DK150593B - METHOD FOR PREPARING METAL / SILICONE-OXID TYPE SOLID CATALYST - Google Patents

METHOD FOR PREPARING METAL / SILICONE-OXID TYPE SOLID CATALYST Download PDF

Info

Publication number
DK150593B
DK150593B DK131673AA DK131673A DK150593B DK 150593 B DK150593 B DK 150593B DK 131673A A DK131673A A DK 131673AA DK 131673 A DK131673 A DK 131673A DK 150593 B DK150593 B DK 150593B
Authority
DK
Denmark
Prior art keywords
catalyst
weight
oxide
hexamethyldisilazane
catalysts
Prior art date
Application number
DK131673AA
Other languages
Danish (da)
Other versions
DK150593C (en
Inventor
Harald Peter Wulff
Original Assignee
Shell Int Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US00234301A external-priority patent/US3829392A/en
Application filed by Shell Int Research filed Critical Shell Int Research
Priority to DK238475A priority Critical patent/DK151016C/en
Publication of DK150593B publication Critical patent/DK150593B/en
Application granted granted Critical
Publication of DK150593C publication Critical patent/DK150593C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0254Nitrogen containing compounds on mineral substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0274Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • B01J37/14Oxidising with gases containing free oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/19Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic hydroperoxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • B01J2231/72Epoxidation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Epoxy Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

150593150593

Den foreliggende opfindelse angår en fremgangsmåde til fremstilling af en fast katalysator af metal/siliciumholdigt oxid-typen, dvs. en katalysator indeholdende en uorganisk oxygenforbindelse af silicium og et metaloxid eller -hydroxid, til anvendelse ved fremstillingen af oxiran-5 forbindelser ved omsætning af en olefinisk umættet forbindelse med et organisk hydroperoxid. Epoxideringen af olefinisk umættede forbindelser med hydroperoxidforbindelser finder sted efter følgende generelle reaktionsskema:The present invention relates to a process for producing a solid metal / silicon oxide-type catalyst, i.e. a catalyst containing an inorganic oxygen compound of silicon and a metal oxide or hydroxide, for use in the preparation of oxirane compounds by reacting an olefinically unsaturated compound with an organic hydroperoxide. The epoxidation of olefinically unsaturated compounds with hydroperoxide compounds takes place according to the following general reaction scheme:

I ^ /°\ ^ II ^ / ° \ ^ I

10 C = C + -C-O-O-H -» _C-C.^ + -C-OHC = C + -C-O-O-H - »_C-C. ^ + -C-OH

I II I

olefinisk hydroperoxid- oxirangruppe hydroxyl- gruppe gruppe gruppeolefinic hydroperoxide oxirane group hydroxyl group group group

De katalysatorer, der er beskrevet i dansk patentansøgning nr.The catalysts disclosed in Danish patent application no.

4741/71, består af en uorganisk oxygenforbindelse af silicium og et 15 metaloxid eller -hydroxid, som før brug behandles ved kontakt med et organisk silyleringsmiddel. Ved anvendelse af de faste katalysatorer af metal-siliciumholdigt oxid-typen som beskrevet i den ovenfor anførte patentansøgning kan selektiviteten i forhold til de ønskede olefinepoxider forøges materielt.4741/71, consists of an inorganic oxygen compound of silicon and a metal oxide or hydroxide which is treated before contact with an organic silylating agent. By using the solid metal-silicon oxide-type catalysts described in the above patent application, the selectivity to the desired olefin epoxides can be materially increased.

20 Olefinisk umættede forbindelser med fra 2 til 60 carbonatomer kan hensigtsmæssigt anvendes til den anførte epoxidering. Det foretrækkes at anvende alkener med 3-40 carbonatomer, som eventuelt kan være substituerede med en hydroxylgruppe eller et halogenatom, fx propylen, allylalkohol og allylchlorid. Der anvendes fortrinsvis pro-25 pylen.Olefinically unsaturated compounds having from 2 to 60 carbon atoms may conveniently be used for the epoxidation indicated. It is preferred to use alkenes having from 3 to 40 carbon atoms which may be optionally substituted by a hydroxyl group or a halogen atom, for example propylene, allyl alcohol and allyl chloride. The propylene is preferably used.

