DK144996B - PROCEDURE FOR CARRYING OUT THE CATALYTIC EXOTHERMY GAS PHASE PROCESS AND PROCEDURE FOR THE PREPARATION OF A CATALYST - Google Patents

PROCEDURE FOR CARRYING OUT THE CATALYTIC EXOTHERMY GAS PHASE PROCESS AND PROCEDURE FOR THE PREPARATION OF A CATALYST Download PDF

Info

Publication number
DK144996B
DK144996B DK216980AA DK216980A DK144996B DK 144996 B DK144996 B DK 144996B DK 216980A A DK216980A A DK 216980AA DK 216980 A DK216980 A DK 216980A DK 144996 B DK144996 B DK 144996B
Authority
DK
Denmark
Prior art keywords
catalyst
reaction
particles
zone
temperature
Prior art date
Application number
DK216980AA
Other languages
Danish (da)
Other versions
DK144996C (en
DK216980A (en
Inventor
J R Rostrup-Nielsen
K Pedersen
E Joern
A Skov
Original Assignee
Topsoee H A S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topsoee H A S filed Critical Topsoee H A S
Priority to DK216980A priority Critical patent/DK144996C/en
Priority to GB8114368A priority patent/GB2077613B/en
Priority to ZA00813117A priority patent/ZA813117B/en
Priority to SE8102986A priority patent/SE448684B/en
Priority to CA000377706A priority patent/CA1165749A/en
Priority to AU70674/81A priority patent/AU542846B2/en
Priority to NL8102436A priority patent/NL8102436A/en
Priority to NO811683A priority patent/NO155916C/en
Priority to FR8109828A priority patent/FR2482473B1/en
Priority to JP7434981A priority patent/JPS5715834A/en
Priority to IT2181581A priority patent/IT1136615B/en
Priority to DE3119887A priority patent/DE3119887A1/en
Priority to IN529/CAL/81A priority patent/IN155291B/en
Publication of DK216980A publication Critical patent/DK216980A/en
Publication of DK144996B publication Critical patent/DK144996B/en
Application granted granted Critical
Publication of DK144996C publication Critical patent/DK144996C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0411Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J33/00Protection of catalysts, e.g. by coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • C01B17/76Preparation by contact processes
    • C01B17/78Preparation by contact processes characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • B01J35/397
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Description

1 144996 #1 144996 #

Den foreliggende opfindelse angår en fremgangsmåde ved udførelse af katalytiske eksoterme gasfaseprocesser i en kølet reaktor indeholdende et leje af en porøs partikelformig katalysator som er aktiv for den ønskede reaktion.The present invention relates to a process for carrying out catalytic exothermic gas phase processes in a cooled reactor containing a bed of a porous particulate catalyst active for the desired reaction.

5 En lang række katalytiske processer i gasfase giver høj varmeudvikling, og i mange tilfælde medfører de betydelige temperaturstigninger. Eksempler herpå er katalytisk omdannelse af alkoholer ved den såkaldte Mobil syntese til kulbrinter, af kuloxyder ved metanisering til metan eller ved Fischer- 144996 25 A wide range of gas-phase catalytic processes provide high heat generation and in many cases result in significant temperature increases. Examples of this are the catalytic conversion of alcohols by the so-called Mobile synthesis to hydrocarbons, of carbon oxides by methanisation to methane or by Fischer.

Tropsch syntesen til benzin og/eller definer (processer der ledsages af den såkaldte vandgasreaktion); endvidere ammoniaksyntese, fremstilling af formaldehyd ud fra metanol, naturgas eller andre kulbrinter og fremstilling af svovlsyre-5" damp og svovltrioxyd ud fra svovldioxyd.Tropsch synthesis for gasoline and / or define (processes accompanied by the so-called water gas reaction); further, ammonia synthesis, preparation of formaldehyde from methanol, natural gas or other hydrocarbons and preparation of sulfuric acid 5 "steam and sulfur trioxide from sulfur dioxide.

De høje temperaturer kan give en række ulemper. I mange tilfælde kan de medføre beskadigelse eller ødelæggelse af katalysatoren, fx ved sintring af detaktive katalysatormateriale eller katalysatorens poresystem. Hyppigt kan der ske uønske-10 de bireaktioner, ved fremstilling af kulbrinter ud fra kuloxyder eller alkoholer således nedbrydning til kul, der kan blokere og ødelægge katalysatoren. I mange tilfælde kan de højere temperaturer forskyde reaktionsligevægten og selektiviteten i uønsket retning; ved Fischer-Tropsch synteser be-15 gunstiger høj temperatur således metandannelse på bekostning af de ønskede produkter, fx ætan, æten eller andre olefiner eller benzin.The high temperatures can cause a number of disadvantages. In many cases, they can cause damage or destruction of the catalyst, for example, by sintering the catalyst material or the catalyst's pore system. Frequently, undesirable side reactions can occur by producing hydrocarbons from carbon oxides or alcohols, thus decomposing into coal that can block and destroy the catalyst. In many cases, the higher temperatures can shift the reaction equilibrium and selectivity in the undesirable direction; Thus, at Fischer-Tropsch, high temperature syntheses favor methane formation at the expense of the desired products, e.g., ethane, ether or other olefins or gasoline.

Ofte udføres eksoterme katalytiske processer i adiaba-tiske reaktorer, og i sådanne tilfælde søger man i mange til-20 fælde at begrænse temperaturstigningen ved fortynding af reaktionskomponenterne, enten med gasser der er inaktive ved reaktionsbetingelserne eller ved recirkulation af produktgas. Fortynding med inertgasser giver omkostninger til gasserne og til fraskillelse af dem fra slutproduktet, og recirkulati-25 on af produktgas medfører energitab i recirkulationskompressorer.Exothermic catalytic processes are often carried out in adiabatic reactors, and in such cases, in many cases, an attempt is made to limit the rise in temperature by diluting the reaction components, either with gases which are inactive under the reaction conditions or by recirculating product gas. Dilution with inert gases gives costs to the gases and separates them from the final product, and product gas recirculation results in energy losses in recirculation compressors.

I andre tilfælde har man derfor udført de eksoterme processer i kølede reaktorer, hvorved man kan undgå fortynding og anvendelse af recirkulationskompressorer. Som køleme-30 dium anvendes bl.a. luft, saltbade, blandinger af bifenyl og bifenyloxyd, fx "Dowtherm" ^og i de forannævnte kulbrintedannelsesreaktioner hyppigt kogende vand. I kølede reaktorer er det muligt at opnå en lav afgangstemperatur for produktgasserne og dermed en gunstig reaktionsligevægt i de tilfælde hvor det 35 ønskede produkt begunstiges af lav temperatur. Det kan imidlertid ikke i kølede reaktorer med katalysatorleje undgås at 3 1A 4 9 9 6 der kort efter reaktionens "tænding", dvs. et lille stykke inde i katalysatorlejet forekommer en varm zone, et såkaldt "hot spot", hvor temperaturen ofte vil ligge tæt ved temperatur termodynamisk bestemt af den adiabatiske 5 temperaturstigning. Først herefter afkøles reaktionsgassen, altså længere fremme i katalysatorlejet. Der vil følgelig opstå de samme problemer som nævnt foran med hensyn til katalysatorstabilitet, eventuelt selektivitet og i tilfælde af kulbrintereaktioner kuldannelse.In other cases, therefore, the exothermic processes have been carried out in refrigerated reactors, thereby avoiding dilution and use of recirculation compressors. The cooling medium is used, among other things. air, salt baths, mixtures of biphenyl and biphenyloxide, for example "Dowtherm", and in the aforementioned hydrocarbon formation reactions frequently boiling water. In refrigerated reactors, it is possible to achieve a low outlet temperature for the product gases and thus a favorable reaction equilibrium in cases where the desired product is favored by low temperature. However, it cannot be avoided in cooled catalyst bed reactors that shortly after the "ignition" of the reaction, ie. a short distance inside the catalyst bed is a hot zone, a so-called "hot spot", where the temperature will often be close to temperature thermodynamically determined by the adiabatic temperature rise. Only then is the reaction gas cooled, that is, further up in the catalyst bed. Accordingly, the same problems as mentioned above will arise with regard to catalyst stability, possibly selectivity, and in the case of hydrocarbon reactions, carbon formation.

10 Problemerne omkring hot spot temperaturen er i litte raturen bl.a. behandlet af van Welsenaere og Froment (Chemical Engineering Science, vol. 25, s. 1503-1516, 1970), og det fremgår at hot spot er uundgåelig i rørreaktorer med konstant vægtemperatur og at hot spot temperaturen er meget 15 følsom for små variationer i procesvariablerne såsom indgangstemperatur, reaktantkoncentrationer og vægtemperatur. Der er derfor risiko for at temperaturen kan stige på ukontrollabel måde så der sker såkaldt "runaway". Welsenaere og Froment angiver hvorledes reaktionerne kan kontrolleres under givne be-20 tingelser, fx når de udføres i et fast katalysatorleje anbragt i rør omgivet af et kølemedium; en kritisk faktor her er rørdiameteren. Welsenaere og Froment angiver i nævnte afhandling resultater for oxydation af p-xylen til ftalsyreanhydrid ved atmosfæretryk og med stort overskud af luft.10 The problems surrounding the hot spot temperature are in the lit. treated by van Welsenaere and Froment (Chemical Engineering Science, vol. 25, pp. 1503-1516, 1970), and it appears that hot spot is unavoidable in constant wall temperature tube reactors and that hot spot temperature is very sensitive to small variations in the process variables such as input temperature, reactant concentrations and wall temperature. Therefore, there is a risk that the temperature may rise in an uncontrollable manner so that the so-called "runaway" occurs. Welsenaere and Froment indicate how the reactions can be controlled under given conditions, for example, when carried out in a solid catalyst bed arranged in tubes surrounded by a refrigerant; a critical factor here is the pipe diameter. In this thesis, Welsenaere and Froment state results for the oxidation of p-xylene to phthalic anhydride at atmospheric pressure and with large excess air.

