DK145349B - PROCEDURE FOR PREPARING A FUEL OIL WITH REDUCED SULFUR CONTENT - Google Patents

PROCEDURE FOR PREPARING A FUEL OIL WITH REDUCED SULFUR CONTENT Download PDF

Info

Publication number
DK145349B
DK145349B DK262673AA DK262673A DK145349B DK 145349 B DK145349 B DK 145349B DK 262673A A DK262673A A DK 262673AA DK 262673 A DK262673 A DK 262673A DK 145349 B DK145349 B DK 145349B
Authority
DK
Denmark
Prior art keywords
approx
fuel oil
sulfur
conduit
temperature
Prior art date
Application number
DK262673AA
Other languages
Danish (da)
Other versions
DK145349C (en
Inventor
N M Hallman
B A Oeltgen
Original Assignee
Universal Oil Prod Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Oil Prod Co filed Critical Universal Oil Prod Co
Publication of DK145349B publication Critical patent/DK145349B/en
Application granted granted Critical
Publication of DK145349C publication Critical patent/DK145349C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/007Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 in the presence of hydrogen from a special source or of a special composition or having been purified by a special treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/22Separation of effluents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

i db i (19) DANMARK V^/i db i (19) DENMARK V /

|j| (12) FREMLÆGGELSESSKRIFT ου 145349 B| J | (12) PRESENTATION WRITING ου 145349 B

DIREKTORATET FOR PATENT- OG VAREMÆRKEVÆSENETDIRECTORATE OF THE PATENT AND TRADEMARKET SYSTEM

(21) Ansøgning nr. 2626/75 (51) (ntCI.3 C 10 6 65/04 (22) Indleveringsdag 11 · maj 1973 (24) Løbedag 11. maj 1973 (41) Aim. tilgængelig 15· nov. 1973 (44) Fremlagt 1 . nov. 1982 (86) International ansøgning nr.(21) Application No 2626/75 (51) (ntCI.3 C 10 6 65/04 (22) Filing day 11 · May 1973 (24) Running day 11 May 1973 (41) Available on 15 · Nov 1973 ( 44) Submitted Nov. 1, 1982 (86) International application no.

(86) International indleveringsdag (85) Videreførelsesdag - (62) Stamansøgning nr. -(86) International filing day (85) Continuation day - (62) Master application no. -

(30) Prioritet 12. maj 1972, 252787, US(30) Priority May 12, 1972, 252787, US

(71) Ansøger UNIVERSAL OIL PRODUCTS COMPANY, Des Plaines, US.(71) Applicant UNIVERSAL OIL PRODUCTS COMPANY, Des Plaines, US.

(72) Opfinder Newt Morrie Hallman, US: Bernhard Albert Oeltgen, US.(72) Inventor Newt Morrie Hallman, US: Bernhard Albert Oeltgen, US.

(74) Fuldmægtig Ingeniørfirmaet Budde, Schou & Co.(74) Associate Engineering Company Budde, Schou & Co.

(54) Fremgangsmåde til fremstilling af en brændselsolie med formindsket svovlindhold.(54) Process for the production of a reduced sulfur fuel oil.

Katalytisk afsvovling er en velkendt proces, der er grundigt beskrevet inden for jordolieteknologien, idet litteraturen om dette emne er fuld af henvisninger til egnede afsvovlingskatalysatorer, fremgangsmåder til katalysatorfremstilling og forskellige driftsbetingelser. Med udtrykket "afsvovling" menes også HQ destruktiv fjernelse af svovlholdige forbindelser via omdannelsen 7) af disse til hydrogensulfid og carbonhydrider, og det er ofte med- ^ omfattet af det brede udtryk "hydroraffinering". Hydroraffinerings- •O processer gennemføres ved driftsbetingelser og strenghedsniveauer, ^ der tjener til at fremme først og fremmest denitrifikation og af svovling og i en noget mindre grad asphaltenomdannelse, omdannelseCatalytic desulphurisation is a well-known process thoroughly described in the field of petroleum technology, the literature on this subject being full of references to suitable desulphurisation catalysts, catalyst preparation processes and various operating conditions. By the term "desulfurization" is also meant HQ destructive removal of sulfur-containing compounds via the conversion thereof) into hydrogen sulfide and hydrocarbons, and it is often included in the broad term "hydro refining". Hydro refining processes are carried out at operating conditions and severity levels, which serve to promote primarily denitrification and of sulfur and to a lesser extent asphaltene conversion, conversion

Si 145349 2 af ikke-destillerbare earbonhydrider, hydrogenering og hydrokrak-ning. Udtrykkene "hydroraffinering" og 'hf svovling" anvendes således almindeligvis synonymt til at omtale en proces, hvor et carbon-hydridchargemateriale "renses" til fremstilling af et chargemateriale, der er egnet til endelig anvendelse i et påfølgende carbon-hydridomdannelsessystem, eller med det formål, at der skal udvindes et produkt med en umiddelbar anvendelighed. Den her omhandlede kombinationsfremgangsmåde anvendes med fordel til fremstilling af en brændselsolie indeholdende mindre end ca. 1,5 vægtprocent svovl, og ofte mindre end ca. 0,5 vægtprocent, medens den samtidig bevirker i det mindste delvis omdannelse af fødemateria-let til laverekogende carbonhydridprodukter.Si 145349 2 of non-distillable hydrocarbons, hydrogenation and hydrocracking. Thus, the terms "hydro refining" and "hf sulfur" are generally used synonymously to refer to a process in which a hydrocarbon charge material is "purified" to produce a charge material suitable for final use in a subsequent hydrocarbon conversion system, or for the purpose of The product of the present invention is advantageously used to produce a fuel oil containing less than about 1.5% by weight of sulfur, and often less than about 0.5% by weight while simultaneously effecting it. at least partial conversion of the feedstock to lower boiling hydrocarbon products.

En relativ nyere erkendelse af nødvendigheden af at forhindre udledning af forskellige forurenende stoffer i atmosfæren har resulteret i, at myndighederne i mange lande har indført kontrolforanstaltninger på en række områder. Et betydningsfuldt område blandt disse er brænding af brændstoffer med højt svovlindhold, først og fremmest kul og brændselsolie, hvis forbrænding resulterer i udledning i atmosfæren af overordentlig store mængder svovldioxid. Hvad angår brændselsolier stammende fra råjordolie, er behovet for disse steget bemærkelsesværdigt som et resultat af en stigning i det verdensomspændende energiforbrug. Af større betydning er imidlertid den kendsgerning, at der allerede er indført lovmæssige begrænsninger af koncentrationen af svovl i brændselsolie, beregnet som grundstof, til et maksimum på 1,5 vægtprocent. Kyndige eksperter på dette område forudsiger for tiden, at inden så mange år vil svovlindholdet i brændselsolie blive begrænset til et maksimalt niveau på 0,5 vægtprocent. Det er dette mål, den foreliggende opfindelse og den deraf omfattede kombinationsfremgangsmåde især er rettet mod, dvs. fremstilling af brændselsolier indeholdende mindre end ca. 1,5 vægtprocent svovl, og om nødvendigt mindre end ca.A relatively recent recognition of the need to prevent the release of various pollutants into the atmosphere has resulted in the authorities in many countries introducing control measures in a number of areas. An important area among these is the burning of high sulfur fuels, primarily coal and fuel oil, the combustion of which results in emissions into the atmosphere of excessively large amounts of sulfur dioxide. In the case of fuel oils derived from crude oil, the need for these has increased noticeably as a result of an increase in worldwide energy consumption. Of greater importance, however, is the fact that legal restrictions on the concentration of sulfur in fuel oil, calculated as a basic element, have already been introduced to a maximum of 1.5% by weight. Expert experts in this field are currently predicting that within so many years, the sulfur content of fuel oil will be limited to a maximum level of 0.5% by weight. It is this object that the present invention and the combination process embraced therein are particularly directed towards, i. preparation of fuel oils containing less than approx. 1.5% by weight of sulfur and, if necessary, less than approx.