Som hydroperoxidforbindelser kan der hensigtsmæssigt anvendes carbonhydrid-hydroperoxider med 3-20 carbonatomer, fx tert.butyl-hydroperoxid, tert. pentyl-hydroperoxid og aralkyl-hydroperoxider, hvor hydroperoxygruppen er bundet til det carbonatom på en alkyl-30 sidekæde, som er bundet direkte til en aromatisk ring, fx 1-phenyl-ethyl-1-hydroperoxid og 2-phenylpropyl-2~hydroperoxid (ofte benævnt henholdsvis ethylbenzen-hydroperoxid og cumen-hydroperoxid).As hydroperoxide compounds, hydrocarbon hydroperoxides having 3-20 carbon atoms, e.g. tert.butyl hydroperoxide, tert may conveniently be used. pentyl hydroperoxide and aralkyl hydroperoxides, wherein the hydroperoxy group is bonded to the carbon atom of an alkyl side chain linked directly to an aromatic ring, e.g. 1-phenylethyl-1-hydroperoxide and 2-phenylpropyl-2 ~ hydroperoxide ( often referred to as ethylbenzene hydroperoxide and cumene hydroperoxide, respectively).

150593 2150593 2

Oxiranforbindelser er stoffer med kendt anvendelighed, og mange er kemiske handelsvarer, især olefinoxider, fx ethylenoxid og propylen-oxid. Propylenoxid kan fx omdannes til værdifulde polymerprodukter ved polymerisation eller copolymerisation.Oxirane compounds are substances of known utility and many are chemical commodities, especially olefin oxides, for example ethylene oxide and propylene oxide. For example, propylene oxide can be converted into valuable polymer products by polymerization or copolymerization.

5 Hydroxylforbindelserne, som fremstilles ved denne omsætning, kan, om ønsket, genomdannes til hydroperoxidforbindelsen via påfølgende dehydratisering, hydrogenering og oxidation.The hydroxyl compounds produced by this reaction can, if desired, be genome-formed to the hydroperoxide compound via subsequent dehydration, hydrogenation and oxidation.

Især viser katalysatorer bestående af en fast uorganisk oxygenforbindelse af silicium i kemisk kombination med mindst 0,1 vægtprocent af 10 et oxid eller hydroxid af titan, molybden, vanadium, zirconium eller bor forbedrede katalytiske egenskaber, når de behandles med et organisk silyleringsmiddel. De siliciumholdige faste stoffer har fordelagtigt et gennemsnitligt specifikt overfladeareal på mindst 1 mz/g og fortrinsvis fra 25 m2/g til 800 mVg. Foretrukne siliciumholdige faste 15 stoffer indeholder mindst 99 vægtprocent siliciumdioxid.In particular, catalysts consisting of a solid inorganic oxygen compound of silicon in chemical combination with at least 0.1% by weight of an oxide or hydroxide of titanium, molybdenum, vanadium, zirconium or boron show improved catalytic properties when treated with an organic silylating agent. Advantageously, the silicon solids have an average specific surface area of at least 1 mz / g and preferably from 25 m 2 / g to 800 mVg. Preferred silicon solids contain at least 99% by weight of silica.

I reglen er katalysatorerne fremstillet ud fra 0,2 til 50 vægtprocent oxider eller hydroxider af titan, vanadium, bor, molybden og zirconium. Meget velegnede er sådanne katalysatorer, som er fremstillet ud fra 0,5 til 10 vægtprocent af et oxid eller hydroxid af titandioxid på 20 siliciumoxid.As a rule, the catalysts are prepared from 0.2 to 50% by weight of oxides or hydroxides of titanium, vanadium, boron, molybdenum and zirconium. Very suitable are such catalysts which are prepared from 0.5 to 10% by weight of an oxide or hydroxide of titanium dioxide of 20 silica.

Katalysatormaterialerne beskrevet i dansk patentansøgning nr. 4741/71 kan også indeholde ikke-interfererende stoffer, især sådanne, som er inerte over for reaktanterne og produkterne, fx mindre mængder af alkalimetallerne eller jordalkalimetallerne.The catalyst materials disclosed in Danish Patent Application No. 4741/71 may also contain non-interfering substances, especially those which are inert to the reactants and products, for example smaller amounts of the alkali metals or the alkaline earth metals.

25 Katalysatormaterialerne ifølge den ovenfor nævnte patentansøgning kan fremstilles ved mange forskellige metoder, som ikke er kritiske for deres virkemåde eller effekt. En særlig velegnet metode består i imprægnering af en siliciumholdig bærer med en egnet metalholdig opløsning efterfulgt af opvarmning.The catalyst materials of the aforementioned patent application can be prepared by a variety of methods which are not critical to their operation or effect. A particularly suitable method consists in impregnating a silicon-containing support with a suitable metal-containing solution followed by heating.

