DK144834B - Steam power plant with pressurized steam boiler and one with this integrated ECONOMIZER - Google Patents

Steam power plant with pressurized steam boiler and one with this integrated ECONOMIZER Download PDF

Info

Publication number
DK144834B
DK144834B DK637273AA DK637273A DK144834B DK 144834 B DK144834 B DK 144834B DK 637273A A DK637273A A DK 637273AA DK 637273 A DK637273 A DK 637273A DK 144834 B DK144834 B DK 144834B
Authority
DK
Denmark
Prior art keywords
steam
boiler
gas
gas turbine
pressure
Prior art date
Application number
DK637273AA
Other languages
Danish (da)
Other versions
DK144834C (en
Inventor
H Pfenninger
Original Assignee
Bbc Brown Boveri & Cie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bbc Brown Boveri & Cie filed Critical Bbc Brown Boveri & Cie
Publication of DK144834B publication Critical patent/DK144834B/en
Application granted granted Critical
Publication of DK144834C publication Critical patent/DK144834C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/08Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with working fluid of one cycle heating the fluid in another cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

U4834U4834

Opfindelsen angår et dampkraftanlæg med trykfyret dampkedel og en med denne sammenbygget economizer, hvor dampkedlen trykfyres ved hjælp af ladegruppe, der i alt væsentligt består af en turbokompressor, som drives ved hjælp af en med dampkedlens gasside forbundet 5 gasturbine, og hvor ladegruppens omdrejningstal kan regulerés samtidig med brændstofmængden i afhængighed af trykket eller mængden af den i dampkedlen producerede friskdamp.BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a steam power plant having a pressurized steam boiler and an integral with this economizer, in which the steam boiler is pressurized by means of a charging group consisting essentially of a turbocharger driven by a gas turbine connected to the gas boiler and the speed of the charge group can be regulated. simultaneously with the amount of fuel depending on the pressure or the amount of fresh steam produced in the steam boiler.

Trykfyrede dampkedler med høje røggashastigheder og tvangsmæssig cirkulation af vandet til dampkraftanlæg har længe været kendt 10 under navnet "Veloxkedler". Til regulering af ladegruppen tjener sædvanligvis en Ward-Leonard-gruppe, der er fast koblet med ladegruppen. Brændstofmængden styres af dampforbruget, der samtidig på kendt måde også indvirker på Ward-Leonard-gruppen og dermed regulerer ladegruppens omdrejningstal og således tilpasser den tilførte luftmængde 15 efter brændstofmængden. Ved tilnærmelsesvis 3/4-last af dampkedlen dækker gasturbinens ydelse netop kompressorens effektbehov. Ved mindre dellast forbruger ladegruppen elektrisk energi, og ved højere dellast og ved fuldlast, hvorved skal forstås den nominelle effekt, som er lavere end maksimaleffekten, samt ved overlast afgives ovérskudsef-20 fekt til nettet. Ward-Leonard-styringen tillader ændringer af omdrejningstallet inden for vide grænser, men frembyder den ulempe, at gruppen til stadighed løber med og desuden er dyr og kompliceret.Pressurized steam boilers with high flue gas velocities and forced circulation of the water to steam power plants have long been known under the name "Velox boilers". For regulating the charging group, usually a Ward-Leonard group is permanently coupled to the charging group. The amount of fuel is controlled by the steam consumption, which at the same time in a known way also affects the Ward-Leonard group and thus regulates the charge group speed and thus adjusts the supplied air volume 15 to the amount of fuel. At approximately 3/4 load of the steam boiler, the gas turbine's performance precisely meets the compressor's power requirements. At lower partial loads, the charging group consumes electrical energy, and at higher partial loads and at full load, which means the nominal power which is lower than the maximum power, and when overload is applied, the surplus power is supplied to the grid. The Ward-Leonard control permits changes in rpm within wide limits, but presents the disadvantage that the group is constantly running with and, in addition, expensive and complicated.