0,5 vægtprocent. Det stigende behov for brændselsolier med lavt svovlindhold har også gjort det nødvendigt at gennemføre omdannelse af "bundfaldet i tromlen" med råjordolier. Sagt med andre ord: det stigende behov for brændselsolie har på sin side nødvendig-gjort anvendelse af praktisk taget 100,0$ af en råjordolie.0.5% by weight. The increasing need for low sulfur fuel oils has also necessitated the conversion of the "precipitate into the drum" with crude petroleum. In other words, the increasing need for fuel oil has necessitated the use of practically $ 100.0 of crude oil.

I overensstemmelse med den her omhandlede kombinationsfremgangsmåde opnås der acceptable brændselsolier via afsvovling af råjordolier, bundprodukter fra en destillation foretaget, ved atmo- 145349 3 sfæretryk, bundprodukter fra en destillation foretaget under vakuum, tunge cirkulationsmaterialer, råolieremanenser, råolier, hvorfra de mest flygtige dele er blevet fjernet, tunge carbonhydrid-holdige olier ekstraheret fra tjæresand, osv. Råolier og de tungere carbonhydridfraktioner og/eller -destillater fremstillet derudfra indeholder nitrogenholdige og svovlholdige forbindelser i overordentlig store mængder, idet sidstnævnte sædvanligvis ligger i området fra ca. 2,5 til ca. 6,0 vægtprocent, beregnet som elementært svovl. Desuden indeholder disse tunge carbonhydridfrak-tioner, der inden for jordolie-teknikken undertiden betegnes "black oils", organo-metalliske forurenende stoffer, der som de væsentligste omfatter nikkel og vanadium i form af porphyriner og asphalt-materiale med højere molekylvægt. Som eksempel på de chargematerialer, på hvilke den foreliggende opfindelse kan anvendes, kan nævnes et bundprodukt fra en destillation foretaget under vakuum medIn accordance with the combination process of the present invention, acceptable fuel oils are obtained via desulphurization of crude petroleum, bottom products from a distillation made by atmospheric pressure, bottom products from a distillation carried out under vacuum, heavy circulation materials, crude oil residues, crude oils from which the most volatile parts are crude hydrocarbonaceous oils extracted from tar sands, etc. Crude oils and the heavier hydrocarbon fractions and / or distillates prepared therefrom contain nitrogenous and sulfurous compounds in exceedingly large quantities, the latter usually being in the range of from about. 2.5 to approx. 6.0% by weight, calculated as elemental sulfur. In addition, these heavy hydrocarbon fractions, sometimes referred to in the petroleum technique, are sometimes referred to as "black oils", organo-metallic pollutants, which include substantially nickel and vanadium in the form of higher molecular weight porphyrins and asphaltic materials. As an example of the charge materials to which the present invention may be applied, a bottom product from a distillation carried out in vacuo may be mentioned.

OISLAND

en vægtfylde på 1,021 g/cm og indeholdende 4,05 vægtprocent svovl og 23,7 vægtprocent asphaltener, en mellemøstråolie, hvorfra de mest flygtige dele er blevet fjernet, med en vægtfylde på 0,99 g/cm og indeholdende 10,1 vægtprocent asphaltener og 5,20 vægtprocent svovl og en remanens fra destillation foretaget under va- 3 kuum med en vægtfylde på ca. 1,009 g/cm og indeholdende 3,0 vægtprocent svovl, 4.300 vægt-ppm nitrogen og med en 20 volumenprocents destillationstemperatur på ca. 568°C. Anvendelsen af den her omhandlede fremgangsmåde muliggør den maksimale udvinding af brændselsolie med lavt svovlindhold ud fra disse tungere carbonhydridholdige chargematerialer.a density of 1.021 g / cm and containing 4.05% by weight of sulfur and 23.7% by weight of asphaltenes, a Middle Eastern oil from which the most volatile parts have been removed, having a density of 0.99 g / cm and containing 10.1% by weight of asphaltenes and 5.20% by weight of sulfur and a residue from distillation made under vacuum with a density of approx. 1,009 g / cm and containing 3.0 wt% sulfur, 4,300 wt ppm nitrogen and with a 20 wt% distillation temperature of approx. 568 ° C. The use of the present process enables the maximum extraction of low sulfur fuel oil from these heavier hydrocarbon-containing charge materials.

Formålet med den foreliggende opfindelse er at tilvejebringe en fremgangsmåde til gennemføring af afsvovling af car-bonhydridholdigt materiale, specielt en flertrinsfremgangsmåde til afsvovling af tungt carbonhydridholdigt materiale til fremstilling af en acceptabel brændselsolie indeholdende mindre end ca, 1,5 vægtprocent svovl, under samtidig maksimal udvinding af brændselsolieprodukt ud fra carbonhydridholdige black oils ved et lavere niveau af driftsstrenghed.The object of the present invention is to provide a process for desulphurising hydrocarbonaceous material, in particular a multistage process for desulphurizing heavy hydrocarbonaceous material to produce an acceptable fuel oil containing less than about 1.5% by weight of sulfur, while simultaneously maximizing recovery of fuel oil product from hydrocarbon-containing black oils at a lower level of operational severity.

I overensstemmelse hermed angår den foreliggende opfindelse en fremgangsmåde til fremstilling af en brændselsolie indeholdende mindre end ca. 1,5 vægtprocent svovl ud fra et black oil- 145349 4 -chargemateriale, hvilken fremgangsmåde er ejendommelig ved, at (a) chargematerialet og hydrogen omsættes i en første katalytisk reaktionszone ved afsvovlingsbetingelser, der er valgt således, at de omdanner svovlholdige forbindelser til hydrogensulfid og carbonhydrider, (b) den fremkomne afgangsstrøm fra den første reaktionszone adskilles i en første adskillelseszone til tilvejebringelse af en første overvejende dampformig fase og en første overvejende flydende fase, (c) i det mindste en del af den første væskefase omsættes med den praktisk taget hydrogensulfidfrie tredje dampfase fra trin (f), i en anden katalytisk reaktionszone ved afsvovlingsbetingelser, der er valgt således, at de omdanner yderligere svovlholdige forbindelser til hydrogensulfid og carbonhydrider, (d) den fremkomne afgangsstrøm fra den anden reaktionszone adskilles i en anden adskillelseszone til tilvejebringelse af en anden dampfase og en anden væskefase, (e) i det mindste en del af den anden dampfase recirkuleres til den første reaktionszone til reaktion med chargematerialet, og brændselsolie udvindes fra den anden væskefase, (f) den første dampfase adskilles i en tredje adskillelseszone til tilvejebringelse af en tredje dampfase, fra hvilken hydrogensulfid fjernes, og en tredje væskefase, og (g) en yderligere mængde brændselsolie udvindes fra den tredje væskefase.Accordingly, the present invention relates to a process for the production of a fuel oil containing less than ca. 1.5% by weight of sulfur from a black oil charge material, characterized in that (a) the charge material and hydrogen are reacted in a first catalytic reaction zone under desulphurisation conditions selected to convert sulfur-containing compounds into hydrogen sulfide and hydrocarbons, (b) separating the resulting effluent from the first reaction zone into a first separation zone to provide a first predominantly vapor phase and a first predominantly liquid phase, (c) reacting at least a portion of the first liquid phase with the practically hydrogen sulfide-free third vapor phase from step (f), in a second catalytic reaction zone under desulfurization conditions selected to convert further sulfur-containing compounds into hydrogen sulfide and hydrocarbons; (d) separating the resulting residual stream from the second reaction zone into another separation zone to provide of another vapor phase and another liquid phase, (e) id a at least a portion of the second vapor phase is recycled to the first reaction zone for reaction with the charge material, and fuel oil is recovered from the second liquid phase, (f) the first vapor phase is separated into a third separation zone to provide a third vapor phase from which hydrogen sulfide is removed, and a third liquid phase, and (g) an additional amount of fuel oil is recovered from the third liquid phase.

