DK144873B - PROCEDURE FOR THE PREPARATION OF A CARBON HYDRADE CRACKING CATALYST CONTAINING A CLAY-SOILED SYNTHETIC SILICON OXIDE / MAGNESIUM OXIDE - Google Patents
PROCEDURE FOR THE PREPARATION OF A CARBON HYDRADE CRACKING CATALYST CONTAINING A CLAY-SOILED SYNTHETIC SILICON OXIDE / MAGNESIUM OXIDE Download PDFInfo
- Publication number
- DK144873B DK144873B DK398073A DK398073A DK144873B DK 144873 B DK144873 B DK 144873B DK 398073 A DK398073 A DK 398073A DK 398073 A DK398073 A DK 398073A DK 144873 B DK144873 B DK 144873B
- Authority
- DK
- Denmark
- Prior art keywords
- magnesium oxide
- catalyst
- weight
- approx
- clay
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/02—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
- C10G11/04—Oxides
- C10G11/05—Crystalline alumino-silicates, e.g. molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/02—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
- C10G11/04—Oxides
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
(19) DANMARK \|^)(19) DENMARK \ | ^)
^ (12) FREMLÆGGELSESSKRIFT od U4873B^ (12) PUBLICATION WRITE OR U4873B
DIREKTORATET FOR PATENT- OG VAREMÆRKEVÆSENETDIRECTORATE OF THE PATENT AND TRADEMARKET SYSTEM
(21) Ansøgning nr. 3980/73 (51) lnt.CI.3 B 01 J 21/16 (22) Indleveringsdag 18. jul. 1973 (24) Løbedag 18. jul. 1973 (41) Aim. tilgængelig 20. jan. 1974 (44) Fremlagt 28. jun. 1982 (86) International ansøgning nr. - (86) International indleveringsdag (85) Videreførelsesdag - (62) Stamansøgning nr. -(21) Application No. 3980/73 (51) lnt.CI.3 B 01 J 21/16 (22) Filing date 18 Jul. 1973 (24) Race day 18 Jul. 1973 (41) Aim. available Jan 20 1974 (44) Submitted 28 Jun. 1982 (86) International application # - (86) International filing day (85) Continuation day - (62) Master application no -
(30) Prioritet 19. jul. 1972, 273147, US(30) Priority 19 Jul. 1972, 273147, US
(71) Ansøger W.R. GRACE & CO., New York, US.(71) Applicant W.R. GRACE & CO., New York, US.
(72) Opfinder Richard William Baker, US.(72) Inventor Richard William Baker, US.
(74) Fuldmægtig Ingeniørfirmaet Budde, Schou & Co.(74) Associate Engineering Company Budde, Schou & Co.
(54) Fremgangsmåde til fremstilling af en carbonhydrld.krakningska= talysator, som omfatter et ler= jordholdigt, syntetisk silici= umoxid/magnes iumoxid.(54) Process for preparing a hydrocarbon cracking catalyst comprising a clay = soil containing synthetic silica = oxide / magnesium oxide.
Den foreliggende opfindelse angår en fremgangsmåde til fremstilling af katalysatorer til brug ved krakning af carbonhy-drider og især halvsyntetiske krakningskatalysatorer baseret på siliciumoxid/magnesiumoxid, og som besidder både en høj virkningsgrad og et ønskværdigt lavt ligevægtsoverfladeareal. q Siliciumoxid/magnesiumoxid- og siliciumoxid/magnesiumoxid/- ^ fluoridmaterialer kan anvendes som katalysatorer ved krakning af ^ + carbonhydrider, idet de udviser høj krakningsaktivitet, god C,--ben-0 ^ fr zinselektivitet og dertil giver usædvanlig store udbytter af lette + _ cirkulationsolier.The present invention relates to a process for preparing catalysts for use in cracking hydrocarbons and in particular to semi-synthetic cracking catalysts based on silica / magnesium oxide and having both a high efficiency and a desirable low equilibrium surface area. q Silica / magnesium oxide and silica / magnesium oxide / - ^ fluoride materials can be used as catalysts in cracking ^ + hydrocarbons, exhibiting high cracking activity, good C, ben-0 ^ z zine selectivity and, in addition, providing exceptionally high yields of light + _ circulating oils.
Selv om gængse katalysatorer baseret på siliciumoxid/mag-^ nesiumoxid udviser flere ønskværdige egenskaber, er disse kataly satorer i reglen fremstillet med et højt ligevægtsoverfladeareal, 2 normalt omkring 300-400 m /g. Et stort overfladeareal er i reglen 2 144873 ønskeligt, fordi det er forbundet med stor aktivitet. Imidlertid bevirker et stort overfladeareal, at det er vanskeligt at befri katalysatoren for carbonhydrider efter en krakningscyklus, og følgelig føres store mængder carbonhydrid med over i regenereringseller koksafbrændingstrinet, hvilket giver usædvanlig høje temperaturer i regeneratoren. Indtil nu har den eneste praktisk anvendelige fremgangsmåde til at begrænse temperaturerne under regenerering af en typisk katalysator baseret på siliciumoxid/magnesium-oxid været anvendelse af bratkøling med sprøjtevand. På den anden side konstateres det ofte, at anvendelse af vandkøling under regenerering griber ind i koksafbrændingsoperationen.Although conventional catalysts based on silica / magnesium oxide exhibit several desirable properties, these catalysts are generally made with a high equilibrium surface area, usually about 300-400 m / g. As a rule, a large surface area is desirable because it is associated with high activity. However, a large surface area makes it difficult to liberate the hydrocarbon catalyst after a cracking cycle, and consequently large amounts of hydrocarbon are passed into the regeneration or coke firing stage, resulting in unusually high temperatures in the regenerator. Until now, the only practicable method of limiting the temperatures during the regeneration of a typical silica / magnesium oxide catalyst has been the use of quenching with spray water. On the other hand, it is often found that the use of water cooling during regeneration interferes with the coke burning operation.
Det er således formålet med den foreliggende opfindelse at tilvejebringe krakningskatalysatorer baseret på siliciumoxid/magne-siumoxid (heri også medregnet katalysatorer på silicium/magnesium-oxid/fluorid-basis), som nok har stor aktivitet, men som lettere kan regenereres i det gængse udstyr til behandling af carbonhydrid.Thus, it is an object of the present invention to provide silica / magnesium oxide cracking catalysts (including silicon / magnesium oxide / fluoride-based catalysts) which are likely to have high activity but which can be more easily regenerated in conventional equipment. for the treatment of hydrocarbon.
