DK142164B - CYLLON FOR THE SIGNING OF fine-grained particles - Google Patents

CYLLON FOR THE SIGNING OF fine-grained particles Download PDF

Info

Publication number
DK142164B
DK142164B DK208373AA DK208373A DK142164B DK 142164 B DK142164 B DK 142164B DK 208373A A DK208373A A DK 208373AA DK 208373 A DK208373 A DK 208373A DK 142164 B DK142164 B DK 142164B
Authority
DK
Denmark
Prior art keywords
particles
vortex chamber
inlet
particle
curve
Prior art date
Application number
DK208373AA
Other languages
Danish (da)
Other versions
DK142164C (en
Inventor
H Klein
R Pieper
Original Assignee
Siemens Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Ag filed Critical Siemens Ag
Publication of DK142164B publication Critical patent/DK142164B/en
Application granted granted Critical
Publication of DK142164C publication Critical patent/DK142164C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/14Construction of the underflow ducting; Apex constructions; Discharge arrangements ; discharge through sidewall provided with a few slits or perforations
    • B04C5/18Construction of the underflow ducting; Apex constructions; Discharge arrangements ; discharge through sidewall provided with a few slits or perforations with auxiliary fluid assisting discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • B04C3/04Multiple arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • B04C3/06Construction of inlets or outlets to the vortex chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/12Construction of the overflow ducting, e.g. diffusing or spiral exits
    • B04C5/13Construction of the overflow ducting, e.g. diffusing or spiral exits formed as a vortex finder and extending into the vortex chamber; Discharge from vortex finder otherwise than at the top of the cyclone; Devices for controlling the overflow
    • B04C2005/133Adjustable vortex finder

Landscapes

  • Cyclones (AREA)
  • Combined Means For Separation Of Solids (AREA)

Description

14 21 6 Λ i14 21 6 Λ i

Opfindelsen angår en cyklon til sigtning af finkornede partikler, med et cylindrisk hvirvelkammer, ved hvis ene ende findes et koaksialt partikelindløb, og ved hvis anden ende findes et koaksiait udløbsrør, og med tangentielt anbragte og mod partikelindløbet skrit 5 rettede sekundærluftdyser i hvirvelkammerets omkredsvæg samt med mindst ét partikeludløb, som koncentrisk omslutter partikelindløbet, i hvilket et rotationssymmetrisk strømningslegeme er anbragt aksialt således, at partikelindløbet består af en smal ringspalte, hvor strømningslegemets tværsnitsareal er mindst halvt si stort som tvær-10 snitsarealet af partikelindløbsrøret, og hvorhos sekundærluftdyserne er anbragt i en enkelt ringkrans.The invention relates to a cyclone for sieving fine-grained particles, with a cylindrical vortex chamber, at one end of which is a coaxial particle inlet, and at the other end of which is a coaxial outlet tube, and with tangentially arranged and directed step towards the particle inlet, with the vortex chamber's secondary wall nozzles. at least one particle outlet concentrically enclosing the particle inlet, in which a rotationally symmetrical flow body is arranged axially such that the particle inlet consists of a narrow annular gap, wherein the cross-sectional area of the flow body is at least half as large as the cross-sectional area of the particle inlet tube, and wherein single ring wreath.

Som følge af tilførslen af den partikelfyldte rlgas og af sekundærluften i indbyrdes modsat retning dannes der i hvirvelkammeret en såkaldt rotationsstrømning, som består af en indre, aksial og 15 skruelinjeformet rotationsstrømning og en ydre, ligeledes skruelinje- formet forløbende rotationsstrømning i nærheden af hvirvelkammerets væg, hvorhos de to strømninger har aksialt modsat rettede strømnings-komposanter. Den gennem partikelindløbet via ledeskovle tilførte rågasstrøm sættes i rotation, si at de fra den indre rotationsstrøm-20 ning udslyngede partikler kommer ud i den ydre rotationsstrømning og med en gren af denne rotationsstrømning bortledes til en bunker eller til en hensigtsmæssig transportindretning gennem den partikelindløbet omgivende ringspalte.As a result of the supply of the particulate filled gas and of the secondary air in mutually opposite directions, a so-called rotational flow is formed, which consists of an internal, axial and helical rotational flow and an outer, also helical, rotational wall rotational flow, wherein the two flows have axially opposite directed flow components. The raw gas stream supplied through the particle inlet via the rotary vane is rotated so that the particles discharged from the internal rotational flow enter the outer rotational flow and with a branch of this rotational flow is discharged to a bunker or to a suitable transport device through the particle inlet ring surrounding it. .