25 Beregningerne er foretaget for en irreversibel reak tion af første orden, men kan uden væsentlige ændringer også overføres til reversible reaktioner der ikke er af første orden. Man finder herved fx for metaniseringsreaktionerne (1) CO + 3H2 <?=*CH4 + H20 + 49 kcal/mol, 30 (2) 2CO + 2H2 f=^CH4 + C02 + 59 kcal/mol og (3) C02 + 4H2i=^CH4 + 2H20 + 39 kcal/mol at katalysatorrørenes diameter ikke kan overstige nogle få millimeter, hvis der skal være fuld sikkerhed mod runaway under alle forhold. En så lille rørdiameter er uanvendelig i 35 industriel drift. Den væsentligste forskel mellem Welsenaere og Froments eksempel og metaniseringsreaktionerne synes at 144996 4 være det høje tryk og den store molære koncentration ved sidstnævnte og den deraf følgende store varmeproduktion pr. rumfangsenhed katalysator. Lignende forhold gør sig gældende for andre kulbrintedannende reaktioner, fx Fischer-Tropsch 5 syntesen til dannelse af benzin og/eller olefiner:25 The calculations have been made for an irreversible first order reaction, but can also be transferred to non-first order reversible reactions without significant changes. Thus, for example, for the methanization reactions (1) CO + 3H2 <? = * CH4 + H2O + 49 kcal / mol, 30 (2) 2CO + 2H2 f = ^ CH4 + CO2 + 59 kcal / mol and (3) CO2 + 4H2i = ^ CH4 + 2H20 + 39 kcal / mol that the diameter of the catalyst tubes cannot exceed a few millimeters if full safety against runaway is required in all conditions. Such a small pipe diameter is unusable in 35 industrial operations. The major difference between Welsenaere and Froment's example and the methanization reactions appears to be the high pressure and the high molar concentration at the latter and the resulting large heat production per unit volume. volume unit catalyst. Similar conditions apply to other hydrocarbon-forming reactions, such as the Fischer-Tropsch 5 synthesis to form gasoline and / or olefins:

(4) nCO + 2nH2 f - (CH2)n + H20 + ca. 40 kcal/g-atom C(4) nCO + 2nH2 f - (CH2) n + H2O + ca. 40 kcal / g atom C

eller den såkaldte Mobil syntese til dannelse af kulbrinter ud fra alkoholer, fxor the so-called Mobile synthesis to form hydrocarbons from alcohols, e.g.

(5) nCH-,ΟΗ -(CH0) + nH-0 + ca. 12 kcal/g-atom C(5) nCH-, ΟΗ - (CHO) + nH-O + ca. 12 kcal / g atom C

3 2. n l 10 Det er således ikke uden særlige forholdsregler mu ligt at undgå at temperaturen stiger til eller til en værdi nær den af den adiabatiske temperaturstigning bestemte for sådanne reaktioner. Welsenaere og Froment foreslår at fortynde katalysatorfyldningen i katalysatorlejet, fx med katalytisk 15 inerte fyldlegemer, hvorved den producerede varmemængde pr. rumfang reaktor nedsættes. Det viser sig imidlertid at en relativt stærk fortynding af katalysatoren er nødvendig, hvilket forudsætter en forøgelse af selve katalysatorrumfanget for at "tænde" reaktionen. Metoden har således den ulempe at 20 forudsætte en forstørrelse af reaktoren og dermed en forøgelse af kapitalomkostningerne; hvad der ofte vil være væsentligere har fortyndingen den ulempe at nedsætte katalysatorfyldningens modstand eller adsorptionskapacitet for katalysatorgifte der medføres i reaktionsstrømmen. En sådan for-25 tynding af katalysatoren er derfor ingen tilfredsstillende løsning på temperaturkontrolproblemerne i kølede exoterme katalytiske processer.Thus, it is not possible, without special precautions, to prevent the temperature from rising to or to a value close to that determined by such adiabatic temperature rise for such reactions. Welsenaere and Froment propose to dilute the catalyst charge in the catalyst bed, for example with catalytically inert filler bodies, thereby producing the amount of heat produced per minute. reactor volume is reduced. However, it turns out that a relatively strong dilution of the catalyst is required, which requires an increase in the catalyst volume itself to "turn on" the reaction. Thus, the method has the disadvantage of assuming an enlargement of the reactor and thus an increase in the cost of capital; what will often be more significant is the dilution having the disadvantage of reducing the catalyst filling resistance or the adsorption capacity of catalyst poisons entailed in the reaction stream. Therefore, such a dilution of the catalyst is not a satisfactory solution to the temperature control problems of chilled exothermic catalytic processes.

For nærmere at studere forholdene blev der udført forsøg i en luftkølet metaniseringsreaktor med en katalysator 30 med fabrikationsbetegnelsen MCR-2X. Det er en mikroporøs temperaturstabil, mekanisk stærk katalysator med nikkelkrystal-litter af samme størrelsesorden som porediameteren, på en bærer af γ-aluminiumoxyd (se Karsten Pedersen, Allan Skov og J.R. Rostrup-Nielsen, ACS Symposium, Houston, Marts 1980).To further study the conditions, experiments were carried out in an air-cooled methanization reactor with a catalyst 30 with the designation MCR-2X. It is a microporous temperature stable, mechanically strong catalyst with nickel crystal liters of the same order of magnitude as the pore diameter, on a γ-alumina support (see Karsten Pedersen, Allan Skov and J.R. Rostrup-Nielsen, ACS Symposium, Houston, March 1980).

144996 5144996 5

Katalysatoren anvendtesi form af cylindre med højde og diameter 4,3 mm. Ved nogle af forsøgene fortyndedes katalysatoren med katalytisk inaktive cylindre med samme geometriske udformning. Trykket i reaktoren holdtes på 26 kg/cm og der 5 anvendtes en fødegas med sammensætningen 70% Hg, 9% CO, 10% CO2 og 11% CH^. Disse forsøgsbetingelser vil give termodynamisk bestemte adiabatiske temperaturstigninger på mellem 380 og 400°C uanset fortyndingsgraden af katalysatoren.The catalyst was used in the form of cylinders with a height and diameter of 4.3 mm. In some of the experiments, the catalyst was diluted with catalytically inactive cylinders of the same geometric design. The pressure in the reactor was maintained at 26 kg / cm and a feed gas having the composition was 70% Hg, 9% CO, 10% CO 2 and 11% CH 2. These test conditions will give thermodynamically determined adiabatic temperature increases of between 380 and 400 ° C, regardless of the dilution rate of the catalyst.

Det viste sig at det uden fortynding af katalysatoren 10 ikke var muligt at begrænse temperaturstigningen, der således blev de anførte 380-400°C. Ved fortyndingsforhold på 1:3 og 1:5 (altså henholdsvis 3 og 5 gange så stort rumfang inerte cylindre som katalysatorlegemer) måltes der faktiske temperaturstigninger der var indtil 50°C mindre end de ventede adia-15 batiske temperaturstigninger på 380-400°C. I disse forsøg var rørvæggens temperatur i hot spot området ca. 600°C eller mere, hvilket i industriel drift vil være en urealistisk høj rørvægstemperatur; i en industriel kølet reaktor vil den højeste rørvægstemperatur ikke overstige 400°C. Den opnåede be-20 grænsning af temperaturstigningen må siges at være væsentlig, selv om den i sig selv er uden større praktisk industriel betydning, og selv om katalysatorfortynding på denne måde af de ovenfor anførte grunde er lidet hensigtsmæssig.It was found that without dilution of catalyst 10, it was not possible to limit the temperature rise, thus being stated at 380-400 ° C. At dilution ratios of 1: 3 and 1: 5 (ie 3 and 5 times the volume of inert cylinders as catalyst bodies, respectively), actual temperature increases that were up to 50 ° C were lower than the expected adiabatic temperature increases of 380-400 ° C. . In these experiments, the pipe wall temperature in the hot spot area was approx. 600 ° C or more, which in industrial operation will be an unrealistically high pipe wall temperature; in an industrially cooled reactor, the highest pipe wall temperature will not exceed 400 ° C. The resulting limitation of the temperature rise must be said to be substantial, although it is of no great practical industrial importance in itself, and although catalyst dilution in this way is, for the reasons stated above, not very appropriate.

En nærmere analyse af den nedsatte temperaturstigning 25 viste imidlertid at den reducerede temperaturstigning skyldtes at reaktionshastigheden ikke var steget så stærkt som det kunne forventes ifølge reaktionskinetikken, og overraskende viste det sig at denne nedsatte reaktionshastighed skyldtes at den beregnede reaktionshastighed ved høj temperatur 30 overstiger hastigheden af diffusion af reaktanterne gennem den gasfilm, der omgiver katalysatorpartiklerne. Da gasfasediffusionen er næsten uafhængig af temperaturen (aktiveringsenergi 1-2 kcal/mol) stødte reaktionshastigheden mod en barriere, der beror på manglende tilstedeværelse af reaktanter 35 på de faktiske reaktionssteder, katalysatorlegemernes indre, og derfor hindres reaktionen i at løbe løbsk.However, a closer analysis of the decreased temperature rise 25 showed that the reduced temperature rise was due to the reaction rate not having increased as strongly as would be expected according to the reaction kinetics, and surprisingly, this decreased reaction rate was due to the calculated reaction rate at high temperature 30 exceeding the rate of reaction. diffusing the reactants through the gas film surrounding the catalyst particles. Since the gas phase diffusion is almost independent of the temperature (activation energy 1-2 kcal / mol), the reaction rate encountered a barrier due to the absence of reactants 35 at the actual reaction sites, the interior of the catalyst bodies, and therefore the reaction is prevented from running.