Disse to egenskaber kan opnås med en carbonhydrid-omdan-nelseskatalysator, som omfatter et materiale af siliciumoxid/mag-nesiumoxid (eller siliciumoxid/magnesiumoxid/fluorid), og en krystallinsk aluminiumsilikatzeolit, der fremstilles som nedenfor beskrevet.These two properties can be obtained with a hydrocarbon conversion catalyst comprising a silica / magnesium oxide (or silica / magnesium oxide / fluoride) material and a crystalline aluminum silicate zeolite prepared as described below.
Det har nemlig vist sig, at man kan fremstille en yderst aktiv katalysator med lavt overfladeareal og indeholdende sili-ciumoxid/-magnesiumoxid eller siliciumoxid/magnesiumoxid/fluorid ved at forene fra ca. 20 til 50 vægtprocent lerjord med et silici-umoxid/magnesiumoxid- eller siliciumoxid/magnesiumoxid/fluorid--materiale, som på sin side indeholder ca. 60 til 92% siliciumoxid, 8-40% magnesiumoxid og 0 til 6% fluorid. Katalysatormaterialet kan indeholde fra ca. 0,1 til 20 vægtprocent af en krystallinsk aluminiumsilikatzeolit, såsom syntetisk faujasit, og katalysatoren fås med et begyndelses-overfladeareal dvs. i frisk fremstillet og endnu ubrugt tilstand (efter opvarmning til 538°C i 3 timer) på 2 fra ca. 300 til 600 m /g og en ligevægtsoverflade (efter behandling med vanddamp ved 566°C i 24 timer under anvendelse af et damptryk på 4,2 ato (dvs. 5,2 ata) efterfulgt af opvarmning til 843°C i 2 3 timer) på ca. 125 til 300 m /g. Katalysatorens porevolumen 3 ligger i området fra 0,4 til 0,8 cm /g, hvilket tyder på en forøgelse af antallet af makroporer og skulle lette fjernelsen af koks.Namely, it has been found that a highly active low surface area catalyst containing silica / magnesium oxide or silica / magnesium oxide / fluoride can be prepared by combining from ca. 20 to 50% by weight of clay soil with a silica / magnesium oxide or silica / magnesium oxide / fluoride material, which in turn contains approx. 60 to 92% silica, 8-40% magnesium oxide and 0 to 6% fluoride. The catalyst material may contain from ca. 0.1 to 20% by weight of a crystalline aluminum silicate zeolite, such as synthetic faujasite, and the catalyst is obtained with an initial surface area ie. in freshly prepared and yet unused condition (after heating to 538 ° C for 3 hours) of 2 from approx. 300 to 600 m / g and an equilibrium surface (after treatment with water vapor at 566 ° C for 24 hours using a vapor pressure of 4.2 ato (ie, 5.2 ata) followed by heating to 843 ° C for 2 3 hours ) of approx. 125 to 300 m / g. The pore volume 3 of the catalyst is in the range of 0.4 to 0.8 cm / g, which indicates an increase in the number of macropores and should facilitate the removal of coke.
144873144873
Katalysatoren fremstilles ifølge den foreliggende opfindelse ved først at forene en vandig opslæmning af lerjord og eventuelt zeolit med en vandig opløsning af alkalimetalsilicat, fortrinsvis natriumsilicat, og derefter gelere silicatet. Passende geleringsmidler, som kan sættes til opslæmningen af lerjord og silicat, omfatter mineralsyrer og carbondioxid. Efter gelering af silicat/lerjord-blandingen, inkorporeres magnesiumoxid i form af en hydreret opslæmning, og fluorid tilsættes, eventuelt i form af f.eks. hydrogenfluorid. Materialet filtreres derefter, vaskes, sprøjtetørres og vaskes igen før den endelige tørring.The catalyst is prepared according to the present invention by first combining an aqueous slurry of clay soil and optionally zeolite with an aqueous solution of alkali metal silicate, preferably sodium silicate, and then gelling the silicate. Suitable gelling agents which can be added to the slurry of clay soil and silicate include mineral acids and carbon dioxide. After gelation of the silicate / clay soil mixture, magnesium oxide is incorporated in the form of a hydrated slurry and fluoride is added, optionally in the form of e.g. hydrogen fluoride. The material is then filtered, washed, spray dried and washed again before final drying.
I overensstemmelse hermed angår opfindelsen helt specifikt en fremgangsmåde til fremstilling af en carbonhydridkrakningskata-lysator, som omfatter et syntetisk siliciumoxid/magnesiumoxid eller siliciumoxid/magnesiumoxid/fluorid, der indeholder fra 12 til 35% magnesiumoxid og op til 4% fluorid, fra ca. 20 til ca. 40 vægtprocent lerjord, samt eventuelt en krystallinsk aluminiumsilicat-zeolit, til dannelse af en katalysator med et begyndelsesoverfladeareal på 2 ca. 300 til 600 m /g og et ligevægtsoverfladeareal fra ca. 125 til ca. 300 m /g, der fås efter opvarmning til ca. 566°C i 24 timer under vanddamp ved 4,2 ato efterfulgt af opvarmning til 843°C i 3 timer, hvilken fremgangsmåde er ejendommelig ved, at lerjord sættes til en vandig alkalimetalsilicatopløsning til dannelse af en opslæmning, som syrnes til gelering af alkalimetalsilicatet, hvorefter der tilsættes en opslæmning af hydratiseret magnesiumoxid og vand til det gelerede produkt og eventuelt tilsættes hydrogenfluorid til den fremstillede blanding, hvor der skal fremstilles en fluorid-holdig katalysator, hvorpå produktet filtreres, vaskes og tørres, idet man fortrinsvis tilsætter 0,1-20 vægtprocent af en krystallinsk aluminiumsilicat-zeolit før tørring.Accordingly, the invention relates specifically to a process for preparing a hydrocarbon cracking catalyst comprising a synthetic silica / magnesium oxide or silica / magnesium oxide / fluoride containing from 12 to 35% magnesium oxide and up to 4% fluoride, from about 20 to approx. 40% by weight of clay soil, and optionally a crystalline aluminum silicate zeolite, to form a catalyst with an initial surface area of about 2%. 300 to 600 m / g and an equilibrium surface area of approx. 125 to approx. 300 m / g obtained after heating to approx. 566 ° C for 24 hours under water vapor at 4.2 ato followed by heating to 843 ° C for 3 hours, which is characterized by adding clay soil to an aqueous alkali metal silicate solution to form a slurry which is acidified to gel the alkali metal silicate, and then a slurry of hydrated magnesium oxide and water is added to the gelled product and optionally hydrogen fluoride is added to the prepared mixture to produce a fluoride-containing catalyst, filtering, washing and drying, preferably adding 0.1-20 by weight of a crystalline aluminum silicate zeolite before drying.