Sådanne cykloner (jvf. tysk fremlæggelsesskrift nr. 1293543) 25 har en meget høj fraskillelseegrad, selv for de fineste partikler, og med en stejl skillekurve, men er ikke indrettede til at kunne foretage en egentlig sigtning af materialet med en grænsekornstørrelee, der er større end Opm.Such cyclones (cf. German Patent Specification No. 1293543) 25 have a very high degree of separation, even for the finest particles, and with a steep separation curve, but are not designed to be able to actually screen the material with a larger grain size relay end Note

Opfindelsen har derfor til opgave at udforme en cyklon af den 30 indledningsvis angivne art med på en ringkrans liggende sekundærluftdyser således, at en grænsepartikelstørrelse over Opm kan fastlægges nøjagtigt.It is therefore the object of the invention to design a cyclone of the kind initially provided with a secondary air nozzle lying on a ring rim so that a boundary particle size above Opm can be accurately determined.

Ifølge opfindelsen løses denne opgave ved, at afstanden mellem ringkransen og partikelindløbsmundingen er indstillelig, alt 35 efter den ønskede grænsekornstørrelse af de sigtede partikler. Da partikelindløbet er udformet som en smal ringspalte underkastes alle i hvirvelkammeret indtrædende partikler praktisk taget samme geometri- 1Λ 216 Λ 2 ske begyndelsesbetingelser, dvs. praktisk taget alle partikler påtvinges samme rotation, si at det fastlægges nøjagtigt, pa hvilke baner partiklerne med de enkelte størrelser bevæger sig radialt udad, og i hvilken afstand fra hvirvelkammerets akse de befinder sig ved en 5 bestemt højde over indløbsmundingen. Pa grund af anbringelsen af sekundærluftdyserne på en enkelt ringkrans bortledes således kun indtil en nøje defineret højde i hvirvelkammeret de allerede fra den indre rotationsstrømning udslyngede partikler til partikeludløbet.According to the invention, this task is solved by adjusting the distance between the annulus and the particle inlet orifice according to the desired boundary grain size of the screened particles. Since the particle inlet is designed as a narrow annular gap, all particles entering the vortex chamber are subjected to practically the same geometric initial conditions, ie. practically all particles are subjected to the same rotation, so that it is determined precisely on which paths the particles of the individual sizes move radially outward and at what distance from the axis of the vortex chamber they are at a certain height above the inlet orifice. Thus, due to the placement of the secondary air nozzles on a single annulus, particles up to the particle outlet are already discharged to a precisely defined height in the vortex chamber.

Derved muliggøres altså en skarp adskillelse af partiklerne efter 10 kornstørrelse. Den kornstørrelse, over hvilken alle partikler fraskilles, afhænger af afstanden mellem ringkransen og partikelindløbsmundingen, således at man ved indstilling af denne afstand nøjagtigt kan fastsætte den komstørrelse, over hvilken alle partikler fraskil les.Thus, a sharp separation of the particles by 10 grain size is possible. The grain size over which all particles are separated depends on the distance between the annulus and the particle inlet mouth, so that when setting this distance, the grain size over which all particles are separated can be precisely determined.

15 Opfindelsen er nærmere forklaret i det følgende under henvis ning til tegningen, på hvilken fig. 1 viser et diagram for fraktionsfjernelsesgraden, fig. 2a et skematisk længdesnit af en cyklon ifølge op-20 findelsen med forskydeligt indløbsrør, fig. 2b et tværsnit af samme efter linjen Ilb-IIb i fig. 2, fig. 3 ligeledes skematisk et andet udførelseseksempel med forskydelig sekundærluftkrans og indløbsrør, 25 Qg tø] en variant af indløbsrøret med tangential partikel tilførsel, fig. 5 en serieforbindelse af flere cyklonsigter og fig. 6a-c diagrammer for fraktionsfjernelsesgraden for den i fig. 5 viste cyklonsigte.The invention is further explained in the following with reference to the drawing, in which: FIG. 1 is a diagram of the fraction removal rate; FIG. 2a is a schematic longitudinal section of a cyclone according to the invention with a displaceable inlet pipe; FIG. 2b is a cross-section of the same along the line Ilb-IIb of FIG. 2, FIG. 3 also schematically shows another exemplary embodiment with displaceable secondary air faucet and inlet pipe, 25 Qg of a variant of the inlet pipe with tangential particle supply; FIG. 5 shows a series connection of several cyclone screens and FIG. 6a-c diagrams for the fraction removal rate of the one shown in FIG. 5.