Det er opfindelsens formål at udnytte denne overraskende iagttagelse til at angive hvorledes man alment kan hindre U4996 6 runaway i katalyserede eksoterme gasfasereaktioner i kølede reaktorer. Dette opnås ifølge opfindelsen ved at der bruges en katalysator hvis enkelte partikler yderst har en zone med for reaktionen nedsat katalytisk aktivitet.It is the object of the invention to utilize this surprising observation to indicate how one can generally prevent U4996 runaway in catalyzed exothermic gas phase reactions in cooled reactors. This is achieved according to the invention by using a catalyst whose individual particles have a zone of reduced catalytic activity for the reaction.

5 Den yderste del af hver enkelt katalysatorpartikel kan således ifølge opfindelsen bestå af en for reaktionen inaktiv zone; eller den kan være en zone med reduceret aktivitet for den pågældende, stærkt exoterme reaktion. I tilfælde hvor der samtidig foregår en stærkt exoterm hoved-10 reaktion og en eller flere bireaktioner (der kan være mindre exoterme, eller endog termisk neutrale eller endoterme), kan yderlaget eventuelt være katalytisk aktivt for bireaktionen, men ikke for hovedreaktionen; som eksempel kan nævnes at de foran viste reaktioner (1), (2) og (4), der katalyseres af 15 nikkel, ledsages af vandgasreaktionen, også benævnt shift-reaktionen: (6) CO + H20 v - '-=?> C02 + H2 + 10 kcal/mol, der katalyseres af bl.a. kobber.Thus, according to the invention, the outermost portion of each catalyst particle may comprise a zone inactive for the reaction; or it may be a zone of reduced activity for that highly exothermic reaction. In cases where at the same time a highly exothermic main reaction occurs and one or more side reactions (which may be less exothermic, or even thermally neutral or endothermic), the outer layer may optionally be catalytically active for the side reaction, but not for the main reaction; By way of example, the reactions (1), (2) and (4) catalyzed by 15 nickel are accompanied by the water gas reaction, also referred to as the shift reaction: (6) CO + H2 O v - '- =?> CO 2 + H2 + 10 kcal / mol catalyzed by, inter alia, copper.

Hvad enten yderlaget er katalytisk inert, eller kata-20 lytisk aktivt for en bireaktion, men inaktivt for hovedreak tionen, udvides den ovennævnte filmdiffusion til også at omfatte diffusion gennem det inerte yderlag af katalysatoren.Whether catalytically inert, or catalytically active for a side reaction but inactive for the main reaction, the above film diffusion is extended to include diffusion through the inert outer layer of the catalyst.

Det bliver derfor muligt at bestemme den maximale reaktionshastighed i reaktoren, da den er bestemt af tykkelsen af det 25 inerte lag. I praksis vil tykkelsen af det for hovedreaktionen inerte lag være én til nogle få størrelsesordener større end den omgivende gasfilms tykkelse; tykkelsen af denne gasfilm,kan ud fra beregninger anslås til ca. 1 μ ved normale industrielle betingelser; ifølge opfindelsen kan den nævnte 30 yderzone af katalysatorpartiklerne derfor hensigtsmæssigt have en tykkelse på 0,01-2 mm. Tykkelser af nævnte lag på over ca. 0,5 eller 1 mm vil i praksis kun komme på tale ved anvendelse af forholdsvis store katalysatorpartikler.Therefore, it becomes possible to determine the maximum reaction rate in the reactor since it is determined by the thickness of the inert layer. In practice, the thickness of the inert reaction layer will be one to a few orders of magnitude greater than the thickness of the surrounding gas film; the thickness of this gas film can be estimated from approx. 1 μ under normal industrial conditions; According to the invention, the said outer zone of the catalyst particles may therefore suitably have a thickness of 0.01-2 mm. Thicknesses of said layers of over approx. In practice, 0.5 or 1 mm will only be used when using relatively large catalyst particles.

Alment er forklaringen på opfindelsen som defineret 35 den at et givet katalysatorlegeme med homogen aktivitet og homogent poresystem udsat for en given blanding af reaktan- 144996 7 ter udsættes for forskellige reaktionsrestriktioner efterhånden som reaktionstemperaturen ændres (stiger).In general, the explanation of the invention as defined is that a given catalyst body with homogeneous activity and homogeneous pore system subjected to a given mixture of reactants is subjected to various reaction restrictions as the reaction temperature changes (increases).

Ved lav temperatur begrænses reaktionshastigheden af katalysatormaterialet. Reaktionen er her i det såkaldte 5 intrinsic ha s tigheds område, hvor der næsten ikke er nogen koncentrationsgradient af reaktionsdeltagerne gennem katalysatorlegemets poresystem. Efterhånden som temperaturen stiger, stiger katalysatoraktiviteten, og det medfører at reaktanterne får øget gradient gennem katalysatorlegemerne. På et tids-10 punkt nås et temperaturområde hvor diffusionen af reaktanterne gennem katalysatorlegememe bliver den begrænsende parameter for reaktionshastigheden; det betyder at regnemæssigt ikke hele katalysatormaterialet anvendes i reaktionen; effektivitetsfaktoren bliver <1.At low temperature, the reaction rate of the catalyst material is limited. The reaction is here in the so-called intrinsic state, where there is almost no concentration gradient of the reaction participants through the pore system of the catalyst body. As the temperature rises, the catalyst activity increases, causing the reactants to increase in gradient through the catalyst bodies. At a time point, a temperature range is reached where the diffusion of the reactants through the catalyst bodies becomes the limiting parameter of the reaction rate; this means that not all the catalyst material is used in the reaction; the efficiency factor becomes <1.

15 Øges temperaturen yderligere, vil den parameter der bestemmer reaktionshastigheden blive den hastighed, hvormed reaktanterne transporteres gennem den gasfilm som omgiver katalysatorlegemerne. Denne hastighed er under normale forhold for stor til at reaktorens køleflade kan begrænse hot spot 20 temperaturen til et niveau væsentligt under det af den adiaba- . tiske temperaturstigning bestemte, hvilket i mange tilfælde vil sige at termisk sintring ikke kan undgås eller for visse metaniseringsreaktioners vedkommende at kuldannelse ikke kan afværges.If the temperature is further increased, the parameter determining the rate of reaction will be the rate at which the reactants are transported through the gas film surrounding the catalyst bodies. Under normal conditions, this speed is too large for the reactor's cooling surface to limit the hot spot temperature to a level substantially below that of the adiaba. tical temperature rise, which in many cases means that thermal sintering cannot be avoided or, for some methanation reactions, that coal formation cannot be averted.

25 Ved opfindelsen indbygges imidlertid en restriktiv over flade i de enkelte katalysatorlegemer ved at man øger gasfilmen eller på en eller anden måde nedsætter gennemtrængelig-heden for reaktanterne, og dermed begrænses reaktionshastigheden og følgelig også temperaturstigningen.However, in the invention, a restrictive surface is incorporated into the individual catalyst bodies by increasing the gas film or in some way reducing the permeability of the reactants, thereby limiting the reaction rate and, consequently, the rise in temperature.

30 Man kunne måske vente at indbyggelse af et sådant inert lag, "forsinkelseslag", vil give vanskelighed med igangsætning eller "tænding" af de eksoterrae reaktioner. Det sker imidlertid ikke, for reaktionshastigheden i tændingszonen er under alle omstændigheder lav, så gasdiffusionen gennem det 35 inerte lag vil ikke blive begrænsende (bestemmende) for reaktionshastigheden. Dette lag bliver først en begrænsende faktor, dvs. det begynder i realiteten først at virke når reaktionshastigheden bliver så stor at man ønsker den bremset.30 One might expect that incorporation of such an inert layer, "delay layer", will cause difficulty initiating or "igniting" the exoteric reactions. However, this does not happen because the reaction rate in the ignition zone is in any case low, so the gas diffusion through the inert layer will not be limiting (determining) the reaction rate. This layer first becomes a limiting factor, ie. in fact, it only begins to work when the reaction rate becomes so large that you want it to slow down.

144996 8144996 8

Da det inerte lag kun udgør en lille del af katalysatorpillen, bevares katalysatorens modstandsevne mod forgiftning.Since the inert layer forms only a small part of the catalyst pellet, the catalyst's resistance to poisoning is maintained.

Det kan i denne forbindelse nævnes at det omhandlede yderlag på meget små katalysatorpiller kan andrage over 50% 5 af deres rumfang; men normalt vil andelen være væsentlig mindre, således for cylindriske katalysatorlegemer med højde og diameter 4,2 mm typisk 1-10%, navnlig 2-10% og hyppigt 2-5% af rumfanget.In this connection, it may be mentioned that the outer layer of the catalyst pellets in question can exceed 50% of their volume; but usually the proportion will be substantially smaller, so for cylindrical catalyst bodies having a height and diameter of 4.2 mm typically 1-10%, especially 2-10% and frequently 2-5% of the volume.

