DK150627B - PROCEDURE FOR EXPLOITING THE MOLYBODY FROM WASTE CATALOGS - Google Patents

PROCEDURE FOR EXPLOITING THE MOLYBODY FROM WASTE CATALOGS Download PDF

Info

Publication number
DK150627B
DK150627B DK045477AA DK45477A DK150627B DK 150627 B DK150627 B DK 150627B DK 045477A A DK045477A A DK 045477AA DK 45477 A DK45477 A DK 45477A DK 150627 B DK150627 B DK 150627B
Authority
DK
Denmark
Prior art keywords
catalyst
molybdenum
solution
water
acid
Prior art date
Application number
DK045477AA
Other languages
Danish (da)
Other versions
DK45477A (en
DK150627C (en
Inventor
Herman Castagna
Guy Gravey
Paul Grolla
Andre Roth
Original Assignee
Metaux Speciaux Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR7603674A external-priority patent/FR2340378A1/en
Priority claimed from FR7635867A external-priority patent/FR2371230A2/en
Application filed by Metaux Speciaux Sa filed Critical Metaux Speciaux Sa
Publication of DK45477A publication Critical patent/DK45477A/en
Publication of DK150627B publication Critical patent/DK150627B/en
Application granted granted Critical
Publication of DK150627C publication Critical patent/DK150627C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/34Obtaining molybdenum
    • C22B34/345Obtaining molybdenum from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/34Obtaining molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/009General processes for recovering metals or metallic compounds from spent catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

150827150827

Den foreliggende opfindelse angår en fremgangsmåde af den i krav l's indledning angivne art til udvinding af molybden fra affaldskatalysatorer, nærmere bestemt fra brugte katalysatorer baseret på aktiveret aluminiumoxid og indeholdende en eller flere molybdenforbin-delser og en eller flere andre metalforbindelser. De anvendte katalysatorer er især af den type, der anvendes ved afsvovling af olier. Katalysatorer af denne 4- type indeholder en bærer baseret på y-aluminiumoxid, der er imprægneret med en eller flere molybden-forbin-delser. Disse er generelt oxider, såsom MoO^, der i sig selv opnås ved dissociering af et salt, såsom am-moniummolybdat. Andre metalforbindelser, især cobalt-oxid og/eller nikkeloxid, findes ofte i katalysatoren som aktive konstituenter. Endelig indeholder katalysatoren urenheder, hvoraf de fleste forbliver fastbundet i katalysatoren i hele dens brugstid. Det drejer sig her især om forskellige organiske forbindelser, såsom de, der indeholder svovl.The present invention relates to a process of the kind specified in the preamble of claim 1 for the extraction of molybdenum from waste catalysts, in particular from spent catalysts based on activated alumina and containing one or more molybdenum compounds and one or more other metal compounds. The catalysts used are especially of the type used in desulfurization of oils. Catalysts of this type 4 contain a support for γ-alumina impregnated with one or more molybdenum compounds. These are generally oxides, such as MoO 2, which are themselves obtained by dissociating a salt such as ammonium molybdate. Other metal compounds, especially cobalt oxide and / or nickel oxide, are often found in the catalyst as active constituents. Finally, the catalyst contains impurities, most of which remain bound to the catalyst throughout its useful life. In particular, these are various organic compounds, such as those containing sulfur.

Før man underkaster disse affaldsprodukter en kemisk behandling, er det almindelig praksis at underkaste dem en oxiderende ristning ved en temperatur, der generelt er under 600°C, for at fjerne de imprægnerende carbonhydrider, carbon og en del af svovlet i form af flygtige forbindelser; se f.eks. tysk offentliggørelsesskrift nr. 2 316 837. Denne behandling udføres ofte i den samme kolonne, der anvendes ved behandling af carbonhydriderne. Behandlingen kan f.eks. også udføres, når den kemiske behandling er udført. Efter denne ristning foreligger molybden i katalysatoren i form af dets oxid eller sulfid. Molybden kan herefter frasepareres og udvindes' på brugbar form ved forskellige fremgangsmåder .Prior to subjecting these waste products to chemical treatment, it is common practice to subject them to an oxidizing shake at a temperature generally below 600 ° C to remove the impregnating hydrocarbons, carbon and a portion of the sulfur in the form of volatile compounds; see e.g. German Publication No. 2,316,837. This treatment is often carried out in the same column used in the treatment of the hydrocarbons. The treatment may e.g. also performed when the chemical treatment is performed. After this roasting, molybdenum is present in the catalyst in the form of its oxide or sulfide. The molybdenum can then be separated and recovered in usable form by various methods.

Her kan især henvises til fransk patentskrift nr. 701 426, 150827 2 der angår en fremgangsmåde til behandling af katalysatorer, der anvendes ved hydrogenering af kul, olie og tjærestoffer. Foruden en aluminiumoxidbaseret bærer indeholder disse katalysatorer metalforbindelser, der er baseret på molybden, chrom, zink og magnesium. Det viste sig, at hvis disse katalysatorer blev ristet ved en temperatur under 500°C, var det muligt at solubili-sere molybden med en opløsning af ammoniak, hvilket gjorde det muligt at opnå ammoniummolybdat, medens de andre metaller forblev upåvirket eller kun blev påvirket i ringe grad. Det er herefter muligt at udfælde molybdensyre med saltsyre ved kogepunktet. Denne fremgangsmåde har den væsentlige ulempe, at der er en meget lav reaktionshastighed mellem ammoniak og molybdenoxid i katalysatoren. Desuden er ekstraktionsudbyttet lavt, idet en betydelig del af molybdenoxidet forbliver i de inerte materialer. Endelig påvirkes molybdensulfid næsten ikke ved ammoniakbehandlingen.In particular, reference is made to French patent specification 701 426, 150827 2 which relates to a process for treating catalysts used in the hydrogenation of coal, oil and tar substances. In addition to an alumina-based support, these catalysts contain metal compounds based on molybdenum, chromium, zinc and magnesium. It was found that if these catalysts were shaken at a temperature below 500 ° C, it was possible to solubilize molybdenum with a solution of ammonia, which allowed ammonium molybdate to be obtained while the other metals remained unaffected or only affected. to a small extent. It is then possible to precipitate molybdenic acid with hydrochloric acid at the boiling point. This process has the major disadvantage that there is a very low reaction rate between ammonia and molybdenum oxide in the catalyst. In addition, the extraction yield is low, with a significant portion of the molybdenum oxide remaining in the inert materials. Finally, molybdenum sulfide is hardly affected by the ammonia treatment.