30 I det i fig. 1 viste diagram er fraskilningsgraden afsat som ordinat og partikeldiametren som abscisse, hvorhos fraktionsfjernelsesgraden ved en kendt cyklon er angivet med kurven I. Af denne kurve fremgår, at praktisk taget alle partikler, som er større end 5pm, 35 fraskilles 100¾. Samtidig bortledes imidlertid også partikler, som er mindre end 5pm. Ved en sigtning skal derimod partikler under en bestemt størrelse overhovedet ikke fraskilles, medens partikler over 14 216 Λ 3 denne størrelse fraskilles fuldstændigt. En sidan ideal skillekurve for et sigteapparat er eksempelvis vist med kurven II for en grænse» grundstørrelse pi ΙΟμω. Man har allerede forsøgt at udforme en cyklon til sigtning, idet sekundærluftens fortryk og/eller forrotation i le-5 deskovlene i partikelindløbet blev formindsket, si at fraskillelses- graden derved "forringes". Den derved opnlede fraktionsfraskillelses-grad er vist med kurven III, der imidlertid kun udgør en meget unøjagtig tilnærmelse til den ideale skillekurve II. En drift med nedsat effekt kan således ikke føre til det ønskede resultat og til en 10 nogenlunde skarp skillekurve.30 In the embodiment of FIG. 1, the degree of separation is plotted as ordinate and the particle diameter as abscissa, whereby the fraction removal rate of a known cyclone is indicated by curve I. From this curve it is apparent that virtually all particles larger than 5pm are separated 100¾. At the same time, however, particles smaller than 5pm are also emitted. In the case of a sieve, on the other hand, particles below a certain size must not be separated at all, while particles above 14 216 Λ 3 of this size must be completely separated. For example, a side ideal separation curve for a sieving device is shown by the curve II for a boundary »basic size pi ΙΟμω. Attempts have already been made to design a cyclone for sieving, as the secondary air pressure and / or pre-rotation in the learning vanes in the particle inlet was reduced, so that the degree of separation thereby "deteriorated". The degree of fraction separation thus obtained is shown by curve III, which, however, constitutes only a very inaccurate approximation to ideal separation curve II. Thus, an operation with reduced power cannot lead to the desired result and to a fairly sharp separation curve.

Fig. 2 viser den principielle opbygning af en cyklon ifølge opfindelsen. Denne cyklon har et cylindrisk hvirvelkammer 1, i hvilket de til sigtning bestemte partikler indføres gennem et nedefra i hvirvelkammeret indragende indløbsrør 2 med mindre diameter end 15 hvirvelkammeret. I dette indløbsrør 2's mundingsomride 3 er aksialt indbygget et rotationssymmetrisk strømningslegeme 4, hvis diameter er så stor, at der kun forbliver en smal ringspalte 5 mellem strømningslegemet 4 og indløbsrøret 2's væg. I denne ringspalte 5 kan der være anbragt ledeskovle 6, som bibringer de tilførte partikler og bæreluf-20 ten for disse en rotationsbevægelse. Partiklerne træder si sammen med bæreluften i form af en rotationsstrømning 7 ind i det egentlige hvirvelkammer. De tungere partikler slynges udad umiddelbart over indløbsrøret 2's munding 3 og kommer i nærheden af hvirvelkammerets indervæg. Det er imidlertid også muligt at opnå en tilstrækkelig 25 rotationsbevægelse uden ledeskovle alene ved den over indløbsmundingen 3 indad ombøjede strømningsgren af den ydre rotationsstrømning 11.FIG. 2 shows the principle structure of a cyclone according to the invention. This cyclone has a cylindrical vortex chamber 1 into which the particles destined for sieving are introduced through a smaller diameter diameter inlet tube 2 of the vortex chamber than the vortex chamber. In the mouth area 3 of this inlet tube 2 is axially incorporated a rotationally symmetrical flow body 4, the diameter of which is so large that only a narrow annular gap 5 remains between the flow body 4 and the wall of the inlet tube 2. In this annular slot 5, guide vanes 6 may be provided which impart a rotational movement to the particles and the carrier air supplied to them. The particles coalesce with the carrier air in the form of a rotational flow 7 into the actual vortex chamber. The heavier particles are thrown outwards immediately over the mouth 3 of the inlet tube 2 and come close to the inner wall of the vortex chamber. However, it is also possible to achieve a sufficient rotational movement without guide vanes only at the inwardly curved flow branch of the outer rotational flow 11.

