DK145460B - PROCEDURE FOR CONVERSION OF SYNTHESIC GAS TO CARBON HYDRADE MIXTURES - Google Patents

PROCEDURE FOR CONVERSION OF SYNTHESIC GAS TO CARBON HYDRADE MIXTURES Download PDF

Info

Publication number
DK145460B
DK145460B DK175175AA DK175175A DK145460B DK 145460 B DK145460 B DK 145460B DK 175175A A DK175175A A DK 175175AA DK 175175 A DK175175 A DK 175175A DK 145460 B DK145460 B DK 145460B
Authority
DK
Denmark
Prior art keywords
catalyst
hydrocarbons
conversion
carbon
zsm
Prior art date
Application number
DK175175AA
Other languages
Danish (da)
Other versions
DK145460C (en
DK175175A (en
Inventor
C D Chang
W H Lang
A J Silvestri
Original Assignee
Mobil Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mobil Oil Corp filed Critical Mobil Oil Corp
Publication of DK175175A publication Critical patent/DK175175A/en
Publication of DK145460B publication Critical patent/DK145460B/en
Application granted granted Critical
Publication of DK145460C publication Critical patent/DK145460C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/26After treatment, characterised by the effect to be obtained to stabilize the total catalyst structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

(19) DANMARK(19) DENMARK

|P (12) FREMLÆGGELSESSKRIFT od 145460 B| P (12) PUBLICATION MANUAL od 145460 B

DIREKTORATET FOR PATENT- OG VAREMÆRKEVÆSENETDIRECTORATE OF THE PATENT AND TRADEMARKET SYSTEM

(21) Ansøgning nr. 1751/75 (5U IntCt,* C 07 C 1/04 (22) Indleveringsdag 23· apr. 1975 (24) Løbedag 23. apr. 1975 (41) Aim. tilgængelig 25. okt. 1975 (44) Fremlagt 22. nov. 1982 (86) International ansøgning nr. - (86) International indleverlngsdag (85) Videreførelsesdag (62) Stamansøgning nr. -(21) Application No. 1751/75 (5U IntCt, * C 07 C 1/04 (22) Filing date 23 · Apr 1975 (24) Running day 23 Apr 1975 (41) Aim available 25 Oct 1975 ( 44) Submitted Nov. 22, 1982 (86) International Application No. - (86) International Filing Day (85) Continuation Day (62) Stock Application No. -

(30) Prioritet 24. apr. 1974, 463711, US(30) Priority Apr 24 1974, 463711, US

(71) Ansøger MOBIL OIL CORPORATION, New York, US.(71) Applicant MOBILE OIL CORPORATION, New York, US.

(72) Opfinder clarence Layton Chang, US: William Harry Lang, US:(72) Inventor clarence Layton Chang, US: William Harry Lang, US:

Anthony John Sllvestri, US.Anthony John Sllvestri, US.

(74) Fuldmægtig ingeniørfirmaet Hoftnan-Bang & Bout ard.(74) Full-time engineering firm Hoftnan-Bang & Bout ard.

^ Fremgangemåde til omdannelse af syntesegas til carbonhydrid« blandinger.Process for converting synthesis gas into hydrocarbon mixtures.

«.i".in

Opfindelsen angår en fremgangsmåde til fremstilling af carbonhydri-der ud fra syntesegas, af den i indledningen til krav 1 angivne art.The invention relates to a process for the production of hydrocarbons from synthesis gas of the kind specified in the preamble of claim 1.

Opfindelsen omhandler, at man bringer en blanding af carbonmonoxid og hydrogen i kontakt med en blanding af en katalysator, der katalyserer reduktionen af carbonmonoxid, såsom en Fischer-Tropsch-.The invention relates to contacting a mixture of carbon monoxide and hydrogen with a mixture of a catalyst which catalyzes the reduction of carbon monoxide, such as a Fischer-Tropsch.

QQ katalysator eller en methanolsyntese-katalysator, og et krystal- ^ linsk aluminosilicat til fremstilling af carbonhydridblandinger, d· der er anvendelige ved fremstilling af brændselsolier, benzin med fji højt octantal, aromatiske carbonhydr i der og kemiske mellemproduk- r~ ter.QQ catalyst or a methanol synthesis catalyst, and a crystalline aluminosilicate for the production of hydrocarbon mixtures useful in the production of fuel oils, high octane gasoline, aromatic hydrocarbons therein and chemical intermediates.

* Q Opfindelsen omhandler en forbedret fremgangsmåde til konvertering af syntesegas, d.v.s. blandinger af gasformige carbonoxider og hydro- 145460 2 gen eller hydrogen-donorer til blandinger af carbonhydrider.The invention relates to an improved method for converting synthesis gas, i.e. mixtures of gaseous carbon oxides and hydrogen or hydrogen donors for mixtures of hydrocarbons.

Fremgangsmåder til konvertering af kul og carbonhydrider, såsom naturgas, til en gasformig blanding, der i det væsentlige består af hydrogen og carbonmonoxid og/eller -dioxid, er kendt.Methods for converting coal and hydrocarbons, such as natural gas, into a gaseous mixture consisting essentially of hydrogen and carbon monoxide and / or dioxide are known.

De, som har større betydning, gør enten brug af den partielle forbrænding af brændsel med en oxygenholdig gas eller af reaktionen af brændslet med damp ved høj temperatur eller af en kombination af disse to reaktioner. Et udmærket resume af det område, der angår fremstilling af gas, herunder syntesegas, ud fra faste og flydende brændstoffer er angivet i Encyclophedia of Chemical Technology, udgivet af Kirk-Othmer, anden udgave, Vol. 10, side 353-433, (1966), Interscience Publishers, New York, New York.Those of greater importance either make use of the partial combustion of fuel with an oxygen-containing gas or of the reaction of the fuel with high temperature steam or of a combination of these two reactions. An excellent summary of the area of gas production, including synthesis gas, from solid and liquid fuels is given in the Encyclophedia of Chemical Technology, published by Kirk-Othmer, second edition, Vol. 10, pp. 353-433, (1966), Interscience Publishers, New York, New York.

Det er også kendt, at syntesegas vil undergå konvertering til reduktionsprodukter af carbonmonoxid, såsom carbonhydrider, ved temperaturer fra ca. 149°C til ca. 454°C, under tryk fra ca. 1 til 1000 atm. tryk, over temmeligt mange forskellige katalysatorer.It is also known that synthesis gas will undergo conversion to carbon monoxide reduction products, such as hydrocarbons, at temperatures ranging from approx. 149 ° C to approx. 454 ° C, under pressure from approx. 1 to 1000 atm. pressure, over quite a variety of catalysts.

F.eks. giver Fischer-Tropsch-processen, der er blevet studeret i detaljer, anledning til dannelsen af mange forskellige flydende carbonhydrider, hvoraf en del har været anvendt som benzin med lavt octantal. Katalysatorer, der har været studeret med henblik på denne og beslægtede processer, omfatter dem, der er baseret, på jern, cobalt, nikkel, ruthenium, thorium, rhodium og osmium, eller oxiderne deraf.Eg. the Fischer-Tropsch process, which has been studied in detail, gives rise to the formation of many different liquid hydrocarbons, some of which have been used as low octane gasoline. Catalysts studied for this purpose and related processes include those based on iron, cobalt, nickel, ruthenium, thorium, rhodium and osmium, or the oxides thereof.

Det har hidtil ikke været muligt at identificere nogen kombination af katalysatorer og behandlingsbetingelser, der vil give anledning tijL dannelsen af flydende carbonhydrider i benzins kogeområde, der indeholder i høj grad forgrenede paraffiner og væsentlige mængder af aromatiske carbonhydrider, som begge kræves til benzin af høj kvalitet, eller på selektiv måde at fremstille aromatiske carbonhydrider, der har et særligt højt indhold i benzen- til xylen-intervallerne. Et overblik over status over kendt teknik på dette område er angivet i "Carbon Monoxide-Hydrogen Reactions", Encyclopedia of Chemical Technology, udgivet af Kirk-Othmer, anden udgave, Vol. 4, side 446-488, Interscience Publishers, New York, N.Y.To date, it has not been possible to identify any combination of catalysts and treatment conditions that will give rise to the formation of liquid hydrocarbons in the gasoline boiling region containing highly branched paraffins and substantial amounts of aromatic hydrocarbons, both of which are required for high quality gasoline. , or selectively preparing aromatic hydrocarbons having a particularly high content in the benzene to xylene ranges. An overview of the state of the art in this field is given in "Carbon Monoxide-Hydrogen Reactions", Encyclopedia of Chemical Technology, published by Kirk-Othmer, second edition, Vol. 4, pages 446-488, Interscience Publishers, New York, N.Y.

Det er fornyligt blevet påvist, at syntesegas kan konverteres til oxygenerede, organiske forbindelser, og at disse forbindelser derpå 145460 3 kan konverteres til højere carbonhydrider, især benzin med højt octantal, ved katalytisk kontakt mellem syntesegassen og en katalysator, der katalyserer reduktionen af carbonmonoxid, efterfulgt af, at man bringer kontakt mellem de således fremstillede konverteringsprodukter og en speciel type af zeolit-katalysator i en separat reaktionszone. Denne konvertering i to trin er beskrevet i tysk offentliggjort patentansøgning nr. 2.438.252.It has recently been demonstrated that synthesis gas can be converted to oxygenated organic compounds and that these compounds can then be converted to higher hydrocarbons, especially high octane gasoline, by catalytic contact between the synthesis gas and a catalyst catalyzing the reduction of carbon monoxide. followed by contacting the conversion products thus produced with a particular type of zeolite catalyst in a separate reaction zone. This two-step conversion is described in German Patent Application No. 2,438,252.

Det har nu vist sig, at man kan fremstille værdifulde carbd&hydridblandinger direkte ved at omsætte synteségas, d.v.s. blandinger' af hydrogen og carbonmonoxid, eventuelt sammen med andre carbon- oxider, eller ækvivalenter af sådanne blandinger, i nærværelse af visse heterogene katalysatorer omfattende grundige blandinger af to eller flere bestanddele.It has now been found that valuable carbd & hydride mixtures can be prepared directly by reacting synthesis gas, i.e. mixtures' of hydrogen and carbon monoxide, optionally with other carbon oxides, or equivalents of such mixtures, in the presence of certain heterogeneous catalysts comprising thorough mixtures of two or more constituents.

Ifølge opfindelsen er en fremgangsmåde til fremstilling af earboii-hydrider ud fra syntesegas, hvorved man ved en temperatur mellem 232 og 538°C bringer en sådan gas i kontakt med en katalysator derfor ejendommelig ved, at katalysatoren omfatter en blanding af et metal eller en metalforbindelse med katalytisk aktivitet i forbindelse med reduktionen af carbonmonoxid, hvilket metal eller hvilken metalforbindelse eventuelt foreligger på en A^O^-baerer, og at der også foreligger et krystallinsk aluminosilieat med en porediameter, der er større end 5 Å, et molært forhold mel-; lem siliciumdioxid og aluminiumoxid på mindst 12, og et indsnæv-ringsindex, der ligger indenfor intervallet mellem 1 og 12. På denne måde kan man udvinde carbonhydrider, der koger indenfor ben- "* zinets kogepunktsinterval. Metallet eller’unetalforbidelsen omfatter mellem 0,1 og 99 vægt-%, fortrinsvis mellem ca. 1 og ca. 80 - vaegt-% af blandingen. Den carbonmonoxidreducerende komponent og det krystallinske aluminosilieat kan foreligge i samme eller i -separate partikler. ' '< "According to the invention, a process for producing earbohydrates from synthesis gas, whereby at a temperature between 232 and 538 ° C, contact such a gas with a catalyst is therefore characterized in that the catalyst comprises a mixture of a metal or a metal compound. with catalytic activity associated with the reduction of carbon monoxide, any metal or metal compound optionally present on an A 2 O 2 support, and also a crystalline aluminosilicate having a pore diameter greater than 5 Å, a molar ratio of ; limes of silica and alumina of at least 12, and a narrowing index that is within the range of 1 to 12. In this way, hydrocarbons boiling within the boiling point range of the bone can be recovered. The metal or metal compound comprises between 0.1 and 99 wt.%, preferably between about 1 and about 80 wt.% of the mixture. The carbon monoxide reducing component and crystalline aluminosilicate may be present in the same or in separate particles.

De foretrukne krystallinske aluminosilicater er ZSM-5, ZSM-11, ZSM-12, ZSM-35 og ZSM-38. De foretrukne metaller er fra gruppe 8, men metaller fra gruppe IB (f.eks. kobber), IIB (f.eks. zink) og/eller HIB (f.eks. thorium), og forbindelser deraf kan frembringe udmærkede resultater. Blandinger af alle disse materialer, Bam-men med promotorer, såsom er værdifulde. '' *The preferred crystalline aluminosilicates are ZSM-5, ZSM-11, ZSM-12, ZSM-35 and ZSM-38. The preferred metals are from Group 8, but metals from Group IB (eg copper), IIB (eg zinc) and / or HIB (eg thorium), and compounds thereof can produce excellent results. Mixtures of all these materials, Bam-men with promoters, such as are valuable. '' *

Forholdet mellem den komponent, der tjener til reduktion af’carbonmonoxid, og krystallinsk aluminosilieat, kan indstilles sådan, at 4 145460 man kontrollerer produktets karakter, d.v.s. at man bestemmer, om komponenter, hvis kogepunkter ligger indenfor benzins kogepunkt s omr åde , paraffiner/aromater eller indre alkener skal dominere .The ratio of the component used to reduce carbon monoxide to crystalline aluminosilicate can be adjusted to control the nature of the product, i.e. to determine whether components whose boiling points are within the boiling point of gasoline should dominate, paraffins / aromatics or internal alkenes.