Fortrinsvis udføres fremgangsmåden ifølge opfindelsen således, at tørringen gennemføres ved sprøjtetørring.Preferably, the process according to the invention is carried out such that the drying is carried out by spray drying.
Fra tysk fremlæggelsesskrift nr. 1.767.754 kendes en katalysator indeholdende en SiC^-MgO-komponent, en lerjordkomponent og eventuelt tillige en zeolitisk komponent; men ved den fra dette tyske fremlæggelsesskrift kendte fremgangsmåde benyttes en anden teknik, idet man som udgangsmateriale anvender en siliciumoxidsol, hvortil der sættes lerjord og dernæst hydratiseret magnesiumoxid, der blandes med lerjord/sol-blandingen, idet der dannes granuler ud fra trekomponentblandingen ved gelering i et med vand ublandbart medium.German Patent Specification No. 1,767,754 discloses a catalyst containing a SiC 2 -MgO component, a clay soil component and optionally also a zeolitic component; but in the method known from this German disclosure another technique is used, using as starting material a silica sol to which clay soil is added and then hydrated magnesium oxide which is mixed with the clay soil / sol mixture, forming granules from the three component mixture by gelation. a water immiscible medium.
I modsætning hertil går fremgangsmåden ifølge opfindelsen 144873 4 ud fra en natriumsilicatopløsning, hvortil lerjorden sættes direkte til dannelse af en opslæmning, som derpå geleres ved syrning, og så tilsættes hydratiseret magnesiumoxid til det gelerede produkt.In contrast, the process of the invention is based on a sodium silicate solution to which the clay soil is added directly to form a slurry which is then gelled by acidification and then hydrated magnesium oxide is added to the gelled product.
Der består således tre klare forskelle mellem de respektive fremgangsmåder, nemlig: i) Udgangsmaterialet ved fremgangsmåden ifølge opfindelsen er en natriumsilicatopløsning og ikke en siliciumoxidsol.Thus, there are three clear differences between the respective processes, namely: i) The starting material of the process according to the invention is a sodium silicate solution and not a silica sol.
ii) Geleringen gennemføres før og ikke efter tilsætningen af magnesiumoxid.ii) The gelation is carried out before and not after the addition of magnesium oxide.
iii) Geleringen foretages ved syrning og ikke ved blanding med et opløsningsmiddel, som er ublandbart med vand.(iii) The gelation is carried out by acidification and not by mixing with a water-immiscible solvent.
Det ses således, at den anførte forskel i trinrækkefølgen ved komponenternes sammenføring må betinge den med opfindelsen tilstræbte særlige tekniske virkning, tilvejebringelsen af et katalysatormateriale med et lavere overfladeareal end de gængse carbonhydridkrakningskatalysatorer på grundlag af siliciumoxid/mag-nesiumoxid. Dette indebærer visse fordele i forbindelse med katalysatorens anvendelse og specielt regenerering som nærmere forklaret nedenfor.Thus, it is seen that the stated difference in the order of steps of the assembly of the components must depend on the particular technical effect of the invention, the provision of a catalyst material having a lower surface area than the conventional hydrocarbon cracking catalysts based on silica / magnesium oxide. This has certain advantages in connection with the use of the catalyst and in particular regeneration, as further explained below.
Således som det imidlertid fremgår indledningsvis har de indenfor teknikken kendte siliciumoxid/magnesiumoxod-baserede katalysatorer lidt af væsentlige ulemper, for så vidt som deres store overfladeareal er tilbøjeligt til at gøre dem vanskelige at befri for carbonhydrid efter en krakningscyklus. Som resultat heraf føres eller medslæbes store mængder carbonhydrid via katalysatoren ind i regenereringscyklen, hvor de derpå fører til overdreven høje temperaturer i regeneratoren. Det er dette problem, der søges løst med den foreliggende opfindelse, hvor man nu specielt har lagt vægt på at tilvejebringe siliciumoxid/magnesiumoxidbase-rede katalysatorer, der har samme høje aktivitet som de kendte siliciumoxid/magnesiumoxidbaserede katalysatorer, men som lettere kan regenereres i konventionelt udstyr til oparbejdning af car-bonhydrider.However, as will be apparent from the outset, the prior art silica / magnesium oxide-based catalysts suffer from significant disadvantages in that their large surface area tends to render them difficult to free from hydrocarbon after a cracking cycle. As a result, large amounts of hydrocarbon are fed or entrained via the catalyst into the regeneration cycle, where they then lead to excessively high temperatures in the regenerator. It is this problem that is solved by the present invention, where particular emphasis has now been given to providing silica / magnesium oxide-based catalysts which have the same high activity as the known silica / magnesium oxide-based catalysts, but which can be more easily regenerated in conventional carbohydrate reprocessing equipment.
Disse katalysatorer fremstilles specielt således som ovenfor anført ved, at man sætter lerjord til en alkalimetalsili-catopløsning, som derpå geleres ved syrning. Som ovenfor påpeget adskiller denne fremgangsmåde sig på væsentlige punkter ganske afgørende fra den kendte fremgangsmåde. Herved tilvejebringes en ny teknisk virkning i henseende til opnåelse af en lige så aktiv 5 164873 katalysatorsammensætning, som dog er lettere at regenerere ved lavere regenereringstemperaturer, hvilket tillader anvendelse af konventionelt udstyr, således at man kan undgå det kostbare højtemperaturregenereringsanlæg .These catalysts are specially prepared as above, by adding clay soil to an alkali metal silicate solution which is then gelled by acidification. As pointed out above, this process differs in essential respects from the prior art. This provides a new technical effect with respect to obtaining an equally active catalyst composition, which is, however, easier to regenerate at lower regeneration temperatures, allowing the use of conventional equipment to avoid the costly high temperature regeneration system.
Hertil kommer særlige fordele i henseende til den foretrukne katalysatorsammensætning, som indeholder en vis mængde krystallinsk zeolit, hvis tilstedeværelse forøger katalysatorens aktivitet. Dette fremgår ved sammenligning af eksempel 5 (71%'s omdannelse) med eksempel 1(61,5%'s omdannelse). Desuden forøges selektiviteten med hensyn til tilvejebringelsen af den stærkt ønskede og værdifulde benzinfraktion, der udgør 63% sammenlignet med 55%,i de pågældende eksempler.In addition, there are particular advantages with respect to the preferred catalyst composition, which contains a certain amount of crystalline zeolite whose presence increases the activity of the catalyst. This is shown by comparing Example 5 (71% conversion) with Example 1 (61.5% conversion). In addition, the selectivity for providing the highly desired and valuable gasoline fraction, which is 63% compared to 55%, is increased in the examples in question.