I en bestemt afstand x oven over mundingen 3 af indløbsrøret 2 er anbragt en krans af sekundærluftdyser g, gennem hvilke der fra 30 en tillledning 9 og et kammer 10 indføres sekundærluft i tangential og mod indløbsrørets munding 3 skrat hældende retning i hvirvelkammeret 1, hvorefter sekundærluften løber i form af en skruelinjeformet rotationsstrømning 11 i nærheden af hvirvelkammerets væg ned mod indløbsrøret 3. Denne ydre rotationsstrømning 11 opfanger de allerede 35 udslyngede partikler og bortleder dem gennem en ringspalte 13, som omgiver indløbsrøret 2, og som er indsnævret med en blænde 12, til en bunker 14, hvorfra de kan ledes ud gennem et udløb 15.At a certain distance x above the orifice 3 of the inlet pipe 2 is placed a wreath of secondary air nozzles g, through which from a supply 9 and a chamber 10 secondary air is introduced in tangential and towards the mouth of the inlet pipe 3 inclined direction inclined in the vortex chamber 1, after which the secondary air in the form of a helical rotational flow 11 in the vicinity of the wall of the vortex chamber down towards the inlet tube 3. This outer rotational flow 11 intercepts the already thrown 35 particles and discharges them through a ring slot 13 which surrounds the inlet tube 2, which is narrowed by an aperture 12, to a bunker 14 from which they can be discharged through an outlet 15.

4 1421644 142164

Den gennem dysekransen 8 tilførte sekundærluft bortleder således alle sådanne partikler 17 til bunkeren 14, som allerede er udskilt neden under dyserne 8 og kommet ind i den ydre rotationsstrømning 11. Mindre partikler 18, på hvilke centrifugalkraften endnu 5 ikke har indvirket så stærkt, og som stadig befinder sig i den indre del af rotations strømningen 7, bortledes gennem et udløb 16 i den over for indløbet 2 liggende ende af hvirvelkammeret og kan fraskilles ved hjælp af en kendt støvfjernelsesindretning.The secondary air supplied through the nozzle rim 8 thus discharges all such particles 17 to the bunker 14, which have already been deposited below the nozzles 8 and entered the outer rotational flow 11. Smaller particles 18, on which centrifugal force has not yet acted so strongly, and which still located in the inner part of the rotational flow 7, discharged through an outlet 16 at the end of the vortex chamber opposite the inlet 2 and can be separated by a known dust removal device.