30 Egnede imprægneringsopløsningsmidler er ikke-basiske oxygenholdige carbonhydrider, som er i det væsentlige inerte ved almindelige betin 150593 3 gelser, og som indeholder i almindelighed fra 1 til 12 carbonatomer, fx alkanoler, ketoner, ethere (acycliske og cycliske) og estere.Suitable impregnation solvents are non-basic oxygen-containing hydrocarbons which are substantially inert with ordinary betines, and which generally contain from 1 to 12 carbon atoms, e.g., alkanols, ketones, ethers (acyclic and cyclic) and esters.

Hydroxy- eller oxosubstituerede carbonhydrider med 1-8 carbonatomer foretrækkes. Monofunktionelle alkanoler med 1-8 carbonatomer, fx 5 methanol, ethanol, isopropanol og n-butanol foretrækkes især. Fortrinsvis fjernes mindst 80 vægtprocent af opløsningsmidlet fra det imprægnerede faste stof før calcinering.Hydroxy or oxo-substituted hydrocarbons having 1-8 carbon atoms are preferred. Monofunctional alkanols having 1-8 carbon atoms, for example 5 methanol, ethanol, isopropanol and n-butanol are particularly preferred. Preferably, at least 80% by weight of the solvent is removed from the impregnated solid prior to calcination.

Egnede silyleringsmidler til anvendelse ved silyleringsbehandlingen beskrevet i dansk patentansøgning nr. 4741/71 er fx organosilanerne, 10 organosilylaminerne og organosilazanerne. Der fås meget gode resultater ved anvendelse af tetrasubstituerede silaner med 1-3 carbonhy-drid- og/eller halogensubstituenter, fx dichlordimethylsilan og chlor-trimethylsilan.Suitable silylating agents for use in the silylation treatment described in Danish Patent Application No. 4741/71 are, for example, the organosilanes, the organosilylamines and the organosilazanes. Very good results are obtained using tetrasubstituted silanes having 1-3 carbohydrate and / or halogen substituents, e.g. dichlorodimethylsilane and chloro trimethylsilane.

Det har nu vist sig, at der også kan opnås særdeles gode resultater 15 ved anvendelse af specielle organodisilazaner som silyleringsmidler til metaloxid-på-siliciumdioxid-katalysatorer. Anvendelsen af organodisila-zanerne som silyleringsmidler til katalysatorer ved fremgangsmåden ifølge den foreliggende opfindelse er fordelagtig, da der ikke dannes korroderende komponenter, når metaloxid-på-siliciumdioxid-katalysato-20 ren silyleres (hvilket er en ulempe ved anvendelse af chlorsilaner).It has now been found that very good results can also be obtained by using special organodisilazanes as silylating agents for metal oxide-on-silica catalysts. The use of the organodisilazanes as silylating agents for catalysts in the process of the present invention is advantageous since no corrosive components are formed when the metal oxide-on-silica catalyst is silylated (which is a disadvantage when using chlorosilanes).

Desuden har det vist sig, at silylering under anvendelse af organo-disilazanerne i almindelighed vil finde sted ved lavere temperaturer i o sammenligning med silylering under anvendelse af organosilaner. Selektiviteten i forhold til epoxider dannet under anvendelse af en 25 katalysator, som er silyleret ifølge den foreliggende opfindelse, har vist sig at være udmærket.In addition, it has been found that silylation using the organo-disilazanes will generally take place at lower temperatures in comparison with silylation using organosilanes. The selectivity to epoxides formed using a catalyst silylated according to the present invention has been found to be excellent.

Fremgangsmåden ifølge den foreliggende opfindelse er af den art, hvor katalysatoren fremstilles ved modificering af en fast uorganisk oxygenforbindelse af silicium i kemisk kombination med mindst 0,1 30 vægtprocent af et oxid eller hydroxid af titan, molybden, vanadium, zirconium eller bor, og fremgangsmåden er ejendommelig ved, at den faste uorganiske oxygenforbindelse af silicium i kemisk kombination med mindst 0,1 vægtprocent af et oxid eller hydroxid af titan, molybden, vanadium, zirconium eller bor bringes i kontakt med en organisk 35 disilazan med den almene formel: 150593 4 R1 R* R2—— Si - N - Si-R5 H R6.The process of the present invention is of the kind in which the catalyst is prepared by modifying a solid inorganic oxygen compound of silicon in chemical combination with at least 0.1% by weight of an oxide or hydroxide of titanium, molybdenum, vanadium, zirconium or boron, and the process is characterized in that the solid inorganic oxygen compound of silicon in chemical combination with at least 0.1% by weight of an oxide or hydroxide of titanium, molybdenum, vanadium, zirconium or boron is contacted with an organic disilazane of the general formula: R1 R * R2—— Si - N - Si-R5 H R6.