Volumenforholdet mellem hydrogen og carbonoxider holdes med fordel indenfor området mellem 0,2 og 6,0.Advantageously, the volume ratio of hydrogen to carbon oxides is kept within the range of 0.2 to 6.0.

I afhængighed af valget af bestanddele og de særligt anvendte reaktionsbetingelser kan man opnå væsentlige mængder af flydende blandinger, der er rige på en eller flere alkener, forgrenede paraffiner og aromatiske carbonhydrider, og som er særdeles velegnet til fremstilling af benzin med højt octantal eller petrokemiske stoffer. Man kan således udvælge katalysator og driftsbetingelser til fremstilling af normalt gasformige carbonhydrider, der har mindst en carbon-til-carbon-binding, som det fremherskende produkt, eller carbonhydridstrømme, der er rige på alkener med en intern dobbeltbinding. Sådanne produkter har værdi som petrokemiske udgangsmaterialer og til fremstilling af kondenserbart jordoliebrændsel.Depending on the choice of constituents and the particular reaction conditions used, substantial quantities of liquid mixtures rich in one or more olefins, branched paraffins and aromatic hydrocarbons, and which are particularly suitable for the production of gasoline with high octane or petrochemicals, can be obtained. . Thus, one can select catalyst and operating conditions to produce normally gaseous hydrocarbons having at least one carbon-to-carbon bond, as the predominant product, or hydrocarbon streams rich in alkenes with an internal double bond. Such products are of value as petrochemical starting materials and for the production of condensable petroleum fuel.

De anvendte katalysatorer frembringer ikke blot i høj grad ønskværdige produkter med god selektivitet, men frembringer dem i mange tilfælde enten med en extraordinær høj konvertering per passage eller under milde betingelser, eller undertiden på begge måder. Med ThO^ som den komponent, der reducerer carbonmon-oxid, konverteres syntesegas ved forbavsende lav temperatur og forbavsende lavt t-ryk. Med en methanolsyntesekatalysator af zink-kobber-chromit-typen som den reducerende komponent forøges kon--verteringshastigheden af syntesegassen, og store andele af carbonhydrider med mindst en carbon-til-carbon-binding fremkommer i stedet for methanol. Med katalysatorer af Fischer-Tropsch-typen opnår man forøgede mængder af aromatiske carbonhydrider. Når den foretrukne krystallinske aluminosilicatbestanddel anvendes, bibeholdes den katalytiske aktivitet yderligere i usædvanligt lange tidsrum, og aromatiske carbonhydrider er, når de fremstilles, meget rige på toluen og xylener.The catalysts used not only produce highly desirable products with good selectivity, but in many cases produce them either with exceptionally high conversion per passage or under mild conditions, or sometimes in either way. With ThO 2 as the carbon monoxide-reducing component, synthesis gas is converted at astonishingly low temperature and astonishingly low t-smoke. With a zinc-copper-chromite-type methanol synthesis catalyst as the reducing component, the rate of conversion of the synthesis gas is increased, and large proportions of hydrocarbons having at least one carbon-to-carbon bond are substituted for methanol. With Fischer-Tropsch type catalysts, increased amounts of aromatic hydrocarbons are obtained. When the preferred crystalline aluminosilicate component is used, the catalytic activity is further maintained for an unusually long period of time and aromatic hydrocarbons, when prepared, are very rich in toluene and xylenes.

En typisk, renset syntesegas vil have den følgende volumensammensæt-ning på vandfri basis: hydrogen, 51; carbonoxid, 40; carbondioxid, 4; methan, 1; og nitrogen, 4.A typical purified synthesis gas will have the following volume composition on anhydrous basis: hydrogen, 51; carbon oxide, 40; carbon dioxide, 4; methane, 1; and nitrogen, 4.

Syntesegassen kan fremstilles ud fra fossile brændstoffer under 145460 5 anvendelse af enhver kendt metode, herunder sådanne in situ gasdannelsesprocesser som den partielle forbrænding i undergrunden af kul og jordolieudfældninger. Udtrykket fossilt brændstof skal i den foreliggende sammenhæng omfatte anthracit og bituminøst kul, lignit, råolie, skiferolie, olie fra tjæresand, naturgas, samt brændstoffer, der hidrører fra simple fysiske separationer eller mere dybtgående omdannelser af disse materialer, herunder forkokset kul, jordoliekoks, gasolie, remanenserne fra jord-oliedestillation, og to eller flere af ethvert af de i det foregående angivne materialer i kombination. Andre carbonnoldige brændstoffer, såsom tørv, træ og celluloseholdige affaldsstoffer, kan også anvendes.The synthesis gas can be produced from fossil fuels under any known method, including such in situ gasification processes as the partial combustion in the subsurface of coal and petroleum deposits. In this context, the term fossil fuel shall include anthracite and bituminous coal, lignite, crude oil, shale oil, tar sands oil, natural gas, and fuels resulting from simple physical separations or more profound conversions of these materials, including coking coal, petroleum coke, gas oil. , the residuals from petroleum distillation, and two or more of any of the foregoing materials in combination. Other carbon-containing fuels such as peat, wood and cellulosic waste can also be used.

Den rå syntesegas, der fremstilles ud fra fossile brændstoffer, vil indeholde forskellige urenheder, såsom partikelformede materialer, svovl og metal-carbonyl-forbindelser, og de vil være karakteriseret ved et forhold hydrogen-til-carbon, der vil afhæng© af det fossile brændstof og den særlige forgasningsteknik, der anvendes. Det er i almindelighed ønskværdigt med henblik på effektiviteten af påfølgende konverteringstrin at rense den rå syntesegas ved fjernelse af urenhederne. Metoder til sådanne rensninger er kendt og er ikke nogen del af denne opfindelse. Imidlertid behøver det ikke at være nødvendigt at fjerne i det væsentlige alle de svovlholdige urenheder, når man anvender Th02 som den komponent, der reducerer carbonmonoxid, fordi Th02 ikke irreversibelt forgiftes af svovlforbindelser. Hvis det er nødvendigt, foretrækkes det yderligere at indstille volumenforholdet hydrogen-til-carbonoxid indenfor intervallet mellem 0,2 og 6,0 før anvendelsen i henhold til opfindelsen. Hvis den rensede syntesegas skulle væfe overdrevent rig på carbonoxider, kan den bringes indenfor det foretrukne interval under anvendelse af den kendte vandgas-skiftereaktion.The crude synthesis gas produced from fossil fuels will contain various impurities such as particulate materials, sulfur and metal-carbonyl compounds, and they will be characterized by a hydrogen-to-carbon ratio which will depend on the fossil fuel. and the particular gasification technique used. It is generally desirable for the efficiency of subsequent conversion steps to purify the crude synthesis gas by removing the impurities. Methods of such purifications are known and are not part of this invention. However, it is not necessary to remove substantially all the sulfur-containing impurities when using ThO2 as the carbon monoxide-reducing component because ThO2 is not irreversibly poisoned by sulfur compounds. If necessary, it is further preferred to adjust the volume ratio of hydrogen to carbon oxide within the range of 0.2 to 6.0 prior to use according to the invention. If the purified synthesis gas is to be woven excessively rich in carbon oxides, it can be brought within the preferred range using the known water gas exchange reaction.

Hvis på den anden side syntesegassen skulle være meget rig på hydrogen, kan den indstilles til det foretrukne interval ved tilsæt-af carbondioxid eller carbonmonoxid. Renået syntesegas, der er justeret sådan, at den har et volumenforhold hydrogen-til-carbon-oxider på mellem 0,2 og 6,0, vil blive betegnet "tilpasset” sy'nté^ segas.On the other hand, if the synthesis gas should be very rich in hydrogen, it can be adjusted to the preferred range by the addition of carbon dioxide or carbon monoxide. Purified synthesis gas, adjusted to have a volume ratio of hydrogen to carbon oxides of between 0.2 and 6.0, will be referred to as "adapted" sy'nté ^ segas.

6 145460 På området anerkendte ækvivalenter til syntesegas kan også anvendes. Blandinger af f.eks. carbonmonoxid og damp eller af carbondioxid og hydrogen kan med henblik på at tilvejebringe tilpasset syntesegas ved in situ reaktion komme i betragtning. Når fremgangsmåden ifølge opfindelsen yderligere anvendes til fremstilling af carborihydridblandinger, der er rige på aromatiske carbonhydrider, hvilket vil blive beskrevet mere detaljeret i det følgende, kan man med fordel sammen med udgangsmaterialerne tilføre en hydrogendonor, såsom methan,"methanol eller højere alkoholer.6145460 Recognized equivalents for synthesis gas may also be used. Mixtures of e.g. carbon monoxide and steam or carbon dioxide and hydrogen may be considered in order to provide adapted synthesis gas by in situ reaction. When the process of the invention is further used in the preparation of carbohydride hydrate mixtures rich in aromatic hydrocarbons, as will be described in more detail below, advantageously, along with the starting materials, a hydrogen donor such as methane, methanol or higher alcohols may be added.

Den bestanddel, der er karakteriseret ved 'katalytisk aktivitet til reduktion af carbonmonoxid, kan udvælges fra enhver på de på området anerkendte katalysatorer til fremstilling af carbonhydrider, oxygenerede produkter eller blandinger deraf, fra syntesegas, og den udgør mellem 0,1 og 99 vægt-%, fortrinsvis mellem 1 og 80 vægt-% af den aktive bestanddel af katalysatoren. Stort set omfatter disse bestanddele sådanne, der er anerkendt som methanolsyntesekatalysatorer , Fischer-Tropsch-syntesekatalysatorer og varianter deraf. Kommercielle methanolsyntese-katalysatorer omfatter metaller eller oxider af zink sammen med Cr^O^, eller af zink og kobber sammen med Cr2®3 eller aluminiumoxid, eller kendte modifikationer deraf. Faktisk vil syntesegas undergå konvertering til dannelse af reduktionsprodukter af carbonmonoxid, såsom alkoholer og carbonhydrider, ved fra ca. 149 °C τϋ ca. 454 °C og under et tryk på fra ca. 1 til 1000 atm. at blive ledet over et ret bredt sortiment af katalysatorer. De mest fremherskende typer af katalysatorer, der frembringer omdannelse, omfatter de metaller eller oxider, der udvælges fra grupperne IB, IIB, HIB, IVB, VIB og VIII, taget alene eller i indbyrdes kombination. De omfatter især metallerne eller oxiderne af zink, jem, cobalt, nikkel, ruthenium, thorium, rhodium og osmium. Katalysatorer af Fischer-Tropsch-typen baseret på jern, cobalt eller nikkel, og især jern, er særligt egnet til fremstilling af oxygenerede produkter og carbonhydrid-produkter, der har mindst én carbon-til-carbon-binding i strukturen. Med undtagelse af ruthenium indeholder alle kendte, i praksis anvendte syntesekatalysatorer kemiske og strukturelle promotorer. Disse promotorer omfatter kobber, Cr203, aluminiumoxid, jordalkalimetallerne, de sjældne jordarters metaller, og alkali. Alkali, f.eks. carbona-terne af gruppen IA i det periodiske system, og især kalium, er - 145460 7 af særlig vigtighed i forbindelse med jernkatalysatorer, fordi produktfordelingen derved i høj grad forbedres. Bærere som kiselgur ef-undertiden fordelagtige.The component characterized by catalytic activity for the reduction of carbon monoxide can be selected from any catalysts recognized in the art for the production of hydrocarbons, oxygenated products or mixtures thereof, from synthesis gas, and it is between 0.1 and 99% by weight. %, preferably between 1 and 80% by weight of the active ingredient of the catalyst. Mostly, these components include those recognized as methanol synthesis catalysts, Fischer-Tropsch synthesis catalysts and variants thereof. Commercial methanol synthesis catalysts include metals or oxides of zinc together with Cr 2 O 2, or of zinc and copper together with Cr 2® 3 or alumina, or known modifications thereof. In fact, synthesis gas will undergo conversion to form carbon monoxide reduction products, such as alcohols and hydrocarbons, at from ca. 149 ° C τϋ ca. 454 ° C and under a pressure of approx. 1 to 1000 atm. to be led over a fairly wide range of catalysts. The most prevalent types of catalysts that produce conversion include the metals or oxides selected from groups IB, IIB, HIB, IVB, VIB and VIII, taken alone or in combination. In particular, they include the metals or oxides of zinc, iron, cobalt, nickel, ruthenium, thorium, rhodium and osmium. Fischer-Tropsch type catalysts based on iron, cobalt or nickel, and especially iron, are particularly suitable for the production of oxygenated products and hydrocarbon products having at least one carbon-to-carbon bond in the structure. With the exception of ruthenium, all known synthetic catalysts used include chemical and structural promoters. These promoters include copper, Cr2 O3, alumina, alkaline earth metals, rare earth metals, and alkali. Alkali, e.g. the carbonates of group IA in the periodic table, and especially potassium, are of particular importance in connection with iron catalysts because the product distribution is thereby greatly improved. Carriers such as diatomaceous earth are sometimes advantageous.