Fra USA-patentskrift nr. 2 367 506 kendes endvidere en fremgangsmåde til udvinding af molybden fra brugte katalysatorer anvendt ved nedbrydning af naphthener til aromatiske forbindelser, hvilke katalysatorer er baseret på molybdenforbindelser med en bærer af aktiveret aluminiumoxid. Der beskrives her en fremgangsmåde, der består i at neddyppe den brugte katalysator i en opløsning af natriumcarbonat, indtil den fuldstændig er imprægneret, og herefter at opvarme de således imprægnerede katalysatorstykker i 30 minutter ved en temperatur på 1150°C, f.eks. i en roterovn. Under disse betingelser bliver aluminiumoxidet gjort i det væsentlige uopløseligt, og det dannede natriumaluminat kan herefter opløses i vand, hvorved der kun medrives en lille mængde aluminium i form af natriumaluminat. Den således beskrevne fremgangsmåde har den ulempe, at opløseligheden af det dannede molybdat reduceres, og at 150627 3 opløsningen af molybdatet i vand bliver vanskelig. Endelig har det vist sig, at det ikke er muligt at undgå opløsning af aluminiumoxid, der herefter skal frasepareres ved en yderligere behandling, hvis man ønsker at udvinde en tilstrækkelig ren molybden-forbindelse.U.S. Pat. No. 2,367,506 also discloses a method for recovering molybdenum from spent catalysts used in the degradation of naphthenes to aromatic compounds, which catalysts are based on molybdenum compounds with a carrier of activated alumina. Here, a process is described which consists of immersing the spent catalyst in a solution of sodium carbonate until it is completely impregnated, and then heating the catalyst pieces thus impregnated for 30 minutes at a temperature of 1150 ° C, e.g. in a rotary oven. Under these conditions, the alumina is rendered substantially insoluble, and the resulting sodium aluminate can then be dissolved in water, leaving only a small amount of aluminum in the form of sodium aluminate. The process thus described has the disadvantage that the solubility of the molybdate formed is reduced and that the solution of the molybdate in water becomes difficult. Finally, it has been found that it is not possible to avoid dissolution of alumina, which must then be separated by further treatment if a sufficiently pure molybdenum compound is to be recovered.

Det har nu overraskende vist sig, at man ved fremgangsmåden ifølge opfindelsen kan undgå de ovenfor beskrevne ulemper ved de kendte fremgangsmåder. Således er det muligt ved den omhandlede fremgangsmåde fuldstændigt at udvinde molybden indeholdt i brugte katalysatorer uden på samme tid at medrive væsentlige mængder aluminium. Det er også muligt at behandle katalysatoren efter en for-ristning, ved temperaturer fortrinsvis under 600°C, uden at denne for-ristningstemperatur er særlig kritisk, hverken med hensyn til solubiliseringen af molybden eller med hensyn til ekstraktionsudbyttet.It has now surprisingly been found that the method according to the invention can avoid the above-described disadvantages of the known methods. Thus, by the process of the present invention, it is possible to completely recover the molybdenum contained in spent catalysts without simultaneously containing substantial amounts of aluminum. It is also possible to treat the catalyst after a roasting, at temperatures preferably below 600 ° C, without this roasting temperature being particularly critical, either with respect to the solubilization of the molybdenum or with respect to the extraction yield.

Den omhandlede fremgangsmåde er således ejendommelig ved, at man calcinerer den imprægnerede katalysator ved en temperatur på 600-800°C, at man behandler den imprægnerede og calcinerede katalysator med en strøm af carbondioxid, hvorpå man vasker den med vand for at opløse det dannede natriummolybdat, Na2Mo0^, og gradvis tilsætter den ved vask med vand opnåede opløsning en mængde salpetersyre, der udgør 1,5-2,3 gange den mængde, der er nødvendig for at opretholde en pH-værdi på 5-6, mens man samtidigt holder temperaturen under 30°C, og at man hydrolyserer den således syrebehandlede opløsning ved en temperatur nær kogepunktet, hvorpå man renser og tørrer den herved udfældede molybdensyre.The present process is thus characterized by calcining the impregnated catalyst at a temperature of 600-800 ° C, treating the impregnated and calcined catalyst with a stream of carbon dioxide and then washing it with water to dissolve the formed sodium molybdate , Na2MoO4, and gradually the solution obtained by washing with water adds a quantity of nitric acid which amounts to 1.5-2.3 times the amount needed to maintain a pH of 5-6 while maintaining at the same time the temperature below 30 ° C and hydrolyzing the acid-treated solution at a temperature near the boiling point, whereupon the molybdenic acid precipitated is then purified and dried.

På grund af den relativt lave calcineringstemperatur, behandlingen med carbondioxid, det betydelige overskud af salpetersyre og udfældningen af molybdensyre nær ved kogepunktet opnår man, at den således udvundne mo- 150627 4 lybdensyre har en betydeligt højere renhed, d.v.s. et væsentligt ringere indhold af aluminium, end det er muligt at opnå ved de kendte fremgangsmåder. Desuden er kemikalieforbruget relativt beskedent.Due to the relatively low calcination temperature, the treatment with carbon dioxide, the considerable excess of nitric acid and the precipitation of molybdenic acid near the boiling point, it is obtained that the thus-obtained molybdenic acid thus obtained has a significantly higher purity, ie. a substantially lower content of aluminum than is possible by the known methods. Furthermore, the consumption of chemicals is relatively modest.

Efter at katalysatoren er blevet ristet for at fjerne flygtige forbindelser, er molybdenindholdet i affaldsprodukterne normalt af størrelsesordenen 4-12 pct., medens svovlindholdet ligger mellem 0,5 og 4 pct. Disse tal er kun retningsgivende, og visse typer katalysatorer kan have molybden- eller svovlindhold, der er mindre eller større end disse angivelser. Imprægneringsbehandlingen skal udføres således, at alle katalysatorpillerne ensartet absorberer reaktanten. Dette resultat opnås f.eks. ved at sprøjte et omrørt leje af piller med en opløsning af natriumcarbonat, idet der fremkaldes en systematisk bevægelse af pillerne under påsprøjtningen. Opløsningens volumen afhænger i begrænset grad af den specifikke overflade af katalysatoren og ligger på 200-500 ml pr. kg behandlet katalysator. Koncentrationen af natriumcarbonat varierer meget i forhold til indholdet af molybden og svovl, som det vil blive forklaret i det følgende.After the catalyst has been shaken to remove volatile compounds, the molybdenum content of the waste products is usually of the order of 4-12%, while the sulfur content is between 0.5 and 4%. These figures are only indicative, and certain types of catalysts may have molybdenum or sulfur content less or greater than these indications. The impregnation treatment must be carried out so that all the catalyst pellets uniformly absorb the reactant. This result is obtained e.g. by spraying a stirred bed of pellets with a solution of sodium carbonate, causing a systematic movement of the pellets during the spraying. The volume of the solution depends to a limited extent on the specific surface of the catalyst and is 200-500 ml per liter. kg of treated catalyst. The concentration of sodium carbonate varies greatly with the content of molybdenum and sulfur, as will be explained below.

