DK141992B - PROCEDURE FOR THERMAL TREATMENT OF A FINE CORN MATERIAL FOR BURNING CEMENT IN MULTIPLE STEPS - Google Patents

PROCEDURE FOR THERMAL TREATMENT OF A FINE CORN MATERIAL FOR BURNING CEMENT IN MULTIPLE STEPS Download PDF

Info

Publication number
DK141992B
DK141992B DK150976AA DK150976A DK141992B DK 141992 B DK141992 B DK 141992B DK 150976A A DK150976A A DK 150976AA DK 150976 A DK150976 A DK 150976A DK 141992 B DK141992 B DK 141992B
Authority
DK
Denmark
Prior art keywords
cement
heat exchanger
gas
procedure
thermal treatment
Prior art date
Application number
DK150976AA
Other languages
Danish (da)
Other versions
DK141992C (en
DK150976A (en
Inventor
K Brachthaeuser
H Ramesohl
K Beisner
H Herchenbach
Original Assignee
Kloeckner Humboldt Deutz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kloeckner Humboldt Deutz Ag filed Critical Kloeckner Humboldt Deutz Ag
Publication of DK150976A publication Critical patent/DK150976A/en
Publication of DK141992B publication Critical patent/DK141992B/en
Application granted granted Critical
Publication of DK141992C publication Critical patent/DK141992C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • C04B7/434Preheating with addition of fuel, e.g. calcining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/2016Arrangements of preheating devices for the charge
    • F27B7/2025Arrangements of preheating devices for the charge consisting of a single string of cyclones
    • F27B7/2033Arrangements of preheating devices for the charge consisting of a single string of cyclones with means for precalcining the raw material

Description

(11) FREMLÆGGELSESSKRIFT 1 U 1 992 DANMARK (S” lnt cl·’ c 04 B 7/44 §(21) Ansøgning nr. 1509/76 (22) Indleveret den 51· mar · 1976 (23) Løbedag 51. mar. I976 (44) Ansøgningen fremlagt og fremlæggelsesskriftet offentliggjort den 4. aug · 1 980(11) PUBLICATION REPORT 1 U 1 992 DENMARK (S ”lnt cl · 'c 04 B 7/44 § (21) Application no. 1509/76 (22) Filed on 51 Mar · 1976 (23) Running day 51 Mar. I976 (44) The application presented and the petition published on 4 Aug · 1 980

DIREKTORATET FORDIRECTORATE OF

PATENT- OG VAREMÆRKEVÆSENET (3°) prioritet begæret fra denPATENT AND TRADEMARK (3 °) priority requested from it

21. apr. 1975, 2517552, DEApr 21 1975, 2517552, DE

(71) KXOECKNER—HUMBOItDT—DEUTZ AKTIENGESKT>LSCHAFT, Deutz-Muelheimer-Strasse Ti 1, 5 Koeln 80, DE.(71) KXOECKNER — HUMBOItDT — DEUTZ SHAREHOLDERS> LSCHAFT, Deutz-Muelheimer-Strasse Ti 1, 5 Cools 80, DE.

(72) Opfinder: Kunibert Brachthaeuser, An der Schmitten 18, 506 Bensberg, DE: Hubert Ramesohl, MoEnweg 22, 506 Bensberg-Refrath, DE: Klaus Beisner, Holunderweg 9, 5062 Hoffnungsthal, DE: Horst Herchenbach, SleTengebirgs-allee 15, 521 Troisdorf, DE.(72) Inventor: Kunibert Brachthaeuser, An der Schmitten 18, 506 Bensberg, DE: Hubert Ramesohl, MoEnweg 22, 506 Bensberg-Refrath, DE: Klaus Beisner, Holunderweg 9, 5062 Hoffnungsthal, DE: Horst Herchenbach, SleTengebirgs-allee 15, 521 Troisdorf, DE.