Det bør bemærkes, at den bestanddel, der reducerer carbonmonoxid, kan tilvejebringes som elementært metal eller som tilsvarende metalforbindelser. Hyppigt vil der ved fremstillingen og anvendelsen af sådanne katalytiske stoffer foreligge en eller flere partielle eller fuldstændige omdannelser fra elementært metal til forbindelser eller vice versa. Som illustration kan det ånføres, at rent jern, der er ristet i en oxygen-atmosfære i nærværelse af tilsat aluminium og kaliumnitrater, tilvejebringer en blanding, der indeholder 97% Fe^O^, 2,4% A^O^, og 0,6% I^O med spormængder af svovl og carbon. Denne blanding katalyserer efter reduktion med hydrogen ved ca. 454°C konverteringen af syntesegas ved en temperatur i intervallet mellem 182 og 221°C, og ved forhøjede tryk op til ca. 20 atm., hvorved 65% af carbonmonoxidet reduceres til en blanding, der består af ca. 1/3 carbonhydrider på vægtbasis, hvilke koger i intervallet mellem 93 og ca. 360°C, og ca. 2/3 .oxygenerende produkter, for det meste alkoholer, med det samme kogepunktsinterval. Man kan anvende mangannoduler som katalysatorer.It should be noted that the carbon monoxide reducing component can be provided as elemental metal or as corresponding metal compounds. Frequently, in the manufacture and use of such catalytic agents, one or more partial or complete transformations from elemental metal to compounds or vice versa will occur. By way of illustration, it can be argued that pure iron shaken in an oxygen atmosphere in the presence of added aluminum and potassium nitrates provides a mixture containing 97% Fe 2 O 2, 2.4% A 2 O 2, and 0 , 6% I ^ O with trace amounts of sulfur and carbon. This mixture catalyzes after reduction with hydrogen at ca. 454 ° C the conversion of synthesis gas at a temperature in the range of 182 to 221 ° C, and at elevated pressures up to approx. 20 atm., Reducing 65% of the carbon monoxide to a mixture consisting of approx. 1/3 weight hydrocarbons boiling in the range of 93 to approx. 360 ° C, and approx. 2/3 .oxygenating products, mostly alcohols, with the same boiling range. Manganese modules can be used as catalysts.

Den krystallinske aluminiumsilicat-bestanddel af den heterogene katalysator er karakteriseret ved en porédimension, der er større end 5 Å , d.v.s. den er i stand til at absorberb paraffiner, der har en enkelt methylforgrening, samt normale paraffiner, og den har et forhold siliciumdioxid til aluminiumoxid, der mindet^·er 12. F.eks. er zeolit A med et forhold mellem siliciumdioxid og aluminium-oxid på 2,0 ikke anvendelig ifølge opfindelsen, og den har ikke' nogen poredimension, der er større end ca. 5 Å.The crystalline aluminum silicate component of the heterogeneous catalyst is characterized by a pore size greater than 5 Å, i.e. it is capable of absorbing paraffins having a single methyl branch as well as normal paraffins, and having a ratio of silica to alumina which is reduced to 12, e.g. For example, zeolite A having a silica to aluminum oxide ratio of 2.0 is not usable according to the invention, and it has no pore dimension greater than ca. 5 Å.

De krystallinske aluminiumsilicater, hvortil der her er henvist, og hvilke også er kendt som zeolitter, er karakteristiske ved en stiv, krystallinsk gitterværkstruktur, der består af SiO^ og A10^ tetraedre, der er tværbundet ved at dele oxygenatomer; en sådan struktur giver anledning til fremkomsten af præcist definerede porer. Der foreligger udvekslélige kationer, som kompenserer for den negative ladning på A10^ tetraedret.The crystalline aluminum silicates referred to herein, which are also known as zeolites, are characterized by a rigid, crystalline lattice structure consisting of SiO 2 and A 10 3 tetrahedrons crosslinked by sharing oxygen atoms; such a structure gives rise to the emergence of precisely defined pores. Exchangeable cations exist which compensate for the negative charge on the A10 tetrahedron.

8 1454608 145460

De foretrukne zeolitter, der er anvendelige ifølge opfindelsen, udvælges fra en for nyligt identificeret kategori af zeolitter med usædvanlige egenskaber, idet disse i sig selv er i stand til at katalysere omdannelsen af alifatiske carbonhydrider til aromatiske carbonhydrider i kommercielt ønskværdige udbytter.The preferred zeolites useful according to the invention are selected from a recently identified category of zeolites with unusual properties, in themselves capable of catalyzing the conversion of aliphatic hydrocarbons into aromatic hydrocarbons in commercially desirable yields.

De er også i almindelighed i høj grad effektive hvad angår alky-lering, isomerisering, disproportionering og andre reaktioner, der omfatter aromatiske carbonhydrider. I mange tilfælde har de usædvanligt lave indhold af aluminiumoxid, d.v.s. høje forhold mellem siliciumdioxid og aluminiumoxid, og de er meget aktive selv med forhold mellem siliciumdioxid og aluminiumoxid, der overskrider 30. Yderligere bibeholder de deres krystallinitet i lange tidsrum til trods for tilstedeværelsen af damp, selv ved sådanne høje temperaturer, som inducerer irreversibel nedbrydning af krystalgitteret af andre zeolitter, f.eks. sådanne af X- og A-typen. Når der dannes carbonholdige udfældninger, kan disse fjernes derfra ved brænding ved temperaturer, der er højere end de temperaturer, man sædvanligvis må holae sig til for at genoprette aktiviteten, skønt de i mange milieuer udviser meget lav koksdannende evne, der er ensbetydende med meget lange driftstider mellem regenerationer ved brænding.They are also generally highly effective in alkylation, isomerization, disproportionation and other reactions involving aromatic hydrocarbons. In many cases, they have exceptionally low alumina content, i.e. high silica-alumina ratios, and they are very active even with silica-alumina ratios exceeding 30. Furthermore, they maintain their crystallinity for long periods of time despite the presence of steam, even at such high temperatures that induce irreversible degradation of the crystal lattice of other zeolites, e.g. those of the X and A type. When carbonaceous precipitates are formed, they can be removed therefrom by burning at temperatures higher than the temperatures usually required to restore activity, although in many environments they exhibit very low coke-forming ability, which is very long operating times between regenerations by burning.

De forhold mellem siliciumdioxid og aluminiumoxid, hvortil der er henvist, har naturligvis kun relation til det tetraedrisk koordinerede silicium og aluminium. Skønt zeolitter med et forhold mellem siliciumdioxid og aluminiumoxid på mindst 12 er anvendelige, foretrækkes det at anvende zeolitter med forhold på mindst 30.Of course, the ratios of silica to alumina referred to relate only to the tetrahedrally coordinated silicon to aluminum. Although zeolites with a silica to alumina ratio of at least 12 are useful, it is preferred to use zeolites with ratios of at least 30.

Sådanne zeolitter erhverver efter aktivering en intrakrystallinsk adsorptionskapacitet for normal hexan, der er større end kapaciteten for vand, og benævnes "hydrofob": sådanne zeolitter an-·· vendes med fordel i henhold til opfindelsen.Such zeolites, upon activation, acquire an intracrystalline adsorption capacity for normal hexane greater than the water capacity and are referred to as "hydrophobic": such zeolites are advantageously used in accordance with the invention.

De zeolitter, der er anvendelige som katalysatorer ved fremgangsmåden ifølge opfindelsen, adsorberer frit normalt hexan og har en poredimension, der er større end 5Å. Hertil kommer, at deres struktur må tilvejebringe begrænset adgang for nogle større molekyler. Det er undertiden muligt på basis af en kendt krystalstruktur at bedømme, om der eksisterer en sådan begrænset adgang. Hvis f.eks. de eneste porevinduer i en krystal dannes af 8-leddede ringe af oxygenatomer, forhindres i det væsentlige adgangen af molekyler med større tværsnit end normalt hexan, og zeolitten er ikke af den ønskede type. Zeolitter med vinduer af 10-leddede ringe fore- 9 145460 ^rækkes, skønt overdreven forstoppelse eller poreblokering kan gøre disse zeolitter i det -væsentlige ikke effektive. Zeolitter med vinduer af tolvleddede ringe synes i almindelighed ikke at frembyde tilstrækkelig indsnævring til at frembringe de fordelagtige konverteringer, der ønskes i henhold til opfindelsen, skønt man kan udtænke strukturer, der på grund af poreblokering eller andre årsager kan være operative.The zeolites useful as catalysts in the process of the invention freely adsorb normally hexane and have a pore dimension greater than 5Å. In addition, their structure must provide limited access for some larger molecules. It is sometimes possible, on the basis of a known crystal structure, to judge whether such limited access exists. For example, the only pore windows in a crystal are formed by 8-membered rings of oxygen atoms, essentially the access of molecules of greater cross-section than normal hexane is prevented, and the zeolite is not of the desired type. Zeolites with windows of 10-membered rings are preferred, although excessive constipation or pore blocking may render these zeolites substantially ineffective. Zeolites with windows of twelve-membered rings generally do not appear to provide sufficient constriction to produce the advantageous conversions desired by the invention, although structures which may be operative due to pore blocking or other reasons may be devised.

I stedet for at forsøge at bedømme ud fra krystalstrukturen, om en zeolit besidder den nødvendige, begrænsede adgang eller ej kan man på simpel måde bestemme "indsnævringsindex" ved kontinuerligt at føre en blanding af lige vægtdele af hormal hexan og 3-methyl-pentan over en lille prøve, tilnærmelsesvis 1 g eller derunder, af zeolit under atmosfæretryk i henhold til den i det følgende angivne metode. En prøve af zeolitten, der foreligger i form af piller eller extrudat, knuses til en partikelstørrelse, der omtrentligt er lig partikelstørrelsen af groft sand, og monteres i et glasrør. Før prøvningen behandles zeolitten med en luftstrøm ved 538°C i mindst 15 minutter. Zeolitten bliver derpå skyllet med helium, og temperaturen bliver indstillet på en værdi mellem 288°C og 510°C til frembringelse af en total konvertering mellem 10 og 60%. Blandingen af carbonhydrider føres med en rumhastighed af det flydende materiale på 1 (d.v.s. 1 volumen af flydende carbonhydrid pr. volumen katalysator pr. time) over zeolitten med en heliumfortynding til frembringelse af et molforhold mellem helium og de totale carbonhydrider på 4:1. Efter 20 minutters drift udtager man en prøve af det udgåede materiale, hvilket analyseres, mest hensigtsmæssigt ved gaschromatografi, til bestemmelse af den fraktion af hver af de to carbonhydrider, der forbliver uændret.Instead of trying to judge from the crystal structure whether a zeolite possesses the necessary limited access or not, one can simply determine "narrowing index" by continuously passing a mixture of equal parts by weight of normal hexane and 3-methyl-pentane over a small sample, approximately 1 g or less, of zeolite under atmospheric pressure according to the method set forth below. A sample of the zeolite, in the form of pellets or extrudate, is crushed to a particle size approximately equal to the particle size of coarse sand and mounted in a glass tube. Prior to the test, the zeolite is treated with an air stream at 538 ° C for at least 15 minutes. The zeolite is then rinsed with helium and the temperature is set to a value between 288 ° C and 510 ° C to produce a total conversion between 10 and 60%. The hydrocarbon mixture is passed at a space velocity of the liquid material of 1 (i.e., 1 volume of liquid hydrocarbon per volume of catalyst per hour) over the zeolite with a helium dilution to produce a molar ratio of helium to the total hydrocarbons of 4: 1. After 20 minutes of operation, a sample of the discontinued material is taken, which is analyzed, most conveniently by gas chromatography, to determine the fraction of each of the two hydrocarbons remaining unchanged.

"Indsnævringsindex" defineres på følgende måde: - log10 (fraktion af n-hexan, som bliver tilbage) g log^-. (fraktion af 3-methylpentan, som bliver 10 tilbage)"Narrowing index" is defined as follows: - log10 (fraction of n-hexane remaining) g log ^ -. (fraction of 3-methylpentane remaining 10)

Ved "den fraktion af carbonhydrid, som bliver tilbage" forstås således den fraktion af carbonhydrid, som efter prøvens afslutning stadig ikke har reageret."The hydrocarbon fraction remaining" means the hydrocarbon fraction which has not yet reacted at the end of the test.

10 14546010 145460

Indsnævringsindex approximerer forholdet mellem krakningshastig-hedskonstanten for de to carbonhydrider. Krystaller, der er velegnet til opfindelsen, er sådanne, der gør brug af zeolit, der har et indsnævringsindex mellem 1,0 og 12,0. Værdier for indsnævringsindex (Cl) for nogle typiske zeolitter, herunder nogle, der ikke kan anvendes ifølge opfindelsen, er:The narrowing index approximates the ratio of the cracking rate constant of the two hydrocarbons. Crystals suitable for the invention are those using zeolite having a narrowing index between 1.0 and 12.0. Values of narrowing index (Cl) for some typical zeolites, including some that cannot be used according to the invention, are:

Zeolit C.I.Zeolite C.I.