Denne imprægnering efterfølges af en opvarmning til en temperatur på mellem 600 og 800°C, fortrinsvis til en temperatur på 650-750°C. Det har vist sig, at molybden, der er til stede i form af molybden eller molybden-sulfid i dette temperaturområde, næsten fuldstændigt omdannes til molybdat, der er opløselige i varmt vand (80°), i løbet af kort tid, hvilket vil sige af størrelsesordenen 1 time. Ved denne temperatur reagerer oxider af cobalt og nikkel, der er til stede, ikke med natriumcarbonat i nogen væsentlig udstrækning og forbliver i det væsentlige uopløselige i vand. Selv om reaktionshastigheden i dette temperturområde for reaktio- 150627 5 tionshastigheden i dette temperaturområde for reaktionen mellem aluminiumoxid og natriumcarbonat er meget lav, er det dog ikke muligt helt at undgå dannelse af små mængder natriumaluminat. Disse mængder forbliver begrænsede, forudsat at temperaturbetingelserne og behandlingstiden holdes inden for de anførte rammer, og forudsat at det tilførte overskud af natriumcarbonat ikke er for stort. Efter denne varmebehandling og den nedenfor nærmere beskrevne behandling med Cf^ omrøres 'katalysatorpillerne med varmt vand, indtil natriummo-lybdatet er opløst så fuldstændigt som muligt. Dette opnås ved temperaturer fra 60 til 100°C i løbet af ca.This impregnation is followed by heating to a temperature between 600 and 800 ° C, preferably to a temperature of 650-750 ° C. It has been found that molybdenum present in the form of molybdenum or molybdenum sulfide in this temperature range is almost completely converted to molybdate soluble in hot water (80 °) in a short period of time, i.e. of the order of 1 hour. At this temperature, oxides of cobalt and nickel present do not react with sodium carbonate to any significant extent and remain essentially insoluble in water. However, although the reaction rate in this temperature range of the reaction rate in this temperature range for the reaction between alumina and sodium carbonate is very low, it is not possible to completely avoid the formation of small amounts of sodium aluminate. These quantities remain limited, provided the temperature conditions and processing time are kept within the limits indicated, and provided that the excess sodium carbonate supply is not excessive. After this heat treatment and the treatment with Cf described below, the catalyst pellets are stirred with hot water until the sodium molybdate is dissolved as completely as possible. This is achieved at temperatures from 60 to 100 ° C over approx.

1 time. Det er normalt ønskværdigt at opnå en relativ koncentreret opløsning, der f.eks. indeholder 45-50 g/liter molybden i form af natriummolybdat. Disse opløsninger indeholder også natriumaluminat. På grund af driftsbetingelserne defineret ovenfor er forholdet mellem aluminium og molybden i opløsning generelt af størrelsesordenen 10 pct., i mange tilfælde endda lavere og sjældent over 20 pct. Som allerede nævnt indeholder disse opløsninger også natriumsulfat og frit natriumcarbonat. Disse opløsninger kan i suspension indeholde små faste partikler, primært hidrørende fra en delvis nedbrydning af affaldskatalysatoren. Disse partikler fjernes ved dekantering eller filtrering f.eks. i en filterpresse. Det vigtigste trin ved fremgangsmåden er fraskillelsen af molybden i form af molybdensyre fra natriumaluminatet og alkalisaltene. Det har her overraskende vist sig, at det er muligt at omdanne den oprindelige basiske opløsning til en sur opløsning, hvorfra molybdensyren herefter udfældes uden fare for delvis hydrolyse af natriumaluminat. Denne tilsyneladende komplekse operation udføres på en præcis og reproducerbar måde ved en simpel og ny metode, som består i at behandle opløsningen i to efter hinanden følgende reaktorer med samme kapacitet, der er arrangeret på 150627 6 en sådan måde, at også de udstrømmende mængder i disse reaktorer er lige store og konstante. Den første reaktor modtager opløsningen, der stammer fra ekstraktionen af opløselige salte med varmt vand, hvilke salte er indeholdt i katalysatoren efter behandling med na-triumcarbonat og befriet for eventuelle faste partikler ved dekantering eller filtrering som beskrevet ovenfor.1 hour. It is usually desirable to obtain a relatively concentrated solution, e.g. contains 45-50 g / liter molybdenum in the form of sodium molybdate. These solutions also contain sodium aluminate. Due to the operating conditions defined above, the ratio of aluminum to molybdenum in solution is generally of the order of 10 per cent, in many cases even lower and rarely above 20 per cent. As already mentioned, these solutions also contain sodium sulfate and free sodium carbonate. These solutions may contain in suspension small solid particles, primarily resulting from a partial decomposition of the waste catalyst. These particles are removed by decantation or filtration e.g. in a filter press. The most important step of the process is the separation of molybdenum in the form of molybdenic acid from the sodium aluminate and the alkali salts. Surprisingly, it has been found here that it is possible to convert the original basic solution to an acidic solution, from which the molybdenic acid is subsequently precipitated without the risk of partial hydrolysis of sodium aluminate. This seemingly complex operation is carried out in a precise and reproducible manner by a simple and novel method, which consists of treating the solution in two successive reactors of the same capacity arranged in such a way that the effluent quantities in these reactors are equal in size and constant. The first reactor receives the solution resulting from the extraction of hot water soluble salts which are contained in the catalyst after treatment with sodium carbonate and freed of any solid particles by decantation or filtration as described above.