(74) Fuldmægtig under sagens behandling:(74) Plenipotentiary in the proceedings:

Ingeniørfirmaet Hofman-Bang & Boutard._ (54) Fremgangsmåde til termisk behandling af et finkornet materiale ved bræn** ding af cement i flere trin.Hofman-Bang & Boutard engineering firm. (54) Process for thermal treatment of a fine-grained material by multi-stage cement burning.

Opfindelsen angår en fremgangsmåde af den i krav l’s indledning angivne art.The invention relates to a method of the kind set forth in claim 1.

Ved de traditionelle metoder til termisk behandling af cement-råmel ved brænding af cement forvarmes cementråmelet i en flui-diseringsgas-varmeveksler til ca. 800°C, hvorefter materialet indføres i ovnen, som regel en roterovn. Ved en sådan fremgangsmåde kalcineres cementråmelet i varmeveksleren til 35-4-0^. Dette indebærer, at tilnærmelsesvis halvdelen af roterovnen skal anvendes til færdigkalcinering af materialet, medens ovnens anden halvdel tjener til sintring af materialet. I forvarmeren overføres således kun en lille del af den samlede varmeener- 2 141992 gi til materialet, medens langt den største del af varmearbej-det skal udføres i roterovnen. Ved anlæg med stor ydelse i tidsenheden vil på grund af den ulige fordeling af varmearbej-det i roterovnen dennes termiske virkningsgrad og ydeevne være begrænset. Også holdbarheden af de ildfaste foringssten i ovnens brændezone reducéres betydeligt derved, så at ikke blot investeringsomkostningerne men også udgifterne til vedligeholdelse af roterovnen er uforholdsmæssig store.In the conventional methods for the thermal treatment of cement feedstock by burning cement, the cement feed is preheated in a fluidizing gas heat exchanger to approx. 800 ° C, after which the material is introduced into the oven, usually a rotary oven. In such a process, the cement barrel in the heat exchanger is calcined to 35-4-0 ^. This means that approximately half of the rotary kiln must be used for final calcining of the material, while the other half of the furnace serves to sinter the material. Thus, in the preheater, only a small part of the total heat energy is transferred to the material, while by far the largest part of the heating work must be carried out in the rotary kiln. For installations with high performance in the unit of time, due to the unequal distribution of heat work in the rotary kiln, its thermal efficiency and performance will be limited. Also, the durability of the refractory casings in the stove's firing zone is significantly reduced, so that not only the investment cost but also the cost of maintaining the rotary kiln is disproportionately high.

Videreudviklingen af moderne varmevekslere og varmeudvekslingsmetoder er baseret på, at man lader råmelpartikleme svæve i den varme gas og kalcinerer disse så vidtgående som muligt i en særskilt præliminær brændezone i svævegas-varmeveksleren, hvorimod materialets sintring gennemføres senere i roterovnen.The further development of modern heat exchangers and heat exchange methods is based on allowing the feedstock particles to float in the hot gas and calcining them as far as possible in a separate preliminary burning zone in the floating gas heat exchanger, whereas the material sintering is carried out later in the rotary kiln.

En sådan nyere varmeveksler henholdsvis varmeudvekslingsmetode er kendt fra DE-offentliggørelsesskrift 23 24 519. Angående virkemåden af denne kendte varmeveksler med forkalcineringsap-paratur forklares det i publikationen "Zement Data Book",Such a newer heat exchanger or heat exchange method is known from DE Publication No. 23 24 519. The operation of this known heat exchanger with pre-calcining apparatus is explained in the publication "Zement Data Book",

Bauverlag GmbH, Wiesbaden, 1976, side 355, spalte 1, 2. afsnit: "At det i varmeveksleren indførte cementråmel forkalcineres til 90-96% ved et luftoverskudstal på tilnærmelsesvis 2,05”.Bauverlag GmbH, Wiesbaden, 1976, page 355, column 1, second paragraph: "That the cement feed introduced into the heat exchanger is pre-calcined to 90-96% at an air excess number of approximately 2.05".

Det fremgår endvidere af "Zement Data Book", at man ved hjælp af et såkaldt "Moment-kalcineringskammer" kan kalcinere råmelet op til 90% (SF-proces).Furthermore, the "Zement Data Book" states that using a so-called "Moment calcining chamber", the raw flour can be calcined up to 90% (SF process).