hvor fire eller seks af symbolerne R1, R2, R3, R**, R5 og Rs beteg-5 ner en alkylgruppe med 1-4 carbonatomer, idet de eventuelt resterende to symboler hver betegner et hydrogenatom, ved temperaturer i området mellem 100 og 450°C, idet der eventuelt før silyleringsbehand-lingen foretages en hydratiseringsbehandling.wherein four or six of the symbols R1, R2, R3, R **, R5 and R5 represent an alkyl group of 1-4 carbon atoms, the optionally remaining two symbols each representing a hydrogen atom, at temperatures in the range of 100 to 450 ° C, with hydration treatment optionally before the silylation treatment.

Det foretrækkes, at der anvendes en disilazan, i hvilken fire eller 10 seks af symbolerne Rl-R6 er methylgrupper. Eksempler på egnede disilazaner er således 1,1,2,2-tetramethyldisilazan og 1,1,1,2,2,2-he-xamethyldisilazan. Der kan dog også fx anvendes 1,1,2,2-tetraethyldi-silazan. Især foretrækkes hexamethyldisilazan.It is preferred to use a disilazane in which four or 10 six of the symbols R1-R6 are methyl groups. Examples of suitable disilazanes are thus 1,1,2,2-tetramethyldisilazane and 1,1,1,2,2,2-hexamethyldisilazane. However, for example, 1,1,2,2-tetraethyldisilazane can also be used. Hexamethyldisilazane is particularly preferred.

Det har nemlig overraskende vist sig, at der ved fremgangsmåden 15 ifølge den foreliggende opfindelse, hvor der anvendes organodisila-zaner med den ovenfor angivne almene formel, især hexamethyldisilazan ved relativt lave silyleringstemperaturer kan fremstilles særdeles aktive og selektive katalysatorer til epoxidering af olefiniske forbindelser med organiske hydroperoxider, hvilket selvfølgelig er teknisk 20 attraktivt. Hensigtsmæssige silyleringstemperaturer ligger mellem 100 og 300°C, fortrinsvis omkring 200°C.Surprisingly, it has been found that in the process 15 of the present invention using organodisilanes of the above general formula, especially hexamethyldisilazane, at relatively low silylation temperatures, highly active and selective catalysts can be prepared for epoxidizing olefinic compounds with organic compounds. hydroperoxides, which is of course technically attractive. Suitable silylation temperatures are between 100 and 300 ° C, preferably about 200 ° C.

Den i dansk patentansøgning nr. 4741/71 beskrevne silylering med chlortrimethylsilan eller dichlordimethylsilan som silyleringsmiddel udføres ved temperaturer over 300°C, fx 325-350°C eller derover, for at o 25 fremstille stabile katalysatorer. Det fremgår af eksemplerne i dansk patentansøgning nr. 4741/71, at således behandlede katalysatorer har lang levetid. Det fremgår imidlertid også, at virkningen af katalysatorer, som er silyleret ved lavere temperaturer, hurtigt aftager.The silylation described in Danish Patent Application No. 4741/71 with chlorotrimethylsilane or dichlorodimethylsilane as a silylating agent is carried out at temperatures above 300 ° C, for example 325-350 ° C or above, to produce stable catalysts. It is clear from the examples in Danish Patent Application No. 4741/71 that catalysts thus treated have a long life. However, it is also seen that the effect of catalysts which are silylated at lower temperatures decreases rapidly.

Det har vist sig, at katalysatorer, som ved fremgangsmåden ifølge 30 den foreliggende opfindelse fremstilles ved silylering ved lavere temperaturer med en organodisilazan som angivet ovenfor, giver 5 150583 mindst lige så god hydroperoxidomdannelse og epoxidselektivitet som de i ansøgning nr. 4741/71 beskrevne katalysatorer og forbliver meget mere aktive og selektive, selv efter en længere tidsperiode (mere end 1000 timer) end de fra den tidligere ansøgning kendte katalysatorer, 5 og de ved fremgangsmåden ifølge opfindelsen fremstillede katalystorer er således mere stabile.It has been found that catalysts prepared by the process of the present invention by silylation at lower temperatures with an organodisilazane as set forth above provide at least as good hydroperoxide conversion and epoxide selectivity as the catalysts described in Application No. 4741/71. and remain much more active and selective, even after a longer period of time (more than 1000 hours) than the catalysts known from the prior application, and thus the catalysts prepared by the process of the invention are more stable.