Disse forskelle i fremstillingsteknik betinger tydeligvis en teknisk fordel, som ikke kunne opnås med den kendte katalysator, der ganske vist indeholder tilsvarende komponenter, men som er lavet ved en anden teknik. Det tyske fremlæggelsesskrift indeholder ikke angivelser, som gør denne variation i teknikken nærliggende.These differences in manufacturing technique obviously have a technical advantage that could not be achieved with the known catalyst, which although contains similar components, but which is made by another technique. The German publication does not contain any indications which make this variation in the technique obvious.
Den lerjord, der anvendes ved fremgangsmåden ifølge den foreliggende opfindelse, er fortrinsvis kaolin med en gennemsnitlig partikelstørrelse på fra 0,5 til 2,0 μ. Foruden kaolin kan der også anvendes andre lerjordarter såsom bentonit, halloysit, montmorillo-nit og attapulgit, ligesom også termisk eller kemisk behandlede eller aktiverede derivater deraf kan anvendes. Som angivet ovenfor anvendes lerjordskomponenten ved katalysatorfremstillingen ifølge opfindelsen i mængder fra ca. 20 til ca. 50 vægtprocent beregnet på det færdige katalysatormateriale.The clay soil used in the process of the present invention is preferably kaolin with an average particle size of from 0.5 to 2.0 µ. In addition to kaolin, other clay soils such as bentonite, halloysite, montmorillite and attapulgite can also be used, as well as thermally or chemically treated or activated derivatives thereof. As indicated above, the clay soil component is used in the catalyst preparation of the invention in amounts ranging from approx. 20 to approx. 50% by weight based on the finished catalyst material.
De krystallinske aluminiumsilicatzeolitter, som ved fremgangsmåden ifølge opfindelsen kan inkorporeres i katalysatoren, kan i reglen defineres som stabile zeolitter med poreåbninger på ca. 5 til 15 Ångstrøm. Foretrukne zeolitter er syntetiske faujasit-ter og modificerede former for syntetiske faujasitter med et forhold for siliciumoxid/aluminiumoxid på ca. 2,5:1 til 6:1, og som har termiske stabiliteter i området 815°C til 927°C.The crystalline aluminum silicate zeolites, which can be incorporated into the catalyst by the process of the invention, can usually be defined as stable zeolites with pore openings of approx. 5 to 15 Angstroms. Preferred zeolites are synthetic faujasites and modified forms of synthetic faujasites with a silica / alumina ratio of approx. 2.5: 1 to 6: 1 and having thermal stability in the range of 815 ° C to 927 ° C.
Typiske zeolitter, som kan anvendes, er kalcinerede og udvekslet med sjældne jordarter type X og type Y fremstillet som angivet i USA-patent nr. 3.420.996. Hydrogenbyttet faujasit, som er blevet yderligere behandlet for at forøge stabiliteten, såsom 6 144873 Z-14US, som er beskrevet i USA-patent nr. 3.293.192, kan anvendes med fordel. Endvidere kan faujasit udvekslet med en kombination af hydrogen og/eller polyvalente metalioner fra det periodiske systems gruppe III til gruppe VIII anvendes i katalysatormaterialet ved fremgangsmåden ifølge opfindelsen.Typical zeolites which may be used are calcined and exchanged with rare earth type X and type Y prepared as disclosed in U.S. Patent No. 3,420,996. Hydrogen-exchanged faujasite, which has been further treated to increase stability, such as U.S. Patent No. 3,393,192, can be used advantageously. Furthermore, faujasite exchanged with a combination of hydrogen and / or polyvalent metal ions from group III to group VIII of the periodic system can be used in the catalyst material of the process of the invention.
Silicatkomponenten i den her omhandlede katalysator er i reglen natriumsilicat, som anvendes i form af en fortyndet vandig opløsning indeholdende fra ca. 3 til ca. 6% vægtprocent silicat (Si02). Selv om der i nærværende beskrivelse i reglen refereres til anvendelsen af natriumsilicat, skal det bemærkes, at også andre alkalimetalsilicater, såsom kaliumsilicat kan anvendes.The silicate component of the present catalyst is generally sodium silicate, which is used in the form of a dilute aqueous solution containing from ca. 3 to approx. 6% by weight of silicate (SiO2). While the present description generally refers to the use of sodium silicate, it should be noted that other alkali metal silicates such as potassium silicate may also be used.
Normalt anvendes der så meget silicat, så at der tilvejebringes fra ca. 40 til ca. 75 vægtprocent Si02 i den færdige katalysatorsammensætning .Usually, so much silicate is used so as to provide from ca. 40 to approx. 75% by weight SiO2 in the final catalyst composition.
Det magnesiumoxid (MgO), der anvendes ved fremstilling af katalysatoren ved fremgangsmåden ifølge opfindelsen, fås i reglen i den kalcinerede form. Det kalcinerede magnesiumoxid forenes med vand i nærværelse af en lille mængde mineralsyre, i reglen svovlsyre, og omdannes derved til en hydratiseret form. I reglen vil en magnesiumoxid-opslæmning i vand indeholdende fra ca. 5 til ca. 30 vægtprocent MgO, som er hydratiseret i nærværelse af fra ca. 10 til ca. 50 vægtprocent svovlsyre, være egnet til fremstilling af katalysatoren ved fremgangsmåden ifølge opfindelsen.The magnesium oxide (MgO) used in the preparation of the catalyst by the process of the invention is usually obtained in the calcined form. The calcined magnesium oxide is combined with water in the presence of a small amount of mineral acid, usually sulfuric acid, and thereby converted into a hydrated form. As a rule, a magnesium oxide slurry in water containing from ca. 5 to approx. 30% by weight of MgO, which is hydrated in the presence of from approx. 10 to approx. 50% by weight of sulfuric acid, suitable for preparing the catalyst by the process of the invention.
Som angivet ovenfor kan katalysatoren valgfrit indeholde fluorid. Hvis der anvendes fluorid, foretrækkes det som regel at tilsætte fluoridet i form af hydrogenfluorid til de gelerede si-.licat- og magnesiumoxid—komponenter. Imidlertid kan hydrogenfluorid tilsættes til det opslæmmede magnesiumoxidhydrat; før dette tilsættes til det gelerede silicat. Når hydrogenfluorid sættes til magnesiumoxidopslæmningen, vil der som regel dannes udfældet magnesiumfluorid. Generelt kan det siges, at når der anvendes fluorid ved dannelsen af de omhandlede materialer, tilsættes der så meget fluorid, at det udgør fra ca. 1,0 til ca. ^,0 vægtprocent F beregnet på den færdige katalysators vægt.As indicated above, the catalyst may optionally contain fluoride. If fluoride is used, it is usually preferable to add the fluoride in the form of hydrogen fluoride to the gelled silica and magnesium oxide components. However, hydrogen fluoride can be added to the slurried magnesium oxide hydrate; before adding to the gelled silicate. When hydrogen fluoride is added to the magnesium oxide slurry, precipitated magnesium fluoride will usually form. Generally, it can be said that when fluoride is used in the formation of the present materials, so much fluoride is added that it is from 1.0 to approx. 0, weight percent F calculated on the weight of the finished catalyst.