Ved denne varmeudvekslingsmetode samvirker en konventionel varmeveksler med et kalcineringsapparat med fluidiseret leje (MFC-metode). Ved denne proces afsyres råmelet i den særskilt opvarmede fluidiseringsreaktor, der er indskudt mellem cyklonvarmeveksleren og roterovnen, så at arbejdet i selve roterovnen er begrænset til den egentlige sintringsproces på samme måde som ved "SF-proces-sen", dvs. at mindst 90% af råmelet kalcineres i reaktionen i det fluidiserende leje.In this heat exchange method, a conventional heat exchanger interacts with a fluidized bed calciner (MFC method). In this process, the raw flour is acidified in the separately heated fluidization reactor interposed between the cyclone heat exchanger and the rotary kiln, so that the work in the rotary kiln itself is limited to the actual sintering process in the same way as in the "SF process", ie. that at least 90% of the raw flour is calcined in the reaction in the fluidizing bed.

Ved alle cementanlæg af den sidstnævnte type med svævegas-var-meveksler, roterovn og med en mellem disse indskudt supplerende zone til præliminær brænding af materialet forkalcineres cementrå-melet til over 70% og såvidt muligt op til 90-95%, jfr. f.eks. tysk offentliggørelsesskrift 23 44 056.In all cement plants of the latter type with floating gas heat exchanger, rotary kiln and with a supplementary zone for preliminary burning of the material between them, the cement raw flour is pre-calcined to above 70% and as far as possible up to 90-95%, cf. eg. German publication publication 23 44 056.

, 141992 3, 141992 3

Ved de forskellige kendte varmevekslersystemer med forkalcine-ringsindretninger kan det råmel, der indføres i forvarmeren, kalcineres næsten fuldstændigt i den særskilte forbrændezone.In the various known heat exchanger systems with pre-calcining devices, the raw flour introduced into the preheater can be calcined almost completely in the separate combustion zone.

Inden for denne brændezone overskrides imidlertid den ønskede maximale temperatur ukontrollabelt, så at det risledygtige, pulverformede materiale ved begyndende dannelse af grovere kom og begyndende plasticitet på grund af smeltefasedannelse går over i en uønsket tilstand, ved hvilken en korrekt bortstrømning af det kalcinerede materiale fra den præliminære brændezone og ind i roterovnen ikke længere kan sikres. Dette gælder for alle kalcineringsgrader over 70%. Denne mangel skyldes, at afsyringen af en kalkpartikel hovedsagelig er afhængig af tre parametre: I. Afsyringstemperaturen, II. Partiklens opholdstid i forbrændezonen, III. Partikelstørrelsen.However, within this roasting zone, the desired maximum temperature is uncontrollably exceeded so that the rice-resistant, powdery material, upon initial formation of coarser granules and incipient plasticity due to melt phase formation, enters an undesirable state, whereby a proper flow of the calcined material from the preliminary burn zone and into the rotary kiln can no longer be secured. This applies to all calcination grades above 70%. This defect is due to the fact that the acidification of a lime particle is mainly dependent on three parameters: I. The deacidification temperature, II. Particle residence time in the combustion zone, III. The particle size.

Man kan kun inden for snævre grænser ændre et industrielt fremstillet råmels komstørrelse og komstørrelsesfordeling. Fremstilling af cementråmel med kun én komstørrelse er ikke mulig. Desuden kan man ikke undgå agglomerationsprocesser i varmeveksleren.Only within narrow boundaries can the grain size and grain size distribution of an industrially produced raw material be changed. The production of cement flour with only one grain size is not possible. Furthermore, agglomeration processes in the heat exchanger cannot be avoided.

