182137B1 (en)
GB (1) GB1434927A (en)
IT (1) IT988451B (en)
NL (1) NL176971C (en)
NO (1) NO133513C (en)
SE (1) SE407108B (en)
SU (1) SU643098A3 (en)
ZA (1) ZA732565B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107288850A (en) * 2017-06-23 2017-10-24 浙江凯尼真空设备有限公司 A kind of energy-saving type vacuum pump water tank cooling down device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522442Y2 (en) * 1974-09-20 1980-05-28
FR2513747A1 (en) * 1981-09-25 1983-04-01 Satam Brandt Froid MULTIMOTOCOMPRESSOR REFRIGERATION SYSTEM
JPS60106415U (en) * 1983-12-25 1985-07-19 三菱農機株式会社 Defrot lock operating device for riding rice transplanter
JPS62174103U (en) * 1986-04-25 1987-11-05
FR2838180B1 (en) * 2002-04-03 2006-10-27 Jean Paul Arpin LOW TEMPERATURE REFRIGERATING AND STORAGE FACILITIES
JP6301101B2 (en) * 2013-10-18 2018-03-28 三菱重工サーマルシステムズ株式会社 Two-stage compression cycle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3481532A (en) * 1967-12-20 1969-12-02 Ingersoll Rand Co Compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR559682A (en) * 1922-12-11 1923-09-19 Compressor improvements
GB1352698A (en) * 1970-04-16 1974-05-08 Hall Thermotank Int Ltd Refrigeration
GB1361604A (en) * 1970-07-09 1974-07-30 Svenska Rotor Maskiner Ab Meshing screw rotor positive-displacement machines

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3481532A (en) * 1967-12-20 1969-12-02 Ingersoll Rand Co Compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107288850A (en) * 2017-06-23 2017-10-24 浙江凯尼真空设备有限公司 A kind of energy-saving type vacuum pump water tank cooling down device
CN107288850B (en) * 2017-06-23 2019-07-05 浙江凯尼真空设备有限公司 A kind of energy-saving type vacuum pump water tank cooling down device

Also Published As

Publication number Publication date
SE407108B (en) 1979-03-12
SU643098A3 (en) 1979-01-15
AU475831B2 (en) 1976-09-02
DD103312A5 (en) 1974-01-12
FR2182137B1 (en) 1976-11-12
NL176971C (en) 1985-07-01
ZA732565B (en) 1974-03-27
DK151056C (en) 1988-07-11
IT988451B (en) 1975-04-10
JPS5316537B2 (en) 1978-06-01
CH563003A5 (en) 1975-06-13
BR7303085D0 (en) 1974-08-29
DE2318400C3 (en) 1980-06-19
NL7305724A (en) 1973-10-30
GB1434927A (en) 1976-05-12
AU5448373A (en) 1974-10-17
DE2318400B2 (en) 1979-09-27
FR2182137A1 (en) 1973-12-07
AR206199A1 (en) 1976-07-07
JPS4947954A (en) 1974-05-09
NO133513C (en) 1976-05-12
NL176971B (en) 1985-02-01
CS207321B2 (en) 1981-07-31
DE2318400A1 (en) 1973-11-15
NO133513B (en) 1976-02-02

Similar Documents

Publication Publication Date Title
US10280803B2 (en) Energy storage device and method for storing energy
US6216474B1 (en) Part load performance of variable speed screw compressor
EP0787891B1 (en) Deriving mechanical power by expanding a liquid to its vapour
US10358975B2 (en) Compressed air energy storage and power generation device
EP2979043B1 (en) Compressor
US3848422A (en) Refrigeration plants
US2991632A (en) Refrigeration system
EP2971620B1 (en) Systems and methods for low grade waste heat management
US6185956B1 (en) Single rotor expressor as two-phase flow throttle valve replacement
US4185465A (en) Multi-step regenerated organic fluid helical screw expander hermetic induction generator system
JP6571491B2 (en) heat pump
AU2018348842B2 (en) Refrigeration device and method
JPWO2009147826A1 (en) Refrigeration cycle equipment
JP5657839B2 (en) Gas-balanced Brayton cycle cryogenic steam cryopump
JP2019510184A (en) Cryogenic refrigerator
AU2020324275A1 (en) Refrigeration and/or liquefaction method, device and system
US3613385A (en) Cryogenic cycle and apparatus
US3931718A (en) Refrigerant screw compression with liquid refrigerant injection
DK151056B (en) PROCEDURE FOR OPERATING A COOLING SYSTEM
JP2017518463A (en) Compression refrigerator having an axial flow compressor
EP1376032A2 (en) Expander-compressor capacity control
SU473377A3 (en) Refrigerating gas machine
US2820350A (en) Refrigeration apparatus
GB1019703A (en) Improvements in and relating to refrigeration plant
CN116249863A (en) Simple low-temperature refrigerating system

Legal Events

Date Code Title Description
PUP Patent expired