ZSM-5 8,3 ZSM-11 8,7 TMA Offretit 3,7 ZSM-12 2ZSM-5 8.3 ZSM-11 8.7 TMA Offretit 3.7 ZSM-12 2

Beta 0,6 ZSM-4 0,5 H-Zeolon 0,5 REY 0,4Beta 0.6 ZSM-4 0.5 H-Zeolone 0.5 REY 0.4

Amorft siliciumdioxid-aluminiumoxid 0,6Amorphous silica-alumina 0.6

Erionit 38Erionite 38

Det må naturligvis erindres, at selve naturen af indexet og den metode, ved'hvis hjælp det bestemmes, tillader den mulighed, at en given zeolit kan undersøges under i nogen grad afvigende betingelser og derved have forskellige indsnævringsindices. Indsnævringsindex synes i nogen grad at variere med driftens intensitet (konvertering). Det kan derfor være muligt at udvælge prøvebetingelser for at etablere multiple indsnævringsindex for en særlig zeolit, der både kan ligge indenfor og udenfor det ovenfor definerede interval mellem 1 og 12. Man kan anvende enhver ' . zeolit, der udviser et indsnævringsindex i intervallet mellem 1 og 12 i forbindelse med en kombination af betingelser, der ligger indenfor omfanget af den ovenfor angivne procedure, uanset om den udviser et index udenfor dette interval ved andre kombinationer af betingelser af denne art.It should, of course, be borne in mind that the very nature of the index and the method by which it is determined allow it the possibility that a given zeolite may be examined under somewhat divergent conditions and thereby have different narrowing indices. The narrowing index seems to vary to some extent with the intensity of the operation (conversion). Therefore, it may be possible to select sample conditions to establish multiple narrowing indices for a particular zeolite, which may be both within and outside the range defined above between 1 and 12. Anyone can be used '. zeolite exhibiting a narrowing index in the range of 1 to 12 for a combination of conditions that is within the scope of the above procedure, regardless of whether it exhibits an index outside this range for other combinations of conditions of this kind.

Denne kategori af zeolitter er særligt godt eksemplificeret ved zeolitterne ZSM-5, ZSM-11, ZSM-12, ZSM-35 og ZSM-38. ZSM-5 er beskrevet i U.S.A. patent nr. 3,702,886; ZSM-11 i U.S.A. patent nr. 3,709,979; ZSM-12 i U.S.A. patent nr. 3,832,449 og ZSM-35 og 38 i hhv. U.S.A. pat. 4 016 245 og 4 046 859.This category of zeolites is particularly well exemplified by the zeolites ZSM-5, ZSM-11, ZSM-12, ZSM-35 and ZSM-38. ZSM-5 is described in U.S.A. Patent No. 3,702,886; ZSM-11 of U.S.A. Patent No. 3,709,979; ZSM-12 in U.S.A. U.S. Patent Nos. 3,832,449 and ZSM-35 and 38 respectively. U.S.A. patents 4,016,245 and 4,046,859.

145460 11145460 11

De specifikt beskrevne zeolitter er i det tilfælde, hvor de fremstilles i nærværelse af organiske kationer, i det væsentlige kata-' lytisk inaktive, muligvis fordi det intrakrystallinske frie rum : er optaget af organiske kationer fra den dannede opløsning. De kan aktiveres ved opvarmning i en indifferent atmosfære ved 538°C i en time, f.eks. efterfulgt ved basebytning med ammoniumsalte efterfulgt af calcinering ved 538°C i luft i mellem 15 minutter og 24 timer. Tilstedeværelsen af organiske kationer i den dannede opløsning behøver ikke at være absolut essentiel for dannelsen af denne specielle type af zeolit, men den synes at favorisere den. Naturlige zeolitter kan undertiden konverteres til denne type af zeolit ved forskellige aktiveringsmetoder og andre behandlinger, såsom basebytning, dampbehandling, aluminiumoxid-extraktion og calcinering, alene eller i kombination. Naturlige mineraler, der kan behandles på denne måde, omfatter ferrierit, brewsterit, stilbit, dachiardit, epistilbit, heulandit og chinoptilolit.The zeolites specifically described, in the case where they are prepared in the presence of organic cations, are essentially catalytically inactive, possibly because the intracrystalline free space is occupied by organic cations from the solution formed. They can be activated by heating in an inert atmosphere at 538 ° C for one hour, e.g. followed by base exchange with ammonium salts followed by calcination at 538 ° C in air for between 15 minutes and 24 hours. The presence of organic cations in the formed solution need not be absolutely essential for the formation of this particular type of zeolite, but it does seem to favor it. Natural zeolites can sometimes be converted to this type of zeolite by various activation methods and other treatments, such as base exchange, steam treatment, alumina extraction and calcination, alone or in combination. Natural minerals that can be treated in this way include ferrierite, brewsterite, stilbit, dachiardite, epistilite, heaandandite and quinoptilolite.

Zeolitterne kan anvendes i hydrogenformen, den metaludvekslede form eller ammoniumformen. De metalliske kationer, der kan være tilstede, omfatter enhver af kationeme af metallerne i gruppe I til VIII af det periodiske system, skønt metalliske kationer fra grt^jpe IA ikke bør være tilstede i større mængder.The zeolites can be used in the hydrogen form, the metal exchanged form or the ammonium form. The metallic cations that may be present include any of the cations of the metals in groups I through VIII of the periodic system, although metallic cations from grt Ipe should not be present in larger quantities.

De mest foretrukne zeolitter er de, hvis massefylde af krystalgitteret i den tørre hydrogenform har en værdi, der ikke væsentligt ligger under ca. 1,6 g/cm^. Den tørre massefylde for de kendte strukturer kan beregnes ud fra antallet af silicium- plus aluminiumatomer pr. 1000 Å^, sådan som det f.eks. er angivet på side 19 i artiklen om zeolitstruktur af W.M«· Meier i . "Proceedings of Conference on Molecular Sieves, London, April, 1967", publiceret af the Society of Chemical Industry, London, 1968. Når krystal- ^ strukturen er ukendt, kan massefylden af krystalgitteret bestemmes under anvendelse af klassiske pyknometerraetoder. F.eks. kan den bestemmes ved at neddykke den tørre hydrogenform af zeolitten i et organisk opløsningsmiddel, der ikke absorberes af krystallen.The most preferred zeolites are those whose density of the crystal lattice in the dry hydrogen form has a value which is not substantially less than ca. 1.6 g / cm 2 The dry density of the known structures can be calculated from the number of silicon plus aluminum atoms per 1000 Å ^, such as e.g. is listed on page 19 of the article on zeolite structure by W.M «· Meier i. "Proceedings of Conference on Molecular Sieves, London, April, 1967", published by the Society of Chemical Industry, London, 1968. When the crystal structure is unknown, the density of the crystal lattice can be determined using classical pycnometer methods. Eg. it can be determined by immersing the dry hydrogen form of the zeolite in an organic solvent not absorbed by the crystal.

Det er muligt, at den usædvanligt bibeholdte aktivitet og stabilitet af denne kategori af zeolitter har forbindelse med den høje 3 massefylde af det anioniske krystalgitter på ikke under ca. 1,6 g/am . Denne massefylde må naturligvis forbindes med en relativt lille 145460 12 mængde frit run inden i krystallen, hvilket kan forventes at resultere i mere stabile strukturer. Dette frie rum synes imidlertid at være vigtigt som stedet for katalytisk aktivitet.It is possible that the unusually retained activity and stability of this category of zeolites is associated with the high 3 density of the anionic crystal lattice of not less than ca. 1.6 g / am. Of course, this density must be associated with a relatively small amount of free run within the crystal, which can be expected to result in more stable structures. However, this free space seems to be important as the site of catalytic activity.

Massefylder af krystalgitre af nogle typiske zeolitter, herunder nogle, der ikke kan anvendes ifølge opfindelsen, eriDensity of crystal lattices of some typical zeolites, including some that cannot be used according to the invention, are

Zeolit Tomt volumen GittermassefvldeZeolite Empty volume Grid mass field

Ferrierit 0,28 cm^/cm^ 1,76 g/cm^Ferrierite 0.28 cm 2 / cm 2 1.76 g / cm 2

Mordenit 0,28 1,7 'ZSM-5,-11 0,29 1,79Mordenite 0.28 1.7 'ZSM-5, -11 0.29 1.79

Dachiardit 0,32 1,72 L 0,32 1,62Dachiardite 0.32 1.72 L 0.32 1.62

Clinoptilolit 0,34 1,71Clinoptilolite 0.34 1.71

Laumontit 0,34 1,77 ZSM-4 (omega) 0,38 1,65Laumontite 0.34 1.77 ZSM-4 (omega) 0.38 1.65

Heulandit 0,39 1,69 P 0,41 1,57Heulandite 0.39 1.69 P 0.41 1.57

Offretit 0,40 1,55Offset 0.40 1.55

Levynit 0,40 1,54Levynite 0.40 1.54

Erionit 0,35 1,51Erionite 0.35 1.51

Gmelinit 0,44 1,46Gmelinite 0.44 1.46

Chabazit 0,47 1,45 A 0,5 1,3 Y 0,48 1,27Chabazite 0.47 1.45 A 0.5 1.3 Y 0.48 1.27

De heterogene katalysatorer, der anvendes ved fremgangsmåden ifølge opfindelsen, kan fremstilles på forskellige måder. De to bestanddele kan separat fremstilles i form af katalysatorpartikler, såsom f.eks. tabletter eller extrudater, og simpelt hen blandes i de krævede forhold. Partikelstørrelsen af de individuelle partikler af bestanddelene kan være ret små, f.eks. mellem 20 og ca. 150yU, når det er hensigten, at de skal anvendes ved drift af fluidiseret masse; eller de kan være så store som op til ca. 1,27 cm i forbindelse med drift af en fixeret masse. De to bestanddele kan blandes som pulvere og tildannes til tabletter eller extrudat, idet hver tablet indeholder begge bestanddele i stort set de krævede forhold. Bindemidler, såsom lerarter, kan tilsættes til blandingen. Som et alternativ kan den bestanddel, der har katalytisk aktivitet med henblik på 23 145460 reduktionen af carbonmonoxldet, associeres med den krystallinske'-aluminiumsilicat-bestanddel ved hjælp af f.eks. imprægnering af zeolitten med en saltopløsning af det ønskede metal, efterfulgt ' af tørring og calcinering. Båseudveksling af den krystallinske aluminosilicatbestanddel kan også anvendes i visse udvalgte tilfælde til tilvejebringelse af indføring af SS del af eller hele i mængden af den bestanddel, der reducerer carbonmonoxldet. Andre -Temidler til tildannelse af den.grundige blanding omfatter bund-fældelse af den bestanddel, der reducerer carbonmonoxidet, i nærværelse af det krystallinske aluminiumsilicat, elektricitetsfri udfældning af metal på zeolitten, og udfældning af metal fra damp-fase. Forskellige kombinationer af de ovenfor angivne præparationer vil være nærliggende for sagkyndige på det område, der"omfatter katalysatorf remstilling, ligesom nødvendi gheden af at undgå v metoder, der har tendens til at reducere krystalliniteten åf det krystallinske aluminiumsilicat.The heterogeneous catalysts used in the process of the invention can be prepared in various ways. The two components can be prepared separately in the form of catalyst particles such as e.g. tablets or extruders, and simply mix in the required conditions. The particle size of the individual particles of the constituents can be quite small, e.g. between 20 and approx. 150 µU when intended to be used in operating fluidized mass; or they can be as large as up to approx. 1.27 cm for operating a fixed mass. The two constituents can be mixed as powders and formed into tablets or extrudate, each tablet containing both constituents in substantially the required ratio. Binders, such as clays, can be added to the mixture. Alternatively, the component having catalytic activity for the reduction of the carbon monoxide may be associated with the crystalline'-aluminum silicate component by e.g. impregnating the zeolite with a brine of the desired metal, followed by drying and calcination. Booth exchange of the crystalline aluminosilicate component may also be used in certain selected cases to provide the introduction of SS part or all of the amount of the carbon monoxide reducing agent. Other agents for forming the thorough mixture include precipitation of the carbon monoxide reducing agent in the presence of crystalline aluminum silicate, electricity-free precipitation of metal on the zeolite, and precipitation of vapor-phase metal. Various combinations of the above preparations will be apparent to those skilled in the art which "include catalyst preparation, as well as the need to avoid methods which tend to reduce the crystallinity of the crystalline aluminum silicate.

Det fremgår tydeligt af det foregående, åt de blandinger, der anvendes ved fremgangsmåden ifølge opfindelsen, kan have varierende ‘ blandingsgrad. ^ ‘It is clear from the foregoing that the blends used in the process of the invention may have varying degrees of blending. ^ '

Fra en lavere værdi for blandingsgraden kan denne variere indtil en øvre værdi svarende til at man i én kuglemølle sammen kan behand-’ le krystallinske partikler af aluminosilicat med en partikelstørrel-se på ca. 0,lyU med kolloidalt jernoxid med en lignende partikelstørrelse efterfulgt af tablettering. I dette tilfælde kan i det væsentlige alle positioner indenfor mindst én af bestanddelene ligge indenfor ikke over ca. 0,05^u af noget af den anden bestanddel. Dette eksemplificerer den højeste grad af blanding, som er teoretisk mulig.From a lower value for the degree of mixing, this can vary up to an upper value corresponding to the treatment of crystalline aluminosilicate crystalline particles with a particle size of approx. 0, lyU with colloidal iron oxide having a similar particle size followed by tabletting. In this case, substantially all positions within at least one of the components may be within not more than about. 0.05 ^ u of any of the other constituent. This exemplifies the highest degree of mixing which is theoretically possible.