Partiklernes opholdstid på kalcineringstrinnet i en fluidise-ringsgas-varmeveksler kan ikke forlænges mere end op til nogle få sekunder. Melets grove komfraktion kræver imidlertid ved en temperatur på 850-900°C en afsyringstid, der mindst er potens-faktoren 10 dvs. en størrelsesorden længere end disse få sekun der. En recirkulation af de store, endnu ikke afsyrede partikler ville forudsætte disses adskillelse fra det over 800° C varme råmels fine materialefraktion, hvilket ikke er realiserbart af hensyn til energiforbruget.The residence time of the particles at the calcination stage of a fluidization gas heat exchanger cannot be extended for more than up to a few seconds. However, the coarse fraction of the flour requires, at a temperature of 850-900 ° C, an acidification time which is at least the power factor 10, ie. an order of magnitude longer than these few seconds there. A recirculation of the large, yet un-acidified particles would require their separation from the fine material fraction of the over 800 ° C heat, which is not achievable for energy consumption.

En høj kalcineringsgrad på over 70% i de kendte systemer med varmvekslere og forkalcineringsindretninger kan således kun opnås ved forøgelse af afsyringstemperaturen op over 900°C, hvorved imidlertid varmespildet med spildgassen bliver uforholdsmæssig stort.Thus, a high degree of calcination of more than 70% in the known systems of heat exchangers and pre-calcination devices can only be achieved by increasing the deacidification temperature above 900 ° C, however, whereby the waste of heat with the waste gas becomes disproportionately large.

4 1419924 141992

Ved den omtalte kendte teknik overskrides som nævnt fastlagte maximale temperaturer for materialet i anlæggets forkalcinerings-del, hvorved materialet som nævnt mister sin risleevne.In the prior art, as mentioned above, the maximum temperatures for the material are exceeded in the pre-calcination part of the plant, as the material loses its scratching ability as mentioned.

Den foreliggende opfindelse har til formål at reducere de specifikke investeringsomkostninger for en roterovn som sintringsovn ved varmebehandling af cementråmel ved en fremgangsmåde af den i krav 1* s indledning angivne art, og at undgå de almindeligt kendte vanskeligheder ved afsyring af cementråmelet i en mellem forvarmeren og roterovnen beliggende zone til præliminær brænding af materialet, nemlig vanskelighederne med at holde materialet i en risledygtig tilstand, i hvilken det uden standsninger hidrørende fra materialepartiklemes sammenklumpning på korrekt vis kan overføres til roterovnen. Disse to formål opnås ved de i hovedkravets kendetegnende del angivne to foranstaltninger. På grund af materialets fortsatte evne til at dispergeres fint i den varme gasstrøm opnås en optimal varmeovergang fra den varme gas til materialepartikleme. Herved undgår man dannelse af klinkermineraler og alkalidampe og risikoen for materialeaflegringer i forkalcineringsapparaturet.It is an object of the present invention to reduce the specific investment cost of a rotary kiln as a sintering kiln by heat treating cement raw materials by a method of the kind set forth in claim 1 *, and to avoid the generally known difficulties of deacidification of the cement kiln in a pre-heater and located in the rotary kiln for preliminary burning of the material, namely the difficulty of keeping the material in a rice-resistant state, in which it can be properly transferred to the rotary kiln without stopping due to the clumping of the material particles. These two objectives are achieved by the two measures specified in the characterizing part of the main claim. Due to the continued ability of the material to disperse finely in the hot gas stream, an optimal heat transfer from the hot gas to the material particles is achieved. This avoids the formation of clinker minerals and alkali vapors and the risk of material deposits in the pre-calcination apparatus.

Det forvarmede materiale kan ifølge opfindelsen afsyres svarende til en afsyringsgrad på 60%. Herved opnås en optimering af fordelene ved fremgangsmåden for såvidt som der herved opnås en reduktion af den brændstof mængde, der er nødvendig til gennemførelse af den særskilte præliminære kalcineringsproces, hvorved varmetabene med spildgassen holdes nede og det samlede varmeforbrug i anlægget mindskes.According to the invention, the preheated material can be de-acidified to a degree of de-acidification of 60%. Hereby an optimization of the advantages of the process is achieved as far as there is a reduction in the amount of fuel needed to carry out the separate preliminary calcination process, thereby reducing the heat losses with the waste gas and reducing the total heat consumption in the plant.