Som beskrevet nedenfor ligger andre udførelsesformer for den foreliggende opfindelse først og fremmest i foretrukne områder for procesvariable, forskellige behandlingsbetingelser og foretrukne sammensatte katalysatorer til anvendelse i den katalytiske reaktionszone med fikseret masse. Særlig gode resultater opnås ifølge opfindelsen ved, at i det mindste en del af den tredje væskefase kombineres med den første dampfase forud for indførelsen i den tredje adskillelseszone .As described below, other embodiments of the present invention are first and foremost in preferred ranges of process variables, various treatment conditions, and preferred composite catalysts for use in the fixed mass catalytic reaction zone. Particularly good results are obtained according to the invention by combining at least part of the third liquid phase with the first vapor phase prior to introduction into the third separation zone.

Udførelsesformer for den foreliggende opfindelse vil fremgå af nedenstående, mere detaljerede beskrivelse af den her omhandlede kombinationsfremgangsmåde.Embodiments of the present invention will become apparent from the more detailed description of the combination method of the present invention.

Den foreliggende opfindelse anvender mindst to katalytiske reaktionssystemer med fikseret masse i kombination med en specifik række adskillelsesfaciliteter, der muliggør en mere effektiv udnyttelse af dobbeltvirkende hydrogen gennem hele processen. Det må forstås, at hvert reaktionssystem kan bestå af en eller flere reaktionsbeholdere med egnede varmevekslingsfaciliteter indimellem.The present invention employs at least two fixed mass catalytic reaction systems in combination with a specific range of separation facilities that enable more efficient utilization of double-acting hydrogen throughout the process. It is to be understood that each reaction system may consist of one or more reaction vessels with suitable heat exchange facilities occasionally.

145349 5 I korte træk gennemføres kombinationsfremgangsmåden ved indlednings-vis omsætning af chargematerialet med en relativ uren (med hensyn til hydrogensulfidkoncentration) hydrogenstrøm i en første adskillelseszone. Denne første reaktionszone fuldfører faktisk den relativ lette afsvovling af de laverekogende svovlholdige forbindelser. Produktafgangsstrømmen adskilles ved praktisk taget samme temperatur og tryk til tilvejebringelse af en højerekogende normalt flydende fase, der omsættes i det andet reaktionssystem med en relativ ren hydrogenfase. Driftsbetingelser i begge réaktionssystemer indbefatter et tryk på fra ca. 14 til ca. 210 ato, én hydrogenkoncentration i området fra ca. 85Ο til ca. 50*550 nxcP/1000 liter, en væskerumhastighed på fra ca. 0,25 til ca. 2,50 vol/vol/time og en maksimal katalysatormassetemperatur på fra ca. 315 til ca. 485°C. For at lette den korrekte seriestrømning af materiale gennem processen holdes den anden reaktionszone ofte under et pålagt tryk på mindst ca. 1,8 ato større end det, der er pålagt den første reaktionszone. Da de mere vanskelige afsvovlingsreaktioner udføres i den anden reaktionszone, er den maksimale katalysatormassetemperatur i denne på samme måde ofte ca. 5°C højere end temperaturen i den første reaktionszone.Briefly, the combination process is carried out by initially reacting the charge material with a relatively impure (with respect to hydrogen sulfide concentration) hydrogen flow in a first separation zone. This first reaction zone actually completes the relatively light desulfurization of the lower boiling sulfur-containing compounds. The product exit stream is separated at substantially the same temperature and pressure to provide a higher boiling normally liquid phase which is reacted in the second reaction system with a relatively pure hydrogen phase. Operating conditions in both reaction systems include a pressure of approx. 14 to approx. 210 ato, one hydrogen concentration in the range of approx. 85Ο to approx. 50 * 550 nxcP / 1000 liters, a liquid space velocity of approx. 0.25 to approx. 2.50 vol / vol / hour and a maximum catalyst mass temperature of approx. 315 to approx. 485 ° C. In order to facilitate the correct series flow of material through the process, the second reaction zone is often kept under an applied pressure of at least approx. 1.8 ato greater than that imposed on the first reaction zone. Since the more difficult desulphurisation reactions are carried out in the second reaction zone, the maximum catalyst mass temperature in the same is often about 5 ° C higher than the temperature of the first reaction zone.

Fordelene ved den her omhandlede fremgangsmåde er talrige.The advantages of the present process are numerous.

Den væsentligste blandt disse er imidlertid en signifikant reduktion i den maksimale katalysatormassetemperatur til opnåelse af den ønskede grad af afsvovling. Skønt den maksimale katalysatormassetemperatur kan ligge i området fra ca. 515 til ca. 485°C, er det således ikke ualmindeligt at gennemføre den her omhandlede kombinations-fremgangsmåde ved maksimale katalysatormassetemperaturer på under ca. 455°C. Endvidere tillader den her omhandlede kombinationsfremgangsmåde anvendelsen af en relativ uren hjd rogenstrøm til gennemførelse af afsvovlingen af laverekogende svovlholdige forbindelser i den indledende reaktionszone. En anden fordel består i en forøgelse af den effektive acceptable levetid af den sammensatte katalysator, der anvendes i begge reaktionszoner.However, the most significant of these is a significant reduction in the maximum catalyst mass temperature to achieve the desired degree of desulfurization. Although the maximum catalyst mass temperature can be in the range of approx. 515 to approx. 485 ° C, it is thus not uncommon to carry out the above-mentioned combination process at maximum catalyst mass temperatures of less than ca. 455 ° C. Furthermore, the combination process of the present invention permits the use of a relatively impure high flow stream to effect the desulfurization of lower boiling sulfur-containing compounds in the initial reaction zone. Another advantage consists in increasing the effective acceptable life of the composite catalyst used in both reaction zones.

Skønt de sammensatte katalysatorer kan have forskellige fysiske og kemiske karakteristika i mange situationer, kan de være identiske. Uanset dette omfatter de sammensatte katalysatorer, der anvendes ved den her omhandlede kombinationsfremgangsmåde, metalkomponenter valgt blandt metallerne i gruppe VI-B og VIII i det periodiske system samt forbindelser af disse. I overensstemmelse med 145349 6Although the composite catalysts may have different physical and chemical characteristics in many situations, they may be identical. Notwithstanding this, the composite catalysts used in the combination process of this invention comprise metal components selected from the metals of Groups VI-B and VIII of the Periodic Table and compounds thereof. In accordance with 145349 6