Som regel foretrækkes det at gennemføre geleringen af silicatkomponenten ved tilsætning af carbondioxid, men det må betænkes, at mineralsyrer såsom svovlsyre og saltsyre om ønsket også kan bruges til gelering af alkalimetalsilicatet. Når der anvendes 7 U4873 CO2 som geleringsmiddel, nedbrydes natriumcarbonatet, som dannes under geleringsreaktionen, ved tilsætning af mineralsyre, fortrinsvis svovlsyre, som tilsættes i mængder, der er tilstrækkelige til at nedbringe den gelerede opslæmnings pH til ca. 3,0. Det C02 som frigøres fra reaktionsmassen, opsamles fortrinsvis og genanvendes i en senere geleringsproces.It is generally preferred to carry out the gelation of the silicate component by the addition of carbon dioxide, but it should be noted that mineral acids such as sulfuric acid and hydrochloric acid may also be used to gel the alkali metal silicate if desired. When 7 U4873 CO 3.0. Preferably, the CO 2 released from the reaction mass is collected and reused in a subsequent gelling process.
Selv om det i reglen foretrækkes at sætte lerjorden og zeolitten til alkalimetalsilicatopløsningen, kan lerjorden og en hvilken som helst zeolit dog også sættes til materialet sammen med magnesiumoxidkomponenten. I reglen vil man dog få den mest ensartede dispergering af lerjorden i katalysatoren, når lerjorden sættes til alkalimetalsilicatet før dettes gelering.Although it is generally preferred to add the clay soil and zeolite to the alkali metal silicate solution, however, the clay soil and any zeolite can also be added to the material together with the magnesium oxide component. As a rule, however, the most uniform dispersion of the clay soil in the catalyst will be obtained when the clay soil is added to the alkali metal silicate prior to its gelation.
Ved en typisk gennemførelse af fremgangsmåden ifølge den foreliggende opfindelse sættes en vandig opslæmning af lerjord til en vandig natriumsilicatopløsning og blandes omhyggeligt dermed.In a typical embodiment of the process of the present invention, an aqueous slurry of clay soil is added to an aqueous sodium silicate solution and mixed thoroughly with it.
Lerjord/silicat-opslæmningen blandes derefter med carbondioxid, hvilket bevirker gelering af silicatkomponenten. Den gelerede blanding ældes derefter fortrinsvis i et tidsrum fra ca. 15 til ca. 120 minutter ved en temperatur fra ca. 38 til ca. 49°C. Efter ældning syrnes blandingen derpå ved tilsætning af svovlsyre, i løbet af hvilket trin gelblandingens pH indstilles på ca. 3 til 4.The clay soil / silicate slurry is then mixed with carbon dioxide which causes gelling of the silicate component. The gelled mixture is then preferably aged for a period of approx. 15 to approx. 120 minutes at a temperature of approx. 38 to approx. 49 ° C. After aging, the mixture is then acidified by the addition of sulfuric acid, during which stage the pH of the gel mixture is adjusted to approx. 3 to 4.
Under tilsætningen af svovlsyre frigøres carbondioxid og opsamles fortrinsvis og recirkuleres til det indledningsvis udførte geleringstrin.During the addition of sulfuric acid, carbon dioxide is released and preferably collected and recycled to the initial gelling step.
En magnesiumoxidopslæmning, som omfatter magnesiumoxid dis-pergeret i fortyndet mineralsyre, fremstilles derpå. Denne magnesiumoxidopslæmning omfatter hydratiseret magnesiumoxid og vand og blandes herefter med den gelerede lerjord/silicatopslæmning. Denne fællesblanding ældes derefter i et tidsrum fra ca. 1 til ca. 3 timer ved en temperatur fra ca. 52°C til ca. 74°C. På dette tidspunkt tilsættes fluoridbestanddelen, om ønsket, i form af hydrogenfluorid. Efter tilsætningen af hydrogenfluorid (HF) filtreres sammensætningen til fjernelse af overskud af vand og genopslæmmes derefter med vand og sprøjtetørres. Det sprøjtetørrede produkt, som derefter vil udvise en partikelstørrelse af størrelsesordenen fra 10 til 100 μ, indsamles herefter, genopslæmmes med vand og ældes fra ca. 1 til ca. 4 timer ved en temperatur fra ca. 63 til ca.A magnesium oxide slurry comprising magnesium oxide dispersed in dilute mineral acid is then prepared. This magnesium oxide slurry comprises hydrated magnesium oxide and water and is then mixed with the gelled clay / silicate slurry. This joint mixture is then aged for a period of approx. 1 to approx. 3 hours at a temperature of approx. 52 ° C to approx. 74 ° C. At this point, if desired, the fluoride component is added in the form of hydrogen fluoride. After the addition of hydrogen fluoride (HF), the excess water filtration composition is filtered and then resuspended with water and spray dried. The spray-dried product, which will then exhibit a particle size of the order of 10 to 100 µ, is then collected, resuspended with water and aged from ca. 1 to approx. 4 hours at a temperature of approx. 63 to approx.
85°C. Den ældede, sprøjtetørrede katalysator genopslæmmes derefter i (NHi^SOjj-opløsning og vaskes og tørres til slut.85 ° C. The aged, spray-dried catalyst is then resuspended in (NH 1 SO 2 solution) and washed and finally dried.
8 1448738 144873
Det vises i eksemplerne nedenfor, at den ved fremgangsmåden ifølge opfindelsen fremstillede katalysator har en høj aktivitetsgrad med hensyn til carbonhydridkrakning og desuden udviser god thermostabilitet og modstandsdygtighed mod nedslidning, når den underkastes betingelserne ved carbonhydridkrakning..It is shown in the Examples below that the catalyst prepared by the process of the invention has a high degree of hydrocrack cracking activity and additionally exhibits good thermostability and wear resistance when subjected to hydrocarbon cracking conditions.
Eksempel 1Example 1
Der fremstilles en siliciumoxid/magnesiumoxid/fluorid-kataly-sator indeholdende 30 vægtprocent lerjord ved følgende fremgangsmåde.A silica / magnesium oxide / fluoride catalyst containing 30% by weight of clay soil is prepared by the following procedure.