Ved udførelsesformen ifølge krav 3 opnås følgende fordele: Når ovnens røggas f.eks. indeholder 8-13% oxygen, og når afsyringsgraden i den særskilte kalcineringsproces indstilles på lidt over 50%, vil som regel røggassens oxygenindhold være tilstrækkelig stort til støkiometrisk forbrænding af den nødvendige brændstofmængde, så at tilførsel af supplerende oxygen ikke er nødvendig. Samtidigt aflastes ved denne kalcineringsgrad den exoterme høgtemperaturzone i roterovnen så meget, at holdbarheden af den ildfaste udmuring i denne zone i roterovnen øges væsentlig.In the embodiment according to claim 3, the following advantages are obtained: When the furnace flue gas e.g. contains 8-13% of oxygen, and when the degree of acidification in the separate calcination process is set to just over 50%, the oxygen content of the flue gas will usually be sufficiently large for stoichiometric combustion of the required amount of fuel so that supplementation of supplemental oxygen is not necessary. At the same time, at this degree of calcination, the exothermic high temperature zone in the rotary kiln is relieved so much that the durability of the refractory wall in this zone of the rotary kiln is substantially increased.

5 1419925 141992

Ved den i krav 4 angivne foranstaltning opnås, at forbrændingen af det tilførte brændstof begynder øjeblikkeligt, når påtændings-temperaturen er nået, og at man ikke først skal afvente brændstoffets fordeling i materiale- og gasstrømmen. Forbrændingen begynder tværtimod under materialets fordeling i gasstrømmen.By the measure of claim 4, it is achieved that the combustion of the fuel supplied starts immediately when the ignition temperature is reached and that the distribution of the fuel in the material and gas flow is not to be expected first. On the contrary, combustion begins during the distribution of the material in the gas stream.

På grund af denne foranstaltning kan brændingszonen holdes særlig lille og afsyringsgraden tilsvarende eksakt indstilles efter behov.Because of this measure, the firing zone can be kept particularly small and the degree of deactivation correspondingly exactly adjusted as needed.

Endelig opnås ved udførelsesformen ifølge krav 5» at den samlede mængde brændstof tændes inden brændstoffets indføring i materialestrømmen, så at brændingszonen kan udformes vidtgående uafhængigt af materialestrømmen. På denne måde sikres en jævn og styret forbrænding med en særlig god udnyttelse af brændstoffet, hvorved den ønskede delvise kalcinering af cementråmelet fremmes.Finally, in the embodiment according to claim 5, the total amount of fuel is lit before the fuel is introduced into the material stream, so that the firing zone can be designed far independently of the material stream. In this way, even and controlled combustion is ensured with a particularly good utilization of the fuel, thereby promoting the desired partial calcination of the cement raw material.

I det følgende forklares opfindelsen nærmere ved hjælp af tegningen, hvor fig. 1 skematisk, dels set fra siden og delvis i lodret snit viser en udførelsesform for et anlæg til udøvelse af fremgangsmåden, og fig. 2 en anden udførelsesform for anlægget.In the following, the invention is explained in more detail with reference to the drawing, in which fig. 1 is a schematic, partly side view and partly in vertical section, showing an embodiment of a plant for carrying out the method; and FIG. 2 shows another embodiment of the plant.