Ved fremgangsmåden ifølge opfindelsen bringer man syntesegas i kontakt med den heterogene katalysator ved en temperatur på fra ca. 232 til 538°C, fortrinsvis mellem 260 og 454°C, under et tryk på fra 1 til 1000 atm., fortrinsvis fra 3 til 200 atm., og ved en rumhastighed på volumenbasis på fra ca. 500 til 50.000 volumina af gas (STP) pr. volumen katalysator pr. time, idet man anvender en ækvivalent kontakttid, hvis man gør brug af en fluidi-seret masse. Den produktstrøm, der indeholder carbonhydrider, ikke omsatte gasser og damp, kan afkøles, og carbonhydriderne kan udvindes under anvendelse af enhver kendt metode. De udvundne car- 14 145460 bonhydrider kan separeres yderligere ved destillation eller andre midler med henblik på udvinding af et eller flere produkter, såsom benzin med højt octantal, propanbrændstof, benzen, toluen, xylener eller andre aromatiske carbonhydrider.In the process according to the invention, synthesis gas is contacted with the heterogeneous catalyst at a temperature of from ca. 232 to 538 ° C, preferably between 260 and 454 ° C, under a pressure of from 1 to 1000 atm., Preferably from 3 to 200 atm., And at a volume rate of volume of about 500 to 50,000 volumes of gas (STP) per catalyst volume per using an equivalent contact time if using a fluidized mass. The product stream containing hydrocarbons, unreacted gases and vapors can be cooled and the hydrocarbons can be recovered using any known method. The recovered hydrocarbons can be further separated by distillation or other means for the extraction of one or more products, such as high octane gasoline, propane fuel, benzene, toluene, xylenes or other aromatic hydrocarbons.

Opfindelsen skal illustreres ved de i de følgende eksempler viste udførelsesformer.The invention is illustrated by the embodiments shown in the following examples.

EKSEMPEL 1EXAMPLE 1

Thoriumdioxid blev fremstillet i overensstemmelse med metoden udarbejdet af Pichler og Ziesecke og beskrevet i "The Isosynthesis", U.S. Bureau of Mines Bulletin, 488 (1950), der i det væsentlige involverede, bundfældeisen af Th(NO^)^ opløsninger med NagCO^-opløs-ninger efterfulgt af filtrering, vaskning og tørring ved 100°C.Thorium dioxide was prepared according to the method prepared by Pichler and Ziesecke and described in "The Isosynthesis", U.S. Bureau of Mines Bulletin, 488 (1950), substantially involving the precipitate of Th (NO 2) 3 solutions with NagCO 2 solutions followed by filtration, washing and drying at 100 ° C.

Man fremstillede en sammensat katalysator ved i en kuglemølle at behandle lige vægtdele af NH^ZSM-5 og tørret gel af thoriumdioxid, at tablettere og at calcinere ved 538 °C i 10 timer. Man udførte tre forsøg, hvert ved 427 °C, 85,41 kg/cm^ absolut, og med en blanding af hydrogen og carbonmonoxid med et forhold E^/CO på 1,0. Det første og andet forsøg omfattede thoriumoxid og hzsm-5, der hver blev anvendt separat, mens det tredie forsøg gjorde brug af en heterogen katalysator, der indeholdt både thoriumoxid og HZSM-5.A composite catalyst was prepared by treating, in a ball mill, equal parts by weight of NH4 ZSM-5 and dried gel of thorium dioxide, tablets and calcining at 538 ° C for 10 hours. Three tests were carried out, each at 427 ° C, 85.41 kg / cm 2 absolute, and with a mixture of hydrogen and carbon monoxide having a ratio E 2 / CO of 1.0. The first and second experiments included thorium oxide and hzsm-5, each used separately, while the third experiment used a heterogeneous catalyst containing both thorium oxide and HZSM-5.

Resultaterne er sammenfattet i tabel 1.The results are summarized in Table 1.

TABEL 1 15 165460 (A) (B) (C)TABLE 1 165460 (A) (B) (C)

Katalysator ThOp HZSM-5 Th02 Plus ΑΙθπθ Alene hzsm~5Catalyst ThOp HZSM-5 Th02 Plus ΑΙθπθ Alone hzsm ~ 5

Kontakttid - sekunder (linder reaktionsbetingelser) 15 15 15Contact time - seconds (relieves reaction conditions) 15 15 15

Konvertering, vægt-# CO 5,3 1 22,4 ' ;- H2 2,6 1 15,2 Vægt-# carbonhvdrider i totale, fra reaktionen udgående materialer 0,6 0,2 5,5 • ···'*· :^r !Conversion, weight # CO 5.3 1 22.4 '- H2 2.6 1 15.2 Total weight # carbon dioxide from the reaction materials 0.6 0.2 5.5 • ···' * ·: ^ R!

Carbonhydridfordeling (vægt-#) ’Hydrocarbon distribution (weight #) '

Methan 41,0 39,6 17,3 .Methane 41.0 39.6 17.3.

C2-C4 carbonhydrider 58,6 60,4 73,8 C5 + - ,..Q*4 ___8*2 100,0 100,0 100,0C2-C4 hydrocarbons 58.6 60.4 73.8 C5 + -, .. Q * 4 ___ 8 * 2 100.0 100.0 100.0

Aromater 1 C,-+. vægt-# spor spor 41,6 EKSEMPEL 2Aromatics 1 C, - +. weight # trace track 41.6 EXAMPLE 2

Et ZnO, der var understøttet på Al203, blev fremstillet på basis af en kommerciel kilde, og det blev anvendt som den bestanddel, der reducerede carbonmonoxidet. Det indeholdt 24 vægt'-# ZnO« Man anvendte HZSM-5 som den sure, krystallinske aluminosilicat-be-standdel.A ZnO supported on Al 2 O 3 was prepared from a commercial source and used as the component which reduced the carbon monoxide. It contained 24% by weight of HZSM-5 as the acidic crystalline aluminosilicate ingredient.

Den heterogene, sammensatte katalysator blev fremstillet ved i . en kuglemølle samtidigt at behandle fire dele af HZSM-5 og en del af katalysatoren Zn0/Al203, efterfulgt af tablettering. Man gennemførte to forsøg, begge ved 516°C, 52,7 kg/cm^ absolut og med .. en blanding af hydrogen og carbonmonoxid med et forhold H2/C0 på 4. Det første forsøg gjorde brug af katalysatoren Zn0/Al20^ alene, mens det andet forsøg gjorde brug af en sammensat katalysator, der indeholdt både ZnO/Al2o3 og HZSM-5 katalysatorerne.The heterogeneous composite catalyst was prepared at i. a ball mill simultaneously treating four parts of HZSM-5 and one part of the catalyst Zn0 / Al2O3, followed by tabletting. Two experiments were carried out, both at 516 ° C, 52.7 kg / cm 2 absolute and with a mixture of hydrogen and carbon monoxide having a ratio H2 / C0 of 4. The first experiment used the catalyst Zn0 / Al2O4 alone , while the second experiment used a composite catalyst containing both the ZnO / Al2O3 and the HZSM-5 catalysts.

Resultaterne er vist i tabel 2.The results are shown in Table 2.

TABEL 2 145460 16 (D) (E)TABLE 2 145460 16 (D) (E)

Katalysator Zn0/Alo0, 20% Zn0/Alo0^ plusCatalyst Zn0 / Alo0, 20% Zn0 / Alo0 ^ plus

Alene2 “5™*Alone2 “5 ™ *

Kontakttid - sekunder (under reaktionsbetingelser) 25 25Contact time - seconds (under reaction conditions) 25

Konvertering, vægt-%Conversion,% by weight

Co 32,0 6,7 H2 5,4 3,4 Vægt-% carbonhydrider i totale, fra reaktionen udgåede materialer 0,2 1,0Co 32.0 6.7 H2 5.4 3.4% by weight of total hydrocarbons derived from the reaction 0.2 1.0

Carbonhvdridfordeling (vægt-90Hydrocarbon distribution (weight-90

Methan 100,0 11,4 C2-C4 carbonhydrider - 42,9 C5+ I_ *5.7 100,0 100,0Methane 100.0 11.4 C2-C4 hydrocarbons - 42.9 C5 + I_ * 5.7 100.0 100.0

Aromater i Cr-+ (vægt-%) ingen 71,8 EKSEMPEL 3Aromatics in Cr- + (wt%) None 71.8 EXAMPLE 3

Man fremstillede en methanolsyntesekatalysator, der indeholdt følgende bestanddele i følgende vægtprocenter: kobber - 54,55, zink -27,27, chrom - 9,09, og lanthan - 9,09 på oxygenfri basis. Man fremstillede derpå en sammensat katalysator ud fra lige dele af denne bestanddel og HZSM-5, under anvendelse af 5% grafit som p bindemiddel. Man udførte to forsøg, hvert ved 316°C, 52,7 kg/cm absolut, idet man som udgangsmateriale anvendte en blanding af hydrogen og carbonmonoxid med et forhold H^/CO på 2, og et resume heraf er vist i tabel 3.A methanol synthesis catalyst was prepared containing the following components in the following weight percentages: copper - 54.55, zinc -27.27, chromium - 9.09, and lanthanum - 9.09 on an oxygen free basis. A composite catalyst was then prepared from equal parts of this component and HZSM-5, using 5% graphite as a p binder. Two experiments were performed, each at 316 ° C, 52.7 kg / cm absolute, using as a starting material a mixture of hydrogen and carbon monoxide with a ratio of H 2 / CO of 2, and a summary thereof is shown in Table 3.

TABEL 3 (F) (G)TABLE 3 (F) (G)

Katalysator Methanol-type Methanol-type plus alene HZSM-5 blanding 17 U5A60Catalyst Methanol-type Methanol-type plus HZSM-5 mixture 17 U5A60 alone

VV

Rumhastighed på methanol- katalysatorkomponent 5825 6764 ^ (cm^ syntesegas/g af methanol-katalysator/time) CO konvertering, vægt-# 24 34 Vægt-% i vandfrit produktSpace velocity of methanol catalyst component 5825 6764 (cm 2 synthesis gas / g of methanol catalyst / hour) CO conversion, weight # 24 34% by weight in anhydrous product

Me than 0,7 1,1 C2-C4 carbonhydrider 1,0 5,7 C^+ carbonhydrider 1,0 1,8 2,7 8,6Me than 0.7 1.1 C 2 -C 4 hydrocarbons 1.0 5.7 C 2 + hydrocarbons 1.0 1.8 2.7 8.6

Som vist er kontakttideme (de reciprokke værdier af rumhastighederne.). i forhold til methanolkatalysatorbestanddelen meget ensartede-i de to forsøg, idet værdien er lidt lavere med den sammensatte katalysator. -As shown, the contact times (the reciprocal values of space velocities.). relative to the methanol catalyst component very similarly - in the two experiments, the value being slightly lower with the composite catalyst. -

Den sammensatte katalysator udviser en meget større produktion af carbonhydrider, især carbonhydrider, hvis carbonantal er større end methans, end selve den bestanddel, der reducerer carbonmonoxid.The composite catalyst exhibits a much greater production of hydrocarbons, especially hydrocarbons whose carbon numbers are greater than methane, than the carbon monoxide reducing agent itself.

EKSEMPEL 4EXAMPLE 4

Den bestanddel, der reducerer carbonmonoxid, var en kommerciel ’’ ammoniumsyntesekatalysator af jemoxidtypen indeholdende små mængder af K-, Ca- og Al-promotorer. Zeolit-bestanddelen indeholdt 65% HZSM-5 og 35% aluminiumoxid-bindemiddfel. Den heterogene, sammensatte katalysator indeholdt 75% af jernbestanddelen og 25% af zeolit-bestanddelen, og den blev fremstillet ved behandling i kuglemølle af bestanddelene og ved derpå at tablettere det resul- . · terende pulver.The carbon monoxide reducing component was a commercial iron oxide type ammonium synthesis catalyst containing small amounts of K, Ca and Al promoters. The zeolite component contained 65% HZSM-5 and 35% alumina binder defect. The heterogeneous composite catalyst contained 75% of the iron component and 25% of the zeolite component, and it was prepared by treatment in a ball mill of the components and then tableting the resultant. · Corrosive powder.

pp

Der blev udført tre forsøg ved 371°C, 18,6 kg/cm absolut og med en blanding af hydrogen og carbonmonoxid med et forhold Hg/CO på 1,0.Three tests were performed at 371 ° C, 18.6 kg / cm absolute and with a mixture of hydrogen and carbon monoxide having a ratio Hg / CO of 1.0.

Resultaterne er sammenstillet i tabel 4.The results are summarized in Table 4.