Dampkedler af denne art har ved fuldlast sædvanligvis kun et opladetryk på 2-3 bar og høje gashastigheder, hvilket medfører, at ud-25 stødsgastemperaturen efter gasturbinen er forholdsvis høj, således at der kræves en påfølgende varmeflade, som ikke står under kompressorens sluttryk og derfor bliver meget omfangsrig og dyr. Da denne påfølgende varmeflade praktisk taget kun kan være en fødevandsforvar-mer, må forvarmning af fødevandet ved hjælp af udtagsdamp reduceres, 30 hvilket forringer kredsprocessens virkningsgrad, og desuden skal kondensatoren gøres større.Steam boilers of this kind usually at full load only have a charge pressure of 2-3 bar and high gas speeds, which means that the exhaust gas temperature after the gas turbine is relatively high, so that a subsequent heating surface is not required which is not below the compressor's final pressure and therefore becomes very bulky and expensive. Since this subsequent heating surface can be practically only a feed water preheater, preheating of the feed water by means of extraction steam must be reduced, which degrades the efficiency of the circuit process and, in addition, the capacitor must be increased.

Det er desuden kendt at imødegå den af den lavere forvarmning af fødevandet forårsagede forringelse af kredsprocessen ved anvendelse af en kombineret proces, hvor gasturbinegruppen, der samtidig tjener til 35 ladning af kedlen, drives med den højest tilladelige temperatur før gasturbinen. Herved reduceres dampproduktionen, fordi de varme gasser afkøles mindre i kedlen, men til gengæld kan der udtages nytteeffekt over en til gasturbinen hørende generator. Ved en sådan kombineret proces vil det lige netop være muligt at udligne de som følge af den U4834 2 dårligere fødevandsforvarmning opståede tab, men til gengæld må væsentlige ulemper accepteres. Således tillader den høje gastemperatur før gasturbinen på grund af risikoen for korrosion kun anvendelse af meget rent askefrit brændstof, hvilket medfører væsentligt højere brænd-5 selsomkostninger. Den efter gasturbinen anbragte varmeveksler er meget voluminøs og tilsvarende dyr, dels fordi der ved forøgelsen af temperaturen foran gasturbinen også fås en kraftig forøgelse af udstødsgastemperaturen, og der således skal overføres en stor varmemængde for at holde skorstenstabene små, og deis fordi varmeovergangen er 10 mindre på grund af det lavere gastryk, og gasvoluminerne derfor bliver store. Denne trykiøse varmevekslers varmevekslerflade er mange gange større end ved en ladet dampgenerator. Varmevekslerens store volumen medfører desuden større pladsbehov og større omkostninger til fundamenter. Endvidere skal ydelsen opdeles på to generatorer, en til gas-og 15 en til dampturbinen, hvilket fordyrer anlægsomkostningerne. Da gasturbinegruppen trækker en generator, er dens omdrejningstal konstant, og luftmængden kan ved dellast enten slet ikke reduceres eller kun reduceres ved hjælp af en kompliceret konstruktion, og der opstår således store udstødsgastab. Dette ville ganske vist kunne undgås ved hjælp af 20 en separat nytteeffektturbine, hvilket dog ville fordyre anlægget meget.In addition, it is known to counteract the deterioration of the circulation of the feed water by using a combined process where the gas turbine group, which simultaneously serves to charge the boiler, is operated at the highest permissible temperature before the gas turbine. This reduces the production of steam because the hot gases are cooled less in the boiler, but on the other hand, a utility effect can be extracted over a generator belonging to the gas turbine. In such a combined process it will just be possible to offset the losses incurred as a result of the poorer water heating, but on the other hand significant disadvantages must be accepted. Thus, due to the risk of corrosion, the high gas temperature before the gas turbine only allows the use of very pure ash-free fuel, which results in substantially higher fuel costs. The heat exchanger arranged after the gas turbine is very voluminous and similarly expensive, partly because by increasing the temperature in front of the gas turbine, there is also a sharp increase in the exhaust gas temperature, and thus a large amount of heat must be transferred to keep the chimney losses small, and this because the heat transfer is 10 smaller. because of the lower gas pressure and therefore the gas volumes become large. The heat exchanger surface of this pressurized heat exchanger is many times larger than that of a charged steam generator. The large volume of the heat exchanger also causes greater space requirements and higher costs for foundations. In addition, the output must be divided into two generators, one for gas and 15 for the steam turbine, which costs the construction costs. As the gas turbine group draws a generator, its rpm is constant and the air flow at partial load can either not be reduced or reduced at all by a complicated construction, and thus large exhaust gas losses occur. Admittedly, this could be avoided by using a separate utility power turbine, which would, however, cost the plant a lot.