Reaktoren kan være en hvilken som helst type kølet 10 reaktor til exoterme reaktioner, fx en rørreaktor eller en reaktor med et større rum af vilkårlig form, og hvorigennem der går kølerør hvori et kølemedium strømmer. Katalysator-lejet vil hyppigst være et såkaldt fast leje (fixed bed), men opfindelsen kan også udnyttes i forbindelse med katalysa-15 torer i svæveleje (fluid bed).The reactor can be any type of cooled reactor for exothermic reactions, for example a tube reactor or a reactor with a larger space of any shape, through which cooling pipes flow into which a refrigerant flows. The catalyst bed will most often be a so-called fixed bed, but the invention can also be utilized in connection with catalysts in fluid bed.

Yderlaget skal som nævnt have nedsat katalytisk aktivitet, og selv om det ifølge opfindelsen ofte vil være hensigtsmæssigt at bruge en katalysator hvis enkelte partikler yderst har en for den ønskede reaktion (eller hovedreaktion) 20 inaktiv zone, kan det i nogle tilfælde være hensigtsmæssigt at bruge en katalysator hvor denne yderzone blot har en for reaktionen (eller hovedreaktionen) nedsat aktivitet.As mentioned, the outer layer must have decreased catalytic activity, and although it will often be appropriate to use a catalyst whose individual particles have a highly inactive zone (or main reaction) for the desired reaction (or main reaction), it may be appropriate to use in some cases. a catalyst in which this outer zone has only one activity which is impaired for the reaction (or the main reaction).

Yderzonen kan frembringes på mange forskellige måder, ofte i analogi med den fra den farmaceutiske industri kendte 25 teknik hvor tabletter fremstilles med flere lag af forskellig sammensætning eller forskellig koncentration af virksomt stof.The outer zone can be produced in a variety of ways, often in analogy with the prior art of the pharmaceutical industry, where tablets are made with multiple layers of different composition or different concentration of active substance.

Således kan man først fremstille katalysatorlegemer af normal art, bestående af en porøs bærer med det katalytisk 30 aktive materiale. De kan fremstilles ved kendt teknik, fx ved samfældning eller ved at der først fremstilles porøse bærelegemer som derpå imprægneres med detkatalytisk aktive materiale. Den således fremstillede katalysator dyppes derpå i en gel eller sol af inert bæremateriale, af samme art som 35 selve katalysatorbæreren eller anden art. Hvis yderlaget ikke skal være katalytisk helt inert, men have begrænset katalytisk aktivitet, kan man derpå imprægnere det, men drage omsorg for at koncentrationen af katalytisk virksomt materiale U4996 9 bliver mindre end i inderlaget. Man kan kombinere afvekslende imprægneringer, udvaskninger og kemikaliebehandlinger og derved opnå ønsket struktur og kombination af strukturer. På en færdig katalysator kan man, fx ved elektrolyse eller udfæld-5 ning fra dampfase, pålægge et inert lag eller endog et katalytisk aktivt lag som delvis tilstopper poremundingerne, hvorved katalysatoraktiviteten i yderlaget og diffusionshastigheden til katalysatorens indre nedsættes. En særlig struktur kan man opnå ved at tablettere en blanding af neddelte kata-10 lysatorpartlkler med et inert bæremateriale. Herved kombineres diffusionseffekten med en fortynding af katalysatoren, hvorved fortyndingsgraden kan nedsættes væsentligt.Thus, one can first produce normal catalyst bodies consisting of a porous support with the catalytically active material. They can be prepared by known techniques, for example by coalescing or by first preparing porous support bodies which are then impregnated with the catalytically active material. The catalyst thus produced is then dipped into a gel or sol of inert carrier material, of the same kind as the catalyst carrier or other species itself. If the outer layer is not to be catalytically completely inert but has limited catalytic activity, it can then be impregnated, but ensure that the concentration of catalytically active material U4996 9 is lower than in the inner layer. Alternating impregnations, leaches and chemical treatments can be combined to achieve the desired structure and combination of structures. On a finished catalyst, for example, by electrolysis or precipitation from the vapor phase, one can apply an inert layer or even a catalytically active layer which partially clogs the pore openings, thereby reducing the catalyst activity in the outer layer and the rate of diffusion to the interior of the catalyst. A particular structure can be obtained by tableting a mixture of divided catalyst particles with an inert carrier material. In this way, the diffusion effect is combined with a dilution of the catalyst, which can significantly reduce the dilution rate.

Praktiske udførelser af disse metoder og kombinationer deraf vil være nærliggende for de sagkyndige.Practical embodiments of these methods and combinations thereof will be apparent to those skilled in the art.

15 Som nævnt kan det angivne princip udnyttes ikke blot i tilfælde af en enkelt éksoterm reaktion, men også i tilfælde hvor en katalytisk eksoterm hovedreaktion og en eller flere katalytiske bireaktioner foregår samtidig i samme reaktor. I så tilfælde kan der ifølge opfindelsen anvendes en for hovedreaktionen 20 aktiv katalysator hvis enkelte partikler yderst har en zone af materiale der er i det mindste delvis inaktivt i forhold til hovedreaktionen, men katalytisk aktivt for en eller flere bireaktioner.As mentioned, the stated principle can be utilized not only in the case of a single exothermic reaction, but also in cases where a catalytic exothermic main reaction and one or more catalytic side reactions take place simultaneously in the same reactor. In that case, according to the invention, a catalyst active for the main reaction 20 can be used whose individual particles have a zone of material which is at least partially inactive with respect to the main reaction, but catalytically active for one or more side reactions.

En praktisk udførelse af en sådan katalysator, eller 25 idet hele af katalysatorer udformet i henhold til opfindelsens principper er en katalysator der består af partikler af et porøst bæremateriale, der er katalytisk inaktivt for den ønskede reaktion eller hovedreaktion (men eventuelt katalytisk aktivt for en bireaktion), og son i poresystemet indehol-30 der et for den ønskede reaktion eller hovedreaktion katalytisk aktivt materiale på en sådan måde, at porerne i bærerpartiklernes yderzone er fiie for det for reaktionerne eller hovedreaktionen katalytisk aktive materiale. Porernes indhold af katalytisk aktive materiale kan 35 fx være tilvejebragt ved samfældning, ved elektrolyse, ved udfældning fra dampfase eller ved imprægnering fra væskefase. Udformningen kan også være som angivet i krav 6.A practical embodiment of such a catalyst, or the whole of catalysts designed according to the principles of the invention, is a catalyst consisting of particles of a porous support which is catalytically inactive for the desired reaction or main reaction (but optionally catalytically active for a side reaction). ), and zone of the pore system contains a catalytically active material for the desired reaction or main reaction in such a way that the pores in the outer zone of the carrier particles are free of the catalytically active material for the reactions or the main reaction. For example, the pores content of catalytically active material may be provided by co-precipitation, by electrolysis, by precipitation from the vapor phase or by impregnation from the liquid phase. The design may also be as claimed in claim 6.

Katalysatoren kan desuden være udformet som angivet i krav 7.The catalyst may further be configured as claimed in claim 7.

U4996 ίοU4996 ίο

Katalysatorer udformet efter de beskrevne principper kan med særlig fordel bruges til kulbrintereaktioner som de foran viste, specielt metaniseringsreaktioner. Katalysatoren kan herved bestå af et kendt bæremateriale, 5 fx γ-aluminiumoxyd, magniumaluminiumspinel, kiselsyreanhy- drid, zirconiumoxyd, titandioxyd eller kombinationer af to eller flere af disse materialer, sammen med katalytisk aktivt nikkel, idet der yderst er en zone uden nikkel eller med nedsat nikkelkoncentration. Herved opnås den ønskede skaleffekt 10 umiddelbart.Catalysts designed according to the principles described can be used with particular advantage for hydrocarbon reactions such as those shown above, especially methanation reactions. The catalyst can hereby consist of a known support material, for example γ-alumina, magnesium aluminum spinel, silicic anhydride, zirconia, titanium dioxide or combinations of two or more of these materials, together with catalytically active nickel, having a zone without nickel or with decreased nickel concentration. Hereby the desired scale effect 10 is obtained immediately.

Princippet kan imidlertid udnyttes på endnu elegante-re måde; som nævnt foran ledsages reaktionerne (1), (2) og (4) af vandgasreaktionen (6). Reaktionerne (1)-(4) og også vandgasreaktionen katalyseres af nikkel, mens vandgasreaktio-15 nen tillige katalyseres af bl.a. kobber. Det er en fordel at have metaniseringsreaktioner ledsaget af vandgas- eller shift-reaktionen på en sådan måde at partialtrykket af kulmonoxyd nedsættes inden det i for høj grad kommer i kontakt med katalysatornikkelet, idet CO i nogen grad er katalysatorgift for 20 nikkel og forgiftningen kan nedsættes ved nedsættelse af C0- partialtrykket. Det bemærkes at det er nikkelmetal og kobbermetal der katalyserer reaktionerne, men at katalysatormetallet påføres i form af en forbindelse, ofte et nitrat eller hydroxyd, der senere oxyderes, fx ved kalcinering, og 25 til slut reduceres til det fri metal, ofte ved begyndelsen af den ønskede reaktion ved hjælp af hydrogen til stede blandt reaktionsdeltagerne; der ses i det følgende bort fra disse forhold, og beskrivelsen vil kun operere med de fri metaller.However, the principle can be utilized in an even more elegant way; As mentioned above, reactions (1), (2) and (4) are accompanied by the water gas reaction (6). Reactions (1) - (4) and also the water gas reaction are catalyzed by nickel, while the water gas reaction is also catalyzed by e.g. copper. It is advantageous to have methanization reactions accompanied by the water gas or shift reaction in such a way that the partial pressure of carbon monoxide is reduced before it comes into excessive contact with the catalyst nickel, since CO is to some extent a catalyst poison for 20 nickel and the poisoning can be reduced. by reducing the C0 partial pressure. It is noted that it is nickel metal and copper metal that catalyze the reactions, but that the catalyst metal is applied in the form of a compound, often a nitrate or hydroxide which is later oxidized, for example by calcination, and finally reduced to the free metal, often at the beginning of the reaction. the desired reaction by hydrogen present among the reaction participants; these conditions are disregarded in the following, and the description will only operate with the free metals.