I almindelighed indeholder de katalysatorer, som skal silyleres ved fremgangsmåden ifølge den foreliggende opfindelse, fra 0,2 til 10 vægtprocent af et oxid eller hydroxid af titan, vanadium, bor, molyb-10 den eller zirconium, baseret på den samlede katalysator, i kemisk kombination med siliciumdioxid og/eller uorganisk silicat. Særligt velegnede katalysatorer indeholder fra 0,5 til 8 vægtprocent af et oxid eller hydroxid af titan i kemisk kombination med siliciumdioxid.In general, the catalysts to be silylated by the process of the present invention contain from 0.2 to 10% by weight of an oxide or hydroxide of titanium, vanadium, boron, molybdenum or zirconium, based on the total catalyst, in chemical combination with silica and / or inorganic silicate. Particularly suitable catalysts contain from 0.5 to 8% by weight of an oxide or hydroxide of titanium in chemical combination with silica.

En særlig foretrukken katalysator til behandling ved fremgangsmåden 15 ifølge den foreliggende opfindelse består i det væsentlige af siliciumdioxid, som kemisk kombineres med fra 0,5 til 5 vægtprocent titanoxid.A particularly preferred catalyst for treatment by the process of the present invention consists essentially of silica which is chemically combined with from 0.5 to 5% by weight of titanium oxide.

Katalysatormaterialerne, der skal underkastes fremgangsmåden ifølge den foreliggende opfindelse, kan indeholde ikke-interfererende og/el-20 ler katalyse-fremskyndende stoffer. Egnede fremskyndende stoffer er fx alkalimetallerne eller jordalkalimetallerne i form af oxider eller hydroxider. Foretrukne mængder alkalimetaltilsætningsstoffer ligger i området mellem 0,01 og 5 vægtprocent, baseret på den totale katalysatormængde. En velegnet katalysator, som skal silyleres ved fremgangs-25 måden ifølge den foreliggende opfindelse, indeholder i det væsentlige siliciumdioxid i kemisk kombination med 0,5-5 vægtprocent titanoxid og 0,01-5 vægtprocent calcium i form af calciumoxid som promotor.The catalyst materials to be subjected to the process of the present invention may contain non-interfering and / or catalysis accelerating agents. Suitable accelerating agents are, for example, the alkali metals or the alkaline earth metals in the form of oxides or hydroxides. Preferred amounts of alkali metal additives are in the range of 0.01 to 5% by weight, based on the total amount of catalyst. A suitable catalyst to be silylated by the process of the present invention contains substantially silica in chemical combination with 0.5-5% by weight titanium oxide and 0.01-5% by weight calcium in the form of calcium oxide as promoter.

Silyleringen kan udføres på mange forskellige måder som beskrevet i dansk patentansøgning nr. 4741/71. Silyleringen kan udføres charge-30 vis, halvkontinuerligt eller kontinuerligt. Det har vist sig, at uanset den anvendte metode, opnås der de bedste resultater, når den hensigtsmæssige silylering under anvendelse af organodisilazaner udføres ved temperaturer i området mellem 100 og 300°C, især mellem 150 og 250°C.The silylation can be carried out in many different ways as described in Danish Patent Application No. 4741/71. The silylation can be carried out charge-wise, semi-continuously or continuously. It has been found that, regardless of the method used, the best results are obtained when the appropriate silylation using organodisilazanes is carried out at temperatures in the range between 100 and 300 ° C, especially between 150 and 250 ° C.

6 1505926 150592

Den tid, som kræves til disilazanens omsætning med katalysatoroverfladen, afhænger af den anvendte temperatur. I almindelighed er behandlingstider på 0,5-5 timer meget hensigtsmæssige.The time required for the reaction of the disilazane with the catalyst surface depends on the temperature used. Generally, treatment times of 0.5-5 hours are very convenient.

Den anvendte mængde disilazan kan variere inden for vide grænser.The amount of disilazan used may vary within wide limits.

5 Disilazanmængder på fra 1 til 75 vægtprocent, beregnet på hele katalysatormaterialet, er meget velegnede; der foretrækkes mængder på fra 2 til 50 vægtprocent. Silyleringsbehandlingen kan gentages flere gange. Af driftsøkonomiske grunde foretrækkes i almindelighed en enkelt behandling.Disilazane amounts of from 1 to 75% by weight, based on the entire catalyst material, are very suitable; amounts of from 2% to 50% by weight are preferred. The silylation treatment can be repeated several times. For operational reasons, a single treatment is generally preferred.