Denne opløsning afkøles ved indgangen til den første reaktor til en temperatur på under 40°C. En strøm af salpetersyre føres kontinuerligt til den samme reaktor med en sådan hastighed, at pH-værdien af opløsningen indstilles til mellem 5 og 6, fortrinsvis mellem 5,2 og 5,5. Denne mængde salpetersyre kan indstilles på kendt måde, såsom ved hjælp af en doseringspumpe, hvor mængden kontinuerligt reguleres ved hjælp af et pH-meter med en sonde placeret i selve reaktoren. Da reaktionen er exoterm, skal reaktoren være forsynet med køleorganer, såsom en kølekappe eller en kølespiral, og eventuelt med en omrører for at gøre det muligt at holde temperaturen i opløsningen på ikke meget over 20° og i alle tilfælde under 30°C. Under disse betingelser neutraliseres det frie natriumcarbonat, og natriumalumi-natet nedbrydes til det punkt, hvor udfældningen begynder, hvilket gør opløsningen lettere uklar. Opløsningen føres herefter til den anden reaktor med en konstant strømningshastighed, f.eks. via et overløb. En strøm af salpetersyre føres kontinuerligt ind i denne reaktor i det væsentlige i den samme mængde, som tilføres den første reaktor. En simpel måde, hvorpå man kan opnå dette, består i at anvende en doseringspumpe med to separate kredsløb og med et enkelt reguleringssystem, der gør det muligt at opnå to strømninger med lige stort volumen, hvor den ene strømning føder den første reaktor, og den anden strømning føder den anden reaktor. Det er tilstrækkeligt at føde hvert kredsløb fra et fælles reservoir, således at der tilføres de 150627 7 samme vægtmængder salpetersyre. Som den første reaktor er den anden reaktor forsynet med et kølesystem, der gør det muligt at holde temperaturen under 30°C. På grund af det således tilførte overskud af salpetersyre er det muligt på den ene side at genopløse det aluminiumoxid, der har tendens til at udfælde, og på den anden side at skabe betingelser, der er gunstige for udfældning af molybdensyre.This solution is cooled at the inlet of the first reactor to a temperature below 40 ° C. A stream of nitric acid is continuously fed to the same reactor at such a rate that the pH of the solution is adjusted to between 5 and 6, preferably between 5.2 and 5.5. This amount of nitric acid can be adjusted in known manner, such as by means of a metering pump, where the amount is continuously controlled by means of a pH meter with a probe located in the reactor itself. As the reaction is exothermic, the reactor must be provided with cooling means, such as a cooling jacket or a cooling coil, and optionally with an agitator to allow the temperature of the solution not to exceed 20 ° and in all cases below 30 ° C. Under these conditions, the free sodium carbonate is neutralized and the sodium aluminate decomposes to the point where the precipitation begins, making the solution more easily cloudy. The solution is then fed to the second reactor at a constant flow rate, e.g. via an overflow. A stream of nitric acid is continuously fed into this reactor substantially in the same amount supplied to the first reactor. A simple way to achieve this is to use a metering pump with two separate circuits and with a single control system which allows two flows of equal volume to be obtained, one flow feeding the first reactor and the second flow feeds the second reactor. It is sufficient to feed each circuit from a common reservoir so that the same weight amounts of nitric acid are supplied. As the first reactor, the second reactor is equipped with a cooling system that allows the temperature to be kept below 30 ° C. Due to the excess of nitric acid thus supplied, it is possible, on the one hand, to redissolve the alumina which tends to precipitate and, on the other, to create conditions favorable for the precipitation of molybdenic acid.

For at opnå denne udfældning er det nødvendigt at opvarme opløsningen til en temperatur nær ved kogepunktet.To achieve this precipitation, it is necessary to heat the solution to a temperature near the boiling point.

Dette gøres fortrinsvis i en eller flere udfældningsbeholdere, der modtager opløsningen fra den anden reaktor, idet opløsningen opvarmes til ca. 100°C. Det opnåede bundfald vaskes, renses og tørres herefter på sædvanlig måde. Bundfaldet, der er baseret på molybdensyre-mono-hydrat, indeholder kun små mængder aluminium. Molybden-indholdet udtrykt i procent af det tørre produkt er lig med eller større end 60 pct., medens aluminiumindholdet er mindre end 0,1 pct. og i mange tilfælde omkring 0,01 pct.. Imidlertid er man under udviklingen af den omhandlede fremgangsmåde stødt på følgende to vanskeligheder:This is preferably done in one or more precipitation vessels receiving the solution from the second reactor, the solution being heated to approx. 100 ° C. The precipitate obtained is washed, cleaned and then dried in the usual manner. The precipitate, based on molybdenic acid monohydrate, contains only small amounts of aluminum. The molybdenum content expressed as a percentage of the dry product is equal to or greater than 60%, while the aluminum content is less than 0.1%. and in many cases around 0.01 per cent. However, during the development of the process in question, the following two difficulties are encountered:

For det første har det vist sig, at imprægneringen af katalysatoren med en nøjagtigt udregnet mængde natrium-carbonatopløsning var relativt vanskelig at udføre, hvis opløsningen skulle fordeles homogent. En vandig opløsning indeholdende 400 g natriumcarbonat pr. liter anvendtes generelt for at begrænse vandmængden. Denne opløsning, der til at begynde med blev opvarmet til ca. 70°C, havde tendens til at krystallisere under kontakten med katalysatoren, hvilket hindrede carbonatet i at trænge ind i porerne i katalysatorpartiklerne.First, it has been found that impregnating the catalyst with an accurately calculated amount of sodium carbonate solution was relatively difficult to perform if the solution were to be homogeneously distributed. An aqueous solution containing 400 g of sodium carbonate per ml. liters were generally used to limit the amount of water. This solution, which was initially heated to ca. 70 ° C, tended to crystallize during contact with the catalyst, preventing the carbonate from penetrating the pores of the catalyst particles.

Desuden var det ikke ønskværdigt med en større fortynding, da absorptionskapaciteten af katalysatoren derved 150827 8 begrænses.Furthermore, a greater dilution was not desirable as the absorption capacity of the catalyst is thereby limited.

I stedet for at imprægnere katalysatorpartiklerne med en vandig opløsning af natriumcarbonat blandes katalysatorpartiklerne først med vandfrit natriumcarbonat i form af et fint pulver i en blandebeholder af enhver type, såsom en roterende mixer. Generelt er en omblanding i nogle få minutter tilstrækkelig til, at partiklerne af natriumcarbonat fordeles over overfladen af katalysatorpartiklerne. Det er herefter tilstrækkeligt at tilsætte den nødvendige mængde vand ved stuetemperatur og igen at omrøre i nogle få minutter for at opnå en i det væsentlige fuldstændig absorption af vand ind i katalysatorpartiklerne. Forsøg har vist, at denne indtrængen af vand gør det muligt for natriumcarbonatet at trænge ind i partiklerne, sandsynligvis ved diffusion. I løbet af det følgende trin, hvor katalysatoren opvarmes, er udbyttet af molybden, der omdannes til natriummolybdat, i det mindste lige så stort, som når imprægneringen sker med en varm opløsning af natriumcarbonat på kendt måde.Instead of impregnating the catalyst particles with an aqueous solution of sodium carbonate, the catalyst particles are first mixed with anhydrous sodium carbonate in the form of a fine powder in a mixing vessel of any type, such as a rotary mixer. In general, mixing for a few minutes is sufficient for the particles of sodium carbonate to disperse over the surface of the catalyst particles. It is then sufficient to add the required amount of water at room temperature and stir again for a few minutes to obtain a substantially complete absorption of water into the catalyst particles. Studies have shown that this penetration of water allows the sodium carbonate to penetrate the particles, probably by diffusion. During the following step of heating the catalyst, the yield of molybdenum converted to sodium molybdate is at least as great as that of impregnation with a hot solution of sodium carbonate in a known manner.