30 Det er kendt at legeringer af kobber og nikkel over et vist kobberindhold udviser meget ringe aktivitet for metanisering (se M. Araki og V. Ponec, J. Catalysis 44, 439 (1976)); det belyses nærmere i omstående eksempel 1. Ni/Cu-katalysatoren har derimod stadig aktivitet for om-35 dannelse af kulmonoxyd til kuldioxyd ved vandgasreaktionen (6). Dette kan nu udnyttes i forbindelse med den foreliggende opfindelse på den måde at der fremstilles en nikkelkatalysator, der yderst har en skal af nikkel-kob- 144996 11 ber legeringen. Herved opnås dels at man bremser den stærkt varmeudviklende metaniseringsreaktion, men også nedsætter kulmonoxydets partialtryk ved vandgasreaktlonen, hvorved den nikkelholdige katalysatorkerne skånes for den så-5 kaldte β-deaktivering (se forannævnte afhandling af Karsten Pedersen, Allan Skov og J.R. Rostrup-Nielsen i ACS-sympo-sium). Ved β-deaktiveringen omdannes adsorberet kulmonoxyd langsomt til aflejringer af kul med lav reaktivitet, som deaktiverer katalysatoren, men det undgås når man ifølge 10 opfindelsen går frem som angivet i krav 8.It is known that copper and nickel alloys over a certain copper content exhibit very little activity for methanization (see M. Araki and V. Ponec, J. Catalysis 44, 439 (1976)); it is further elucidated in the above Example 1. The Ni / Cu catalyst, on the other hand, still has activity for converting carbon monoxide to carbon dioxide in the aqueous gas reaction (6). This can now be utilized in connection with the present invention in that a nickel catalyst having a shell of nickel-copper alloy is prepared. This is achieved partly by slowing down the highly heat-generating methanization reaction, but also reducing the partial pressure of the carbon monoxide at the aqueous gas reacton, thereby protecting the nickel-containing catalyst core from the so-called β deactivation (see the aforementioned treatise by Karsten Pedersen, Allan Skrup and JR -sympo-Sium). Upon β-deactivation, adsorbed carbon monoxide is slowly converted to low reactivity coal deposits which deactivate the catalyst, but this is avoided when the invention proceeds according to claim 8.

Den ydre kobberholdige katalysatorfilm kan dannes på forskellige måder. Fx kan man først på kendt måde, fx ved imprægnering eller samfældning, fremstille partikler af en nikkelkatalysator og derpå dyppe partiklerne i vand 15 eller en anden væske og derpå i en imprægneringsvæske indeholdende en kobberforbindelse, fx kobbernitrat eller kob-berhydroxyd.The outer copper-containing catalyst film can be formed in various ways. For example, first, in known manner, for example, by impregnation or co-precipitation, particles of a nickel catalyst can be prepared and then dipped the particles in water or other liquid and then in an impregnating liquid containing a copper compound, for example copper nitrate or copper hydroxide.

En anden fremgangsmåde består i at udfælde kobber-hydroxyd fra kobbernitrat i de ydre dele af katalysatorens 20 poresystem. Det er ved denne fremgangsmåde en fordel hvis bærematerialet er basisk, fx indeholder frit magniumoxyd.Another method consists of precipitating copper hydroxide from copper nitrate into the outer portions of the pore system of the catalyst 20. It is advantageous in this process if the carrier material is basic, for example, contains free magnesium oxide.

Det kan man fx opnå ved at anvende en bærer af magnium-aluminiumspinel der er brændt ved en sådan temperatur (ca.This can be achieved, for example, by using a magnesium-aluminum spinel support burned at such a temperature (approx.

1100°C), at ikke-reageret magniumoxyd stadig har nogen re-25 aktivitet. Man kan også først fylde poresystemet med op-slæmmet magniumoxyd eller en anden base såsom kalciumoxyd eller opløsninger af et alkalimetalhydroxyd. Kobber-hydroxyd vil blive udfældet i poresystemets yderste del i henhold til reaktionen 30 (7) Cu(N03)2 + MgO + H20-»Cu(0H)2 + Mg(N03)2·1100 ° C) that unreacted magnesium oxide still has some reactivity. Also, the pore system can first be filled with slurried magnesium oxide or another base such as calcium oxide or solutions of an alkali metal hydroxide. Copper hydroxide will be precipitated in the outer part of the pore system according to the reaction 30 (7) Cu (NO3) 2 + MgO + H2O- »Cu (OH) 2 + Mg (NO3) 2 ·

Den beskrevne metode kan bruges ved nikkelkatalysatorer hvor nikkelet er blevet jævnt fordelt på anden måde, som nævnt fx samfældning, imprægnering med nikkelnitrat uden tilstedeværelse af MgO eller andre alkaliske 35 forbindelser i poresystemet. Hvis katalysatorbæreren indeholder frit magniumoxyd eller andre alkaliske forbindelser, kan nikkel påføres før eller efter kobber ved imprægnering U4996 12 med nikkelhexaminformiat, som selv er alkalisk, men ikke medfører udfældning af nikkel ved kontakt med basiske stoffer.The described method can be used with nickel catalysts where the nickel has been evenly distributed in other ways, as mentioned for example co-precipitation, impregnation with nickel nitrate without the presence of MgO or other alkaline compounds in the pore system. If the catalyst support contains free magnesium oxide or other alkaline compounds, nickel may be applied before or after copper by impregnation with nickel hexamine formate, which itself is alkaline but does not cause the precipitation of nickel upon contact with basic substances.

På denne måde er det muligt at regulere forholdet mellem nikkel og kobber i katalysatorens yderzone og samtidig opnå jævn 5 fordeling af nikkelindholdet.In this way, it is possible to regulate the ratio of nickel to copper in the outer zone of the catalyst and at the same time achieve an even distribution of the nickel content.

Opfindelsen angår ligeledes en fremgangsmåde til fremstilling af den i krav 8 angivne katalysator, hvilken fremgangsmåde er ejendommelig ved det i krav 9's kendetegnende del angivne.The invention also relates to a process for producing the catalyst as claimed in claim 8, which is characterized by the characterizing part of claim 9.

Reaktionshastigheden ved metanisering og dermed reak-10 tionstemperaturen kan styres efter lignende principper ved anvendelse af en vanadin-eller molybdænbaseret katalysator i svovlholdig atmosfære som beskrevet i dansk patentansøgning nr. 5396/79 af 18. december 1979.The reaction rate of methanization and thus the reaction temperature can be controlled by similar principles using a vanadium- or molybdenum-based catalyst in sulfur-containing atmosphere as described in Danish Patent Application No. 5396/79 of December 18, 1979.

Særlig værdifuldt kan det være at udnytte princippet 15 ifølge den foreliggende opfindelse i forbindelse med den i dansk patentansøgning nr. 5395/79 angivne fremgangsmåde til fremstilling af en gasblanding med højt indhold af C2~kul-brinter ved omsætning af en fødegasblanding indeholdende hydrogen og kuloxyder ved hjælp af en katalysator inde-20 holdende molybdæn og/eller vanadin og jern og/eller nikkel under nærværelse af gasformige svovlforbindelser. Der er her tale om en Fischer-Tropsch syntese, og der ligger stor vægt på at holde temperaturen relativt lavt, fordi højere temperatur vil forskyde ligevægten i retning af 25 metandannelse. Man kan derfor i overensstemmelse med den foreliggende opfindelse forsyne katalysatorlegemerne med en skal af inaktivt bæremateriale eller en skal indeholdende kobber til syntese af den samtidig forløbende vand-gasreaktion.It may be particularly valuable to utilize the principle 15 of the present invention in connection with the process of producing a gas mixture of high content of C2 hydrocarbons as described in Danish Patent Application No. 5395/79 by reacting a feed gas mixture containing hydrogen and carbon oxides. by means of a catalyst containing molybdenum and / or vanadium and iron and / or nickel in the presence of gaseous sulfur compounds. This is a Fischer-Tropsch synthesis and there is a great deal of emphasis on keeping the temperature relatively low because higher temperature will shift the equilibrium towards 25 methane formation. Therefore, in accordance with the present invention, the catalyst bodies may be provided with a shell of inert carrier or a shell containing copper for the synthesis of the concurrent water-gas reaction.

30 Fremgangsmåden ifølge opfindelsen skal i det følgen de belyses nærmere ved nogle eksempler.The process according to the invention will be explained in more detail by some examples.

Eksempel 1 A. Der fremstilledes en serie katalysatorer ved samfæld-ning af natriumsilikat og varierende mængder kobber- og 35 nikkelnitrat med natriumhydrogenkarbonat.Example 1 A. A series of catalysts were prepared by precipitation of sodium silicate and varying amounts of copper and nickel nitrate with sodium hydrogen carbonate.