The Periodic Table of The Elements, E.H. Sargent & Co., 1964, er egnede metalkomponenter således komponenter valgt blandt chrom, molybden, wolfram, jern, ruthenium, osmium, cobalt, rhodium, iridium, nikkel, palladium og platin. Endvidere har nyere undersøgelser indikeret, at sammensatte katalysatorer, især til anvendelse ved omdannelsen af fødematerialer med overordentligt højt svovlindhold, forbedres ved inkorporering af en zink- og/eller bismuth-komponent. I den foreliggende beskrivelse og i kravene er det tilsigtet, at anvendelsen af udtrykket "komponent", når det refererer til det eller de katalytisk aktive metaller, omfatter tilstedeværelsen af metallet som en forbindelse, såsom et oxid, sulfid, osv., eller som grundstof. Uanset hvordan det foreligger, beregnes koncentrationerne af metalkomponenterne, som om metallet foreligger som grundstof i det sammensatte materiale. Skønt hverken den nøjagtige sammensætning eller metoden til fremstilling af de forskellige sammensatte katalysatorer anses for essentiel for den foreliggende opfindelse, foretrækkes visse aspekter. Da chargematerialet til den her omhandlede fremgangsmåde almindeligvis er af højt-kogende karakter, foretrækkes det f.eks., at de katalytisk aktive komponenter har tilbøjelighed til at bevirke en begrænset grad af hydrokrakning, medens de samtidig fremmer omdannelsen af svovlholdige forbindelser til hydrogensulfid og carbonhydrider. Koncentrationen af den eller de katalytisk aktive metalkomponenter er først og fremmest afhængig af det specifikke metal samt af de fysiske og/eller kemiske karakteristika af chargematerialerne. Metalkomponenterne fra gruppe VI-B er f.eks. almindeligvis til stede i en mængde i området fra ca. 4,0 til ca. ^0,0 vægtprocent, jerngruppe-metallerne i en mængde i området fra ca. 2,0 til ca. 10,0 vægtprocent, medens ædelmetallerne fra gruppe VIII fortrinsvis er til stede i en mængde i området fra ca. 0,1 til ca. 5,0 vægtprocent. Når der anvendes en zink- og/eller bismuthkomponent, er denne almindeligvis til stede i en mængde i området fra ca. 0,01 til ca. 2,0 vægtprocent. Alle koncentrationer beregnes, som om komponenterne foreligger i den sammensatte katalysator som grundstof.The Periodic Table of The Elements, E.H. Thus, Sargent & Co., 1964, suitable metal components are components selected from chromium, molybdenum, tungsten, iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium and platinum. Furthermore, recent studies have indicated that composite catalysts, especially for use in the conversion of feed materials of extremely high sulfur content, are improved by incorporating a zinc and / or bismuth component. In the present specification and claims, it is intended that the use of the term "component" when referring to the catalytically active metal (s) comprises the presence of the metal as a compound such as an oxide, sulfide, etc., or as an element . No matter how it is, the concentrations of the metal components are calculated as if the metal is present as the element in the composite material. Although neither the exact composition nor the method of preparing the various composite catalysts is considered essential to the present invention, certain aspects are preferred. For example, since the charge material of the present process is generally of a high boiling nature, it is preferred that the catalytically active components tend to effect a limited degree of hydrocracking while at the same time promoting the conversion of sulfur-containing compounds to hydrogen sulfide and hydrocarbons. . The concentration of the catalytically active metal component (s) is primarily dependent on the specific metal as well as the physical and / or chemical characteristics of the charge materials. The metal components of Group VI-B are e.g. usually present in an amount in the range of about 4.0 to approx. 0.0% by weight, the iron group metals in an amount in the range of about 2.0 to approx. 10.0% by weight, while the Group VIII noble metals are preferably present in an amount in the range of about 10% by weight. 0.1 to approx. 5.0% by weight. When a zinc and / or bismuth component is used, it is usually present in an amount in the range of from about. 0.01 to approx. 2.0% by weight. All concentrations are calculated as if the components are present in the composite catalyst as element.

Det porøse bæremateriale, med hvilket den eller de katalytisk aktive metalkomponenter er kombineret, udgøres af et ildfast uorganisk oxid af den art, der er grundigt beskrevet i litteraturen. Når det er af amorf type, foretrækkes aluminiumoxid eller aluminiumoxid i kombination med 10,0 - ca. 90,0 vægtprocent siliciumoxid. Når der behandles tungere chargematerialer indeholdende en 145349 7 signifikant mængde carbonhydrider med kogepunkter ved normaJJtxyte overen temperatur på ca. 510°C, kan det være hensigtsmæssigt at anvende et bæremateriale omfattende et krystallinsk aluminiumsilicat eller en zeolitisk molekylsigte. I de fleste tilfælde anvendes et sådant bæremateriale ved behandling af det delvis afsvovlede fødemateriale til den anden reaktionszone. Et egnet zeolitisk materiale indbefatter mordenit, faujasit, type A- eller type U-molekylsigter osv., og disse kan anvendes i praktisk taget ren form. Det må imidlertid forstås, at det zeolitiske materiale kan være indeholdt i en amorf matrix, såsom siliciumoxid, aluminiumoxid og blandinger af aluminiumoxid og siliciumoxid. Det er endvidere tilsigtet, at der i de sammensatte katalysatorer kan være inkorporeret en halogenkomponent, idet en sådan komponent vælges blandt fluor, chlor, iod, brom og blandinger deraf. Halogenkomponenten er bundet til bærematerialet på en sådan måde, at der fremkommer en sammensat slutkatalysator indeholdende fra ca. 0,1 til ca. 2,0 vægtprocent.The porous support material with which the catalytically active metal component (s) is combined is constituted by a refractory inorganic oxide of the kind thoroughly described in the literature. When it is of the amorphous type, alumina or alumina in combination with 10.0 - about 10 is preferred. 90.0% by weight silica. When treating heavier charge materials containing a significant amount of hydrocarbons having boiling points at normal oxygen at a temperature of approx. 510 ° C, it may be convenient to use a support material comprising a crystalline aluminum silicate or a zeolitic molecular sieve. In most cases, such a support material is used in the treatment of the partially desulfurized feed material to the second reaction zone. A suitable zeolite material includes mordenite, faujasite, type A or type U molecular sieves, etc., and these can be used in practically pure form. However, it is to be understood that the zeolite material may be contained in an amorphous matrix such as silica, alumina and mixtures of alumina and silica. It is further intended that a halogen component may be incorporated into the composite catalysts, such component being selected from fluorine, chlorine, iodine, bromine and mixtures thereof. The halogen component is bonded to the carrier in such a manner as to produce a composite final catalyst containing from ca. 0.1 to approx. 2.0% by weight.

Metalkomponenterne kan inkorporeres i den sammensatte katar lysator på en vilkårlig, hensigtsmæssig måde, f.eks. samudfældning eller samgeldannelse med bærematerialet, ionbytning eller imprægnering af bærematerialet eller under en samekstruderingsproces. Efter inkorporeringen af metalkomponenterne tørres bærematerialet og underkastes en højtemperatur-kalcinering eller oxidation ved en temperatur på fra ca. 400 til ca. 705°C. Når der anvendes et krystallinsk aluminiumsilicat i bærematerialet, er den øvre grænse for kalcineringen fortrinsvis ca. 5^0°C.The metal components can be incorporated into the composite catheter lysator in any convenient way, e.g. co-precipitation or co-formation with the support material, ion exchange or impregnation of the support material or during a co-extrusion process. After the incorporation of the metal components, the support material is dried and subjected to a high temperature calcination or oxidation at a temperature of from ca. 400 to approx. 705 ° C. When a crystalline aluminum silicate is used in the support material, the upper limit of calcination is preferably approx. 5 ^ 0 ° C.

Hvad angår de driftsbetingelser, der er pålagt de katalytiske reaktionszoner, vælges de først og fremmest således, at de bevirker omdannelse af svovlholdige forbindelser til hydrogensulfid og carbonhydrider. Som anført ovenfor resulterer de driftsbetingelser, der er pålagt den anden reaktionszone, ofte i en større driftsstrenghed, skønt en sådan teknik ikke er essentiel. Variansen i driftsstrenghedsniveauerne mellem de to reaktionszoner kan opnås ved justering af tryk-, maksimumkatalysatormassetemperatur- og væske-rumhastighedvariable. Driften ved den højere strenghed i den anden reaktionszone gennemføres normalt ved et forhøjet tryk, en forhøjet maksimal katalysatormassetemperatur og ved en noget formindsket væskerumhastighed eller en eller anden kombination deraf.As regards the operating conditions imposed on the catalytic reaction zones, they are primarily selected so as to effect the conversion of sulfur-containing compounds to hydrogen sulfide and hydrocarbons. As stated above, the operating conditions imposed on the second reaction zone often result in greater operational severity, although such a technique is not essential. The variation in operating severity levels between the two reaction zones can be obtained by adjusting pressure, maximum catalyst mass temperature and liquid room velocity variables. The operation at the higher severity of the second reaction zone is usually carried out at an elevated pressure, an elevated maximum catalyst mass temperature, and at a somewhat reduced liquid space velocity or some combination thereof.