10 Det har vist sig, at de bedste resultater ofte opnås, når metal/sili-ciumdioxid-katalysatoren hydratiseres før silyleringen. Hydratiserin-gen kan udføres ved, at man før silyleringen bringer katalysatoren i kontakt med vand og derpå opvarmer den, eller ved, at man bringer katalysatoren i kontakt med vanddamp ved forhøjede temperaturer, 15 især ved temperaturer over 100°C, fortrinsvis i området 150-450°C i 1/2-6 timer. De bedste resultater fås, når hydratiseringsbehandlingen udføres ved vanddampbehandling ved en temperatur på 300-450°C i 1-6 timer.It has been found that the best results are often obtained when the metal / silica catalyst is hydrated prior to silylation. The hydration can be accomplished by contacting and then heating the catalyst with water prior to silylation, or by contacting the catalyst with water vapor at elevated temperatures, especially at temperatures above 100 ° C, preferably in the range of 150 ° C. -450 ° C for 1 / 2-6 hours. The best results are obtained when the hydration treatment is carried out by steam treatment at a temperature of 300-450 ° C for 1-6 hours.

Opfindelsen belyses nærmere ved nedenstående eksempel:The invention is further illustrated by the following example:

20 EKSEMPELEXAMPLE

En portion på 1480 g kommercielt silicagel (Davison I.D. type silici-umdioxid, 14-30 mesh) bringes i kontakt med en opløsning af 130 g tetraisopropyltitanat og 97 g acetylacetone i 1,25 liter isopropanol.A portion of 1480 g of commercial silica gel (Davison I.D. type silica, 14-30 mesh) is contacted with a solution of 130 g of tetraisopropyl titanate and 97 g of acetylacetone in 1.25 liters of isopropanol.

Den imprægnerede silicagel anbringes i et elektrisk opvarmet calci-25 neringsrør og tørres ved en lagtemperatur på 500°C under nitrogen-atmosfære. Der gives adgang til luften, og temperaturen hæves til 800°C. Denne temperatur opretholdes i 4 timer til afbrænding af resterende mængder kul og til fuldstændig kemisk forening af silici-umdioxidet og titandioxidet, hvorefter 1183 g af dette materiale rehy-30 dratiseres ved kontakt med damp ved 400°C i 3 timer. Dette rehydra-tiserede materiale afkøles til 200°C og bringes derefter i kontakt medThe impregnated silica gel is placed in an electrically heated calcination tube and dried at a layer temperature of 500 ° C under nitrogen atmosphere. The air is admitted and the temperature is raised to 800 ° C. This temperature is maintained for 4 hours to burn off remaining amounts of coal and to completely chemically combine the silica and titanium dioxide, after which 1183 g of this material is rehydrated by contact with steam at 400 ° C for 3 hours. This rehydrated material is cooled to 200 ° C and then contacted

Claims (2)