En anden, mere alvorlig, vanskelighed viste sig under vedvarende forsøg i pilotskala, hvor man forsøgte at opløse det natriummolybdat, der blev dannet i katalysatoren efter carbonatbehandlingen, i varmt vand. Dannelsen af afsætninger blev observeret på væggene af beholderne, der indeholdt den vandige opløsning, og i rørene, hvorigennem opløsningen cirkulerede. Dette fænomen hidrører fra, at opløsningen af natriummolybdatet også ledsages af opløsning af en vis mængde natriumaluminat, og vægtforholdet mellem aluminium og molybden i opløsning er generelt af størrelsesordenen 0,1 og i nogle tilfælde endog ca. 0,2. Undersøgelser har vist, at afsætninger, der dannes på væggene af beholderne og i rørledningerne, primært er baseret på aluminiumoxid 150627 9 og især udgøres af aluminiumtrihydrat. Det således dannede lag adhærerer stærkt til stål, ebonit, glas og gummi. Det synes, som om dette fænomen forstærkes ved tilstedeværelsen af katalysatorpartikler i suspension i opløsningen, idet disse virker som kim. Når disse lag bliver tykkere, har de tendenser til at falde af, og de således frigivne pladeformede afsætninger medrives ved gennemstrømning af opløsningen og har tendens til at blokere rørledninger og endvidere til at blokere cirkulationspumperne.Another, more severe, difficulty was found during sustained pilot scale experiments attempting to dissolve the sodium molybdate formed in the catalyst after the carbonate treatment in hot water. The formation of deposits was observed on the walls of the containers containing the aqueous solution and in the tubes through which the solution circulated. This phenomenon is due to the fact that the solution of the sodium molybdate is also accompanied by the dissolution of a certain amount of sodium aluminate, and the weight ratio of aluminum to molybdenum in solution is generally of the order of 0.1 and in some cases even approx. 0.2. Studies have shown that deposits formed on the walls of the containers and in the pipelines are primarily based on alumina and are primarily aluminum trihydrate. The layer thus formed adheres strongly to steel, ebonite, glass and rubber. This phenomenon appears to be amplified by the presence of catalyst particles in suspension in the solution, acting as germs. As these layers become thicker, they have a tendency to fall off, and the thus released plate-shaped deposits are entrained by flowing through the solution and tend to block pipelines and furthermore to block the circulation pumps.

Det har nu overraskende vist sig, at det er muligt at undgå disse vanskeligheder. Det har nemlig vist sig, at det ved fremgangsmåden ifølge opfindelsen ikke blot er muligt at undgå disse uheld, men også er muligt at fremstille et produkt af mere reproducerbar kvalitet og i renere form.It has now surprisingly been found that these difficulties can be avoided. It has been found that it is not only possible in the method according to the invention to avoid these accidents, but also to produce a product of a more reproducible quality and in a purer form.

Denne forbedring er et resultat af følgende eksperimentelle iagttagelser: Når katalysatoren henstår i nogle få dage efter imprægnering med natriumcarbonat og opvarmning, er de afsætninger, der dannes ved opløsning i vand, ikke så omfangsrige. Påfølgende forsøg har vist, at reduktionen af disse afsætninger skyldes, at carbondioxid i luften indvirker på det natriumaluminat, der er til stede i katalysatorpartiklerne. Derfor behandles katalysatorpartiklerne efter opvarmningen med en strøm af carbondioxidgas. Driftsbetingelserne er meget simple og er tilstrækkelige til at bringe carbondioxidgassen i kontakt med katalysatorpartiklerne i tilstrækkelig lang tid til at muliggøre en diffusion af carbondioxid ind i katalysatorpartiklerne. Dette resultat opnås f.eks. ved at fylde en lodret kolonne af formstofmateriale eller pladestål med katalysatorpartikler og at cirkulere en strøm af carbondioxidgas igennem kolonnen. Mængden af carbondioxidgas, der kræves til en effektiv behandling, 150827 10 er af størrelsesordenen 1 Nm^ pr. 50-100, fortrinsvis pr. 60-70 kg. katalysator. Mængden afhænger naturligvis af den mængde aluminiumoxid, der er til stede som natri-umaluminat i katalysatoren. Selv om den nøjagtige fysiskkemiske proces, der finder sted, ikke er kendt, er det sandsynligvis således, at natriumaluminat i det mindste delvis dekomponerer under dannelse af carbonat. Denne reaktion finder sted ved en temperatur nær ved stuetemperatur. Herefter udføres de andre trin ved fremgangsmåden ifølge opfindelsen som beskrevet. Herved dannes ikke længere afsætninger på væggene af beholdere og i rørledninger under opløsningsbehandlingen. Desuden er overskuddet af natriumcarbonat, der anvendes i forhold til mængden af katalysator, ikke længere kritisk, hvilket gør fremgangsmåden enklere. Den lille mængde amorft aluminiumoxid i form af fine partikler, der uundgåeligt frigives fra katalysatorpartiklerne under vaskebehandlingen, volder ingen problemer, idet de ikke ag-glomererer til faste klumper, men forbliver på findelt form. En del af aluminiumoxidet frasepareres ved dekantering, medens resten, der er suspenderet i vaskeopløsningen, holdes tilbage ved filtrering, før opløsningen føres ind i neutralisations- og klaringsreaktorerne.This improvement is the result of the following experimental observations: When the catalyst is left standing for a few days after impregnation with sodium carbonate and heating, the deposits formed by dissolving in water are not so extensive. Subsequent experiments have shown that the reduction of these deposits is due to the effect of carbon dioxide in the air on the sodium aluminate present in the catalyst particles. Therefore, after heating, the catalyst particles are treated with a stream of carbon dioxide gas. The operating conditions are very simple and are sufficient to bring the carbon dioxide gas into contact with the catalyst particles for a sufficient time to allow a diffusion of carbon dioxide into the catalyst particles. This result is obtained e.g. by filling a vertical column of plastic material or sheet steel with catalyst particles and circulating a stream of carbon dioxide gas through the column. The amount of carbon dioxide gas required for effective treatment is of the order of 1 Nm 50-100, preferably per 60-70 kg. catalyst. The amount, of course, depends on the amount of alumina present as sodium aluminate in the catalyst. Although the exact physicochemical process taking place is not known, it is likely that sodium aluminate at least partially decomposes to form carbonate. This reaction takes place at a temperature close to room temperature. Thereafter, the other steps are performed by the method of the invention as described. As a result, deposits are no longer formed on the walls of containers and in pipelines during the solution treatment. In addition, the excess sodium carbonate used in relation to the amount of catalyst is no longer critical, making the process simpler. The small amount of amorphous alumina in the form of fine particles that is inevitably released from the catalyst particles during the washing process causes no problems as they do not agglomerate into solid lumps but remain in finely divided form. Part of the alumina is separated by decantation while the remainder suspended in the wash solution is retained by filtration before the solution is introduced into the neutralization and clarification reactors.