Med de ovenfor anførte undtagelser er hensigtsmæssige områder for de forskellige driftsvariable sædvanligvis de samme for begge reaktionssystemer. Trykket ligger således i området fra ca.With the exceptions listed above, suitable ranges for the different operating variables are usually the same for both reaction systems. The pressure is thus in the range of approx.

8 145349 14 til ca. 210 ato, hydrogenkoncentrationen er fra ca. 850 til ca. 50.550 nm /1000 liter, den maksimale katalysatormassetempera-tur ligger i området fra ca. 315 til ca. 485°C, og væskerumhastigheden varierer fra ca. 0,25 til ca. 2,50 vol/vol/time. I betragtning af, at de reaktioner, der gennemføres, er af overvejende eksoterm karakter, iagttages der en stigende temperaturgradient i begge reaktionszoner, efterhånden som reaktanterne gennemløber katalysatormassen. Foretrukne driftsbetingelser dikterer, at den stigende temperaturgra-diens skal begrænses til et maksimum på ea. 40°C, og til regulering af temperaturgradiensen ligger det inden for den foreliggende opfindelses rammer at anvende bratkølingsstrømme, enten normalt flydende eller normalt gasformige, der indføres på et eller flere mellemliggende steder i katalysatormassen. Før den foreliggende opfindelse beskrives yderligere, og især med hensyn til den på tegningen illustrerede udførelsesform,anses forskellige definitioner nødvendige til opnåelse af en klar forståelse. I den foreliggende beskrivelse og kravene er det tilsigtet, at et "tryk, der er praktisk taget det samme som" eller en "temperatur, der er praktisk taget den samme som" betyder trykket eller temperaturen på den i strømmens retning påfølgende beholder, kun bortset fra det normale trykfald, der skyldes fluidumstrømning gennem systemet, og det normale temperaturfald, der skyldes overføring af materiale fra en zone til en anden. For eksempel når trykket ved tilgangen til den første reaktionszone er ca. 162 ato, og temperaturen er ca. 370°C, arbejder den første adskillelseszone ved praktisk taget samme tryk og temperatur på henholdsvis ca. 155 ato og 37C°C. På samme måde er det tilsigtet, at anvendelsen af udtrykket "i det mindste en del af", når det refererer enten til en overvejende dampformig fase eller en overvejende flydende fase, omfatter både en alikvot del såvel som en udvalgt fraktion. Således indføres i det mindste en del af den første overvejende dampformige fase i den anden reaktionszone efter fjernelsen af hydrogensulfid derfra, medens i det mindste en del (i dette tilfælde en alikvot del) af den første overvejende flydende fase kan recirkuleres til kombination med det friske føde-chargemateriale.8 to 14 approx. 210 ato, the hydrogen concentration is from approx. 850 to approx. 50,550 nm / 1000 liters, the maximum catalyst mass temperature is in the range of approx. 315 to approx. 485 ° C and the liquid space velocity varies from approx. 0.25 to approx. 2.50 vol / vol / hour. Given that the reactions carried out are predominantly exothermic, an increasing temperature gradient is observed in both reaction zones as the reactants pass through the catalyst mass. Preferred operating conditions dictate that the increasing temperature gradient should be limited to a maximum of ea. 40 ° C, and for controlling the temperature gradient, it is within the scope of the present invention to use quenching streams, either normally liquid or usually gaseous, introduced at one or more intermediate sites in the catalyst mass. Before the present invention is further described, and particularly with respect to the embodiment illustrated in the drawings, various definitions are considered necessary to obtain a clear understanding. In the present specification and claims, it is intended that a "pressure substantially the same as" or a "temperature substantially the same as" means the pressure or temperature of the container subsequent to the flow, except from the normal pressure drop due to fluid flow through the system and the normal temperature drop due to transfer of material from one zone to another. For example, when the pressure at the approach to the first reaction zone is approx. 162 ato and the temperature is approx. 370 ° C, the first separation zone operates at practically the same pressure and temperature of approx. 155 at 37 and 37 ° C. Similarly, it is intended that the use of the term "at least part of" when referring to either a predominantly vapor phase or a predominantly liquid phase comprises both an aliquot portion and a selected fraction. Thus, at least part of the first predominantly vapor phase is introduced into the second reaction zone after the removal of hydrogen sulfide therefrom, while at least part (in this case an aliquot part) of the first predominantly liquid phase can be recycled for combination with the fresh feed-batch material.

Andre betingelser og foretrukken driftsteknik gives i forbindelse med nedenstående beskrivelse af den her omhandlede fremgangsmåde. Under beskrivelsen af denne kombinationsafsvovlingsfremgangsmåde henvises der til tegningen, der illustrerer en specifik 145349 9 udførelsesform. På tegningen illustreres udførelsesformen ved hjælp af et simplificeret strømningsdiagram, hvori detaljer, såsom kompressorer, pumper, opvarmnings- og afkølingsorganer, instrumenterings- og reguleringsorganer,varmevekslings- og varmegenvindings-kredsløb, ventiler, igangsætningsledninger og lignende apparatur, er blevet udeladt som ikke-essentielle for en forståelse af den involverede teknik. Anvendelsen af sådant blandet tilbehør til modificering af fremgangsmåden er indlysende for en fagmand, og anvendelsen deraf fjerner ikke den resulterende fremgangsmåde fra kravenes omfang.Other conditions and preferred operating techniques are given in connection with the description below of the process of the present invention. In describing this combination desulfurization process, reference is made to the drawing which illustrates a specific embodiment. In the drawing, the embodiment is illustrated by means of a simplified flow diagram in which details such as compressors, pumps, heating and cooling means, instrumentation and control means, heat exchange and heat recovery circuits, valves, commissioning lines and similar apparatus have been omitted as non-essential for an understanding of the technique involved. The use of such mixed accessories for modifying the method is obvious to one skilled in the art, and its use does not remove the resulting method from the scope of the claims.

Til demonstration af den illustrerede udførelsesform beskrives tegningen i forbindelse med omdannelsen af et gasoliecharge-materiale i en enhed i kommerciel målestok. Det må forstås, at chargematerialet, strømsammensætningerne, driftsbetingelserne, udformningen af fraktioneringsorganer og separatorer og lignende kun er angivet som eksempel og kan varieres i vidt omfang inden for den foreliggende opfindelses rammer, således som disse er afgrænset af kravene.For demonstration of the illustrated embodiment, the drawing is described in connection with the conversion of a gas oil charge material into a commercial scale unit. It is to be understood that the charge material, stream compositions, operating conditions, design of fractionating means and separators and the like are given by way of example only and may be widely varied within the scope of the present invention as defined by the claims.