I fig. 1 ses materialetilførselsendepartiet af en i forhold til anlæggets øvrige dele i formindsket målestok vist roterovn 1 med et materialeindløbskammer 2, i hvilket udmunder en materialetilførselsledning 3 fra en nederste cyklon 4 i en varmeveksler, der foruden den viste cyklon indbefatter flere over hinanden anbragte og i serie koblede cykloner, der dog ikke er vist på tegningen. Fra cyklonen 4 fører en røggasledning 5 til varmevekslerens øvrige cyklonforvarmetrin. Cyklonen 4 er forbundet med roterovnen 1 ved hjælp af en fra denne hovedsagelig lodret opad rettet røg gasledning 6, i hvilken udmunder en materialetilførselsledning 7 og en brændstoftilførselsledning 9, der fortrinsvis udmunder i røggasledningen 6 gennem en eller flere dyser, der er placeret oven for det sted, hvor materialetilførselsledningen 7 udmunder i røggasledningen 6, der har et parti, som udvider sig opadtil og tjener som foroxidationskammer 8, mod hvilket brændstoftil- 6 141992 førselsdysernes mundinger er rettet skråt nedad, d.v.s,, modsat gasstrømmen op gennem røggasledningen 6. I stedet for kun én nederste cyklon 4 kan der findes flere symmetrisk placerede cykloner.· I så tilfælde har røggasledningen 6 i stedet for kun én til cykloner 4 ledende rørkrumning et til cyklonernes antal svarende antal rørforgreninger.In FIG. 1, the material supply end portion of a rotary kiln 1 shown in relation to the other parts of the plant is shown with a material inlet chamber 2, in which a material supply line 3 from a lower cyclone 4 in a heat exchanger, which in addition to the cyclone shown, includes several superimposed and in series coupled cyclones, however not shown in the drawing. From the cyclone 4, a flue gas line 5 leads to the other cyclone preheat stage of the heat exchanger. The cyclone 4 is connected to the rotary furnace 1 by means of a substantially gas-upwardly directed smoke gas conduit 6, into which a material supply conduit 7 and a fuel supply conduit 9, which preferably open into the flue gas conduit 6, flows through one or more nozzles located above it. where the material supply conduit 7 opens into the flue gas conduit 6 having a portion which extends upwardly and serves as a pre-oxidation chamber 8 against which the orifices of the fuel nozzles are directed obliquely downwards, i.e., opposite to the gas flow up through the flue gas conduit 6. Instead for only one lower cyclone 4, several symmetrically located cyclones can be found. · In that case, instead of only one conduit for cyclones 4, the flue pipe 6 has one corresponding to the number of tubes of the cyclones.

I det følgende forklares fremgangsmåden ifølge opfindelsen ved hjælp af fig„ 1.In the following, the method according to the invention is explained by means of Fig. 1.

Fra roterovnen 1 passerer røggassen ind i materialeindløbskammeret 2, hvorfra røggassen strømmer op gennem røggasledningen 6 og ind i varmevekslerens første, nederste cyklon 4. Det materiale, der skal brændes, indføres gennem ledningen 7 i røggasledningen 6 neden for brænderne 9. Materialet kan efter ønske tilføres gennem kun én eller flere ledninger, ud for hvis munding der er anbragt fordelingsorganer til jævn fordeling af materialestrømmen i gasstrømmen. Som fordelingsorganer kan f.eks. anvendes prelplader eller prelgitre.From the rotary furnace 1, the flue gas passes into the material inlet chamber 2, from which the flue gas flows up through the flue gas line 6 and into the first, lower cyclone of the heat exchanger 4. The material to be burned is introduced through the conduit 7 into the flue gas line 6 below the burners 9. The material may be desired. is supplied through only one or more wires, the outlet of which is provided with distributing means for evenly distributing the flow of material into the gas stream. As distribution means, e.g. baffles or guitars are used.