I det nedenstående eksempel er beskrevet en foretruk-ken udførelsesform for fremgangsmåden ifølge opfindelsen. Der henvises til den medfølgende tegning, som er et blokdiagram for denne foretrukne udførelsesform.In the example below, a preferred embodiment of the method according to the invention is described. Reference is made to the accompanying drawing, which is a block diagram of this preferred embodiment.

EKSEMPELEXAMPLE

Katalysatoren, der behandles, er en brugt katalysator i form af små cylindre, baseret på ^-aluminiumdioxid, der på forhånd er blevet underkastet en oxiderende ristning ved omkring 500°C, hvorunder carbonhydrider, carbon og en del af svovlet i den brugte katalysator er blevet 150827 11 fjernet. Efter ristningen indeholder denne katalysator 8 vægtpct. molybden, 1,5 vægtpct. svovl og 2 vægtpct. cobalt. 25 kg natriumcarbonatpulver og 150 kg af denne katalysator indføres i en roterende blandemaskine. Efter 10 minutters blanding tilsættes 64 liter vand ved stuetemperatur, hvorefter der omblandes i yderligere 15 minutter. Herefter er natriumcarbonat og vand fuldstændigt opsuget af katalysatorpartiklerne. Katalysatorpartiklerne Opvarmes herefter i en roterovn til en temperatur på 650-750°C ved hjælp af en propanbrænder.The catalyst being treated is a spent catalyst in the form of small cylinders, based on? -Aluminum dioxide, which has previously been subjected to an oxidizing shake at about 500 ° C, including hydrocarbons, carbon and a portion of the sulfur in the spent catalyst is been removed. After roasting, this catalyst contains 8% by weight. molybdenum, 1.5% by weight sulfur and 2% by weight. cobalt. 25 kg of sodium carbonate powder and 150 kg of this catalyst are introduced into a rotary mixer. After 10 minutes of mixing, 64 liters of water are added at room temperature and then mixed for a further 15 minutes. Thereafter, sodium carbonate and water are completely absorbed by the catalyst particles. The catalyst particles are then heated in a rotary oven to a temperature of 650-750 ° C by means of a propane burner.

Opholdstiden i den varme zone er ca. 1 time. Ved udgangen af ovnen afkøles produktet til omkring stuetemperatur og føres kontinuerligt til den øvre ende af en lodret kolonne af pladestål, der er fyldt med ca. 200 kg katalysatorpartikler, i en mængde på 60-70 kg pr. time.The residence time in the hot zone is approx. 1 hour. At the end of the furnace, the product is cooled to about room temperature and fed continuously to the upper end of a vertical column of sheet steel filled with approx. 200 kg of catalyst particles, in an amount of 60-70 kg per hour.

I denne kolonne cirkulerer en strøm af carbondioxid med en hastighed på 1 m pr. time. Katalysatoren udtages også kontinuerligt fra bunden af kolonnen. Opholdstiden for katalysatorpartiklerne i kolonnen er ca. 3 timer. Natriummolybdatet opløses herefter ved at vaske produktet i modstrøm, idet produktet lægges i et 10 cm tykt lag på et kontinuerligt filterbånd med en fil- 2 terovreflade på 1 m .In this column, a stream of carbon dioxide circulates at a rate of 1 m per minute. hour. The catalyst is also continuously removed from the bottom of the column. The residence time of the catalyst particles in the column is approx. 3 hours. The sodium molybdate is then dissolved by washing the product countercurrently, the product being placed in a 10 cm thick layer on a continuous filter band with a filter surface of 1 m.

Vaskeenheden har seks trin, hvoraf det sjette og sidste trin fødes med varmt vand ved 80°C i en mængde på ca.The washing unit has six stages, of which the sixth and last step is fed with warm water at 80 ° C in an amount of approx.

120 liter pr. time. Den koncentrerede opløsning af na-triummolybdat fjernes ved udgangen af det første trin i en mængde på ca. 104 liter pr. time med et indhold på 45-50 g/liter molybden i opløst form. Det vaskede faste produkt, der fjernes fra filteret efter vask med rent vand i sidste trin, indeholder ca. 0,27 pct. molybden i opløselig form. Som følge heraf er udbyttet af størrelsesordenen 97 pct. For at udføre en perfekt fraseparering af uopløselige partikler, der kan suspenderes under opløsning af natriummolybdatet med varmt 12 150527 vand, efterfølges opløsningsbehandlingen af en filtrering af den alkaliske opløsning på en filterpresse, før den indføres i den første neutralisationsreaktor, hvori der anvendes salpetersyre. Efter dette første trin viser en analyse af opløsningen, at aluminiumind-holdet er mindre end 0,03 pct. baseret på vægten af molybden. Da molybdenindholdet er af størrelsesordenen 45-50 g/liter, kan man regne ud, at aluminiumindholdet er mindre end 0,015 g/liter. I den første reaktionsbeholder indføres ved hjælp af en doseringspumpe en salpetersyreopløsning med en salpetersyrekoncentration på 53 pct.. Denne reaktor har et volumen på 150 liter og er forsynet med køleorganer i form af en kølekappe fyldt med cirkulerende vand, hvorved temperaturen holdes under 20°C. Driften af denne første doseringspumpe kontrolleres ved hjælp af en sonde til kontinuerlig måling af pH, og denne er anbragt i reaktoren. Således opretholdes en pH-værdi på 5,2-5,5. Under disse betingelser er pumpehastigheden ca. 8 liter pr. time. Opløsningen, der er let uklar på grund af begyndende udfældning af aluminiumoxid, ledes til den anden klaringsreaktor med et lige så stort volumen som den første reaktor, hvor der tilføres en yderligere mængde salpetersyre ved hjælp af en anden doseringspumpe, der kontrolleres afhængigt af den første doseringspumpe, således at der tilledes nøjagtigt den samme mængde salpetersyre med samme sammensætning som den første strøm af salpetersyre. Temperaturen i denne anden reaktor holdes under 30°C, ligeledes ved at cirkulere vand igennem en kølekappe.120 liters per liter. hour. The concentrated solution of sodium molybdate is removed at the end of the first step in an amount of approx. 104 liters per liter. hour with a content of 45-50 g / liter molybdenum in dissolved form. The washed solid product, which is removed from the filter after washing with clean water in the last step, contains approx. 0.27 per cent. molybdenum in soluble form. As a result, the yield is in the order of 97 per cent. To perform a perfect separation of insoluble particles which can be suspended during dissolution of the sodium molybdate with hot water, the solution treatment is followed by a filtration of the alkaline solution on a filter press before being introduced into the first neutralization reactor using nitric acid. After this first step, an analysis of the solution shows that the aluminum content is less than 0.03 per cent. based on the weight of the molybdenum. Since the molybdenum content is of the order of 45-50 g / liter, it can be calculated that the aluminum content is less than 0.015 g / liter. In the first reaction vessel, a nitric acid solution with a nitric acid concentration of 53 per cent is introduced by means of a dosing pump. This reactor has a volume of 150 liters and is provided with cooling means in the form of a cooling jacket filled with circulating water, keeping the temperature below 20 ° C. . The operation of this first dosing pump is controlled by means of a probe for continuous measurement of pH and this is placed in the reactor. Thus, a pH of 5.2-5.5 is maintained. Under these conditions, the pump speed is approx. 8 liters per hour. The solution, which is slightly cloudy due to initial precipitation of alumina, is fed to the second clarification reactor with an equal volume as the first reactor, where an additional amount of nitric acid is supplied by a second dosing pump controlled by the first dosing pump so that exactly the same amount of nitric acid with the same composition is supplied as the first stream of nitric acid. The temperature of this second reactor is kept below 30 ° C, also by circulating water through a cooling jacket.