Under henvisning ' til tegningen beskrives den illustrerede udførelsesform i forbindelse med en enhed i kommerciel målestok, der er udformet til at fremstille maksimale mængder af en brændselsolie indeholdende mindre end ca. 1,0 vægtprocent svovl ud fraWith reference to the accompanying drawings, the illustrated embodiment is described in connection with a commercial scale unit designed to produce maximum amounts of a fuel oil containing less than approx. 1.0% by weight of sulfur

OISLAND

et gasoliechargemateriale med en vægtfylde på ca. 0,957 g/cm . Andre relevante egenskaber af gasoliechargematerialet indbefatter en svovlkoncentration på 4,0 vægtprocent, 60,0 vægt-ppm vanadium og nikkel, 2,4 vægtprocent heptan-uopløseligt materiale, en Conrad-son-carbonfaktor på 8,2 og en 65,0 volumenprocents destillationstemperatur på ca. 565°C. Chargematerialet ledes ind i processen via en ledning 1 i en mængde på ca. 740,55 mol pr. time. Chargematerialet blandes med en varm (365°C) recirkuleret gasfase fra en ledning 2, idet sidstnævnte indeholder ca. 76,0 volumenprocent hydrogen. Blandingen fortsætter gennem ledningen 2 og føres via denne ind i en reaktor 3 ved en temperatur på ca. 347°C og et tryk på ca. 158 ato.a gas oil charge material having a density of approx. 0.957 g / cm. Other relevant properties of the gas oil charge material include a sulfur concentration of 4.0 wt%, 60.0 wt ppm vanadium and nickel, 2.4 wt% heptane insoluble material, a Conradson carbon factor of 8.2 and a 65.0 wt% distillation temperature of approx. 565 ° C. The charge material is fed into the process via a line 1 in an amount of approx. 740.55 moles per hour. The batch material is mixed with a hot (365 ° C) recycled gas phase from a conduit 2, the latter containing approx. 76.0% by volume of hydrogen. The mixture proceeds through conduit 2 and is passed through it into a reactor 3 at a temperature of approx. 347 ° C and a pressure of approx. 158 ato.

I reaktoren 3 der anbragt en sammensat katalysator med 2,0 vægtprocent nikkel og 16,0 vægtprocent molybden kombineret med et amorft bæremateriale, der udgøres af 88,0 vægtprocent aluminiumoxid og 12,0 vægtprocent siliciumoxid, idet væskerumhastigheden gennem reaktoren er ca. 1,0 vol/vol/time. Afgangsstrømmen fra reaktorzonen 3 10 1653A9 udtages via en ledning 4 ved en temperatur på ea. 365°C og et tryk: på ca. 151 ato og føres ind i en varmseparator 5 ved praktisk: taget samme tryk og temperatur. Varmseparationszonen 5 tjener til tilvejebringelse af en overvejende flydende fase i en ledning 6 og en overvejende dampformig fase i en ledning 7. En komponentanalyse af afgangsstrømmen fra den første reaktionszone (ledningen 4), væskefasen fra varmseparatoren (ledningen 6) og dampfasen fra varmseparatoren (ledningen 7) er angivet i nedenstående tabel I.In the reactor 3, a composite catalyst with 2.0 wt.% Nickel and 16.0 wt.% Molybdenum combined with an amorphous support material consisting of 88.0 wt.% Alumina and 12.0 wt.% Silica, is placed. 1.0 vol / vol / hour. The discharge current from the reactor zone 3 1653A9 is taken out via a conduit 4 at a temperature of ea. 365 ° C and a pressure of approx. 151 ato and introduced into a heat separator 5 at practically the same pressure and temperature. The heat separation zone 5 serves to provide a predominantly liquid phase in a conduit 6 and a predominantly vapor phase in a conduit 7. A component analysis of the discharge stream from the first reaction zone (conduit 4), the liquid phase from the heat separator (conduit 6) and the steam phase from the heat separator (conduit) 7) is given in Table I below.

Tabel ITable I

Produktfordeling fra reaktionszonen 3Product distribution from the reaction zone 3

Komponent mol·/time Ledning 4 Ledning 6 Ledning 7Component mol · / hour Wire 4 Wire 6 Wire 7

Vand 8^6,89 - 856,89Water 8 ^ 6.89 - 856.89

Hydrogensulfid 350,87 16,75 334,12Hydrogen sulfide 350.87 16.75 334.12

Hydrogen 9663,08 313,60 9349,48Hydrogen 9663.08 313.60 9349.48

Methan 1358,04 49,68 1308,35Methane 1358.04 49.68 1308.35

Ethan 139,89 10,26 129,63Ethane 139.89 10.26 129.63

Propan 111,16 · 9,15 102,01Propane 111.16 · 9.15 102.01

Butaner 68,01 6,88 61,13Butanes 68.01 6.88 61.13

Pentaner 24,50 3,11 21,39Pentans 24.50 3.11 21.39

Hexaner 18,30 2,79 15,51Hexanes 18.30 2.79 15.51

Heptan - 190°C 73,05 17,07 55,98 190 - 365°C 106,05 58,64 47,42Heptane - 190 ° C 73.05 17.07 55.98 190 - 365 ° C 106.05 58.64 47.42

Let brændselsolie 284,18 157,12 127,05Light fuel oil 284.18 157.12 127.05

Tungjbrændselsolie 54o,o6 527,72 12,33 I alt 13574,04 1172,77 12401,27Heavy fuel oil 54o, o6 527.72 12.33 Total 13574.04 1172.77 12401.27

Den overvejende dampformige fase i ledningen 7 blandes med 1420,00 mol pr. time af en kold lynfordampningsvæskerecirkulerings-Strøm, hvis kilde beskrives nedenfor. Blandingen fortsætter gennem ledningen 7 og føres via denne ind i en koldseparator 10 ved et tryk på ca. 148 ato og en temperatur på ca. 60°C. En hydrogen- 11 U5349 rig dampfase udtages fra koldseparatoren 10 via en ledning 11 og føres via denne ind i et hydrogensulfidfjernelsessystem 12. En overvejende flydende fase udtages via en ledning 15 og føres via denne ind i en kold lynfordampningsseparator 16 ved praktisk taget samme temperatur. Den kolde lynfordampningszone 16 arbejder ved et tryk på ca. 14 ato og en temperatur på ca. 57°C til tilvejebringelse af en udluftningsgasstrøm i en ledning 17 og en overvejende flydende produktfase i en ledning .18, hvoraf en del recirkuleres til kombination med den overvejende gasformige fase i ledningen 7. Komponentanalyser af den hydrogenrige strøm i ledningen 11, udluftningsgasstrømmen i ledningen 17 og det normalt flydende materiale i ledningen 18, der er.sendt til stabilisationsfaciliteter til produktudvinding, er angivet i nedenstående tabel II.The predominantly vapor phase in conduit 7 is mixed with 1420.00 moles per ml. hour of a cold flash evaporative liquid recycling stream, the source of which is described below. The mixture proceeds through conduit 7 and is passed through it into a cold separator 10 at a pressure of approx. 148 ato and a temperature of approx. 60 ° C. A hydrogen-rich vapor phase is taken out of the cold separator 10 via a conduit 11 and passed through it into a hydrogen sulfide removal system 12. A predominantly liquid phase is taken out via a conduit 15 and fed through it into a cold lightning evaporator separator 16 at practically the same temperature. The cold lightning evaporation zone 16 operates at a pressure of approx. 14 ato and a temperature of approx. 57 ° C to provide a vent gas stream in a conduit 17 and a predominantly liquid product phase in a conduit .18, a portion of which is recycled for combination with the predominantly gaseous phase in conduit 7. Component analyzes of the hydrogen-rich stream in conduit 11, the vent gas stream in the conduit. 17 and the normally liquid material in conduit 18 sent to stabilization facilities for product recovery are set forth in Table II below.