ff

Det i gasstrømmen jævnt, og fint fordelte materiale føres af gassen opad i røggasledningen 6 og når i form af en kontinuerlig, jævn strøm bestående af materiale og gas ind i brændingszonen i højde med brænderdyseåbningernes plan. Brænderdyserne er som nævnt rettet skråt nedad mod materiale- og gasstrømmen, så at der sikres en god indtrængning af brændstoffet i nævnte strøm. Nedadtil er brændingszonen eksakt afgrænset ved brænderplanet,. medens brændingszonens afgrænsning opadtil opnås ved passende indstilling af flammen. På grund af foroxidationsrummets enkle form kan der tilvejebringes fordelagtige brændingsbetingelser, under hvilke materialepartiklerne hver især med sikkerhed kun én gang passerer brændingszonen, så at man er i stand til eksakt at indstille det forvarmede materiales afsyringsgrad på den tilstræbte værdi mellem 50 og 70%, fortrinsvis 60%.The material in the gas stream evenly and finely distributed is fed by the gas upwards in the flue gas line 6, reaching in the form of a continuous, uniform stream of material and gas into the firing zone at the level of the plane of the burner nozzle openings. As mentioned, the burner nozzles are directed downwardly towards the material and gas flow to ensure a good penetration of the fuel into said flow. Downwards, the firing zone is precisely bounded by the burner plane. while the boundary of the firing zone is reached upwards by appropriate setting of the flame. Due to the simple form of the pre-oxidation compartment, advantageous firing conditions can be provided, under which the material particles each pass the firing zone only once, so as to be able to precisely adjust the degree of acidification of the preheated material to the desired value between 50 and 70%, preferably 60%.

Fremgangsmåden er dog også anvendelig i forbindelse med den i fig. 2 viste brændingsanordning indskudt mellem roterovnen 1 og den materialet forvarmende varmeveksler. Også her står roterovnens materialeindløbsende gennem en fra denne til at begynde med lodret opad førende røggasledning 6 i forbindelse med cyklonen 7 141992 4. I fig· 2 udmunder materialetilførselsrøret 7 i røggasledningen 6 oven for brænderdyser 9, idet den lodrette afstand mellem det niveau, på hvilket brændstoffet indføres gennem dyserne 9» og det sted, hvor materialet tilføres gennem ledningen 7, vælges så stor, at intet gennem materialeledningen 7 i røggasledningen 6 indført materiale kan nå ned til brændezonen. På denne måde kan der opnås en eksakt ønsket indstilling af det forvarmede materiales afsyringgrad.However, the method is also applicable in connection with the one shown in FIG. 2, inserted between the rotary furnace 1 and the material preheating heat exchanger. Here too, the material inlet end of the rotary furnace is through one of it initially beginning with vertically upward flue gas line 6 in connection with cyclone 7 14. In Fig. 2, the material supply pipe 7 in the flue pipe 6 opens above burner nozzles 9, the vertical distance between the level of the fuel being introduced through the nozzles 9 ' and the place where the material is supplied through the conduit 7 is selected so large that no material introduced through the conduit 7 into the flue gas conduit 6 can reach down to the burn zone. In this way, an exact desired setting of the degree of acidification of the preheated material can be obtained.

DK150976A 1975-04-21 1976-03-31 PROCEDURE FOR THERMAL TREATMENT OF A FINE CORN MATERIAL FOR BURNING CEMENT IN MULTIPLE STEPS DK141992C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19752517552 DE2517552B2 (en) 1975-04-21 1975-04-21 METHOD FOR THERMAL TREATMENT OF FINE-GRAINED GOODS, IN PARTICULAR FOR BURNING CEMENT
DE2517552 1975-04-21

Publications (3)

Publication Number Publication Date
DK150976A DK150976A (en) 1976-10-22
DK141992B true DK141992B (en) 1980-08-04
DK141992C DK141992C (en) 1980-12-15

Family

ID=5944545

Family Applications (1)

Application Number Title Priority Date Filing Date
DK150976A DK141992C (en) 1975-04-21 1976-03-31 PROCEDURE FOR THERMAL TREATMENT OF A FINE CORN MATERIAL FOR BURNING CEMENT IN MULTIPLE STEPS

Country Status (11)