18 14546018 145460

Katalysator (H) (j) (K) - Fe Fe/HZSM-5 Fe+HZSM-5Catalyst (H) (j) (K) - Fe Fe / HZSM-5 Fe + HZSM-5

Komponenter ikke sammensat blandet. Kompo- katalysator, nenter i separa- enkelt reak-te reaktionszo- tionszone ner i serieComponents not compound mixed. Compact catalytic converter in separate reactive reaction zone down in series

Kontakttid - sekunder 15 30 15 (under reaktionsbetingelser)_Contact time - seconds 15 30 15 (under reaction conditions) _

Konvertering, vægt-% CO 95,5 96,9 98,4 H2 67,8 76,9 72,5 Vægt-% carbonhydrider i totale fra reaktionen udgåede materialer 22,6 25,6 25,5Conversion, wt% CO 95.5 96.9 98.4 H2 67.8 76.9 72.5 wt% total hydrocarbons from the reaction materials 22.6 25.6 25.5

Carbonhydridfordeling (vægt-%J_Hydrocarbon distribution (wt% J

Methan 44,6 50,1 52,6 C0-C, carbonhy- H drider 50,1 41,1 41,4 C5+ 5,5 8,8 6,0Methane 44.6 50.1 52.6 CO-C, hydrocarbons 50.1 41.1 41.4 C5 + 5.5 8.8 6.0

Aromater i C-+. vægt-% 1,9 2,3 15,0Aromatics in C +. weight% 1.9 2.3 15.0

Forsøg H illustrerer selektiviteten af jernkomponenten i fravær af HZSM-5; C + carbonhydriderne indeholder kun 1,9% aromater. I for- 5 søg (J) indførte man en reaktionszone indeholdende HZSM-5 efter reaktionszonen indeholdende jernkatalysatoren. Det fremgår af det foregående, at selektiviteten for aromater ikke var ændret i signifikant grad. I forsøg (K) frembragte imidlertid den grundige blanding af HZSM-5 med 'jernbestanddelen omkring en syvfoldig forøgelse af selektiviteten for aromater.Experiment H illustrates the selectivity of the iron component in the absence of HZSM-5; The C + hydrocarbons contain only 1.9% aromatics. In experiment (J), a reaction zone containing HZSM-5 was introduced after the reaction zone containing the iron catalyst. It is clear from the foregoing that the selectivity for aromatics had not changed significantly. In experiment (K), however, the thorough mixing of HZSM-5 with the iron component produced about a sevenfold increase in the selectivity for aromatics.

EKSEMPEL 5EXAMPLE 5

Katalysatoren i dette eksempel blev fremstillet ved at imprægnere NH4ZSM-5, der indeholder 35% aluminiumoxid-bindemiddel, med en opløsning af Fe(NO^)^, ved at tørre katalysatoren og ved at calcinere ved 538°C i 10 timer. Den færdige katalysator indeholdt 3% jern. Syntesegas (Ho/C0 = 1) blev omsat over denne katalysator ved 371°CThe catalyst in this example was prepared by impregnating NH 4 ZSM-5, containing 35% alumina binder, with a solution of Fe (NO 2) 2, by drying the catalyst and by calcining at 538 ° C for 10 hours. The finished catalyst contained 3% iron. Synthesis gas (Ho / CO = 1) was reacted over this catalyst at 371 ° C

36,2 kg/cm absolut og en kontakttid på 30 sekunder, hvorved der fremkom følgende konverteringer og produkter.36.2 kg / cm absolute and a contact time of 30 seconds, resulting in the following conversions and products.

19 145460 TABEL 519 TABLE 5

Katalysator FeHZSM-5Catalyst FeHZSM-5

Kontakttid. - sekunder (un- der reaktionsbetingelser) 30Contact time. - seconds (under reaction conditions) 30

Konvertering, vægt-% co 19,7 H2 12,0 ^ Vægt-% carbonhydrider i totale fra reaktionen udgåede materialer 8,1Conversion, wt% co 19.7 H2 12.0 ^ wt% total hydrocarbons emitted from the reaction 8.1

Carbonhvdridfordellng (yægt-%)Hydrocarbon distribution (weight%)

Me than 33,4 ----- C2-C4 carbonhydrider 47,5 C5+ 19,1Me than 33.4 ----- C2-C4 hydrocarbons 47.5 C5 + 19.1

Aromater i C^+, vægt-% 24,6 Λ EKSEMPEL 6Aromatics in C₂ +, wt% 24.6 Λ Example 6

Katalysatoren i dette eksempel var en grundig blanding af 57 >4% ilmenitsand (Fe0*Ti02), 21,3% HZSM-5 og 21,3% aluminiumoxid-binde** middel. Syntesegas (H2/C0 = 1) blev omsat over denne katalysator' ved 371°C og 18,6 kg/cm2 absolut og en kontakttid på 10 sekunder, hvorved der fremkom følgende konverteringer og produkter. y/ '‘Γ ..."i TABEL 6 20 146460The catalyst in this example was a thorough mixture of 57> 4% ilmenite sand (FeO * TiO2), 21.3% HZSM-5 and 21.3% alumina binder **. Synthesis gas (H2 / CO = 1) was reacted over this catalyst at 371 ° C and 18.6 kg / cm 2 absolute and a contact time of 10 seconds to give the following conversions and products. y / '"Γ ..." i TABLE 6 20 146460

Katalysator Ilmenite + HZSM-5Catalyst Ilmenite + HZSM-5

Kontakttid - sekunder (un- der reaktionsbetingelser) 10Contact time - seconds (under reaction conditions) 10

Konvertering, vægt-% CO 62,3 H2 48,3 Vægt-% carbonhydrider i totale fra reaktionen udgåede materialer 21,5Conversion, wt% CO 62.3 H2 48.3 wt% total hydrocarbons from the reaction materials 21.5

Carbonhydridfordeling (vægt-%)Hydrocarbon distribution (wt%)

Methan 29,2 C2-C4 carbonhydrider 59,1 C5+ 11,7Methane 29.2 C2-C4 hydrocarbons 59.1 C5 + 11.7

Aromater i C^+, vægt-% 29,9 EKSEMPEL 7Aromatics in C₂ +, wt% 29.9 EXAMPLE 7

Katalysatoren i dette eksempel var en grundig blanding af 41,2% magnetit (Fe^O^), 29,4% HZSM-5 og 29,4% aluminiumoxid-bindemid-del-. Syntesegas (Η,,/CO = 1) blev omsat over denne katalysator ved 371°C,. 18,6 kg/cm absolut og en kontakttid på 10 sekunder, hvorved der fremkom følgende konverteringer og produkter: TABEL 7The catalyst in this example was a thorough mixture of 41.2% magnetite (Fe₂O₂), 29.4% HZSM-5 and 29.4% alumina binder part. Synthesis gas (ΗΗ / CO = 1) was reacted over this catalyst at 371 ° C. 18.6 kg / cm absolute and a contact time of 10 seconds, resulting in the following conversions and products: TABLE 7

Katalysator Magnetit + HZSM-5Catalyst Magnetite + HZSM-5

Kontakttid - sekunder (under reaktionsbetingelser) 10Contact time - seconds (under reaction conditions) 10

Konvertering, vægt-% CO 41,8 H2 37,6 Vægt-% carbonhydrider i totale fra reaktionen udgåede materialer 16,6Conversion, wt% CO 41.8 H2 37.6 wt% total hydrocarbons from the reaction materials 16.6

Carbonhydridfordeling (vægt-%)Hydrocarbon distribution (wt%)

Methan 31,0 C2“C4 carb°^ydrider 55,0 c5+ 14,0Methane 31.0 C2 + C4 carbides 55.0 c5 + 14.0

Aromater i C,-+, vægt-% 1919 2i U5460 EKSEMPEL 8Aromatics in C, - +, wt% 1919 2i U5460 EXAMPLE 8

Katalysatoren i dette eksempel var en grundig blanding af 41,2% øemcarbid, 29,4# HZSM-5 og 29,4% aluminiumoxid-bindemiddel. Syntesegas (H_/CO=l) blev omsat over den katalysator ved 371 °C, 18,6 2 ^ kg/cm absolut og en kontakttid på 10 sekunder, hvorved der fremkom følgende konverteringer og produkter.The catalyst in this example was a thorough mixture of 41.2% edible carbide, 29.4 # HZSM-5 and 29.4% alumina binder. Synthesis gas (H 2 / CO = 1) was reacted over the catalyst at 371 ° C, 18.6 2 ^ kg / cm absolute and a contact time of 10 seconds to give the following conversions and products.

TABEL 8TABLE 8

Katalysator jerncarbid + HZSM-5Catalyst iron carbide + HZSM-5

Kontakttid - sekunder (un- der reaktionsbetingelser) 10Contact time - seconds (under reaction conditions) 10

Konvertering, vægt-% CO 11,7 h2 11,1 Vægt-% carbonhydrider i totale fra reaktionen udgåede materialer 4,5Conversion, wt% CO 11.7 h2 11.1 wt% total hydrocarbons emitted from the reaction 4.5

Carbonhydridfordeling (vægt-%)Hydrocarbon distribution (wt%)

Methan 40,8 C9-Ca carbonhydrider 50,1 V 9,1Methane 40.8 C9-Ca hydrocarbons 50.1 V 9.1

Ar omater i C^+, vægt-% 6,2 ; . .i EKSEMPEL 9Ar omates in C₂ +, wt% 6.2; . EXAMPLE 9

Katalysatoren i dette eksempel· blev fremstillet ved at imprægnere- > et extrudat omfattende ZSM-5 krystallinsk zeolit indeholdende ca* 35% aluminiumoxid som bindemiddel med en opløsning af jernnitrat [Fe(NO^)^] efterfulgt af tørring og reduktion med hydrogen ved en temperatur på ca. 510°C. Der frembragtes tre forskellige niveauer af jernimprægnering, som angivet i tabel 10. Syntesegas (H2/C0 =r 2) blev ført i kontakt med katalysatoren ved en temperatur af <316eC .ν': p og et tryk af 14,1 kg/cm manometertryk. De opnåede resultater, er som følger: 22 145460 TABEL 9The catalyst in this example was prepared by impregnating -> an extrudate comprising ZSM-5 crystalline zeolite containing about * 35% alumina as a binder with a solution of iron nitrate [Fe (NO temperature of approx. 510 ° C. Three different levels of iron impregnation were produced, as indicated in Table 10. Synthesis gas (H2 / C0 = r 2) was contacted with the catalyst at a temperature of <316 ° C .ν ': p and a pressure of 14.1 kg / cm gauge pressure. The results obtained are as follows: TABLE 9

Virkning af Fe-koncentration "Imprægneret" ZSM-5 extrudatEffect of Fe Concentration "Impregnated" ZSM-5 extrudate

5l6°C. Sedimentation af massen. 14,1 kg/cm2, 2 H_/C0, 3300 CHSV5l6 ° C. Sedimentation of the pulp. 14.1 kg / cm 2, 2 H_ / CO, 3300 CHSV

Jern, vægt-% 8,6 14,8 21,^ CO konvertering, vægt-?6 43 65 83 Vægt-% C konverteret til: C02 30 35 36Iron, weight% 8.6 14.8 21, ^ CO conversion, weight 6 43 65 83 Weight% C converted to: CO 30 30 36

Carbonhydrid 70 65 64Hydrocarbon 70 65 64

Carbonhydridsammensaetning, vægt-% G1 38 42 38 C2 16 16 14 C3 9 8 7 C4 10 8 8 C5 4 5 6Hydrocarbon composition, weight% G1 38 42 38 C2 16 16 14 C3 9 8 7 C4 10 8 8 C5 4 5 6

Cfi+ 23 21 27 100 100 100 Cg+ aromater, vægt-Jé 46 42 34 EKSEMPEL 10Cfi + 23 21 27 100 100 100 Cg + aromatics, weight-I 46 42 34 EXAMPLE 10

De katalysatorer, der anvendtes i dette eksempel, omfattede en blanding af ZSM-5 aluminiumoxid-extrudat (forhold 65/35) med en methanolsyntesekatalysator på kobberbasis. I forsøgene 912-1 og -2 var volumenforholdet ZSM-5/Cu syntesekatalysator 2.9/2, og i forsøgene 913-3 til -5 var volumenforholdet ZSM-5/Cu syntesekatalysator. 4/1. ZSM-5 aluminiumoxid extrudatet var også blandet med en ammoniaksyntesekatalysator på jernbasis i et 4/1 forhold og anvendt som katalysatoren i forsøgene 903-1, -2 og -6. De anvendte driftsforhold og de resultater, der opnåedes i de pågældende forsøg, er angivet i den følgende tabel 10.The catalysts used in this example included a mixture of ZSM-5 alumina extrudate (ratio 65/35) with a copper-based methanol synthesis catalyst. In experiments 912-1 and -2, the volume ratio of ZSM-5 / Cu synthesis catalyst was 2.9 / 2, and in experiments 913-3 to -5, the volume ratio was ZSM-5 / Cu synthesis catalyst. 1.4. The ZSM-5 alumina extrudate was also mixed with an iron-based ammonia synthesis catalyst in a 4/1 ratio and used as the catalyst in experiments 903-1, -2 and -6. The operating conditions used and the results obtained in the tests concerned are given in the following Table 10.

h 23 U5460 oh 23 U5460 o

I PI P

CO cd ra •h > β H 10CO cd ra • h> β H 10

0 CO LTV0 CO LTV

i-p ·. t>-i-p ·. t> -

3 crt O i—J ^«O3 crt O i — J ^ «O

uj jy O CT\ H 4 4 W m in (B (D cO O O H04IArlrl Iuj u O CT \ H 4 4 W m in (B (D cO O O H04IArlrl I

1 g) m C\l C\J CM CT\ <1* m 10 HH HH mOCM1 g) m C \ l C \ J CM CT \ <1 * m 10 HH HH mOCM

0 ra m mm H0 ra m mm H

ft CDft CD

-P-P

S 1X1S 1X1

WHO OiØH <f CM m <4 CM 00 N N ® ffl ri WOONHH IWHO OiØH <f CM m <4 CM 00 N N ® ffl ri WOONHH I

\ O O CM m CM CF* m m vø HHHH <r O m\ O O CM m CM CF * m m v HHHH <r O m

<4 CM 0 mm H<4 CM 0 mm H

in CMin CM

1 ^0 IE{ * CQ O H . .1 ^ 0 IE {* CQ O H. .