Tabel IITable II

Strømanalyser, koldseparationssystemPower analysis, cold separation system

Komponent mol/time Ledning 11 Ledning 17 Ledning 18Component mol / hour Wire 11 Wire 17 Wire 18

Vand 14,76 ----Water 14.76 ----

Hydrogensulfid 273,51 46,04 8,21Hydrogen sulfide 273.51 46.04 8.21

Hydrogen 9158,03 189,42 1,14Hydrogen 9158.03 189.42 1.14

Methan 1219,47 83,69 2,93Methane 1219.47 83.69 2.93

Ethan 111,17 14,97 1,97Ethane 111.17 14.97 1.97

Propan 79,87 13,40 4,92Propane 79.87 13.40 4.92

Butaner 41,19 7,29 7,16Butanes 41.19 7.29 7.16

Pentaner 10,47 1,82 5,14Pentans 10.47 1.82 5.14

Hexaner 5,00 0,85 5,44Hexanes 5.00 0.85 5.44

Heptan - 190°C 2,52 0,39 29,74 190 - 365°C 0,02 - 26,72Heptane - 190 ° C 2.52 0.39 29.74 190 - 365 ° C 0.02 - 26.72

Let brændselsolie 0,05 0,01 71,64Light fuel oil 0.05 0.01 71.64

Tung brændselsolie 0,05 - 7,00 I alt 10916,04 357,86 172,01 12 US$49Heavy Fuel Oil 0.05 - 7.00 Total 10916.04 357.86 172.01 12 US $ 49

Som anført nedenfor føres en vaskevandstrøm ind i processen via en ledning 8. Dette vand fjernes til sidst fra processystemet ved anvendelse af en ikke vist "dip-leg" i koldseparatoren 10.As indicated below, a wash water stream is fed into the process via a conduit 8. This water is eventually removed from the process system using a "dip-leg" not shown in the cold separator 10.

Hydrogensulfidfjernelsessystemet 12 tjener til forøgelse af hydrogenkoncentrationen af recirkulationsgassen i en ledning 13 til et niveau på ca. 85,9$· Suppleringshydrogen til kompensation for det, der er forbrugt i den samlede proces, samt opløsningstab indføres via en ledning 22. Den hydrogenrige fase blandes med den overvejende flydende fase i ledningen 6, hvortil der sættes 809,72 mol/time vand via ledningen 8, idet blandingen fortsætter gennem ledningen 13 ind i en anden reaktionszone 14 ved et tryk på ca, 165 ato og en temperatur på ca. 361°C. Reaktionszonen 14 indeholder en sammensat katalysator omfattende 1,8 vægtprocent nikkel og 16,0 vægtprocent molybden kombineret med et bæremateriale bestående af 63,0 vægtprocent aluminiumoxid og 37,0 vægtprocent siliciumoxid, idet væskerumhastigheden derigennem er ca.The hydrogen sulphide removal system 12 serves to increase the hydrogen concentration of the recycle gas in a conduit 13 to a level of approx. $ 85.9 · Complementary hydrogen to compensate for what is consumed in the overall process as well as dissolution losses are introduced via line 22. The hydrogen-rich phase is mixed with the predominantly liquid phase in line 6 to which 809.72 mol / hour water is added. via conduit 8, the mixture proceeding through conduit 13 into a second reaction zone 14 at a pressure of about 165 ato and a temperature of ca. 361 ° C. Reaction zone 14 contains a composite catalyst comprising 1.8 wt.% Nickel and 16.0 wt.% Molybdenum combined with a carrier consisting of 63.0 wt.% Alumina and 37.0 wt.% Silica.

1,5 vol/vol/time. Produktafgangsstrømmen fra reaktionszonen 14 udtages via en ledning 19 og føres ind i en varmseparator 20 ved et tryk på ca. 158 ato og en temperatur på ca. 365°C. En overvejende damp-formig fase udtages via ledningen 2 og recirkuleres til kombination med chargematerialet i ledningen 1. En normalt flydende fase udtages via en ledning 21 og kombineres med den normalt flydende fase i ledningen 18, hvilket produkt fra processen sendes til egnede adskillelsesfaciliteter til udvinding af den ønskede brændselsolie. Komponentanalyser af det totale fødemateriale til reaktoren 1.4 (ledningen 13) og afgangsstrømmen fra denne (ledningen 19) er angivet i nedenstående tabel III.1.5 vol / vol / hour. The product exit stream from the reaction zone 14 is taken out via a conduit 19 and fed into a heat separator 20 at a pressure of approx. 158 ato and a temperature of approx. 365 ° C. A predominantly vaporous phase is taken out via line 2 and recycled for combination with the charge material in line 1. A normally liquid phase is taken out via line 21 and combined with the normally liquid phase in line 18, which product from the process is sent to suitable separation facilities for extraction. of the desired fuel oil. Component analyzes of the total feed material for the reactor 1.4 (line 13) and the discharge current thereof (line 19) are given in Table III below.

145349 13145349 13

Tabel IIITable III

Komponentanalyser, reaktoren l4Component analyzes, reactor l4

Komponent Fødemateriale Afgangsstrøm mol/time ledning 13 ledning 19Component Feeding material Exit current mol / hour wire 13 wire 19

Vand 824,47 829,13Water 824.47 829.13

Hydrogensulfid 47,17 92,46Hydrogen Sulfide 47.17 92.46

Hydrogen 11.703,15 11.275,72Hydrogen 11,703.15 11,275.72

Methan 1.367,19 1*379,76Methane 1,367.19 1 * 379.76

Ethan 127,92 135,59Ethane 127.92 135.59

Propan 9^,25 106,27Propane 9 ^, 106.27

Butaner 51,l8 61,21Butanes 51, l8 61.21

Pentaner 14,43 19,32Pentans 14.43 19.32

Hexaner 8,l8 12,10Hexanes 8, l8 12.10

Heptan - 190°C 19,77 34,63 190 - 365°c 58,66 78,62Heptane - 190 ° C 19.77 34.63 190 - 365 ° C 58.66 78.62

Let brændselsolie 157,18 161,37Light Fuel Oil 157.18 161.37

Tung brænselsolie 527,72 513,13 I alt 15.001,25 14.697,30Heavy fuel oil 527.72 513.13 Total 15.001.25 14.697.30

Den adskillelse, der gennemføres i koldseparatoren 20, illustreres i nedenstående tabel IV.The separation performed in the cold separator 20 is illustrated in Table IV below.

145349 14145349 14

Tabel IVTable IV

Komponentanalyser fra varmseparatoren 20Component analyzes from the heat separator 20

Komponent mol/time Ledning 2 Ledning 21Component mol / hour Wire 2 Wire 21

Vand 829,13Water 829.13

Hydrogensulfid 88,86 3*60Hydrogen sulfide 88.86 3 * 60

Hydrogen 10.979,32 294,40Hydrogen 10,979.32 294.40

Methan 1.338,71 41,05Methane 1,338.71 41.05

Ethan 127,46 8,14Ethane 127.46 8.14

Propan 99,08 7,19Propane 99.08 7.19

Butaner 56,09 5,11Butanes 56.09 5.11

Pentaner 17,27 2,04 . Hexaner 10,55 1,55Pentanes 17.27 2.04. Hexanes 10.55 1.55

Heptan - 190°C 27,79 6,97 190 - 365°C 38,10 40,51Heptane - 190 ° C 27.79 6.97 190 - 365 ° C 38.10 40.51

Let brændselsolie 78,21 83,16Light fuel oil 78.21 83.16

Tung brændselsolie 11,97 501,16 I .alt 13.702,54 994,88Heavy fuel oil 11.97 501.16 Total 13,702.54 994.88

Den samlede produktfordeling og komponentudbytter er angivet i tabel V. Disse inkluderer det materiale, der udtages i hydrogensulfidfjernelsessystemet 12, udluftningsgasstrømmen i ledningen 17 og den overvejende flydende produktafgangsstrøm i ledningerne l8 og 21.The total product distribution and component yields are given in Table V. These include the material withdrawn in the hydrogen sulfide removal system 12, the vent gas flow in conduit 17 and the predominantly liquid product discharge stream in conduits 18 and 21.