For ved dellast ikke at få en fordampning i den påfølgende fødevands-forvarmer, skal·temperaturen før gasturbinen sænkes, hvilket forringer den termiske virkningsgrad.In order to avoid evaporation in the subsequent feedwater preheater by partial load, the temperature before the gas turbine must be lowered, which decreases the thermal efficiency.

Formålet med opfindelsen er at tilvejebringe et damp kraftan læg af 25 den indledningsvis nævnte art af enkel konstruktion og med en god totalvirkningsgrad, og som er således udformet, at der på gassiden af den trykfyrede dampkedel ikke kræves en ekstra varmeveksler, og således, at skorstenstabene alligevel kan holdes inden for de rammer, der er sædvanlige ved sådanne anlæg.The object of the invention is to provide a steam power plant of the kind mentioned initially of simple construction and of a good overall efficiency, which is designed so that no additional heat exchanger is required on the gas side of the pressurized steam boiler, and nevertheless, can be kept within the limits customary of such plants.

30 Denne opgave løses ifølge opfindelsen ved, at ladegruppens omdrej ningstal i tilfælde af en ændring af dampmængden eller damptrykket indstilles svarende til en efter belastningen passende værdi under konstant opretholdelse af ligevægten mellem turbokompressorydelsen og gasturbineydelsen, og at ladegruppens omdrejningtal i tilfælde af en 35 forstyrrelse af ligevægten ved i øvrigt konstant dampmængde eller konstant damptryk i damp kraftan lægget kan reguleres over en omdrejningstalregulator, og reguleringen i begge tilfælde kan ske ved hjælp af såvel en bypass-forbindelse uden om gasturbinen som en ved den under fuldt gastryk stående economizers gasside anbragt bypass-forbindelse.This problem is solved according to the invention by adjusting the charge group speed in the event of a change in the vapor volume or vapor pressure corresponding to a post-load appropriate value while constantly maintaining the equilibrium between the turbo compressor performance and the gas turbine performance and the charge group speed in the event of a disturbance of the load. the equilibrium at otherwise constant vapor flow or constant vapor pressure in the steam power can be regulated via a speed regulator, and in both cases the regulation can be effected by a bypass connection outside the gas turbine as well as a bypass located at the gas pressure of the economizer under full gas pressure. connection.

U4834 3U4834 3

Ved dette enkle driftssikre og meget økonomisk arbejdende anlæg sker omdrejningstalreguleringen ved hjælp af midler, der hører til selve kedlen, og sker uden indgreb udefra og uden tilførsel af energi udefra. Omdrejningstallet og dermed også luftmængden tilpasses løbende efter 5 brændstofmængden, således at luftoverskuddet i dampkedlen er praktisk taget konstant ved så godt som alle driftssituationer og straks igen efter belastningsændringer. Ladegruppens høje trykforhold giver desuden en høj temperatur af den komprimerede forbrændingsluft, hvorved selv svær olie kan forbrændes uden vanskeligheder, og uden at der 10 kræves ekstra luftforvarmning. Det høje trykforhold muliggør desuden små dimensioner af dampgeneratoren, således at den kan forsendes i monteret tilstand, d.v.s. som en samlet enhed, og desuden fås, uden at ladegruppen afgiver effekt, lave udstødsgastemperaturer, således at det ikke er nødvendigt at gennemføre fødevandsforvarmning under anven-15 delse af udstødsgasserne, hvilket betyder, at den termiske proces kan optimeres ved forvarmning af fødevandet under anvendelse af udtagsdamp.With this simple, reliable and very economical plant, the speed control is done by means of the boiler itself, and is done without interference from outside and without supply of energy from outside. The rpm and thus also the airflow is continuously adjusted according to the fuel quantity, so that the excess air in the steam boiler is practically constant at almost all operating situations and immediately after load changes. The high pressure ratio of the charge group also gives a high temperature of the compressed combustion air, whereby even heavy oil can be combusted without difficulty and without additional air heating required. Furthermore, the high pressure ratio enables small dimensions of the steam generator to be dispatched in the mounted state, i.e. as a single unit, and in addition, without the charge group giving effect, low exhaust gas temperatures are obtained, so that it is not necessary to conduct feed water preheating using the exhaust gases, which means that the thermal process can be optimized by preheating the feed water during use. of outlet steam.