150593 hexamethyldisilazandamp ved 200°C i 1 time, hvorved der fås den silylerede katalysator ifølge opfindelsen. 75 g hexamethyldisilazan optages af katalysatoren. Den ovenfor beskrevne katalysator samt en lignende katalysator, som 5 imidlertid ikke er behandlet med hexamethyldisilazan, underkastes sammenligningsforsøg som katalysatorer til epoxidering af olefiner. I hvert forsøg bringes en 1 g's prøve af katalysatormassen i kontakt med 17 g octen-1 og 28,6 g af en 12 vægtprocents opløsning af ethyl-benzen-hydroperoxid i ethylbenzen i en 100 ml's glasreaktor. Reakti-10 onstemperaturen er 100°C, og reaktionstiden er 1 time. Resultaterne er anført i nedenstående tabel: TABEL Katalysator Hydroperoxidom- Epoxidselektivitet dannelse (%) (%) 15 _ Usilyleret 95 72 S i ly leret 95 93 De i tabellen anførte data viser klart, at den silylerede katalysator 20 har betydelig højere selektivitet i forhold til det ønskede epoxid.Hexamethyldisilazane vapor at 200 ° C for 1 hour to give the silylated catalyst of the invention. 75 g of hexamethyldisilazane are taken up by the catalyst. The catalyst described above, as well as a similar catalyst which, however, has not been treated with hexamethyldisilazane, are subjected to comparative experiments as catalysts for the epoxidation of olefins. In each experiment, a 1 g sample of the catalyst mass is contacted with 17 g octene-1 and 28.6 g of a 12 wt% solution of ethyl benzene hydroperoxide in ethyl benzene in a 100 ml glass reactor. The reaction temperature is 100 ° C and the reaction time is 1 hour. The results are set forth in the following table: TABLE Catalyst Hydroperoxidome Epoxide Selectivity Formation (%) (%) 15 Unsilylated 95 72 S in the Clay 95 93 The data in the table clearly show that the silylated catalyst 20 has significantly higher selectivity over the desired epoxide. 1. Fremgangsmåde til fremstilling af en fast katalysator af metal/silici-umholdigt oxid-typen til anvendelse ved fremstillingen af oxiranfor-bindelser ved omsætning af en olefinisk umættet forbindelse med et 25 organisk hydroperoxid, hvilken katalysator fremstilles ved modificering af en fast uorganisk oxygenforbindelse af silicium i kemisk kombination med mindst 0,1 vægtprocent af et oxid eller et hydroxid af titan, molybden, vanadium, zirconium eller bor, kendetegnet ved, at den faste uorganiske oxygenforbin-30 delse af silicium i kemisk kombination med mindst 0,1 vægtprocent afA process for preparing a metal / silicon-containing oxide-type solid catalyst for use in the preparation of oxirane compounds by reacting an olefinically unsaturated compound with an organic hydroperoxide, which catalyst is prepared by modifying a solid inorganic oxygen compound of chemical in chemical combination with at least 0.1% by weight of an oxide or hydroxide of titanium, molybdenum, vanadium, zirconium or boron, characterized in that the solid inorganic oxygen compound of silicon in chemical combination with at least 0.1% by weight of
DK131673A 1972-03-13 1973-03-09 METHOD FOR PREPARING METAL / SILICONE-OXID TYPE SOLID CATALYST DK150593C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK238475A DK151016C (en) 1972-03-13 1975-05-28 PROCEDURE FOR THE PREPARATION OF OXIRAN COMPOUNDS BY CONVERSING AN OLEFINIC UNLAMATED COMPOUND WITH AN ORGANIC HYDROPEROXIDE IN THE PRESENT OF A CATALYST

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US23430172 1972-03-13
US00234301A US3829392A (en) 1970-10-01 1972-03-13 Heterogeneous catalysts for olefin epoxidation

Publications (2)

Publication Number Publication Date
DK150593B true DK150593B (en) 1987-04-06
DK150593C DK150593C (en) 1987-11-23

Family

ID=22880798

Family Applications (1)

Application Number Title Priority Date Filing Date
DK131673A DK150593C (en) 1972-03-13 1973-03-09 METHOD FOR PREPARING METAL / SILICONE-OXID TYPE SOLID CATALYST

Country Status (17)

Country Link
JP (1) JPS5635941B2 (en)
AR (1) AR196234A1 (en)
BE (1) BE796437R (en)
BR (1) BR7301701D0 (en)
CA (1) CA1015761A (en)
CH (1) CH582021A5 (en)
DE (1) DE2311822C2 (en)
DK (1) DK150593C (en)
ES (2) ES412496A2 (en)
FR (1) FR2175844B2 (en)
GB (1) GB1424284A (en)
IE (1) IE37389B1 (en)
IT (1) IT1053715B (en)
NL (1) NL168835C (en)
NO (1) NO143520C (en)
SE (2) SE409034B (en)
ZA (1) ZA731655B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5253678A (en) * 1975-10-29 1977-04-30 Hitachi Ltd Semiconductor integrated circuit and productin of the same
JPS63120437A (en) * 1986-11-10 1988-05-24 Agency Of Ind Science & Technol Structure of semiconductor integrated circuit
DE3734138A1 (en) * 1987-10-09 1989-04-20 Scharmer Klaus Dr Ing ACID CATALYST AND METHOD FOR PRODUCING THE CATALYST
DE19545042A1 (en) * 1995-12-02 1997-06-05 Studiengesellschaft Kohle Mbh Amorphous microporous mixed oxide catalysts with controlled surface polarity for selective heterogeneous catalysis adsorption and material separation
CN101142021B (en) 2005-02-17 2012-04-18 英国石油勘探运作有限公司 Silyl-modified catalyst and use of this catalyst for the conversion of synthesis gas to hydrocarbons
JP2007031449A (en) * 2006-10-19 2007-02-08 Repsol Quimica Sa Method for epoxidization of olefinic compound with hydrogen peroxide in the presence of solvent
EP2185281A1 (en) * 2007-09-10 2010-05-19 Shell Internationale Research Maatschappij B.V. Process for stabilising a fischer tropsch catalyst
TWI628146B (en) * 2016-11-28 2018-07-01 東聯化學股份有限公司 Preparation method and application of titanium-containing cerium oxide material with high thermal stability
CN113636991A (en) * 2021-08-13 2021-11-12 中国天辰工程有限公司 Synthesis method of epoxy cyclohexane