Country Link
JP (1) JPS51129426A (en)
AU (1) AU500048B2 (en)
BR (1) BR7602411A (en)
CS (1) CS214731B2 (en)
DD (1) DD123595A5 (en)
DE (1) DE2517552B2 (en)
DK (1) DK141992C (en)
ES (1) ES446977A1 (en)
FR (1) FR2308601A1 (en)
GB (1) GB1541099A (en)
ZA (1) ZA761984B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2736607C2 (en) * 1977-08-13 1984-11-22 Klöckner-Humboldt-Deutz AG, 5000 Köln Method and device for the thermal treatment of fine-grained material with hot gases
DE2801161B2 (en) * 1978-01-12 1981-06-25 Babcock Krauss-Maffei Industrieanlagen GmbH, 8000 München Process and burning of sintered goods made from carbonate raw materials such as cement clinker
DE3003769A1 (en) * 1980-02-01 1981-08-06 Krupp Polysius Ag, 4720 Beckum Roasting of fine material, esp. crude cement flour - where mixt. of preheated flour and powdered fuel is fed via pneumatic conveyor into rotary drum furnace
DE3036957A1 (en) * 1980-09-30 1982-04-08 Gosudarstvennyj Vsesojuznyj institut po proektirovaniju i naučno-issledovatel'skim rabotam Južgiprocement, Char'kov Cement clinker mfr. - where one rotary drum furnace is used to decarbonise and then roast crude flour to reduce total energy consumption
JPS6053267B2 (en) * 1980-12-15 1985-11-25 秩父セメント株式会社 Powder raw material calcination equipment
DE4337068A1 (en) * 1993-10-29 1995-05-04 Krupp Polysius Ag Process and apparatus for heat treating fine-grained material

Also Published As

Publication number Publication date
AU500048B2 (en) 1979-05-10
JPS51129426A (en) 1976-11-11
DK141992C (en) 1980-12-15
BR7602411A (en) 1976-10-19
CS214731B2 (en) 1982-05-28
AU1276376A (en) 1977-10-13
GB1541099A (en) 1979-02-21
FR2308601B1 (en) 1982-09-17
FR2308601A1 (en) 1976-11-19
DD123595A5 (en) 1977-01-05
DE2517552A1 (en) 1976-10-28
DE2517552B2 (en) 1977-11-17
ES446977A1 (en) 1977-06-01
ZA761984B (en) 1977-04-27
DK150976A (en) 1976-10-22

Similar Documents

Publication Publication Date Title
US3975148A (en) Apparatus for calcining cement
US4289483A (en) Apparatus for the mutli-step calcination of cement-clinker
US5098285A (en) Method and system for thermal treatment of fine-grained material, particularly for the manufacture of cement clinker
JPS6158406B2 (en)
KR19990082334A (en) How to reduce nitrogen oxide emissions from kiln equipment
US4381916A (en) Method and apparatus for roasting fine grained ores
US3986818A (en) Device for the thermal treatment of fine granular material with burning means with a heat exchanger system
US4226586A (en) Method and apparatus for the thermal treatment of fine-grained material with hot gases
EA018769B1 (en) Process for operating a plant for producing calcined clay
CN111587233B (en) Clinker production device and method for producing clinker in such a device
US4372784A (en) Method for heat treating pulverous raw material calcining combustor therefor
CS212709B2 (en) Apparatus for heat treatment of finely grained materials
US4066470A (en) Method for the treatment of finely grained material, particularly for the precalcining of cement
DK141992B (en) PROCEDURE FOR THERMAL TREATMENT OF A FINE CORN MATERIAL FOR BURNING CEMENT IN MULTIPLE STEPS
US4299564A (en) Apparatus for the thermal treatment of fine-grained material with hot gases
JP5615818B2 (en) Cement plant and method for operating a cement plant
US3519254A (en) Method and apparatus for the control of burner heat distribution
RU2012103452A (en) METHOD FOR PRODUCING CEMENT CLINKER IN INSTALLATION AND INSTALLATION FOR PRODUCTION OF CEMENT CLINKER
US3351685A (en) Process for firing and cooling particulate solids
JP4360477B2 (en) Waste treatment equipment for cement firing
US3954391A (en) Process for endothermic heat treatment of materials
US3813210A (en) Cement kiln and method
US4062691A (en) Method for the thermal treatment of finely granular material, particularly for the calcining of cement
DK156509B (en) METHOD AND APPARATUS FOR CEMENT MANUFACTURING
RU2175310C2 (en) Device for production of cement clinker

Legal Events

Date Code Title Description
PBP Patent lapsed