På tegningen er en udførelsesform for opfindelsen vist skematisk og forenklet. Selve dampkraftanlægget består i det væsentlige af en 20 højtryksdampturbine 1 og en lavtryksdampturbine 2, der i fællesskab driver en elektrisk generator 3, samt endvidere af en kondensator 4, en kondensatpumpe 32, en fødevandsforvarmer 5, der opvarmes af udtagningsdamp, og en dampkedel 6. Til ladning af dampkedlen, d.v.s til at bringe dennes gasside op på det ønskede tryk, tjener en lade-25 gruppe, der i det væsentlige består af en turbokompressor 7, en gasturbine 8, en startmotor 9 og en hydraulisk kobling 10. Alle disse dele af opladegruppen sidder på samme aksel.In the drawing, an embodiment of the invention is shown schematically and simplified. The steam power plant itself consists essentially of a 20 high-pressure steam turbine 1 and a low-pressure steam turbine 2 jointly operating an electric generator 3, as well as a capacitor 4, a condensate pump 32, a feed water heater 5 heated by extraction steam, and a steam boiler 6. For charging the steam boiler, i.e. to bring its gas side up to the desired pressure, a charging group consisting essentially of a turbo compressor 7, a gas turbine 8, a starter motor 9 and a hydraulic clutch 10. serves all these parts. of the charging group sits on the same shaft.

En friskdampregulator 12, der styrer et afløb 13 fra en til primærsystemet hørende trykolieledning 14, der ved 15 fødes over et drøvle- 30 sted 16, arbejder i afhængighed af damptrykket eller af gennemstrøm ningsmængden gennem en friskdampledning 11. Trykolieledningen 14 er forbundet både med en servomotor 17, der over dampkedlens brændstofdyser 18 regulerer brændstoftilførslen (ikke vist), og med en servomotor 19, som forskyder en til ladegruppens centrifugal regulator 21 høren-35 de cylinder 20, hvorved styreolietrykket i sekundærsystemets trykolieledning 23 ændres ved hjælp af et udløb 22. Trykolieledningen 23 fødes ved 24 over et drøvlested 25 og fører til en ventil 26 i en uden om gasturbinen 8 førende bypass-forbindelse 27 og til en servomotor 28, der betjener en ventil 29, som påvirker en bypass-forbindelse 30 ved kedeldelen 31 's gasside. I stedet for trykoliestyring kan der også anvendes 4 144834 en elektrisk styring med de samme funktioner.A fresh steam regulator 12 controlling a drain 13 from a pressure oil line 14 belonging to the primary system, fed at 15 over a throttle location 16, operates in dependence on the vapor pressure or flow rate through a fresh steam line 11. The pressure oil line 14 is connected to both a a servomotor 17 which controls the fuel supply (not shown) via the steam boiler 18 of the steam boiler and with a servomotor 19 which displaces a cylinder 20 associated with the centrifugal regulator 21 of the charging group, whereby the control oil pressure in the secondary system pressure oil line 23 is changed by an outlet 22. The pressure oil line 23 is fed at 24 over a throttle location 25 and leads to a valve 26 in a bypass connecting 27 passing through the gas turbine 8 and to a servomotor 28 operating a valve 29 acting on a bypass connection 30 at the boiler portion 31 gas side. Instead of pressure oil control, an electric control with the same functions can also be used.

De enkelte dele samvirker og regulerer anlægget på følgende mide:The individual parts cooperate and regulate the plant as follows:

Ved fuldlast komprimerer turbokompressoren 7 forbrændingsluften til mindst 9 bar, hvorved luften opvarmes til ca. 330°C, hvilket letter 5 forbrændingen af svær fyringsolie. Dampkedlen 6 er således udformet, at gastemperaturen ved afstrømningen er ca. 430°C, hvilket også er indstrømningstemperaturen i gasturbinen 8. Dette medfører i forbindelse med det høje trykforhold en udstødningsgastemperatur efter gasturbinen på klin 150°C, hvilket vil sige, at også skorstenstemperaturen kun er 10 150°C, idet skorstenens indstrømningsende sædvanligvis befinder sig i umiddelbar nærhed af gasturbinens udstrømningsende, og skorstenstemperaturen altid måles ved skorstenens indstrømningsende. Det skal i denne forbindelse nævnes, at de nævnte værdier er konstaterede at være særlig fordelagtige driftsværdier. Den øverste grænse for udstød-15 ningsgastemperaturen og skorstenstemperaturen må sættes til 165°C.At full load, the turbo compressor 7 compresses the combustion air to at least 9 bar, thereby heating the air to approx. 330 ° C, which facilitates the burning of heavy fuel oil. The steam boiler 6 is designed such that the gas temperature at the runoff is approx. 430 ° C, which is also the inflow temperature in the gas turbine 8. This, in connection with the high pressure ratio, results in an exhaust gas temperature after the gas turbine at clinic 150 ° C, which means that the chimney temperature is also only 10 150 ° C, since the chimney inflow end is usually located in the immediate vicinity of the gas turbine exhaust end, and the chimney temperature is always measured at the chimney inflow end. In this connection, it should be mentioned that the values mentioned are found to be particularly advantageous operating values. The upper limit of the exhaust gas temperature and chimney temperature must be set to 165 ° C.