7220 g kaolin sættes til 170 liter natriumsilicatopløsning, der indeholder 18,5 g Na20 pr. liter og 6l,2 g SiOg pr. liter. Opslæmningen holdes ved en temperatur på 52°C og pumpes med en hastighed på 3,8 liter pr. minut gennem en reaktionsspiral, gennem hvilken der sendes carbondioxid under tryk. C02~strømmen tilledes med en sådan hastighed, at der sker gelering af den fra reaktionszonen udtrædende strøm i løbet af 15 sekunder ved en reaktionstemperatur på 52°C.7220 g of kaolin is added to 170 liters of sodium silicate solution containing 18.5 g of Na 2 liter and 6l, 2 g SiOg per liter. liter. The slurry is kept at a temperature of 52 ° C and pumped at a rate of 3.8 liters per minute. per minute through a reaction coil through which carbon dioxide is sent under pressure. The CO 2 stream is fed at such a rate that the stream leaving the reaction zone is gelled within 15 seconds at a reaction temperature of 52 ° C.
Den herved fremkomne silicagel/lerjord-opslæmning ældes derpå i ca. 1 time ved 52°C. Derefter kombineres opslæmningen med 4600 ml 39$'s svovlsyre, hvilket nedsætter dens pH til 3,0.The resulting silica gel / clay slurry is then aged for approx. 1 hour at 52 ° C. Then, the slurry is combined with 4600 ml of 39 $ sulfuric acid, which lowers its pH to 3.0.
Der fremstilles en opslæmning af dehydratiseret magnesiumoxid ved at kombinere 2340 g calcineret MgO og 3 liter vand ved 57°C. Derefter tilsættes yderligere 4 liter vand sammen med 1350 ml 39$'s svovlsyre. Denne opslæmning kombineres derpå med ovennævnte silicagel-opslæmning, hvorpå blandingens pH viser sig at være 8,7· .Denne blanding, der betegnes som en magnagel, ældes derpå i ca.A slurry of dehydrated magnesium oxide is prepared by combining 2340 g of calcined MgO and 3 liters of water at 57 ° C. Then add another 4 liters of water along with 1350 ml of 39 $ sulfuric acid. This slurry is then combined with the above-mentioned silica gel slurry, whereupon the pH of the mixture is found to be 8.7 °.
1,5 timer ved 71°C. Denne magnegel afkøles derpå hurtigt til stuetemperatur, og der tilsættes 520 g 48$'s hydrogenfluoridopløsning (HF). På dette tidspunkt er blandingens pH 7*8. Hele portionen filtreres derpå, og filterkagen genopslæmmes med vand, homogeniseres og sprøjteforstøvningtørres derefter. Det sprøjteforstøvningstørrede produkts sigtestørrelse ligger primært i området 200 mesh (US sig-teserie). Det sprøjtetørrede produkt vaskes derpå med vand, opvarmes til 82°C i ca. 3 til ca. 4 timer og vaskes derpå 4 gange med ammo-niumsulfatopløsning ved en temperatur på 43°C.1.5 hours at 71 ° C. This magnetic gel is then rapidly cooled to room temperature and 520 g of 48 $ hydrogen fluoride solution (HF) is added. At this point, the pH of the mixture is 7 * 8. The entire portion is then filtered and the filter cake resuspended with water, homogenized and spray-dried then dried. The screen size of the spray-spray-dried product is primarily in the range of 200 mesh (US sieve series). The spray-dried product is then washed with water, heated to 82 ° C for approx. 3 to approx. 4 hours and then washed 4 times with ammonium sulfate solution at a temperature of 43 ° C.
9 1448739 144873
Den tørrede færdige katalysator indeholder følgende bestanddele: MgO = 19*65 vægtprocent, A120^ = 15,10 vægtprocent, SO^ = 0,10 vægtprocent og F = 1,85 vægtprocent, idet resten er Si02·The dried finished catalyst contains the following components: MgO = 19 * 65% by weight, Al2O2 = 15.10% by weight, SO2 = 0.10% by weight and F = 1.85% by weight, the remainder being SiO2 ·
Eksempel 2 (Sammenligningsforsøg)Example 2 (Comparative Experiment)
Til fremstilling af en katalysatorprøve til sammenlignings-formål gentages fremgangsmåden i eksempel 1, idet kaolinbestand-delen imidlertid udelades. Analysen på den herved fremkomne katalysator viser sig at være som følger: MgO = 28,14 vægtprocent, SO^ = 0,11 vægtprocent, F = 2,72 vægtprocent og resten Si02·For the preparation of a catalyst sample for comparison purposes, the procedure of Example 1 is repeated, however, the kaolin component is omitted. The analysis of the resulting catalyst is found to be as follows: MgO = 28.14 wt%, SO 2 = 0.11 wt%, F = 2.72 wt% and the residue SiO 2 ·
Eksempel 5Example 5
Katalysatorerne fra eksempel 1 og 2 underkastes derefter en termisk behandling, som indebærer opvarmning ved et tryk på 4,2 ato (svarende til 5,2 ata) i vanddamp ved 538°C i 24 timer i et fluidiseret lag efterfulgt af opvarmning til 84j°C i 5 timer. Produkternes overfladeareal og totale porerumfang bestemmes efter hver enkelt termisk behandling. Resultaterne er anført i nedenstående tabel:The catalysts of Examples 1 and 2 are then subjected to a thermal treatment which involves heating at a pressure of 4.2 ato (corresponding to 5.2 ata) in water vapor at 538 ° C for 24 hours in a fluidized bed followed by heating to 84 ° C. C for 5 hours. The surface area and total pore volume of the products are determined after each individual thermal treatment. The results are given in the table below:
Tabel ITable I
Katalysator_Eksempel 1_Eksempel 2 2 2Catalyst_Example 1_Example 2 2 2
Begyndelsesoverfladeareal 442 m /g 665 m /g o pInitial surface area 442 m / g 665 m / g o p
Ligevægtsoverfladeareal 256 nr/g 296 m /gEquilibrium surface area 256 no / g 296 m / g
Porerumfang 0,58 cm^/g 0,59 cirn^/g 0,51* 0,69*Pore size 0.58 cm 2 / g 0.59 cirn / g 0.51 * 0.69 *
Davison slidindeks 26,8 l6,8 sH20-porerumfang.Davison wear index 26.8 l6.8 sH20 pore volume.