Under disse betingelser genopløses aluminiumoxidet, og opløsningen er klar. Opløsningen ledes herefter ind i en tredje udfældningsreaktor, der har samme volumen som ved de første to reaktorer, og som er opvarmet til 100°C ved hjælp af en dampkappe. Under disse betingel- 13 150S27 ser udfældes molybdensyre, medens det meste aluminium forbliver i opløsning. En omrøring gør det muligt at holde bundfaldet i suspension. Suspensionen ledes herefter til et roterende filter, hvorpå bundfaldet opsamles og vaskes kontinuerligt med demineraliseret vand indeholdende 2 volumenpct. koncentreret salpetersyre.Under these conditions, the alumina is redissolved and the solution is clear. The solution is then fed into a third precipitation reactor having the same volume as at the first two reactors and heated to 100 ° C by means of a steam jacket. Under these conditions molybdenoic acid precipitates, while most aluminum remains in solution. A stirring allows the precipitate to be kept in suspension. The suspension is then passed to a rotary filter, whereupon the precipitate is collected and washed continuously with demineralized water containing 2% by volume. concentrated nitric acid.

Bundfaldet ledes herefter til en varmlufttørrer, hvor det opvarmes til ca. 100°C. Bundfaldet, der er baseret på molybdensyre, har et gennemsnitligt molybdenindhold på 61,2 pct.. Aluminiumindholdet er kun 0,004 pct.. Middelvægtfylden er 2. Udbyttet af molybden i form af molybdensyre baseret på molybden i affaldsproduktet er ca. 85 pct..The precipitate is then led to a hot air dryer, where it is heated to approx. 100 ° C. The precipitate based on molybdenic acid has an average molybdenum content of 61.2 per cent. The aluminum content is only 0.004 per cent. The average density is 2. The yield of molybdenum in the form of molybdenic acid based on molybdenum in the waste product is approx. 85 per cent ..

Fremgangsmåden, som er beskrevet i dette eksempel, kan modificeres på forskellige måder, uden at man går uden for rammerne af den foreliggende opfindelse, idet der er mange tilsvarende måder at udføre de væsentlige trin ved den omhandlede fremgangsmåde på. Især er det muligt i et enkelt trin at udføre neutralisations- og klarings-behandlingen af opløsningen, der indeholder natriummo-lybdat. I dette tilfælde er det tilstrækkeligt i en enkelt reaktor at indføre en mængde salpetersyre, der mindst er lig med summen af de to mængder, der successivt tilføres de to reaktorer, i dette tilfælde ei det vanskeligere at kontrollere temperaturen af opløsningen, der ikke må overskride 30°C, for at undgå en irreversibel udfældning af aluminium.The process described in this example can be modified in various ways without departing from the scope of the present invention, as there are many similar ways of performing the essential steps of the present process. In particular, it is possible in a single step to carry out the neutralization and clarification treatment of the solution containing sodium molybdate. In this case, it is sufficient in a single reactor to introduce a quantity of nitric acid at least equal to the sum of the two quantities successively supplied to the two reactors, in this case it is more difficult to control the temperature of the solution which must not exceed 30 ° C, to avoid an irreversible precipitation of aluminum.

Endelig har det vist sig, at der under den pågældende udfældning af molybdensyre er større risiko for, at molybdensyren opnås i en delvis kolloid form, der er vanskeligere at filtrere. Når derimod behandlingen med syre udføres i to trin, opnås normalt et tungt bundfald af molybdensyre, der er let at vaske på et filter.Finally, during the particular precipitation of molybdenic acid, it has been found that there is a greater risk that the molybdenic acid is obtained in a partially colloidal form which is more difficult to filter. By contrast, when the treatment with acid is carried out in two steps, a heavy precipitate of molybdenic acid which is easy to wash on a filter is usually obtained.

150627 1414

Dette er en vigtig faktor med hensyn til opnåelse af en molybdensyre med et meget lavt aluminiumindhold, der specielt kan anvendes ved fremstilling af særdeles rent molybdenpulver ved reduktion med hydrogen.This is an important factor in obtaining a very low aluminum molybdenic acid which can be used especially in the preparation of extremely pure molybdenum powder by reduction with hydrogen.

Claims (3)