Ved overskridelse af denne grænse skulle der, for at undgå for store udstødningsgastab, anvendes en varmeveksler. Udstødningsgastabet kan altså ifølge opfindelsen holdes meget lavt, således at nødvendigheden af en voluminøs påfølgende varmeflade er elimineret. Turbokompressoren 20 har ingen køling, og fødevandet skal altså hverken opvarmes ved hjælp af den komprimerede luft eller af udstødningsgassen, hvilket muliggør optimal opvarmning ved hjælp af udtagningsdamp.If this limit is exceeded, a heat exchanger should be used to avoid excessive exhaust gas losses. Thus, according to the invention, the exhaust gas loss can be kept very low so that the necessity of a voluminous subsequent heating surface is eliminated. The turbo compressor 20 has no cooling, and thus the feed water must neither be heated by the compressed air nor by the exhaust gas, which allows optimum heating by means of extraction steam.

Temperaturen før gasturbinen holdes ved hjælp af en regulering, der senere beskrives nærmere, så lav, at gasturbinen netop formår at 25 drive ladegruppens turbokompressor. Dette betyder, at hele gasturbinens ekspansionsvarme med undtagelse af leje- og udstrålingstab overgår til kompressoren, således at ladegruppen har samme effekt, som den ved kendte anlæg påkrævede, ved hjælp af udstødningsgas opvarmede luftforvarmer. Samtidig frembringer gruppen også et højt tryk og 30 reducerer derved kedlens varmeflade til en brøkdel af en ikke-ladet kedels.The temperature before the gas turbine is maintained by means of a regulation, which will be described in greater detail later, so low that the gas turbine just manages to operate the charging group's turbo compressor. This means that the expansion heat of the entire gas turbine, with the exception of bearing and radiation losses, is transferred to the compressor, so that the charge group has the same power as the one required in known plants by means of exhaust gas heated air preheater. At the same time, the group also produces a high pressure, thereby reducing the boiler heating surface to a fraction of a non-charged boiler.

For ved dellast at kunne reducere ladegruppens omdrejningstal, hvilket medfører den fordel, at forbrændingsluftmængden til enhver tid kan tilpasses efter dampkedlens belastning henholdsvis efter brændstof-35 mængden, adskilles startmotoren 9 ved udrykning af koblingen 10 fra ladegruppen og standses, så snart ladegruppen efter antændelsen i brændkammeret har opnået det til balancen mellem kompressoreffekt og turbineeffekt nødvendige omdrejningstal. Gruppen er derefter overladt til sig selv og styres af den installerede regulator. Ved denne foran- 5 144834 staltning kan forbrændingsluftmængden ved en kedelbelastning pi ca.In order to be able to reduce the rpm of the charge group by partial load, which gives the advantage that the combustion air quantity can be adjusted at any time according to the load of the steam boiler or according to the amount of fuel, the starter motor 9 is separated from the charging group by the clutch 10 and stopped as soon as the charging group after ignition in the combustion chamber has achieved the required speed for the balance between compressor power and turbine power. The group is then left to itself and controlled by the installed regulator. In this arrangement, the combustion air flow rate at a boiler load of approx.

50% reduceres til ca. 55% af fuldlast-forbrændingsluftmængden, således at der mellem hel- og halvlast kan holdes et praktisk talt konstant luftoverskud i dampkedlen, hvilket til opnåelse af en ren forbrænding og 5 tilsvarende mindre miljøforurening er meget vigtigt.50% is reduced to approx. 55% of the full-load combustion air volume, so that a practically constant excess of air can be kept in the steam boiler between full and half-load, which is very important to achieve clean combustion and 5 correspondingly less environmental pollution.