Da partiklerne kun tilføres gennem en smal ringspalte 5 med 10 tilnærmelsesvis samme rotation, kommer de alle ind i samme centrifugalfelt. På grund af de tilførte partiklers forskellige masse påvirkes partiklerne også af forskellige centrifugalkræfter, så at de baner, på hvilke partiklerne slynges udad, også er forskellige. Dette betyder, at større partikler som de med henvisningsbetegnelsen 17 15 betegnede slynges udad meget hurtigt efter deres indtræden i hvirvelkammeret, medens mindre partikler 18 først føres udad længere oppe i hvirvelkammeret. Således kan man ved en given geometri og med kendskab til de foreliggende strømningsdata nøjagtigt beregne, på hvilket niveau i hvirvelkammeret 1 over indløbsmundingen 3 partikler med en 20 bestemt størrelse er vandret udad indtil hvirvelkammerets væg. Den ydre rotationsstrømning 11 fraskiller således kun de partikler, som er nået ud til hvirvelkammervæggen neden for dysekransen 8. Dette betyder, at det ved afstanden x mellem indløbsmundingen 3 og dysekransen 8 er nøjagtigt fastlagt, over hvilken kornstørrelse alle 25 partikler fraskilles, dvs. ved denne afstand kan grænsekornstørrelsen fastlægges inden for temmelig snævre grænser. Ved ændring af denne afstand x kan der således også indstilles en anden grænsekornstørrelse for sigtningen. Til muliggørelse af denne afstandsændring er indløbsrøret 2 ifølge opfindelsen aksialt forskydeligt anbragt i en 30 holder 17 (fig. 3) i den nedre endeflade af hvirvelkammeret 1. Derved kan afstanden x mellem indløbsrørmundingen 3 og dysekransen 8 indstilles nøjagtigt efter de foreliggende krav. Med en sådan cyklon kan der altså foretages en sigtning i to fraktioner, hvorved der fremkommer en skillekurve omtrent som kurven IV i fig. 1. Som kurveforløbet 35 viser, kan der dermed opnås en betydelig bedre tilnærmelse til den ideale skillekurve II end ved den alene ved effektformindskelse af kendte cykloner fremkommende kurve III.Since the particles are fed through only a narrow annular gap 5 with approximately the same rotation, they all enter the same centrifugal field. Because of the different masses of the supplied particles, the particles are also affected by different centrifugal forces, so that the trajectories on which the particles are thrown outwards are also different. This means that larger particles such as those referred to by reference numeral 17 15 are thrown outward very rapidly after their entry into the vortex chamber, while smaller particles 18 are first projected outward further up the vortex chamber. Thus, at a given geometry and with knowledge of the current flow data, it is possible to accurately calculate at which level in the vortex chamber 1 above the inlet orifice 3 particles of a certain size are horizontal outwardly up to the wall of the vortex chamber. Thus, the outer rotational flow 11 separates only those particles which have reached the vortex chamber wall below the nozzle rim 8. This means that at the distance x between the inlet orifice 3 and the nozzle rim 8 it is precisely determined over which grain size all 25 particles are separated. at this distance, the boundary grain size can be determined within rather narrow boundaries. Thus, by changing this distance x, another limit grain size can be set for the sieve. In order to enable this distance change, the inlet pipe 2 according to the invention is axially displaceably arranged in a holder 17 (Fig. 3) in the lower end surface of the vortex chamber 1. Thus, the distance x between the inlet pipe mouth 3 and the nozzle ring 8 can be precisely adjusted according to the present requirements. Thus, with such a cyclone, two fractions can be screened, resulting in a separation curve much like the curve IV of FIG. 1. As the curve curve 35 shows, a significantly better approximation can be obtained to the ideal partition curve II than to the curve III which is obtained only by the reduction of the known cyclones.

5 1A 21 6 4 I fig. 3 er vist et yderligere udførelseseksempel for opfindelsen, hvor også dysekransen kan forskydes aksialt. I dette øjemed er dysekransen, som vist pi tegningen, udformet soa en ledeskovikrans 20, som er anbragt mellem udløbsrøret 21 og hvirvelkammerets omkreds-5 væg 1. Denne ledeskovlkrans 20 er kun fast forbundet med udløbsrøret 21 og er kun ført aftættende i forhold til hvirvelkammervæggen 1 uden stiv forbindelse. Derved er det muligt, at ogsi udløbsrøret 21 sammen med ledeskovlkransen 20 kan holdes i en føring 22 i den øvre endeflade af hvirvelkammeret og dermed kan forskydes aksialt. Tilførslen af 10 sekundær luf ten sker gennem en studs 23, soa indmunder i den øvre del af hvirvelkammeret 1 foran ledeskovlkransen 20. Ved denne udførelsesform kan indløberøret 2 enten være aksialt forskydeligt eller ogsi være anbragt fast.5 1A 21 6 4 In FIG. 3, there is shown a further embodiment of the invention in which the nozzle rim can also be displaced axially. To this end, as shown in the drawing, the nozzle wreath is formed as a guide bucket wrench 20 which is disposed between the outlet tube 21 and the circumferential wall of the vortex chamber 1. This guide bucket wrench 20 is only firmly connected to the outlet tube 21 and is only sealed relative to the vortex chamber wall. 1 without rigid connection. It is thus possible that the outlet pipe 21 together with the guide vane rim 20 can also be held in a guide 22 in the upper end surface of the vortex chamber and thus can be displaced axially. The supply of 10 secondary air takes place through a stud 23, so as to open into the upper part of the vortex chamber 1 in front of the guide vane ring 20. In this embodiment, the inlet pipe 2 can either be axially displaceable or also fixed.