150627150627 1. Fremgangsmåde til udvinding af i det væsentlige aluminium-fri molybden som molybdensyre fra affaldskatalysatorer baseret på aktiveret aluminiumoxid og indeholdende en eller flere molybdenforbindelser og en eller flere andre metalforbindelser, hvor man, efter om nødvendigt at have fjernet carbon, carbonhydrider og en del af svovlindholdet, behandler katalysatoren med na-triumcarbonat, calcinerer den behandlede katalysator og vasker den med vand for at opløse det dannede natri-ummolybdat, kendetegnet ved, at man calcinerer den imprægnerede katalysator ved en temperatur på 600-800°C, at man behandler den imprægnerede og calci-nerede katalysator med en strøm af carbondioxid, hvorpå man vasker den med vand for at opløse det dannede natriummolybdat og gradvis tilsætter den ved vask med vand opnåede opløsning en mængde salpetersyre, der udgør 1,5-2,5 gange den mængde, der er nødvendig for at opretholde en pH-værdi på 5-6, mens man samtidigt holder temperaturen under 30°C, og at man hydrolyserer den således syrebehandlede opløsning ved en temperatur nær kogepunktet, hvorpå man renser og tørrer den herved udfældede molybdensyre.A process for recovering substantially aluminum-free molybdenum as molybdenum acid from waste catalysts based on activated alumina and containing one or more molybdenum compounds and one or more other metal compounds, after removing, if necessary, hydrocarbons and a portion of the sulfur content, treat the catalyst with sodium carbonate, calcine the treated catalyst and wash it with water to dissolve the formed sodium molybdate, characterized by calcining the impregnated catalyst at a temperature of 600-800 ° C impregnated and calcined catalyst with a stream of carbon dioxide, then washed with water to dissolve the formed sodium molybdate and gradually added to the solution obtained by washing with water a quantity of nitric acid which is 1.5-2.5 times the amount necessary to maintain a pH of 5-6 while keeping the temperature below 30 ° C and hydrolyzing The acid-treated solution thus looks at a temperature near the boiling point, whereupon the molybdenic acid precipitated is then purified and dried. 2. Fremgangsmåde ifølge krav 1, kendetegnet ved, at den med henblik på fjernelse af carbon, carbonhydrider og en del af svovlindholdet behandlede katalysator imprægneres ved blanding med vandfrit natriumcar-bonat i form af et fint pulver efterfulgt af en befugt-ning med vand.Process according to claim 1, characterized in that the catalyst treated for the removal of carbon, hydrocarbons and part of the sulfur content is impregnated by mixing with anhydrous sodium carbonate in the form of a fine powder followed by a humidification with water. 3. Fremgangsmåde ifølge krav 1 eller 2, kendetegnet ved, at den imprægnerede katalysator calcineresProcess according to claim 1 or 2, characterized in that the impregnated catalyst is calcined
DK45477A 1976-02-05 1977-02-03 PROCEDURE FOR EXPLOITING THE MOLYBODY FROM WASTE CATALOGS DK150627C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR7603674 1976-02-05
FR7603674A FR2340378A1 (en) 1976-02-05 1976-02-05 PROCESS FOR RECOVERING MOLYBDENE FROM WASTE
FR7635867A FR2371230A2 (en) 1976-11-22 1976-11-22 Molybdenum obtd. from spent catalyst used to remove sulphur from oil - by roasting catalyst with sodium carbonate, then leaching with water
FR7635867 1976-11-22

Publications (3)

Publication Number Publication Date
DK45477A DK45477A (en) 1977-08-06
DK150627B true DK150627B (en) 1987-04-27
DK150627C DK150627C (en) 1987-10-19

Family

ID=26219296

Family Applications (1)

Application Number Title Priority Date Filing Date
DK45477A DK150627C (en) 1976-02-05 1977-02-03 PROCEDURE FOR EXPLOITING THE MOLYBODY FROM WASTE CATALOGS

Country Status (12)

Country Link
JP (1) JPS52113397A (en)
CA (1) CA1103034A (en)
CH (1) CH620372A5 (en)
DE (1) DE2704340C3 (en)
DK (1) DK150627C (en)
ES (1) ES455604A1 (en)
GB (1) GB1567570A (en)
IT (1) IT1078391B (en)
LU (1) LU76702A1 (en)
MX (1) MX143550A (en)
NL (1) NL7701236A (en)
NO (1) NO150274C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421150U (en) * 1990-06-06 1992-02-21
US5702500A (en) * 1995-11-02 1997-12-30 Gulf Chemical & Metallurgical Corporation Integrated process for the recovery of metals and fused alumina from spent catalysts

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1888978A (en) * 1930-11-29 1932-11-29 Standard Ig Co Method of preparing catalytic materials
US2367506A (en) * 1943-07-27 1945-01-16 Kissock Alan Separation and recovery of molybdate and alumina from spent catalysts
US3773890A (en) * 1972-04-14 1973-11-20 Union Carbide Corp Process for extracting values from spent hydrodesulfurization catalysts
US3826082A (en) * 1973-03-30 1974-07-30 Gen Electric Combustion liner cooling slot stabilizing dimple

Also Published As

Publication number Publication date
GB1567570A (en) 1980-05-14
CA1103034A (en) 1981-06-16
DE2704340C3 (en) 1982-04-29
IT1078391B (en) 1985-05-08
NL7701236A (en) 1977-08-09
NO150274C (en) 1984-09-19
NO150274B (en) 1984-06-12
NO770368L (en) 1977-08-08
JPS52113397A (en) 1977-09-22
DK45477A (en) 1977-08-06
DE2704340A1 (en) 1977-08-18
LU76702A1 (en) 1977-08-18
DE2704340B2 (en) 1981-07-30
JPS5532651B2 (en) 1980-08-26
CH620372A5 (en) 1980-11-28
MX143550A (en) 1981-06-01
ES455604A1 (en) 1978-04-01
DK150627C (en) 1987-10-19

Similar Documents

Publication Publication Date Title
US2943088A (en) Production of cyanuric acid from urea
US4075277A (en) Process for recovering molybdenum values from spent catalysts
US4296076A (en) Chromic oxide production
IE58433B1 (en) Removal of sodium oxalate from solutions of sodium aluminate in the bayer cycle
DK150627B (en) PROCEDURE FOR EXPLOITING THE MOLYBODY FROM WASTE CATALOGS
CA2175183C (en) Anhydrous magnesium chloride
US2754273A (en) Method of leaching iron sulfide from clays and minerals
US3097064A (en) Recovery of values from pickling liquor
AU585510B2 (en) Removal of organics from bayer process streams
JPH04271840A (en) Catalyst recovery method
DD144043A5 (en) MUD PROCESS FOR THE PREPARATION OF SODIUM BICARBONATE
US2806004A (en) Treatment of platinum-containing catalyst
JPS60171218A (en) Manufacture of anhydrous sodium sulfite
NL8503443A (en) METHOD FOR PREPARING A MAGNESIUM NITRATE CONTAINING SOLUTION SUITABLE FOR USE IN THE MANUFACTURE OF TECHNICALLY STABLE AMMONIUM NITRATE CONTAINING FERTILIZER GRANULES.
RU2157366C1 (en) Methylmercaptan production process, method of preparing catalyst for production of methylmercaptan, and method of producing hydrogen sulfide for methylmercaptan production
US3687628A (en) Method of purifying sulfur from arsenic
RU2694351C1 (en) Method of cleaning off-gases from chlorine and hydrogen chloride to obtain marketable products
US3443888A (en) Precipitation method
US3843498A (en) Recovery of aluminum fluoride
EP0494933A1 (en) Tetrathiocarbonate process
US2963345A (en) Production of chlorine and alkali metal nitrates from alkali metal chlorides
CA1091035A (en) Slimes treatment process
US2040867A (en) Method of treating zinc bearing ores and recovering zinc oxide therefrom
DE3411415A1 (en) METHOD FOR PROCESSING THE SODIUM OXALATE RESULTING FROM BAUXITE DIGESTION
US1531836A (en) Base-exchanging composition and process for manufacturing the same

Legal Events

Date Code Title Description
PBP Patent lapsed