Fældningsproduktet formedes til partikler der udvaskedes for natriumforbindelser, tørredes ved 120°C, kal-cineredes ved 500°C og reduceredes i hydrogen ved 500°C. Metaniseringsaktiviteten måltes ved 1 atm og 250°C ved at en 40 gas bestående af 1% CO i i en mængde på 100 Nl/h blev 144996 13 ledet over katalysatoren i form af uregelmæssige legemer med en størrelse på 0,3-0,5 mm (måltved sigte-maskevidde). Følgende resultater opnåedes:The precipitate was formed into particles leached for sodium compounds, dried at 120 ° C, calcined at 500 ° C and reduced in hydrogen at 500 ° C. The methanization activity was measured at 1 atm and 250 ° C by passing a 40 gas of 1% CO in an amount of 100 Nl / h over the catalyst in the form of irregular bodies having a size of 0.3-0.5 mm (measured by sieve-mesh width). The following results were obtained:

Katalysator Vægt% Atomforhold Aktivitet, 5 nr. Ni Cu Ni/Cu+Ni 10~3 mol/g/h 1 68,5 0 1,0 93,75 2 54,2 14,6 0,8 22,32 3 40,2 29,0 0,6 8,93 4 26,5 43,0 0,4 3,57 10 5 13,1 56,7 0,2 0,89 6 0 70,1 0 0Catalyst Weight% Atomic ratio Activity, 5 No. Ni Cu Ni / Cu + Ni 10 ~ 3 mol / g / h 1 68.5 0 1.0 93.75 2 54.2 14.6 0.8 22.32 3 40 , 2 29.0 0.6 8.93 4 26.5 43.0 0.4 3.57 10 5 13.1 56.7 0.2 0.89 6 0 70.1 0 0

Det ses at selv en lille mængde kobber nedsætter me-taniseringsaktiviteten drastisk.It is seen that even a small amount of copper drastically reduces the mechanization activity.

B. Der fremstilledes 3 katalysatorer ved at en bærer af — 2 15 γ-aluminiumoxyd med et indre overfladeareal på ca. 40 m /g imprægneredes i opløsninger af henholdsvis kobbernitrat, nikkelnitrat og en blanding af nikkelnitrat og kobbernitrat. De imprægnerede bærere kalcineredes ved 550°C og reduceredes i hydrogen ved 720°C. Katalysatorerne afprø-20 vedes i en reaktor med et tryk på 1 atm med 53,5 Nl/h gas bestående af 61,8 rumfangs% Η2> 18,2 rumfangs% H20 og 20,0 rumfangs% CO, over 0,2 g katalysator som 0,3-0,5 mm partikler. Herved måltes følgende hastigheder for henholdsvis kuloxyd-konvertering (vandgasreaktionen, shlftreaktionen) og metani-25 sering: reaktionshastighed ved 375°C 10 3 mol/g/h shift metaniseringB. 3 catalysts were prepared by a carrier of - 2 15 γ-alumina having an inner surface area of about 2 40 m / g were impregnated in solutions of copper nitrate, nickel nitrate and a mixture of nickel nitrate and copper nitrate, respectively. The impregnated carriers were calcined at 550 ° C and reduced in hydrogen at 720 ° C. The catalysts are tested in a reactor at a pressure of 1 atm with 53.5 Nl / h gas consisting of 61.8 volume% >2> 18.2 volume% H 2 O and 20.0 volume% CO, over 0.2 g catalyst as 0.3-0.5 mm particles. Hereby, the following rates of carbon oxide conversion (the water gas reaction, the shift reaction) and the methanation were measured: reaction rate at 375 ° C 3 mol / g / h shift methanization

Cu 1.05 0 30 Ni,Cu 73 5.2Cu 1.05 0 30 Ni, Cu 73 5.2

Ni +) - 43Ni +) - 43

Ni ++) 1431 1608 +) målt ved 311°C, da reaktor-temperatur ikke kunne styres ved 375°C.Ni ++ 1431 1608 +) measured at 311 ° C as reactor temperature could not be controlled at 375 ° C.

35 ++) målt på den foran omtalte katalysator MCR-2X.35 ++) measured on the catalyst MCR-2X mentioned above.

144996 14144996 14

Det ses, at Ni,Cu-katalysatoren har god aktivitet for vand-gasreaktionen, mens ingen af de Cu-holdige katalysatorer har væsentlig aktivitet for metanisering.It is seen that the Ni, Cu catalyst has good activity for the water-gas reaction, while none of the Cu-containing catalysts has significant activity for methanization.

Eksempel 2 5 En bærer bestående af magniumoxyd med et mindre indhold af aluminiumoxyd (forhold Mg/Al 7:1) imprægneres i form af cylindre med højde og diameter 4,5 mm med en mættet vandig opløsning af kobbernitrat. Den imprægnerede bærer kalcineredes ved 550°C.Example 2 A carrier consisting of magnesium oxide with a smaller content of alumina (ratio Mg / Al 7: 1) is impregnated in the form of cylinders of height and diameter 4.5 mm with a saturated aqueous solution of copper nitrate. The impregnated support was calcined at 550 ° C.

Ved brydning af partiklerne kunne det tydeligt ses, at kobber 10 var akkumuleret som en tynd sort skal på bærerens yderside. Mikroskopisk undersøgelse viste at laget havde en tykkelse på ca. 50 μ.By breaking the particles, it was clearly seen that copper 10 had accumulated like a thin black shell on the outside of the support. Microscopic examination showed that the layer had a thickness of approx. 50 µ.

Den kobberimprægnerede bærer blev imprægneret med en mættet vandig opløsning af nikkelhexaminformiat fremstillet ved op-15 løsning af 23 g nikkelformiat i 50 ml koncentreret ammoniakvand. Den imprægnerede katalysator kalcineredes ved 300°C.The copper impregnated support was impregnated with a saturated aqueous solution of nickel hexamine formate prepared by dissolving 23 g of nickel formate in 50 ml of concentrated ammonia water. The impregnated catalyst was calcined at 300 ° C.

Ved brydning af partiklerne observeredes jævn farvning og følgelig fordeling af nikkel. Ved analyse fandtes 0,6 vægt%In breaking the particles, even staining and consequent distribution of nickel was observed. By analysis, 0.6% by weight was found

Cu og 2,7 vægt% Ni.Cu and 2.7% by weight Ni.

20 En tilsvarende katalysator fremstilles ved imprægnering først i nikkelhexaminformiat og derpå kobbernitrat. Kobberskallen sås som mørkfarvning af partiklernes yderzone. Denne katalysator betegnes katalysator A, og som reference fremstilledes en kobberfri metaniseringskatalysator, betegnet 25 katalysator B, ved imprægnering af bæreren i nikkelhexaminformiat .A similar catalyst is prepared by impregnating first in nickel hexamine formate and then copper nitrate. The copper shell was seen as dark staining of the outer zone of the particles. This catalyst is referred to as Catalyst A, and as a reference, a copper-free methanization catalyst, designated Catalyst B, is prepared by impregnating the support in nickel hexamine formate.

Eksempel 3Example 3

En metaniseringskatalysator indeholdende ca. 25 vægt% nikkel på en stabiliseret bærer af aluminiumoxyd imprægneredes 30 i form af 4,2 x 4,2 mm store cylindre i en gel af aluminiumoxyd fremstillet ved opslæmning af 11 g aluminiumoxyd i 180 ml vand og geleret med 5,6 ml koncentreret salpetersyre. Den imprægnerede katalysator kalcineredes ved 550°C.A methanization catalyst containing approx. 25% by weight of nickel on a stabilized alumina support was impregnated in the form of 4.2 x 4.2 mm cylinders in an alumina gel prepared by slurrying 11 g of alumina in 180 ml of water and gelled with 5.6 ml of concentrated nitric acid. . The impregnated catalyst was calcined at 550 ° C.

Der blev foretaget en tilsvarende fremstilling med den 35 forskel at 1Q ml af aluminiumoxydgelen forinden blev blandet med en opløsning af kobbernitrat. Den imprægnerede og kal-cinerede katalysator udviste en yderskal indeholdende kobber, 144996 15 ved mikroskopisk undersøgelse anslået til en tykkelse på ca.A similar preparation was made with the difference that 1Q ml of the alumina gel was previously mixed with a solution of copper nitrate. The impregnated and calcined catalyst showed an outer shell containing copper, by microscopic examination estimated at a thickness of approx.

0,5 mm. Mindre mængder kobbernitrat var trængt ind i katalysatorens indre, men forholdet mellem kobberindhold i yderzonen og det indre kunne anslås til ca. 3:1. Denne katalysator be-5 tegnes C.0.5 mm. Smaller amounts of copper nitrate had penetrated into the catalyst interior, but the ratio of copper content in the outer zone to the interior could be estimated at approx. 3: 1. This catalyst is designated C.

Eksempel 4Example 4

Dette forsøg viser hvorledes et overtræk på en katalysator påført ved hjælp af en gel kan begrænse reaktionshastigheden ved høj temperatur.This experiment shows how a coating on a catalyst applied by a gel can limit the reaction rate at high temperature.

10 En metaniseringskatalysator med nikkel i form af 4,2 x 4,2 mm cylindre blev overtrukket med en gel af aluminiumoxyd og derpå tørret. Derefter blev katalysatoren reduceret i rent hydrogen ved 800°C i 2 timer. Denne katalysator betegnes D.A nickel methanization catalyst in the form of 4.2 x 4.2 mm cylinders was coated with an alumina gel and then dried. Then, the catalyst was reduced in pure hydrogen at 800 ° C for 2 hours. This catalyst is called D.