I fig. 4a og 4b er vist en yderligere variant af et partikel-15 indløb. Her er indløbsrørstykket 31, som (Migiver det rotations symmetriske strømningslegeme 13, lukket neden under den nedre ende af strømningslegemet 30 og har i nærheden af bunden en eller to tangen-tiale partikeltilledninger 32 og 33. Ved en sådan tangential tilførsel kan ledeskovlene i ringspalten 34 mellem indløbsrøret 31 og 20 strømningslegemet 30 udelades, hvilket navnlig er en fordel ved let agglomerende eller klæbende stoffer.In FIG. 4a and 4b are shown a further variant of a particle inlet. Here, the inlet pipe piece 31, which (Migrates the rotationally symmetrical flow body 13, is closed below the lower end of the flow body 30 and has in the vicinity of the bottom one or two tangential particle leads 32 and 33. In such a tangential supply, the guide vanes in the ring gap 34 between the inlet pipe 31 and 20 the flow body 30 is omitted, which is particularly advantageous for lightly agglomerating or adhesive substances.

Endvidere er det muligt ved anvendelse af strømningslegemer med forskellig diameter, således som antydet med de stiplede linjer 30' og 30'', at give ringspalten 34 forskellig bredde og derved 25 bibringe partiklerne en rotationsbevægelse af forskellig styrke.Furthermore, by using different diameter flow bodies, as indicated by the dotted lines 30 'and 30' ', it is possible to give the annular gap 34 different width and thereby impart to the particles a rotational movement of different strength.

I fig. 5 er vist en serieforbindelse af flere cykloner til sigtning med forskellig kornstørrelse. De enkelte cykloner 40',40" og 40'" har ganske vist principielt samme opbygning, medens afstandene x',x" og x" ' mellem de pågældende partikelindløbsmundinger 3 30 og dysekranse 8 varierer. Som det fremgår af de ud for de enkelte sigteindretninger viste skillekurver, fraskilles ifølge det nedre diagram i fig. 6a i cyklonen 40' alle partikler over 15μη, ifølge diagrammet i fig. 6b i cyklonen 40" alle partikler mellem 15pm og 10pm og ifølge diagrammet i fig. 6c i cyklonen 40'" alle partikler 35 mellem 10 og 5pm til bortledning gennem de pågældende udløb 15',15" og 15"'. Gennem det sidste udløb 16'" forlader så alle partikler, som er mindre end 5pm, serieforbindelsen af cyklonerne og kan så bortkastes eller ligeledes opfanges.In FIG. 5 shows a series connection of several cyclones for screening with different grain sizes. The individual cyclones 40 ', 40 "and 40" "have, in principle, the same structure, while the distances x', x" and x "'between the respective particle inlet orifices 3 30 and nozzle ring 8 vary. As can be seen from the separating curves shown for the individual sieve devices, according to the lower diagram in FIG. 6a in the cyclone 40 'all particles above 15μη, according to the diagram of FIG. 6b in the cyclone 40 "all particles between 15pm and 10pm and according to the diagram of Fig. 6c in the cyclone 40" "all particles 35 between 10 and 5pm for discharge through the respective outlets 15 ', 15" and 15 "'. Then, through the last outlet 16 ", all particles smaller than 5pm leave the serial connection of the cyclones and can then be discarded or likewise trapped.