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3391214A (en) * 1967-06-12 1968-07-02 Shell Oil Co Isoprene production from isopentane via hydroperoxide
JPS5440526A (en) * 1977-09-07 1979-03-30 Toshiba Corp Integrated drawing processor

Also Published As

Publication number Publication date
NO143520C (en) 1981-03-04
SE7602414L (en) 1976-02-25
CA1015761A (en) 1977-08-16
JPS492795A (en) 1974-01-11
IE37389B1 (en) 1977-07-06
BE796437R (en) 1973-09-10
DE2311822C2 (en) 1982-11-04
AU5316473A (en) 1974-09-12
IT1053715B (en) 1981-10-10
FR2175844A2 (en) 1973-10-26
DE2311822A1 (en) 1973-09-27
NL168835B (en) 1981-12-16
IE37389L (en) 1973-09-13
SE409034B (en) 1979-07-23
NO143520B (en) 1980-11-24
NL7303415A (en) 1973-09-17
NL168835C (en) 1982-05-17
JPS5635941B2 (en) 1981-08-20
AR196234A1 (en) 1973-12-10
ZA731655B (en) 1974-01-30
ES423071A1 (en) 1976-06-16
FR2175844B2 (en) 1976-09-10
ES412496A2 (en) 1976-03-01
BR7301701D0 (en) 1974-07-11
GB1424284A (en) 1976-02-11
SE415146B (en) 1980-09-15
DK150593C (en) 1987-11-23
CH582021A5 (en) 1976-11-30

Similar Documents

Publication Publication Date Title
US3923843A (en) Epoxidation process with improved heterogeneous catalyst
EP0345856B1 (en) A process for the preparation of an oxirane compound
US3829392A (en) Heterogeneous catalysts for olefin epoxidation
JP3658790B2 (en) Catalyst and method for producing oxirane compound
KR100449207B1 (en) Heterogeneous Catalyst Regeneration
EP1218365A4 (en) Heterogeneous epoxidation catalyst
DK150592B (en) PROCEDURE FOR PREPARING A SOLID CATALYST FOR USING THE PREPARATION OF OXIRAN COMPOUNDS BY REVERSING AN OLEPHINICALLY UNSATURATED COMPOUND WITH AN ORGANIC HYDROPEROXIDE
DK150593B (en) METHOD FOR PREPARING METAL / SILICONE-OXID TYPE SOLID CATALYST
JP2000119266A (en) Production of oxirane compound
US5081267A (en) Epoxidation process
JPH11140068A (en) Production of propylene oxide
US8664412B2 (en) Epoxidation process
EP0984949A2 (en) Epoxidation process using improved heterogeneous catalyst composition
KR101799718B1 (en) Method of preparing epoxidation catalysts
DK151016B (en) PROCEDURE FOR THE PREPARATION OF OXIRAN COMPOUNDS BY CONVERSING AN OLEFINIC UNLAMATED COMPOUND WITH AN ORGANIC HYDROPEROXIDE IN THE PRESENT OF A CATALYST
EP1648604A1 (en) Catalyst preparation
EP3169436A2 (en) Complexes useful as active components in supported epoxidation catalysts
NO127500B (en)
WO2016133891A1 (en) Epoxidation catalysts based on metal alkoxide pretreated supports
KR900004926B1 (en) Method for preparing epichlorohydrins
JP2007186467A (en) Method for producing epoxide
JPH10337473A (en) Titanium-containing solid catalyst and production of oxirane compound
NO127502B (en)
DK149608B (en) SUMMARY OF THE INVENTION, SUMMARY OF THE INVENTION, SUMMARY OF THE INVENTION, SUMMARY OF THE INVENTION, SUMMARY OF THE INVENTION, SUMMARY OF THE INVENTION OF THE SUMMARY OF THE INVENTION, OF THE PROCESS OF THE DESCIPATION OF THE NON-ORNAMENTALLY UNCORCONATED CARBAR HEADS WITH ORCHANISH

Legal Events

Date Code Title Description
PBP Patent lapsed