Dersom friskdamptrykket falder, fordi dampturbinegruppen på grund af en forlangt effektøgning kræver en større dampmængde, vil frisk-dampregulatoren 12 spærre for trykolieledningen 14's afløb 13. Derved stiger trykket i primær systemet og bevirker, at servomotoren 17 åb-10 ner dampkedlens brændstofdyser 18. Samtidig forskydes centrifugalregulatoren 21‘s cylinder 20 ved hjælp af servomotoren 19, således at afløbet 22 lukkes, og derved stiger styreolietrykket i det uafhængige sekundærsystems trykolieledning 23. Dette medfører, at ventilen 26 i den uden om gasturbinen 8 førende bypass-forbindelse 27 spærres, 15 og at ventilen 29 og dermed bypass-forbindelsen 30 ved dampkedlens gasside åbnes ved hjælp af servomotoren 28. Derved fås dels en forøget gennemstrømningsmængde gennem gasturbinen og dels en højere temperatur før gasturbinen og dermed tilpasses ladegruppens omdrejningstal henholdsvis forbrændingsluftmængden efter den nye, større brændstof-20 mængde.If the fresh steam pressure decreases because the steam turbine group, due to a desired increase in power, requires a larger amount of steam, the fresh steam regulator 12 will block the drain oil line 14 drainage, thereby increasing the pressure in the primary system and causing the servomotor 17 to open the steam boiler 18 and the fuel nozzle 18. the cylinder 20 of the centrifugal regulator 21 is displaced by the servomotor 19 so that the drain 22 is closed, thereby increasing the control oil pressure in the independent secondary system pressure oil conduit 23. This causes the valve 26 in the bypass gas 27 passing through the gas turbine 8 to be blocked. and that valve 29, and thus the bypass connection 30, at the gas side of the steam boiler is opened by the servomotor 28. This results in an increased flow rate through the gas turbine and a higher temperature before the gas turbine, and thus the charge group rpm and the combustion air flow respectively are adjusted to the new larger fuel 20. amount.

Ved midlertidigt stigende friskdamptryk, d.v.s. ved faldende belastning, finder det samme reguleringsforløb sted, men i omvendt orden.With temporarily rising fresh vapor pressure, i.e. in the case of falling loads, the same regulation process takes place, but in the reverse order.

Af hensyn til virkningsgraden er det en fordel, at der ikke sker en samtidig aktivering af ventilerne 26 og 29, men at der ved stigende 25 behov for forbrændingsluft først sker en lukning af den uden om gasturbinen 8 førende bypass-forbindelse 27 og derefter åbning af bypass-forbindelsen 30 ved dampkedlens gasside, og at der ved faldende behov for forbrændingsluft først sker en lukning af bypass-forbindelsen 30 ved dampkedlens gasside og derefter åbning af bypass-forbindelsen 27.In view of the efficiency, it is advantageous that the valves 26 and 29 are not simultaneously activated, but that with increasing 25 need for combustion air, the bypass connection 27 leading outside the gas turbine 8 is first closed and then the the bypass connection 30 at the gas side of the steam boiler, and that in case of decreasing need for combustion air, the bypass connection 30 is first closed at the gas side of the steam boiler and then opening of the bypass connection 27.

30 De to reguleringsområder vil da kunne overlappe hinanden noget, men kan dog også have en smal, neutral zone mellem sig. Alle disse muligheder kan på enkel måde realiseres, f.eks. ved hensigtsmæssig dimensionering af ventilen 26's og servomotoren 28‘s fjederkraft, hvor servomo-torens fjederkraft skal være den stærkeste.30 The two regulatory areas may then overlap somewhat, but may also have a narrow, neutral zone between them. All these possibilities can be easily realized, e.g. by appropriate dimensioning of the spring force of the valve 26 and the servomotor 28, the spring force of the servomotor having to be the strongest.