DK208373A 1972-04-26 1973-04-17 CYLLON FOR THE SIGNING OF fine-grained particles DK142164C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2220535A DE2220535C2 (en) 1972-04-26 1972-04-26 Rotary flow vortex for the sifting of fine-grained particles
DE2220535 1972-04-26

Publications (2)

Publication Number Publication Date
DK142164B true DK142164B (en) 1980-09-15
DK142164C DK142164C (en) 1981-02-09

Family

ID=5843369

Family Applications (1)

Application Number Title Priority Date Filing Date
DK208373A DK142164C (en) 1972-04-26 1973-04-17 CYLLON FOR THE SIGNING OF fine-grained particles

Country Status (14)

Country Link
US (1) US3917568A (en)
JP (1) JPS5223419B2 (en)
AR (1) AR196336A1 (en)
BE (1) BE798728A (en)
CH (1) CH553599A (en)
CS (1) CS165384B2 (en)
DE (1) DE2220535C2 (en)
DK (1) DK142164C (en)
ES (1) ES414048A1 (en)
FR (1) FR2182112B1 (en)
GB (1) GB1425999A (en)
HU (1) HU168112B (en)
NL (1) NL7305842A (en)
PL (1) PL85294B1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3985526A (en) * 1976-01-08 1976-10-12 Aerodyne Development Corporation Dust collector with spaced volutes
DE2610031C3 (en) * 1976-03-10 1980-07-03 Messerschmitt-Boelkow-Blohm Gmbh, 8000 Muenchen Separation of substances by means of centrifugal forces acting on the medium in question
IT1086466B (en) * 1977-09-06 1985-05-28 Guarascio Massimo CYLINDRICAL SEPARATOR APPARATUS FOR THE SEPARATION OF MIXTURES OF SOLIDS OF DIFFERENT SPECIFIC LOSS, ESPECIALLY FOR THE MINING INDUSTRY
US4218223A (en) * 1977-11-25 1980-08-19 Donaldson Company, Inc. Pre-cleaner for combustion engines
DE2820233C2 (en) * 1978-05-09 1985-08-29 Kraftwerk Union AG, 4330 Mülheim Rotary flow vortex
US4391613A (en) * 1978-09-28 1983-07-05 Ingersoll-Rand Company Multi-station downflow centrifugal separation method and apparatus for separating particulate matter from gases
EP0213329B1 (en) * 1985-07-30 1991-10-02 Hartmut Wolf Pulverizing device
JPS62261842A (en) * 1986-05-09 1987-11-14 Nippon Air Curtain Kk Artificial tornado generating mechanism and utilization thereof
AU637926B2 (en) * 1990-08-03 1993-06-10 Sanko Industry Corporation Exhaust gas processor and exhaust gas processing equipment
US5513704A (en) * 1994-09-22 1996-05-07 Servalco, Inc. Flow back fracture stimulation system
US5681450A (en) * 1995-06-07 1997-10-28 Chitnis; Girish K. Reduced chaos cyclone separation
GB2412889B (en) * 2004-05-29 2006-06-07 Fairport Engineering Group Ltd Biomass material
US8151774B2 (en) * 2009-05-13 2012-04-10 Deere & Company Engine combustion air cyclonic pre-cleaner embodying throttling member adjusted in accordance with engine load
US8246704B2 (en) * 2010-06-03 2012-08-21 Integradigm Corporation Contained vorticies device
GB2486910B (en) * 2010-12-30 2014-05-14 Cameron Int Corp Apparatus and method for fluid separation
RU2478011C1 (en) * 2011-09-26 2013-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Vortex classifier of powder materials
DE102011089059A1 (en) * 2011-12-19 2013-06-20 BSH Bosch und Siemens Hausgeräte GmbH dust collecting device
RU2552440C2 (en) * 2013-07-11 2015-06-10 Виталий Александрович Стариков Straight-flow cyclone
US9803667B2 (en) 2014-05-15 2017-10-31 Vtx Technology Llc Vortex flow apparatus
WO2016186907A1 (en) * 2015-05-15 2016-11-24 Vtx Technology Llc Vortex flow apparatus
RU2620821C1 (en) * 2016-04-15 2017-05-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Swirl classifier of powder materials
RU2655981C1 (en) * 2017-10-12 2018-05-30 Олег Савельевич Кочетов Aerial effluents gas and dust acoustic cleaning system
RU2654730C1 (en) * 2017-10-12 2018-05-22 Олег Савельевич Кочетов Vortex dust collector with acoustic liquid spraying
RU2654740C1 (en) * 2017-10-12 2018-05-22 Олег Савельевич Кочетов Scrubber with movable nozzle
RU2673363C1 (en) * 2017-10-17 2018-11-27 Олег Савельевич Кочетов Two-step dust collector system with vortex dust collector
RU2654744C1 (en) * 2017-11-02 2018-05-22 Олег Савельевич Кочетов Scrubber with movable nozzle
RU2662065C1 (en) * 2017-12-05 2018-07-23 Олег Савельевич Кочетов Vortex dust collector with acoustic liquid spraying
DE102019123034B3 (en) * 2019-08-28 2020-12-03 Khd Humboldt Wedag Gmbh Cyclone with rotating rod basket
RU204295U1 (en) * 2020-02-25 2021-05-19 Роман Владимирович Романюк VORTEX DUST COLLECTOR
RU209160U1 (en) * 2021-12-13 2022-02-03 Роман Владимирович Романюк VORTEX COLLECTOR
US11819861B2 (en) 2022-03-22 2023-11-21 Brian W. Hedrick Uniflow cyclone separator with stable vortex and tangential heavy phase extraction
DE102023122269B3 (en) 2023-08-21 2024-08-08 Heidelberger Druckmaschinen Aktiengesellschaft Suction head control of a sheet feeder