N CM ,N CM,

HH ^4- IHH ^ 4- I

m 4C\I 4 H CO IT\ CM 00 OD ΙΛ Ol CO O WOHNHHKJm 4C \ I 4 H CO IT \ CM 00 OD ΙΛ Ol CO O WOHNHHKJ

cMm cm σ«ιη m iø h hh <1-010 o mm h cs ra o ^ .2 o m m m iø <4 m 10 σι σι m oowcoMn 1cMm cm σ «ιη m iø h hh <1-010 o mm h cs ra o ^ .2 o m m m iø <4 m 10 σι σι m oowcoMn 1

rj l O CM CM in H <4 in HHHH mOmCMCMHrj l O CM CM in H <4 in HHHH mOmCMCMH

& O CM CM H& O CM CM H

rap iø mm 1 cd 00 <M ^ 0 >► d.CMOO'ØCM'0<4CMOCO CØ <4 <4CO0)0\CM®OHCF} ^*5 1rap mm mm 1 cd 00 <M ^ 0> ► d.CMOO'ØCM'0 <4CMOCO CØ <4 <4CO0) 0 \ CM®OHCF} ^ * 5 1

d H <4 inH H CM CM CM O-CM 4 if> HHHH CM O m CM CM Hd H <4 inH H CM CM CM O-CM 4 if> HHHH CM O m CM CM H

3 cd cm mmm h Λ-p h P cd w ^ mco o h o co mm <4 η h is o o <4 cm cm o- i 1 cm ni cm oo m <4 m cmnhh niommmHm o a mm η h h o3 cd cm mmm h Λ-p h P cd w ^ mco o h o co mm <4 η h is o o <4 cm cm o- i 1 cm ni cm oo m <4 m cmnhh niommmHm o a mm η h h o

HH

<! H 10 CQ<! H 10 CQ

pj * * * ^ moi-imoom OHm-4- mm m m m n- <4 ooc^-<4cmcm ipj * * * ^ moi-imoom OHm-4 mm m m m n- <4 ooc ^ - <4cmcm i

”oH-?3?iØ CM <4 H <4 m HCMHH CM O mCM CM H”OH-? 3? IØ CM <4 H <4 m HCMHH CM O mCM CM H

m cm iø m miø hm cm iø m miø h

I \ CMI \ CM

S σ> CQ · iø ,S σ> CQ · iø,

N CM H m CM CO HN CM H m CM CO H

K 4 0ricø ooo- ri o* h co σ» h m<fø)H<f; ø)OcncrioomcMK 4 0ricø ooo- ri o * h co σ »h m <ø) H <f; E) OcncrioomcM

H<1- HHO I m <4 rn Η CM CM Η HOH HH <1- HHO I m <4 rn Η CM CM Η HOH H

<4 m miø cn h cr><4 m miø cn h cr>

CM HCM H

β *---N ø rj · ta rap ra cd cd cd Θ Pd a f s i "s h t J. iT a £ *=β * --- N ø rj · ta rap ra cd cd d Pd a f s i "s h t J. iT a £ * =

dm HP W) b0 P ^ Pdm HP W) b0 P ^ P

u å s s 3 g s s i r s O CQ P β 2 β CD ^ > £ PN β 03 ft © „. ·> - P TJ g ® co w cDaa^w>5pp-H5 * n ra β©ΡΗ~Γββ© β jS +βu å s s 3 g s s i r s O CQ P β 2 β CD ^> £ PN β 03 ft © „. ·> - P TJ g ® co w cDaa ^ w> 5pp-H5 * n ra β © ΡΗ ~ Γββ © β jS + β

>, - η β a p rS η η > Ti 2 ,v°- S>, - η β a p rS η η> Ti 2, v ° - S

H t) cm Ό β β β β β fe’td O-PH t) cm Ό β β β β β fe netd O-P

cd Ha ø©cd - _ © © o fl-H , _ Hcd Ha ø © cd - _ © © o fl-H, _ H

P O O CQO> Ό P +3 Μ βΰ P - £> .·P O O CQO> Ό P +3 Μ βΰ P - £>. ·

© Λ "'s. Η >Γ_| β β o _ Η B© Λ "'s. Η> Γ_ | β β o _ Η B

Μ β bO O P £ © © O P >, , β P RΜ β bO O P £ © © O P>,, β P R

ολ! <3 ta >> οι β r; ~ 2 . „ «η m · d d ^ o ti c h cm m <4 m iø p § «> h . iaaooiooo^)I:^^,u00 S ωβ© .^!>>ft co 3 Λ Λ f 0 s frgra H >->CQCQg β^ bo U O OP H ^ ΟβΙίΚ© °Η°ΜΓνΙ,® © irrrS^r0 > EhO^Eh ft <1 O W > U <OHflft ^ - 24 145460 EKSEMPEL 11ολ! <3 ta >> οι β r; ~ 2. „« Η m · d d ^ o ti c h cm m <4 m iø p § «> h. iaaooiooo ^) I: ^^, u S Sωβ ©. ^! >> ft co 3 Λ Λ f 0 s frgra H> -> CQCQg β ^ bo UO OP H ^ ΟβΙίΚ © ° Η ° ΜΓνΙ, ® © irrrS ^ r0 > EhO ^ Eh ft <1 OW> U <OHflft ^ - EXAMPLE 11

En thoriumoxid-ZSM-5 katalysator (intet aluminiumoxid) fremstillet som angivet i eksempel 1 blev af sammenligningsgrunde anvendt i to separate forsøg med en lignende katalysator, der indeholdt alumi-niumoxid-bindemidlet som vist i det følgende. I disse eksempler blev syntesegas (Ho/C0 = 1) ført i kontakt med katalysatoren ved en temperatur på 427°C og et tryk på 84,4 kg/cm manometertryk.A thorium oxide ZSM-5 catalyst (no alumina) prepared as set forth in Example 1 was used for comparison purposes in two separate experiments with a similar catalyst containing the alumina binder as shown below. In these examples, synthesis gas (Ho / CO = 1) was contacted with the catalyst at a temperature of 427 ° C and a pressure of 84.4 kg / cm pressure gauge.

De opnåede resultater er angivet i den følgende tabel 11.The results obtained are given in the following Table 11.

145460 25 TABEL 11TABLE 11

Syngas-konvertering over ThCu/HZSM-5 427°C 84,4 kg/cm2, Hg/CO = 1Syngas conversion over ThCu / HZSM-5 427 ° C 84.4 kg / cm 2, Hg / CO = 1

Th02/HZSM-5 Th02/HZSM-5 (ingen AloO-r) + Al^O^ bindemiddel GHSV (STP), h"1 205 205 375ThO 2 / HZSM-5 ThO 2 / HZSM-5 (no AloO-r) + Al 2 O 2 binder GHSV (STP), h

Driftstid, h 26 267 94Operating time, h 26 267 94

Konversion, vægt-# CO 36,9 58,1 10,1 H2 21,3 45,6 12,9 .....Conversion, weight # CO 36.9 58.1 10.1 H2 21.3 45.6 12.9 ....

Totalt produkt, vægt-#Total product, weight #

Carbonhydrider 9,09 14,98 3,66Hydrocarbons 9.09 14.98 3.66

Oxygenater - - - H20 0,57 0,38 1,18 C02 25,69 29,99 4,10 CO 60,36 39,93 84,90 H2 4,29 ^,48 6,16Oxygenates - - - H2 O 0.57 0.38 1.18 CO2 25.69 29.99 4.10 CO 60.36 39.93 84.90 H2 4.29 ^ 48 6.16

Carbonhydrider, vægt-#Hydrocarbons, by weight

Methan 13,6 11,3 9,7Methane 13.6 11.3 9.7

Ethan 36,7 28,0 19,5Ethane 36.7 28.0 19.5

Ethylen 0,2 0,1 -Ethylene 0.2 0.1 -

Propan 33,0 24,8 14,1.............Propane 33.0 24.8 14.1 ………….

Propylen 0,2 0,2 i-butan 5,4 4,3 1,7 .Propylene 0.2 0.2 i-Butane 5.4 4.3 1.7.

n-butan 3,8 2,7 0,9n-butane 3.8 2.7 0.9

Butener - i-pentan 1,8 0,9 0,6 n-pentan 0,2 spor sporButenes - i-pentane 1.8 0.9 0.6 n-pentane 0.2 trace trace

Pentener - - -Pentener - - -

Cg+ 0,4 - sporCg + 0.4 - trace

Aromater 4,7 27,7 53,3Aromatics 4.7 27.7 53.3

Total C5+ 7,1 28,6 53,9Total C5 + 7.1 28.6 53.9

Aromater i C^+ 66,2 . 96,9 98,9 EKSEMPEL 12 145460 26Aromatics in C ^ + + 66.2. 96.9 98.9 EXAMPLE 12

Rutheniumdioxid er blevet anvendt som en Fischer-Tropsch katalysator til konvertering af syntesegas til paraffinvoks under højt tryk og lav temperatur (120-220°C). Ved højere temperaturer (300°C) dannes der imidlertid kun methan. Ruthenium-på-aluminium har også været anvendt til syntesekonvertering til fremstilling af gasformede, flydende og faste carbonhydrider; imidlertid er også i dette tilfælde methan det hovedsagelige produkt ved temperaturer højere end 250°C. Der fremstilles ikke nogen aromater under anvendelse af disse katalysatorer. Det har nu vist sig, at ruthenium i kombination med HZSM-5 giver anledning til dannelsen af benzin, der indeholder aromater, i højt udbytte ud fra syntesegas over et bredt temperaturinterval.Ruthenium dioxide has been used as a Fischer-Tropsch catalyst to convert synthesis gas to paraffin wax under high pressure and low temperature (120-220 ° C). However, at higher temperatures (300 ° C), only methane is formed. Ruthenium-on-aluminum has also been used for synthesis conversion to produce gaseous, liquid and solid hydrocarbons; however, in this case too, methane is the main product at temperatures higher than 250 ° C. No aromatics are produced using these catalysts. It has now been found that ruthenium in combination with HZSM-5 gives rise to the production of gasoline containing aromatics in high yield from synthesis gas over a wide range of temperatures.

EKSEMPEL AEXAMPLE A

En 5% ruthenium-på-ZSM-5 katalysator fremstilledes ved at vakuumimprægnere 10 g NH^-ZSM-5 med en 18 ml vandig opløsning indeholdende 1,25 g RuC1^*3H20. Efter tørring i vakuum blev katalysatoren luftcalcineret i en ovn ved 538°C i to timer. Dette resulterede i en konvertering af ammoniumformen af ZSM-5 til hydrogenformen.A 5% ruthenium-on-ZSM-5 catalyst was prepared by vacuum impregnating 10 g of NH After drying in vacuo, the catalyst was air calcined in an oven at 538 ° C for two hours. This resulted in a conversion of the ammonium form of ZSM-5 to the hydrogen form.

EKSEMPEL BEXAMPLE B

En 1% Ru/ZSM-5 katalysator blev fremstillet under anvendelse af den i eksempel A angivne fremgangsmåde, med undtagelse af, at man anvendte 20 g NH^-ZSM-5 med en 36 ml vandig opløsning, der indeholder 0,5 g RuC1^*3H20.A 1% Ru / ZSM-5 catalyst was prepared using the procedure of Example A, except that 20 g of NH 2 -ZSM-5 was used with a 36 ml aqueous solution containing 0.5 g of RuCl ^ * 3H20.