35 Ved denne udførelsesform kan det være mest økonomisk at vælge fjederkræfterne således, at begge bypass-forbindelser er spærret ved fuldlast. Dersom driftsbelastningen overstiger fuldlast, vil bypass-forbindelsen 30 ved dampkedlens 6's gasside i det mindste midlertidigt åbnes for hurtigst muligt at tilføre den nødvendige forbrændingsluftmæng 6 144834 de til den større brændstofmængde, og derefter atter lukkes, når drifts-belastningen atter mindskes. Underskrider driftsbelastningen fuldlast, vil bypass-forbindefsen 27 åbnes midlertidigt for hurtigst muligt at tilpasse ladegruppens omdrejningstal efter den mindre brændstofmængde.In this embodiment, it may be most economical to select the spring forces such that both bypass connections are blocked at full load. If the operating load exceeds full load, the bypass connection 30 at the gas side of the steam boiler 6 will at least temporarily open to supply the required combustion air quantity 6 as quickly as possible to the larger fuel quantity, and then close again when the operating load is again reduced. If the operating load falls below full load, the bypass junction 27 will be temporarily opened to adjust the charge group speed according to the smaller amount of fuel.

5 Pi denne mide sørges der for, at omdrejningstallet henholdsvis forbrændingsluftmængden hurtigst muligt kan tilpasses efter brændstof-mængden .5 In this mite, the rpm and the combustion air quantity respectively can be adjusted as quickly as possible according to the fuel quantity.

Disse hændelsesforløb kan fremskyndes ved, at man i stedet for de sædvanlige regulatorer anvender gradientregulatorer, der aktiveres 10 ved ændringshastigheden. Det kan desuden forekomme, at ladegruppen ved konstant indstilling af friskdampregulatoren 12, d.v.s. ved konstant belastning, ændrer sit omdrejningstal. Dette sker, f.eks. når den omgivende lufts temperatur svinger stærkt. Også i dette tilfælde opfylder regulatoren fuldt ud sin opgave.These events can be accelerated by the use of gradient controllers that are activated at the rate of change instead of the usual controllers. In addition, it may occur that the charge group, by constantly adjusting the fresh vapor regulator 12, i.e. at constant load, changes its speed. This happens, e.g. when the ambient air temperature fluctuates strongly. In this case, too, the controller fully fulfills its task.

15 Dersom den omgivende lufts temperatur under i øvrigt konstante forhold i damp kraftanlægget stiger, aftager vægten af den af turbokompressoren 7 transporterede luft, hvorved ladegruppens ligevægt forstyrres, og gruppens omdrejningstal begynder at dale. Styreolie-afløbet 22 lukkes af centrifugalregulatoren 21, og styreolietrykket i 20 sekundærsystemets trykolieledning 23 begynder at stige. Derved lukkes bypass-ventilen 26 og/eller åbnes ventilen 29, hvorved gasturbinens gennemstrømningsmængde og/elfer temperaturen før gasturbinen øges, indtil det ønskede omdrejningstal atter er nået.15 If the ambient air temperature under otherwise constant conditions in the steam power plant rises, the weight of the air transported by the turbo compressor 7 decreases, thereby disturbing the charge group equilibrium and the group rpm starts to decrease. The control oil drain 22 is closed by the centrifugal regulator 21 and the control oil pressure in the secondary system pressure oil line 23 begins to rise. Thereby the bypass valve 26 is closed and / or the valve 29 is opened, thereby increasing the flow rate of the gas turbine and / or the temperature before the gas turbine until the desired speed is reached again.

Hele reguleringen kan desuden være således dimensioneret, at tryk-25 ket i trykolieledningerne 14 og 23 synker ved aftagende friskdamptryk, ' men at resultatet forbliver det samme.In addition, the entire regulation may be so dimensioned that the pressure in the pressure oil lines 14 and 23 decreases with decreasing fresh vapor pressure, but the result remains the same.

DK637273A 1972-12-01 1973-11-26 Steam power plant with pressurized steam boiler and one with this integrated ECONOMIZER DK144834C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1748172 1972-12-01
CH1748172A CH552770A (en) 1972-12-01 1972-12-01 STEAM POWER PLANT WITH PRESSURE FIRED STEAM BOILER.