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1724041A (en) * 1927-01-05 1929-08-13 Harold M Plaisted Separator
US2743815A (en) * 1952-09-10 1956-05-01 Centrijig Corp Continuous centrifugal jig separator
DE1266545B (en) * 1965-03-18 1968-04-18 Siemens Ag Device for the analysis of the grain of fine-grained or dust-like particles
US3740929A (en) * 1971-06-14 1973-06-26 Aerodyne Dev Corp Apparatus for collecting finely divided sticky material
US3791110A (en) * 1971-06-17 1974-02-12 Siemens Ag Apparatus for producing granular solids from the gaseous phase such as by sublimation
DE2136803C3 (en) * 1971-07-23 1978-11-09 Siemens Ag, 1000 Berlin Und 8000 Muenchen Rotary flow vortex for separating moisture from a gas flow, especially in air conditioning systems
DE2137128C3 (en) * 1971-07-24 1978-10-05 Siemens Ag, 1000 Berlin Und 8000 Muenchen Device for generating swirl in a rotary flow vortex

Also Published As

Publication number Publication date
DK142164C (en) 1981-02-09
JPS5223419B2 (en) 1977-06-24
BE798728A (en) 1973-08-16
HU168112B (en) 1976-02-28
AU5468273A (en) 1974-10-24
NL7305842A (en) 1973-10-30
FR2182112B1 (en) 1977-04-29
CH553599A (en) 1974-09-13
PL85294B1 (en) 1976-04-30
CS165384B2 (en) 1975-12-22
GB1425999A (en) 1976-02-25
DE2220535B1 (en) 1973-08-09
JPS4954965A (en) 1974-05-28
US3917568A (en) 1975-11-04
DE2220535C2 (en) 1974-03-07
ES414048A1 (en) 1976-02-01
FR2182112A1 (en) 1973-12-07
AR196336A1 (en) 1973-12-18

Similar Documents

Publication Publication Date Title
DK142164B (en) CYLLON FOR THE SIGNING OF fine-grained particles
US911258A (en) Sifter for pulverulent material.
US2252581A (en) Selector
US4221655A (en) Air classifier
US2153026A (en) Dust collector
US2201301A (en) Centrifugal separating device
KR101795835B1 (en) Powder classifying device
DK143386B (en) cyclone
US2664966A (en) Dust arrester
US2717695A (en) Cyclonic separator for wet operation
US2290664A (en) Separating apparatus
US2767840A (en) Cyclones
US2724549A (en) Centrifugal separator and method of operating the same
DK154477B (en) cyclone
US2511387A (en) Apparatus for centrifugally separating suspended particles from gaseous media
JP4907655B2 (en) Airflow classifier and classification plant
US4265741A (en) Apparatus and method for separating diverse particles of a slurry
US2478992A (en) Centrifugal bowl
US2494465A (en) Apparatus for classifying particles
US2719668A (en) Centrifugal bowl
US3098036A (en) Classifying apparatus
US2349831A (en) Dust collector
US2128166A (en) Centrifugal separator
US1624518A (en) Air-blast classifier
US2219711A (en) Cyclone separator