EKSEMPEL CEXAMPLE C

Konverteringen af syntesegas (H2/C0) blev gennemført i en reaktor med kontinuerlig strømning og fixeret masse. Til reaktoren af rustfrit stål blev der tilført 5,5 g af den 5% Ru/ZSM-5 katalysator, hvis fremstilling er angivet i eksempel A; katalysatoren blev forud reduceret med strømmende hydrogen ved 399°C og et tryk på 52,7The conversion of synthesis gas (H2 / CO) was carried out in a continuous flow reactor with fixed mass. To the stainless steel reactor was added 5.5 g of the 5% Ru / ZSM-5 catalyst, the preparation of which is given in Example A; the catalyst was pre-reduced with flowing hydrogen at 399 ° C and a pressure of 52.7

OISLAND

kg/cm manometertryk i tre timer.kg / cm pressure gauge for three hours.

pp

Konverteringen af syntesegas (H2/C0) blev gennemført ved 52,7 kg/cm 145460 27 manometertryk 1 tre timer.The conversion of synthesis gas (H2 / CO) was carried out at 52.7 kg / cm 2 pressure for three hours.

pp

Konverteringen af syntesegas (H^/CO) "blev gennemført ved 52,7 kg/cm manometertryk. 304°C. V/HSV = 0,52 og H2/C0 = 2/1. Resultaterne og ’ den detaljerede carbonhydrid-fordeling er angivet i den følgende tabel 13. Der fremkommer en høj konvertering med god selektivitet overfor væskeformige produkter (C^+). Det flydende produkt indeholdt 25% aromater og havde octantal R + 0 = 77 og R + 3 = 92.The conversion of synthesis gas (H 2 / CO) "was carried out at 52.7 kg / cm pressure gauge. 304 ° C. V / HSV = 0.52 and H2 / C0 = 2/1. The results and detailed hydrocarbon distribution are given in the following Table 13. A high conversion with good selectivity to liquid products (C + +) appears, the liquid product containing 25% aromatics and having octane numbers R + 0 = 77 and R + 3 = 92.

EKSEMPEL DEXAMPLE D

Syntesegas-konvertering blev gennemført under i det væsentligt de samme betingelser som i eksempel C med undtagelse af, at man anvendte 5>5 g 1% Ru/ZSM-5 som fremstillet i eksempel B. Resultaterne er anført i den følgende tabel 13. Der fremkom høj konvertering til carbonhydrider, der var rige på C2+, og som indeholdt 13,8$ aromater.Synthesis gas conversion was carried out under substantially the same conditions as in Example C except that 5> 5 g of 1% Ru / ZSM-5 as prepared in Example B. The results are set forth in the following Table 13. yielded high conversion to hydrocarbons rich in C2 + containing 13.8 $ aromatics.

^ .^.

28 145460 TABEL 1228 145460 TABLE 12

Syntesegaskonvertering over ruthenium/HZSM-5 katalysator ved _52.7 kg/cm2 304°C WHSV=0.32 og H2/C0=2/lSynthesis gas conversion over ruthenium / HZSM-5 catalyst at _52.7 kg / cm2 304 ° C WHSV = 0.32 and H2 / C0 = 2 / l

EKSEMPEL C EKSEMPEL DEXAMPLE C EXAMPLE D

Katalysator 5# Ru/HZSM-5 1# Ru/HZSM-5Catalyst 5 # Ru / HZSM-5 1 # Ru / HZSM-5

Metode til katalysatorfremstilling Imprægnering ImprægneringMethod of catalyst preparation Impregnation Impregnation

Konvertering, vægt-# CO 82,91 79,31 H2 88,32 84,84Conversion, weight # CO 82.91 79.31 H2 88.32 84.84

Totalt fra reaktoren udgået materiale, vægt-#Total material emitted from the reactor, weight #

Carbonhydrider 37,54 31,83 H2 1,46 1,92 CO 14,95 18,07 C02 2,31 2,66 H20 43,74 45,53Hydrocarbons 37.54 31.83 H2 1.46 1.92 CO 14.95 18.07 CO2 2.31 2.66 H2 O 43.74 45.53

Carbonhydridsammensætning, vægt-% 31,11 20,42 C2 6,61 4,02 C3 6,82 7,79 C4 9,22 16,78 C5+ 46,24 50,99Hydrocarbon composition, weight% 31.11 20.42 C2 6.61 4.02 C3 6.82 7.79 C4 9.22 16.78 C5 + 46.24 50.99

Aromater i C^+ 24,84 27,04Aromatics in C ^ + + 24.84 27.04

Aromater i Cg+ 29,57 34,78Aromatics in Cg + 29.57 34.78

Aromater i totale carbonhydrider 11,51 13,79Aromatics in total hydrocarbons 11.51 13.79

Carbonhydridselektivitet* 98,50 97,60Hydrocarbon selectivity * 98.50 97.60

Octantal af C5+ 77 (R+0) 92 (R+3) K(Totalt carbon konverteret - Totalt carbon i C02)/Totalt carbon konverteretOctane number of C5 + 77 (R + 0) 92 (R + 3) K (Total carbon converted - Total carbon in CO 2) / Total carbon converted

DK175175A 1974-04-24 1975-04-23 PROCEDURE FOR CONVERSION OF SYNTHESIC GAS TO CARBON HYDRADE MIXTURES DK145460C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US46371174A 1974-04-24 1974-04-24
US46371174 1974-04-24

Publications (3)

Publication Number Publication Date
DK175175A DK175175A (en) 1975-10-25
DK145460B true DK145460B (en) 1982-11-22
DK145460C DK145460C (en) 1983-04-25

Family

ID=23841061

Family Applications (1)

Application Number Title Priority Date Filing Date
DK175175A DK145460C (en) 1974-04-24 1975-04-23 PROCEDURE FOR CONVERSION OF SYNTHESIC GAS TO CARBON HYDRADE MIXTURES

Country Status (16)

Country Link
JP (1) JPS5839131B2 (en)
AR (1) AR211847A1 (en)
BE (1) BE828228A (en)
CA (1) CA1062285A (en)
CS (1) CS188951B2 (en)
DE (1) DE2518097A1 (en)
DK (1) DK145460C (en)
EG (1) EG14618A (en)
FR (1) FR2268771B1 (en)
GB (1) GB1495794A (en)
IT (1) IT1037539B (en)
MY (1) MY7800260A (en)
NL (1) NL183181C (en)
NO (1) NO144631C (en)
PL (1) PL97789B1 (en)
ZA (1) ZA752561B (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096163A (en) * 1975-04-08 1978-06-20 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures
US4016218A (en) * 1975-05-29 1977-04-05 Mobil Oil Corporation Alkylation in presence of thermally modified crystalline aluminosilicate catalyst
GB1489357A (en) * 1975-06-02 1977-10-19 Mobil Oil Corp Conversion of synthesis gas to hydrocarbon mixtures
NZ183608A (en) * 1976-03-31 1978-12-18 Mobil Oil Corp Aluminosilicate zeolite catalyst for selectine production of para-diakyl substituted benzenes
US4139550A (en) * 1976-09-10 1979-02-13 Suntech, Inc. Aromatics from synthesis gas
US4086262A (en) * 1976-09-20 1978-04-25 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures
US4304871A (en) * 1976-10-15 1981-12-08 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures utilizing a dual catalyst bed
US4180516A (en) * 1977-08-18 1979-12-25 Mobil Oil Corporation Conversion of synthesis gas to aromatic hydrocarbons
US4159995A (en) * 1977-08-22 1979-07-03 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures utilizing dual reactors
NL7711350A (en) * 1977-10-17 1979-04-19 Shell Int Research PROCESS FOR THE PREPARATION OF HYDROCARBONS.
CA1113508A (en) * 1978-05-05 1981-12-01 Clarence D. Chang Conversion of synthesis gas to aromatic hydrocarbons
NL7811736A (en) * 1978-11-30 1980-06-03 Shell Int Research PROCESS FOR PREPARING HYDROCARBONS.
US4207250A (en) * 1978-12-18 1980-06-10 Mobil Oil Corporation Conversion of synthesis gas with iron-containing fluid catalyst
US4255349A (en) * 1978-12-18 1981-03-10 Mobil Oil Corporation Conversion of synthesis gas with iron-containing catalyst
US4418155A (en) * 1980-03-24 1983-11-29 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbons enriched in linear alpha-olefins
GB2100710B (en) * 1981-06-19 1985-01-03 Coal Ind Amorphous silica-based catalyst and process for its production
NZ201262A (en) * 1981-07-17 1984-12-14 British Petroleum Co Catalytic conversion of synthesis gas to hydrocarbons
CA1177464A (en) * 1981-10-09 1984-11-06 V. Udaya S. Rao Process and catalyst for converting synthesis gas to liquid hydrocarbon mixture
JPS5881671A (en) * 1981-11-11 1983-05-17 ユニチカ株式会社 Production of raised fabric
DE3201457A1 (en) * 1982-01-19 1983-07-28 Basf Ag, 6700 Ludwigshafen METHOD FOR PRODUCING OLEFINS
JPS58192834A (en) * 1982-05-04 1983-11-10 Res Assoc Petroleum Alternat Dev<Rapad> Preparation of hydrocarbon
JPS5910527A (en) * 1982-07-09 1984-01-20 Res Assoc Petroleum Alternat Dev<Rapad> Production of hydrocarbons
JPS5927836A (en) * 1982-08-06 1984-02-14 Res Assoc Petroleum Alternat Dev<Rapad> Production of hydrocarbon
US4472535A (en) * 1982-11-22 1984-09-18 Mobil Oil Corporation Conversion of synthesis gas to ethane
EP0112064B1 (en) * 1982-12-10 1986-08-13 Coal Industry (Patents) Limited Improved catalysts
JPH0633357B2 (en) * 1983-12-27 1994-05-02 智行 乾 Method for producing light hydrocarbons from syngas
EP0154063A1 (en) * 1984-03-01 1985-09-11 The Standard Oil Company Modified silicalite catalysts and their preparation and process for the use thereof
EP0153517A1 (en) * 1984-03-01 1985-09-04 The Standard Oil Company Novel catalysts and their preparation and process for the production of liquid paraffins
JPH0316511Y2 (en) * 1985-11-13 1991-04-09
JP2841500B2 (en) * 1989-07-19 1998-12-24 日本鋼管株式会社 Method for producing propane by hydrogenation of carbon dioxide
CN103521249B (en) * 2012-07-05 2016-08-24 中国科学院大连化学物理研究所 A kind of phosphide catalyst converted for synthesis gas and preparation method and applications
JP2015044926A (en) * 2013-08-28 2015-03-12 独立行政法人産業技術総合研究所 Hydrocarbon production method and apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3832449A (en) * 1971-03-18 1974-08-27 Mobil Oil Corp Crystalline zeolite zsm{14 12

Also Published As

Publication number Publication date
MY7800260A (en) 1978-12-31
AR211847A1 (en) 1978-03-31
FR2268771A1 (en) 1975-11-21
IT1037539B (en) 1979-11-20
EG14618A (en) 1984-06-30
FR2268771B1 (en) 1980-01-04
NO144631B (en) 1981-06-29
BE828228A (en) 1975-10-22
JPS5839131B2 (en) 1983-08-27
NL7504832A (en) 1975-10-28
NO144631C (en) 1981-10-07
GB1495794A (en) 1977-12-21
PL97789B1 (en) 1978-03-30
NO751457L (en) 1975-10-27
NL183181B (en) 1988-03-16
NL183181C (en) 1988-08-16
DE2518097C2 (en) 1988-05-26
AU8048775A (en) 1976-10-28
ZA752561B (en) 1976-11-24
DK145460C (en) 1983-04-25
CS188951B2 (en) 1979-03-30
JPS50142502A (en) 1975-11-17
DK175175A (en) 1975-10-25
CA1062285A (en) 1979-09-11
DE2518097A1 (en) 1975-11-13

Similar Documents

Publication Publication Date Title
DK145460B (en) PROCEDURE FOR CONVERSION OF SYNTHESIC GAS TO CARBON HYDRADE MIXTURES
US4086262A (en) Conversion of synthesis gas to hydrocarbon mixtures
US4096163A (en) Conversion of synthesis gas to hydrocarbon mixtures
US4279830A (en) Conversion of synthesis gas to hydrocarbon mixtures utilizing dual reactors
US4180516A (en) Conversion of synthesis gas to aromatic hydrocarbons
CA1077455A (en) Antimony-containing catalyst, its preparation and use
US4120910A (en) Aromatization of ethane
US4252736A (en) Conversion of synthesis gas to hydrocarbon mixtures utilizing dual reactors
EP0188530B1 (en) Enhanced conversion of syngas to liquid motor fuels
US4304871A (en) Conversion of synthesis gas to hydrocarbon mixtures utilizing a dual catalyst bed
US4177202A (en) Methanation of synthesis gas
US4159995A (en) Conversion of synthesis gas to hydrocarbon mixtures utilizing dual reactors
US4237063A (en) Synthesis gas conversion
US4172843A (en) Conversion of synthesis gas to high octane predominantly olefinic naphtha
US4188336A (en) Conversion of synthesis gas to aromatic hydrocarbons
US4424401A (en) Aromatization of acetylene
GB2236262A (en) Catalyst for production of hydrocarbons from synthesis gas
US4652538A (en) Catalysts for conversion of syngas to liquid motor fuels
US4617320A (en) Enhanced conversion of syngas to liquid motor fuels
US4361503A (en) Catalyst for converting synthesis gas to high octane predominantly olefinic naphtha
JPH01500571A (en) Improved vanadium, rare earth metal-containing spinel compositions and methods of using the same
US4463101A (en) Catalyst for converting synthesis gas to high octane predominantly olefinic naphtha
US4218388A (en) Process for preparing hydrocarbons from gasification of coal
JPS58116426A (en) Manufacture of benzene, toluene and xylene- rich mixture
US4344868A (en) Catalyst for synthesis gas conversion to oxygenates

Legal Events

Date Code Title Description
PBP Patent lapsed