Publications (2)

Publication Number Publication Date
DK144834B true DK144834B (en) 1982-06-14
DK144834C DK144834C (en) 1982-11-29

Family

ID=4425733

Family Applications (1)

Application Number Title Priority Date Filing Date
DK637273A DK144834C (en) 1972-12-01 1973-11-26 Steam power plant with pressurized steam boiler and one with this integrated ECONOMIZER

Country Status (10)

Country Link
US (1) US3884036A (en)
JP (1) JPS5321456B2 (en)
AT (1) AT331584B (en)
BE (1) BE807974A (en)
CA (1) CA993664A (en)
CH (1) CH552770A (en)
DK (1) DK144834C (en)
FR (1) FR2209393A5 (en)
NL (1) NL169222C (en)
SE (1) SE393660B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4175382A (en) * 1975-08-22 1979-11-27 Bbc Brown Boveri & Company Limited Steam power plant with pressure-fired boiler
CH592273A5 (en) * 1975-08-22 1977-10-14 Bbc Brown Boveri & Cie
JPS59100088U (en) * 1982-12-25 1984-07-06 太陽工業株式会社 Foldable panel door structure
US9492780B2 (en) 2014-01-16 2016-11-15 Bha Altair, Llc Gas turbine inlet gas phase contaminant removal
NL2013536B1 (en) * 2014-09-26 2016-06-06 Innecs B V Method to provide a heated gas.
US10502136B2 (en) 2014-10-06 2019-12-10 Bha Altair, Llc Filtration system for use in a gas turbine engine assembly and method of assembling thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2911789A (en) * 1958-08-27 1959-11-10 Gen Electric Regulating system for steam-gas turbine powerplant
US3203175A (en) * 1962-07-31 1965-08-31 Michalicka Ladislav System of operation of a steam-gas circuit or of a gas circuit for gas turbines comprising a combustion chamber for solid fuel
US3232052A (en) * 1962-12-28 1966-02-01 Creusot Forges Ateliers Power producing installation comprising a steam turbine and at least one gas turbine

Also Published As

Publication number Publication date
NL169222B (en) 1982-01-18
US3884036A (en) 1975-05-20
NL7316374A (en) 1974-06-05
ATA791873A (en) 1975-11-15
NL169222C (en) 1982-06-16
JPS4995053A (en) 1974-09-10
DK144834C (en) 1982-11-29
SE393660B (en) 1977-05-16
DE2262305A1 (en) 1974-06-20
BE807974A (en) 1974-03-15
AT331584B (en) 1976-08-25
CA993664A (en) 1976-07-27
CH552770A (en) 1974-08-15
FR2209393A5 (en) 1974-06-28
JPS5321456B2 (en) 1978-07-03
DE2262305B2 (en) 1977-05-12

Similar Documents

Publication Publication Date Title
US3422800A (en) Combined gas turbine and waste heat boiler control system
US4081956A (en) Combined gas turbine and steam turbine power plant
JP5450642B2 (en) Operation method of exhaust heat recovery boiler
US4069674A (en) Power plant
CZ279459B6 (en) Process and system for detecting and controlling of a combined turbine unit excessive speed
EP0034614A1 (en) Control system for cheng dual-fluid cycle engine system.
US4274256A (en) Turbine power plant with back pressure turbine
US4854121A (en) Combined cycle power plant capable of controlling water level in boiler drum of power plant
US20180245800A1 (en) Method and apparatus for utilization of hot water plant waste heat recovery by incorporated high temperature water source heat pump
DK144834B (en) Steam power plant with pressurized steam boiler and one with this integrated ECONOMIZER
US3264826A (en) Method of peaking a power plant system
US2663146A (en) Combined gas and steam power plant
GB1601832A (en) Internal combustion engine plant
EP0071416B1 (en) A method of operating a combustion apparatus having a fired heater
JPS628606B2 (en)
US3362163A (en) Steam power stations
JP2918743B2 (en) Steam cycle controller
US3366093A (en) Start-up system for once-through vapor generators
JPS61108814A (en) Gas-steam turbine composite facility
US4175382A (en) Steam power plant with pressure-fired boiler
JP2019173696A (en) Combined cycle power generation plant, and operation method of the same
RU2794404C1 (en) Combined cycle unit of a power plant
KR100446991B1 (en) The Back-Pressure Control Equipment of Steam Turbine in the Combined Heat Power Plant of District heating
EP3415816B1 (en) A method and a system for extending the load range of a power plant comprising a boiler supplying steam to a steam turbine
EP0527918A1 (en) Method for temperature control of the combustion air in a pfbc combustion plant.

Legal Events

Date Code Title Description
PBP Patent lapsed