15 En katalysator uden et sådant overtræk blev aktiviseret (reduceret) på samme måde. Den betegnes E og er identisk med den forannævnte katalysator MCR-2X.A catalyst without such a coating was activated (reduced) in the same way. It is designated E and is identical to the aforementioned catalyst MCR-2X.

Eksempel 5Example 5

Dette eksempel viser afprøvning af de i eksemplerne 20 2-4 omtalte katalysatorer A-E.This example shows testing of the catalysts A-E referred to in Examples 20 2-4.

Den til afprøvning værende katalysatorpille blev fastspændt mellem to termoelementer i en rørreaktor med indvendig diameter 6 mm. Derpå blev den opvarmet i rent hydrogen til ca. 300°C for at fjerne eventuelle spor af nikkeloxyd.The catalyst pellet being tested was clamped between two thermocouples in a 6 mm internal diameter reactor. It was then heated in pure hydrogen to ca. 300 ° C to remove any traces of nickel oxide.

25 Brinttilførslen standsedes derpå og der tilførtes systemet en syntesegas bestående af 9% CO i Hg med en hastighed på ca.The hydrogen supply was then stopped and the system was fed with a synthesis gas of 9% CO in Hg at a rate of approx.

100 Nl/h under hele forsøget. Ved ca. 300°C blev produktgasstrømmen analyseret på en gaskromatograf og den producerede metanmængde bestemt. Temperaturen blev derefter hævet trin- 30 vis og metaniseringshastigheden bestemt hver gang.100 Nl / h throughout the experiment. At about. At 300 ° C, the product gas stream was analyzed on a gas chromatograph and the amount of methane produced was determined. The temperature was then raised stepwise and the rate of methanization determined each time.

Nedenstående tabel viser at katalysatorer med inaktivt yderlag påført med gelen har begrænset reaktionshastighed ved høj temperatur i sammenligning med den homogene referencekatalysator.The following table shows that inactive outer layer catalysts applied with the gel have limited high temperature reaction rate compared to the homogeneous reference catalyst.

XX

144996 16144996 16

Tabel 3Table 3

Katalysator Testtemp., Metaniseringsakti- ___vltet millimol/g/h A 300 1,4Catalyst Test Temp. Methanization Action Millimol / g / h A 300 1.4

Al203,Mg0 bærer 360 4 5 imprægneret med 417 6 kobbernitrat og 518 12 nikkelhexaminformiat 603 11 678 12 B 346 18 10 Al203.Mg0 bærer 389 60 imprægneret med 482 180 nikkelhexaminformiat 577 250 715 240 C 330 55 15 Ni0.Al202 katalysator 425 95 overtrukket med Al203 570 130 741 95 D 243 3,5Al 2 O 3, Mg0 support 360 4 5 impregnated with 417 6 copper nitrate and 518 12 nickel hexamine formate 603 11 678 12 B 346 18 10 Al 2 O 3.Mg0 support 389 60 impregnated with 482 180 nickel hexamine formate 577 250 715 240 C 330 55 15 Ni0.Al202 catalyst with Al2 O3 570 130 741 95 D 243 3.5

Ni0.Al203 katalysator 295 30 20 ovértrukket med en skal 336 50 indeholdende kobberoxyd 440 65 og A1203 597 60 E 274 80Ni0.Al203 catalyst 295 30 20 coated with a shell 336 50 containing copper oxide 440 65 and A1203 597 60 E 274 80

Ni0.Al203 katalysator 323 180 25 (forannævnte kendte ka- 379 250 talysator MCR-2X uden 438 270 restriktioner) 508 315 569 310NiO.Al 2 O 3 catalyst 323 180 25 (aforementioned known catalyst 379 250 catalyst MCR-2X without 438 270 restrictions) 508 315 569 310

Grunden til at katalysatorerne B og E har maximum akti-30 vitet i det betragtede temperaturområde er gasfilmens tykkelse under forsøget, hvor gashastighederne har være væsentligt lavere end ved industriel drift; ved normal industriel drift med de 144996 17 større gashastigheder ville gasfilmen blive tyndere og dermed bremse diffusionen mindre. Masseovergangstallet for gasfilmen o anslås til ca. 7 kmol/h/m , hvor den under industrielle be- 2 tingelser vil være omkring 100 kmol/h/m . Dette medfører at 5 forskellen i højtemperaturaktivitet med og uden skal vil være større end det fremgår af tabel 3.The reason why the catalysts B and E have maximum activity in the temperature range considered is the thickness of the gas film during the test, where the gas velocities have been substantially lower than in industrial operation; under normal industrial operation with the higher gas velocities, the gas film would become thinner and thus slow down the diffusion. The mass transition number for the gas film o is estimated at approx. 7 kmol / h / m, where under industrial conditions it will be about 100 kmol / h / m. This means that the difference in high temperature activity with and without shell will be greater than that shown in Table 3.

Claims (6)

144996144996 1. Fremgangsmåde ved udførelse af katalytiske eksoterme gasfaseprocesser i en kølet reaktor indeholdende et leje af en porøs, partikelformig katalysator som er aktiv for den 5 ønskede reaktion, kendetegnet ved at der bruges en katalysator hvis enkelte partikler yderst har en zone med for reaktionen nedsat katalytisk aktivitet.A process for carrying out catalytic exothermic gas phase processes in a cooled reactor containing a bed of a porous, particulate catalyst which is active for the desired reaction, characterized in that a catalyst is used whose individual particles have an extremely catalytically reduced reaction zone. activity. 2. Fremgangsmåde ifølge krav 1, kendetegnet ved at der bruges en katalysator hvis enkelte partikler 10 yderst har en for reaktionen inaktiv zone.Process according to claim 1, characterized in that a catalyst is used whose individual particles 10 have a highly inert reaction zone for the reaction. 3. Fremgangsmåde ifølge krav 1 eller 2, kendetegnet ved at katalysatorpartiklernes nævnte yderzone har en tykkelse på 0,01-2 mm.Process according to claim 1 or 2, characterized in that said outer zone of said catalyst particles has a thickness of 0.01-2 mm. 4. Fremgangsmåde ifølge et hvilket som helst af de fore-15 gående krav, hvor en katalytisk eksoterm hovedreaktion og en eller flere katalytiske bireaktioner foregår i hovedsagen samtidig i samme reaktor, der indeholder et leje af en for reaktionerne aktiv, partikelformig katalysator, kendetegnet ved at der anvendes en katalysator, hvis enkel-20 te partikler yderst har en zone af materiale som er i det mindste delvis inaktivt i forhold til hovedreaktionen og katalytisk aktivt for en eller flere bireaktioner.A process according to any one of the preceding claims, wherein a catalytic exothermic main reaction and one or more catalytic side reactions take place substantially simultaneously in the same reactor containing a bed of a reaction active particulate catalyst characterized by a catalyst whose single particles have a zone of material which is at least partially inactive with respect to the main reaction and catalytically active for one or more side reactions. 5. Fremgangsmåde ifølge et hvilket som helst af de foregående krav, kendetegnet ved at der anvendes en 25 katalysator som består af partikler af et porøst bæremateriale der er katalytisk inaktivt for den ønskede reaktion eller hovedreaktion, og som i en del af poresystemet indeholder et for den ønskede reaktion eller hovedreaktion katalytisk aktivt materiale, på en sådan måde at porerne i bærer-30 partiklernes yderzone er frie for det for den ønskede reaktion eller hovedreaktion katalytisk aktive materiale.Process according to any one of the preceding claims, characterized in that a catalyst is used which consists of particles of a porous support which is catalytically inactive for the desired reaction or main reaction and which contains in part of the pore system a the desired reaction or main reaction catalytically active material, in such a way that the pores in the outer zone of the carrier particles are free of that of the desired reaction or main reaction catalytically active material. 6. Fremgangsmåde ifølge et hvilket som helst af kravene 1-3, kendetegnet ved at der anvendes en katalysator bestående af partikler af et porøst, inaktivt bæremate- 35 riale, der i en del af poresystemet indeholder et for den ønskede reaktion katalytisk aktivt materiale på en sådan måde, at porerne i bærerens yderzone er delvis blokeret af kataly-Process according to any one of claims 1-3, characterized in that a catalyst consisting of particles of a porous, inert carrier material is used which contains in a part of the pore system a catalytically active material for the desired reaction. such that the pores in the outer zone of the support are partially blocked by catalysts.
DK216980A 1980-05-19 1980-05-19 PROCEDURE FOR CARRYING OUT THE CATALYTIC EXOTHERMY GAS PHASE PROCESS AND PROCEDURE FOR THE PREPARATION OF A CATALYST DK144996C (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
DK216980A DK144996C (en) 1980-05-19 1980-05-19 PROCEDURE FOR CARRYING OUT THE CATALYTIC EXOTHERMY GAS PHASE PROCESS AND PROCEDURE FOR THE PREPARATION OF A CATALYST
GB8114368A GB2077613B (en) 1980-05-19 1981-05-11 A method and catalyst for exothermal catalytic gas phase reactions
ZA00813117A ZA813117B (en) 1980-05-19 1981-05-11 A method for carrying out exothermal catalytic gas phase ractions
SE8102986A SE448684B (en) 1980-05-19 1981-05-12 PROCEDURE FOR PREPARING AN EXOTERM, NICKEL CATALYZED METANIZATION REACTION
CA000377706A CA1165749A (en) 1980-05-19 1981-05-15 Method for carrying out exothermal catalytic gas phase reactions
NL8102436A NL8102436A (en) 1980-05-19 1981-05-18 METHOD FOR PERFORMING EXOTHERMAL CATALYTIC REACTIONS IN THE GAS PHASE
AU70674/81A AU542846B2 (en) 1980-05-19 1981-05-18 Exothermal catalytic gas-phase reactions
NO811683A NO155916C (en) 1980-05-19 1981-05-18 PROCEDURE FOR CARRYING OUT AN EXOTHERM, NICKEL-CATALYzed METANATION REACTION.
FR8109828A FR2482473B1 (en) 1980-05-19 1981-05-18 METHOD FOR CARRYING OUT GAS PHASE EXOTHERMIC CATALYTIC REACTIONS
JP7434981A JPS5715834A (en) 1980-05-19 1981-05-19 Method of executing catalytic exothermic gaseous phase reaction
IT2181581A IT1136615B (en) 1980-05-19 1981-05-19 PROCEDURE FOR CARRYING OUT EXOTHERMAL CATALYTIC REACTIONS IN THE GASEOUS PHASE
DE3119887A DE3119887A1 (en) 1980-05-19 1981-05-19 METHOD FOR CARRYING OUT CATALYZED EXOTHERMAL GAS PHASE REACTIONS
IN529/CAL/81A IN155291B (en) 1980-05-19 1981-05-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK216980 1980-05-19
DK216980A DK144996C (en) 1980-05-19 1980-05-19 PROCEDURE FOR CARRYING OUT THE CATALYTIC EXOTHERMY GAS PHASE PROCESS AND PROCEDURE FOR THE PREPARATION OF A CATALYST