15 U&34915 U & 349

Tabel VTable V

Samlet produktfordeling og udbytterTotal product distribution and yields

Komponent Mol/time VolumenprocentComponent Mol / hour Volume percentage

Hydrogensulfid 30^>01Hydrogen sulphide 30 ^> 01

Hydrogen 523>07Hydrogen 523> 07

Methan 128,85Methane 128.85

Ethan 25,08Ethane 25.08

Propan 25,51Propane 25.51

Butaner 19>56 0,56Butanes 19> 56 0.56

Pentaner 9,00 0,32Pentanes 9.00 0.32

Hexaner 7,84 0,32Hexanes 7.84 0.32

Heptan - 190°C 37>10 2,00 190 - 365°C 67,23 5,71Heptane - 190 ° C 37> 10 2.00 190 - 365 ° C 67.23 5.71

Total brændselsolie 662,97 92,52Total fuel oil 662.97 92.52

Heptan-190°C-fraktionen inden for naphthas kogeområde har en vægtfylde på 0,765 g/cnP og indeholder mindre end 0,05 vægtprocent svovl. 190-365°C-mellemdestillatfraktionen har en vægtfylde på 0,847 g/cm og indeholder mindre end ca. 0,1 vægtprocent svovl.The heptane-190 ° C fraction within the naphtha boiling range has a density of 0.765 g / cnP and contains less than 0.05 wt% sulfur. The 190-365 ° C intermediate distillate fraction has a density of 0.847 g / cm and contains less than ca. 0.1% by weight of sulfur.

Den totale brændselsolie, der koger fra ca. 365°C, har en vægt-fylde på ca. 0,925 g/cm og indeholder 0,3 vægtprocent svovl.The total fuel oil boiling from approx. 365 ° C, has a density of approx. 0.925 g / cm and contains 0.3% by weight of sulfur.

Ovenstående beskrivelse og den illustrerende udførelsesform angiver den fremgangsmåde, ved hvilken den foreliggende opfindelse udøves, og de fordele, der tilvejebringes ved dens anvendelse til fremstilling af maksimale mængder af et brændselsolieprodukt indeholdende mindre end ca. 1,5 vægtprocent svovl.The foregoing description and illustrative embodiment disclose the process by which the present invention is practiced and the advantages provided by its use in producing maximum amounts of a fuel oil product containing less than about 10%. 1.5% by weight of sulfur.

DK262673A 1972-05-12 1973-05-11 PROCEDURE FOR PREPARING A FUEL OIL WITH REDUCED SULFUR CONTENT DK145349C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US25278772A 1972-05-12 1972-05-12
US25278772 1972-05-12

Publications (2)

Publication Number Publication Date
DK145349B true DK145349B (en) 1982-11-01
DK145349C DK145349C (en) 1983-05-16

Family

ID=22957547

Family Applications (1)

Application Number Title Priority Date Filing Date
DK262673A DK145349C (en) 1972-05-12 1973-05-11 PROCEDURE FOR PREPARING A FUEL OIL WITH REDUCED SULFUR CONTENT

Country Status (21)

Country Link
JP (1) JPS536643B2 (en)
AR (1) AR230292A1 (en)
AU (1) AU475817B2 (en)
BR (1) BR7303460D0 (en)
CA (1) CA1008007A (en)
CS (1) CS178886B2 (en)
DK (1) DK145349C (en)
ES (1) ES414199A1 (en)
FI (1) FI59262C (en)
FR (1) FR2184684B1 (en)
GB (1) GB1420248A (en)
HU (1) HU169802B (en)
IL (1) IL42096A (en)
IN (1) IN140155B (en)
NL (1) NL173657C (en)
PH (1) PH10317A (en)
PL (1) PL89221B1 (en)
RO (1) RO74154A (en)
SE (1) SE395468B (en)
SU (1) SU490295A3 (en)
ZA (1) ZA732760B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0128250A1 (en) * 1983-06-08 1984-12-19 Mobil Oil Corporation Catalytic dewaxing process
JPH01294796A (en) * 1988-05-23 1989-11-28 Agency Of Ind Science & Technol Multistage hydrocracking method of fossil fuel oil
JPH0391591A (en) * 1989-09-05 1991-04-17 Cosmo Oil Co Ltd Hydrotreatment of heavy hydrocarbon oil
JPH06299168A (en) * 1993-02-15 1994-10-25 Shell Internatl Res Maatschappij Bv Hydrotreatment
WO1996017903A1 (en) * 1994-11-25 1996-06-13 Kvaerner Process Technology Ltd Multi-step hydrodesulfurization process
FR2940313B1 (en) * 2008-12-18 2011-10-28 Inst Francais Du Petrole HYDROCRACKING PROCESS INCLUDING PERMUTABLE REACTORS WITH LOADS CONTAINING 200PPM WEIGHT-2% WEIGHT OF ASPHALTENES
RU2700077C1 (en) * 2018-05-30 2019-09-12 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Method of oil cleaning from hydrogen sulphide and installation for implementation thereof

Also Published As

Publication number Publication date
IL42096A0 (en) 1973-06-29
DK145349C (en) 1983-05-16
PL89221B1 (en) 1976-11-30
JPS536643B2 (en) 1978-03-10
BR7303460D0 (en) 1974-07-18
FR2184684B1 (en) 1978-03-17
FR2184684A1 (en) 1973-12-28
CA1008007A (en) 1977-04-05
AR230292A1 (en) 1984-03-01
PH10317A (en) 1976-11-25
DE2323146A1 (en) 1973-11-22
RO74154A (en) 1981-03-30
NL173657C (en) 1984-02-16
GB1420248A (en) 1976-01-07
NL7306335A (en) 1973-11-14
SU490295A3 (en) 1975-10-30
AU5496673A (en) 1974-10-31
NL173657B (en) 1983-09-16
IL42096A (en) 1975-11-25
ES414199A1 (en) 1976-02-01
CS178886B2 (en) 1977-10-31
FI59262C (en) 1981-07-10
DE2323146B2 (en) 1977-03-17
AU475817B2 (en) 1976-09-02
JPS4961204A (en) 1974-06-13
SE395468B (en) 1977-08-15
IN140155B (en) 1976-09-18
HU169802B (en) 1977-02-28
FI59262B (en) 1981-03-31
ZA732760B (en) 1974-03-27

Similar Documents

Publication Publication Date Title
CA1092786A (en) Method for increasing the purity of hydrogen recycle gas
US4058452A (en) Alkylaromatic hydrocarbon dealkylation process
US5322617A (en) Upgrading oil emulsions with carbon monoxide or synthesis gas
US4364820A (en) Recovery of C3 + hydrocarbon conversion products and net excess hydrogen in a catalytic reforming process
US4457834A (en) Recovery of hydrogen
US1932174A (en) Production of valuable hydrocarbons
US4010008A (en) Substituted natural gas via hydrocarbon steam reforming
US4206038A (en) Hydrogen recovery from gaseous product of fluidized catalytic cracking
JPS5922756B2 (en) Method for hydrocracking petroleum hydrocarbons contaminated with nitrogen compounds
US3580837A (en) Hydrorefining of coke-forming hydrocarbon distillates
US2697682A (en) Catalytic desulfurization of petroleum hydrocarbons
US3847799A (en) Conversion of black oil to low-sulfur fuel oil
US3658681A (en) Production of low sulfur fuel oil
DK145349B (en) PROCEDURE FOR PREPARING A FUEL OIL WITH REDUCED SULFUR CONTENT
US10494577B2 (en) Trim alkali metal desulfurization of refinery fractions
CN108070403B (en) A method of producing jet fuel
US4980046A (en) Separation system for hydrotreater effluent having reduced hydrocarbon loss
US4333817A (en) Separation of normally gaseous hydrocarbons from a catalytic reforming effluent and recovery of purified hydrogen
RU2144056C1 (en) Method for production of motor fuel components
NO126919B (en)
US2137275A (en) Process of reconstituting and dehydrogenating heavier hydrocarbons and making an antiknock gasoline
US3748261A (en) Two-stage desulfurization with solvent deasphalting between stages
US3666659A (en) Method for stabilizing hydrodesulfurized oil
US3536607A (en) Process for the conversion of hydrocarbons
US2749282A (en) Catalytic desulphurisation of petroleum hydrocarbons

Legal Events

Date Code Title Description
PBP Patent lapsed