De ovenfor anførte data indicerer, at katalysatoren fremstillet ifølge opfindelsen i eksempel 1 har lavere overfladeareal og porerumfang end kontrolkatalysatoren (fremstillet ifølge eksempel 2). Det bør også bemærkes, at thermostabiliteten hos pro- 10 144873 duktet fra fremgangsmåden ifølge opfindelsen og dets slidmodstandsdygtighed er acceptable størrelser, selv om produktet indeholder 30 vægtprocent kaolin. Den procentvise formindskelse af overfladeareal fremkaldt ved varmebehandlingen er mindre for katalysator-sammensætningen fremstillet ifølge eksempel 1 end for katalysatoren ifølge eksempel 2.The above data indicates that the catalyst prepared according to the invention in Example 1 has lower surface area and pore volume than the control catalyst (prepared according to Example 2). It should also be noted that the thermostability of the product of the process of the invention and its abrasion resistance are acceptable sizes, although the product contains 30% by weight of kaolin. The percent reduction in surface area induced by the heat treatment is less for the catalyst composition prepared according to Example 1 than for the catalyst of Example 2.
Eksempel 4 A) Hydratiseret calcineret magnesiumoxid (MgO) fremstilles ved at kombinere 1670 g MgO (4# HgO) med 5025 ml vand af 66°C.Example 4 A) Hydrated calcined magnesium oxide (MgO) is prepared by combining 1670 g of MgO (4 # HgO) with 5025 ml of water of 66 ° C.
Efter 1,5 timer tilsættes 950 ml 39% HgSO^-opløsning.After 1.5 hours, 950 ml of 39% HgSO 4 solution is added.
B) En lerjord/siliciumoxidgel-opslæmning fremstilles ved at kombinere 5060 g kaolin (14,1# H20) med 170 liter natriumsilieat- opløsning, der indeholder 13,0 g. Na20 og. 43 g S1O2 pr. liter. Denne opslæmning pumpes med en hastighed på 3,8 liter pr. minut gennem en opvarmet reaktionsspiral, ind i hvilken der pumpes CO^-gas med en sådan hastighed, at der sker gelering af silicatet ved 52°C i løbet af 5 minutter. Den gelerede opslæmning ældes i 1 time ved 52°C. Dernæst tilsættes 3305 ml 39$'s HgSO^-opløsning, hvorved fås en lerjord/siliciumoxidgel-opslæmning* der har et pH på 2,9.B) A clay / silica gel slurry is prepared by combining 5060 g of kaolin (14.1 # H 2 O) with 170 liters of sodium ciliate solution containing 13.0 g of Na 2 O and. 43 g S liter. This slurry is pumped at a rate of 3.8 liters per minute. per minute through a heated reaction coil into which CO 2 gas is pumped at such a rate that the silicate is gelled at 52 ° C over 5 minutes. The gelled slurry is aged for 1 hour at 52 ° C. Next, 3305 ml of 39 $ HgSO 4 solution is added to give a clay soil / silica gel slurry * having a pH of 2.9.
C) Den under punkt A ovenfor fremstillede hydratiserede magnesiumoxidopslæmning sættes til lerjord/siliciumoxidgel-opslæm-ningen fra ovennævnte punkt B. Blandingens temperatur holdes på 66°C i ca. 2 timer. Denne blandings pH er 8,35.C) The hydrated magnesium oxide slurry prepared under point A above is added to the clay soil / silica gel slurry from above point B. The temperature of the mixture is maintained at 66 ° C for approx. 2 hours. The pH of this mixture is 8.35.
D) Reaktionsblandingen fra ovennævnte punkt G omrøres, og der tilsættes 187 g 48#’s HF-opløsning. 15 minutter efter at tilsætningen af HF-opløsningen er tilendebragt, tilsættes 868 g calcineret zeolit type Y udvekslet med sjældne jordarter i en opslæmning indeholdende 33,5^ faststoffer. Den herved fremkomne opslæmning omrøres i 1 time og filtreres derpå. Der fås en filterkage på 42 kg, som opslæmmes med vand og sprøjtetørres. Det sprøjtetørrede produkt ældes ved 74°C i 1 time. Dette produkt vaskes derpå fire gange med fortyndet ammoniumsulfatopløsning af 43°C.D) The reaction mixture from above point G is stirred and 187 g of 48 # HF solution is added. 15 minutes after the addition of the HF solution is complete, 868 g of calcined zeolite exchange exchange rare earth is added to a slurry containing 33.5 µm solids. The resulting slurry is stirred for 1 hour and then filtered. A 42 kg filter cake is obtained which is suspended with water and spray dried. The spray-dried product is aged at 74 ° C for 1 hour. This product is then washed four times with dilute ammonium sulfate solution of 43 ° C.
Det vaskede produkt tørres ved 204°C. Slutproduktets analyse er som følger: u 144873 A1203 14,0¾¾The washed product is dried at 204 ° C. The final product analysis is as follows: u 144873 A1203 14.0¾¾
Na20 0,04#Na20 0.04 #
MgO 17,721 F 1,22%MgO 17.721 F 1.22%
Si02 balanceSi02 balance
Overfladeareal (efter 3 b ved 538°C). - 407 m^/g 2Surface area (after 3 b at 538 ° C). - 407 m 2 / g 2
Ligevægtsoverfladeareal - 174 m /gEquilibrium surface area - 174 m / g
Porevolumen - 0,58 cm^/g (HgO)Pore volume - 0.58 cm 2 / g (HgO)
Davison's slidindeks 31,2.Davison's wear index 31.2.
Eksempel 5Example 5
Egenskaberne som krakningskatalysator hos de Ifølge eksemplerne 1, 2 og 4 fremstillede sammensætninger bestemmes ved først at underkaste dem en aktiveringsbehandling ifølge eksempel 3 og dernæst udsætte de således frembragte katalysatorer for krakningsbetingelser ved anvendelse på en tung gasolie fra West Texas ved en temperatur på 483°C. De herved opnåede forsøgsresultater fremgår af nedenstående tabel, som illustrerer alle katalysatorsammensætningernes krakningsegenskaber.The properties of cracking catalyst in the compositions of Examples 1, 2, and 4 are determined by first subjecting them to an activation treatment of Example 3 and then subjecting the thus-produced catalysts to cracking conditions using a heavy gas oil from West Texas at a temperature of 483 ° C. . The test results thus obtained are shown in the table below, which illustrates the cracking properties of all the catalyst compositions.