Publications (3)

Publication Number Publication Date
DK216980A DK216980A (en) 1981-11-20
DK144996B true DK144996B (en) 1982-07-26
DK144996C DK144996C (en) 1982-12-20

Family

ID=8110535

Family Applications (1)

Application Number Title Priority Date Filing Date
DK216980A DK144996C (en) 1980-05-19 1980-05-19 PROCEDURE FOR CARRYING OUT THE CATALYTIC EXOTHERMY GAS PHASE PROCESS AND PROCEDURE FOR THE PREPARATION OF A CATALYST

Country Status (13)

Country Link
JP (1) JPS5715834A (en)
AU (1) AU542846B2 (en)
CA (1) CA1165749A (en)
DE (1) DE3119887A1 (en)
DK (1) DK144996C (en)
FR (1) FR2482473B1 (en)
GB (1) GB2077613B (en)
IN (1) IN155291B (en)
IT (1) IT1136615B (en)
NL (1) NL8102436A (en)
NO (1) NO155916C (en)
SE (1) SE448684B (en)
ZA (1) ZA813117B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827858B2 (en) * 1987-10-13 1996-03-21 株式会社クボタ How to cancel the product selection right in a vending machine
JP2752438B2 (en) * 1989-06-19 1998-05-18 富士機器工業株式会社 Paperwork
DK173917B1 (en) * 1998-07-02 2002-02-18 Topsoe Haldor As Process for producing ammonia
EP1454671A1 (en) * 2003-03-07 2004-09-08 Karsten Pedersen A catalyst for use in production of hydrogen by conversion of organic matter in water
CN103055874A (en) * 2011-10-21 2013-04-24 中国石油化工股份有限公司 Methanation catalyst used for preparing substitute natural gas from synthesis gas, and preparation method and application thereof
JP5942233B2 (en) * 2012-09-04 2016-06-29 国立大学法人山梨大学 CO selective methanation catalyst
CN105377422B (en) * 2013-03-28 2018-09-21 新加坡科技研究局 Methanation catalyst
SG2013050877A (en) 2013-06-28 2015-01-29 Agency Science Tech & Res Methanation catalyst
JP6466330B2 (en) * 2013-07-23 2019-02-06 三井金属鉱業株式会社 Carbon monoxide methanation catalyst composition and carbon monoxide methanation catalyst
JPWO2021261363A1 (en) * 2020-06-22 2021-12-30

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL291717A (en) * 1962-04-20
NL291763A (en) * 1962-05-28
DE2212964C3 (en) * 1972-03-17 1980-01-31 Basf Ag, 6700 Ludwigshafen Supported catalyst containing vanadium pentoxide, titanium dioxide and optionally zirconium dioxide, phosphorus and other metal oxides
JPS5831978B2 (en) * 1972-08-10 1983-07-09 フジミケンマザイコウギヨウ カブシキガイシヤ Kinobutsutsushihogokouzotai
GB1505254A (en) * 1974-07-03 1978-03-30 Haldor Topsoe As Catalyst and process for preparing methane rich gas
US4002658A (en) * 1975-05-01 1977-01-11 Ford Motor Company Methanation catalyst and process of using the same
CA1080685A (en) * 1976-02-02 1980-07-01 James L. Carter Catalyst activation process
US4206087A (en) * 1977-01-06 1980-06-03 Engelhard Minerals & Chemicals Corporation Catalyst for reducing pollutants in waste gas streams and process for preparing the catalyst
US4128506A (en) * 1978-01-23 1978-12-05 General Motors Corporation Platinum-rhodium catalyst for automotive emission control
US4196100A (en) * 1978-01-10 1980-04-01 The International Nickel Co., Inc. Catalyst useful for methanation and preparation thereof
DE2925682A1 (en) * 1979-06-26 1981-01-29 Basf Ag VANADINE PENTOXIDE, TITANIUM DIOXIDE, PHOSPHORUS, RUBIDIUM AND / OR CAESIUM AND Possibly. ZIRCONDIOXIDE CONTAINING CARRIER CATALYST

Also Published As

Publication number Publication date
FR2482473B1 (en) 1987-06-26
DK144996C (en) 1982-12-20
SE8102986L (en) 1981-11-20
IN155291B (en) 1985-01-19
GB2077613B (en) 1985-03-06
ZA813117B (en) 1982-05-26
DE3119887A1 (en) 1982-03-25
DE3119887C2 (en) 1992-09-24
AU7067481A (en) 1981-11-26
GB2077613A (en) 1981-12-23
NL8102436A (en) 1981-12-16
IT8121815A0 (en) 1981-05-19
JPH0420656B2 (en) 1992-04-06
NO811683L (en) 1981-11-20
JPS5715834A (en) 1982-01-27
NO155916B (en) 1987-03-16
FR2482473A1 (en) 1981-11-20
IT1136615B (en) 1986-09-03
NO155916C (en) 1987-06-24
DK216980A (en) 1981-11-20
SE448684B (en) 1987-03-16
CA1165749A (en) 1984-04-17
AU542846B2 (en) 1985-03-21

Similar Documents

Publication Publication Date Title
Aupretre et al. Ethanol steam reforming over MgxNi1− xAl2O3 spinel oxide-supported Rh catalysts
Hou et al. Hydrogen production from ethanol reforming: Catalysts and reaction mechanism
CN108430621B (en) Heat resistant hydrocarbon reforming catalyst based on rhodium on lanthanum stabilized theta alumina
Roh et al. Low temperature and H 2 selective catalysts for ethanol steam reforming
Song et al. Methanol steam reforming for hydrogen production over ternary composite ZnyCe1Zr9Ox catalysts
Chihaia et al. Supported nickel catalysts for low temperature methane steam reforming: comparison between metal additives and support modification
BR112013020271B1 (en) Method for preparing a catalyst suitable for use in a steam reforming process
CA2423477A1 (en) Non-pyrophoric water-glas shift reaction catalysts
US3451949A (en) Catalyst for reforming hydrocarbons
DK144996B (en) PROCEDURE FOR CARRYING OUT THE CATALYTIC EXOTHERMY GAS PHASE PROCESS AND PROCEDURE FOR THE PREPARATION OF A CATALYST
US7169376B2 (en) Method for making hydrogen using a gold containing water-gas shift catalyst
US3410661A (en) Liquid phase reforming process
Schmitz et al. Highly active methanol dissociation catalysts derived from supported molten salts
ES2363856T3 (en) PROCESS OF TRANSFORMATION OF A GAS SYNTHESIS IN HYDROCARBONS IN THE PRESENCE OF SiC-beta AND EFFLUENT OF THIS PROCEDURE.
CA3215982A1 (en) Carbon dioxide methanation catalyst molded body and method for producing the same
RU2761985C1 (en) Mixed oxide catalysts of oxidative methane condensation
BR102020000434A2 (en) METHOD OF PREPARING STEAM REFORM CATALYST, CATALYST AND ITS USE
Muraki et al. Steam reforming of n-heptane using a Rh/MgAl: I. Support and kinetics2O4 catalyst
Gerzeliev et al. Choosing a Microspherical Catalyst for Partial Oxidation of Methane to a Hydrogen-Containing Gas
Shishido et al. Preparation of highly dispersed Ni catalysts for H2 production for polymer electrolyte fuel cells
CA2548912A1 (en) Reforming catalyst
BR102020025161A2 (en) METHOD OF PREPARING A HIGH TEMPERATURE GAS DISPLACEMENT CATALYST AND PROCESS TO REDUCE THE CONTENT OF CARBON MONOXIDE
RU2677875C1 (en) Catalyst and method for obtaining gas mixture enriched by hydrogen from dimethyl ether and air
CA2739542C (en) Method for making hydrogen using a gold containing water-gas shift catalyst
BR102020020748A2 (en) Methods of preparation of high temperature water gas displacement catalysts, catalysts and process for carbon monoxide reduction

Legal Events

Date Code Title Description
PBP Patent lapsed