Tabel IITable II
Katalysator_Eksempel 1 Eksempel 2 Eksempel 4Catalyst_Example 1 Example 2 Example 4
Omdannelse ved en rumhastighed på 10 vægtenheder pr. time 61,5 vol.# 60,0 vol.# 71,0 vol.# H2 0,051 vægt# 0,047 vægt# 0,033 vægt# 0χ og C2 1,8 vægt# 1,7 vægt# 1,7 vægt# 6,8 vægt# 5,9 vægt# 8,6 vægt#Conversion at a room rate of 10 weight units per hour 61.5 vol. # 60.0 vol. # 71.0 vol. # H2 0.051 weight # 0.047 weight # 0.033 weight # 0χ and C2 1.8 weight # 1.7 weight # 1.7 weight # 6.8 weight # 5.9 weight # 8.6 weight #
Cjj. 8,1 vægt# 7,1 vægt# 8,5 vægt#CJJ. 8.1 weight # 7.1 weight # 8.5 weight #
Cpj og benzin 55,0 vægt# 54,5 vægt# 63,5 vægt#CPU and petrol 55.0 weight # 54.5 weight # 63.5 weight #
Let cirkulationsolie 16,5 vægt# 16,7 vægt# 13,5 vægt#Light circulating oil 16.5 weight # 16.7 weight # 13.5 weight #
Koks 3,8 vægt# 3,6 vægt# 3,4 vægt#Coke 3.8 weight # 3.6 weight # 3.4 weight #
De ovenfor anførte data viser klart, at katalysatoren fremstillet ifølge opfindelsen i eksempel 1 og 4 har fremragende aktivitet, selv om der er betydelige mængder lerjord til stede.The data given above clearly shows that the catalyst prepared according to the invention in Examples 1 and 4 has excellent activity, although significant amounts of clay soil are present.
Hertil kommer, at katalysatoren i begge tilfælde udviser fremragende selektivitet med hensyn til let cirkulationsolie.In addition, in both cases the catalyst exhibits excellent selectivity in light circulating oil.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US27314772A | 1972-07-19 | 1972-07-19 | |
US27314772 | 1972-07-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
DK144873B true DK144873B (en) | 1982-06-28 |
DK144873C DK144873C (en) | 1982-11-15 |
Family
ID=23042729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK398073A DK144873C (en) | 1972-07-19 | 1973-07-18 | PROCEDURE FOR THE PREPARATION OF A CARBON HYDRADE CRACKING CATALYST CONTAINING A CLAY-SOILED SYNTHETIC SILICON OXIDE / MAGNESIUM OXIDE |
Country Status (8)
Country | Link |
---|---|
JP (1) | JPS5622580B2 (en) |
CA (1) | CA1009218A (en) |
DE (1) | DE2336204C3 (en) |
DK (1) | DK144873C (en) |
FR (1) | FR2193078B1 (en) |
GB (1) | GB1413232A (en) |
IT (1) | IT994978B (en) |
NL (1) | NL171721C (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61235491A (en) * | 1985-04-12 | 1986-10-20 | Res Assoc Residual Oil Process<Rarop> | Fluid catalytic cracking of heavy oil |
GB8619151D0 (en) * | 1986-08-06 | 1986-09-17 | Unilever Plc | Catalyst base |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB884633A (en) * | 1959-04-30 | 1961-12-13 | Nalco Chemical Co | Silica magnesia catalysts and their use in a process for cracking hydrocarbons |
-
1973
- 1973-07-17 DE DE19732336204 patent/DE2336204C3/en not_active Expired
- 1973-07-17 CA CA176,671A patent/CA1009218A/en not_active Expired
- 1973-07-18 DK DK398073A patent/DK144873C/en not_active IP Right Cessation
- 1973-07-18 IT IT2675673A patent/IT994978B/en active
- 1973-07-18 FR FR7326352A patent/FR2193078B1/fr not_active Expired
- 1973-07-18 JP JP8038573A patent/JPS5622580B2/ja not_active Expired
- 1973-07-18 NL NL7309994A patent/NL171721C/en not_active IP Right Cessation
- 1973-07-18 GB GB3425973A patent/GB1413232A/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
FR2193078A1 (en) | 1974-02-15 |
NL7309994A (en) | 1974-01-22 |
JPS4953189A (en) | 1974-05-23 |
FR2193078B1 (en) | 1979-06-15 |
DE2336204C3 (en) | 1980-10-02 |
JPS5622580B2 (en) | 1981-05-26 |
DK144873C (en) | 1982-11-15 |
NL171721B (en) | 1982-12-01 |
GB1413232A (en) | 1975-11-12 |
DE2336204A1 (en) | 1974-01-31 |
NL171721C (en) | 1983-05-02 |
IT994978B (en) | 1975-10-20 |
CA1009218A (en) | 1977-04-26 |
DE2336204B2 (en) | 1980-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1038364A (en) | Process for preparing a petroleum cracking catalyst | |
CA1218641A (en) | Fluid catalytic cracking catalyst comprising microspheres containing more than about 40 percent by weight y-faujasite and methods for making and using it | |
JP2966440B2 (en) | Kaolin-containing fluid cracking catalyst | |
US4458023A (en) | Catalyst manufacture | |
US4218307A (en) | Hydrocarbon cracking catalyst | |
JPH10146529A (en) | Meso-porous fluidized catalytic decomposition catalyst incorporated with gibbsite and rare earth oxide | |
JPS61141932A (en) | Hydrocarbon inversion catalyst and usage thereof | |
JPH0355179B2 (en) | ||
JPS5838209B2 (en) | Method for producing attrition-resistant zeolite hydrocarbon conversion catalyst | |
JPH04342415A (en) | Method of dealuminizing large-pore diameter zeolite, catalyst and organophilic selective adsorbent containing dealuminized zeolite obtained by said method and silica- based zeolite beta | |
JPH0214102B2 (en) | ||
JP2554706B2 (en) | Method for catalytic cracking of feedstock containing high levels of nitrogen | |
JPS6071041A (en) | Hydrocarbon catalytic decomposition method and catalyst composition | |
US3431218A (en) | Conversion of clays to crystalline aluminosilicates and catalysts therefrom | |
CA1161818A (en) | Catalytic cracking catalyst | |
JPH0239306B2 (en) | ||
DK144873B (en) | PROCEDURE FOR THE PREPARATION OF A CARBON HYDRADE CRACKING CATALYST CONTAINING A CLAY-SOILED SYNTHETIC SILICON OXIDE / MAGNESIUM OXIDE | |
JPH024452A (en) | Method for producing a zeolite catalyst | |
US3287282A (en) | Hydrogen zeolite y having improved hydrothermal stability | |
US3912619A (en) | Preparation of cracking catalyst | |
JPS61204042A (en) | Vanadium resistant zeolite fluidized cracking catalyst | |
US5002742A (en) | Inorganic oxide sorbents for sulfur oxides | |
JPS6128376B2 (en) | ||
US4636484A (en) | Method for the preparation of catalyst composition for use in cracking hydrocarbons | |
JP3949336B2 (en) | Process for producing catalyst composition for catalytic cracking of hydrocarbons |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PBP | Patent lapsed |