DK141657B - Process for disinfecting water and ion exchange resin for use in the process. - Google Patents

Process for disinfecting water and ion exchange resin for use in the process. Download PDF

Info

Publication number
DK141657B
DK141657B DK615170AA DK615170A DK141657B DK 141657 B DK141657 B DK 141657B DK 615170A A DK615170A A DK 615170AA DK 615170 A DK615170 A DK 615170A DK 141657 B DK141657 B DK 141657B
Authority
DK
Denmark
Prior art keywords
water
resin
iodine
triiodide
bacteria
Prior art date
Application number
DK615170AA
Other languages
Danish (da)
Other versions
DK141657C (en
Inventor
Jack Leeper Lambert
Louis R Fina
Original Assignee
Univ Kansas State
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Kansas State filed Critical Univ Kansas State
Publication of DK141657B publication Critical patent/DK141657B/en
Application granted granted Critical
Publication of DK141657C publication Critical patent/DK141657C/da

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • C02F1/766Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens by means of halogens other than chlorine or of halogenated compounds containing halogen other than chlorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/05Processes using organic exchangers in the strongly basic form

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Exhaust Silencers (AREA)

Description

(tt) FKHuntuimiiFT 141657 V53 /¾ I BH* DANMARK mute*.· c 02 f mo «(21) Anwgnfne nr. 6151/70 (28) indiceret den 3* dec . 19?0 (23) utodtf 3· dee. 1970 (44) Aimuiiingan fraMteal eg 1 n On(tt) FKHuntuimiiFT 141657 V53 / ¾ I BH * DENMARK mute *. · c 02 f mo «(21) Application No 6151/70 (28) indicated on 3 * Dec. 19? 0 (23) utodtf 3 · dee. 1970 (44) Aimuiiingan fromMteal eg 1 n On

fi»ii'iImmiiIiiiifci'Hit B<lindiwi>rt dm >9* 19oOfi »ii'iImmiiIiiiifci'Hit B <lindiwi> rt dm> 9 * 19oO

DIREKTORATET FORDIRECTORATE OF

PATENT- 06 VAREMÆRKEVÆSENET <*» ΜβΛ* tap·* «*jé*PATENT-06 TRADE MARKET <* »ΜβΛ * loss · *« * yes *

3· dec. 1969» 881923, US3 · dec. 1969 »881923, US

2. nov. I97O# 86246, USNov 2 I97O # 86246, US

(TO KANSAS STATE UNIVERSITY RESEARCH FOUNDATION, Manhattan, Kaneae, US.(TO KANSAS STATE UNIVERSITY RESEARCH FOUNDATION, Manhattan, Kaneae, US.

(72) Opfinder: Jack Leeper Lambert, 800 Ratone Street, Manhattan, Kansas, US: Louis H _FIna, 18j?3~Alabama Lene, Manhattan, Kansas, US.(72) Inventor: Jack Leeper Lambert, 800 Ratone Street, Manhattan, Kansas, US: Louis H _FIna, 18j? 3 ~ Alabama Lene, Manhattan, Kansas, US.

(74) FulchiTgdg unctar m«mm ΜμμΜ«·:(74) FulchiTgdg unctar m «mm ΜμμΜ« ·:

Th. Ostenfeld Patentbureau A/s.Th. Ostenfeld Patentbureau A / s.

(94) Fremgangsmåde til desinficering af vand og ionbytterharpiks til anven= delse ved fremgangsmåden.(94) Method of disinfecting water and ion exchange resin for use in the process.

Den foreliggende opfindelse angår en fremgangsmåde til behandling af bakterielt forurenet vand til opnåelse af desinficeret vand, som ikke kræver yderligere behandling til fjernelse af desinficeringsmiddelrester, samt et baktericid til udøvelse af fremgangsmåden.The present invention relates to a method for treating bacterially contaminated water to obtain disinfected water which does not require further treatment to remove disinfectant residues, and a bactericide for carrying out the process.

Der findes relativt få måder, hvorpå man kan behandle vand kemisk, således at mikroorganismer ødelægges uden at efterlade uønskede restforbindelser. Den mest udbredte behandlingsmåde er med chlor, men de i dag anvendte behandlingsmetoder efterlader ofte overskydende chlor i koncentrationer, som irriterer øjne og slimhinder. De andre halogener, brom og iod, er blevet anvendt i meget mindre grad, og deres anvendelighed er for en stor del blevet begrænset til behandling af swimming-pools, ofte i fysiologisk uacceptable koncentrationer.There are relatively few ways to chemically treat water so that microorganisms are destroyed without leaving unwanted residues. The most widely used treatment method is with chlorine, but the treatment methods used today often leave excess chlorine at concentrations that irritate the eyes and mucous membranes. The other halogens, bromine and iodine, have been used to a much lesser extent and their utility has largely been limited to the treatment of swimming pools, often at physiologically unacceptable concentrations.

141657 2141657 2

Hidtil er ionbytterharpikser, såsom de kvaternære ammoniumharpikser, ikke blevet anset for at have megen værdi til desinficering af vand. Visse kvaternære ammoniumforbindelser har baktericide egenskaber, når de anvendes i vandige opløsninger, men almindelige kvaternære ammoniumanionbytterharpikser udviser kun en meget ringe baktericid effekt. Således kan vand forurenet med levende bakterier passere et lag af anionbytterharpiks uden en kendelig reduktion af antallet af levende bakterier.To date, ion exchange resins, such as the quaternary ammonium resins, have not been considered to be of much value in disinfecting water. Certain quaternary ammonium compounds have bactericidal properties when used in aqueous solutions, but ordinary quaternary ammonium anion exchange resins exhibit only a very slight bactericidal effect. Thus, water contaminated with live bacteria can pass a layer of anion exchange resin without a noticeable reduction in the number of live bacteria.

Det er endvidere velkendt, at chlorid-, bromid- og iodioner har ringe eller ingen baktericid effekt på vand. F.eks. kan det nævnes, at bakterier ikke dræbes, når de bringes i kontakt med fortyndede vandige opløsninger af f.eks. natriumchlorid og kaliumchlorid. Tri-iodidioner i opløsning er blevet omtalt som havende ubetydelige kimdræbende egenskaber sammenlignet med diatomar iod eller andre halogener på elementær form. (Se J. Bacteriol., 69-413-417 (1955) og Arch. Biochem., 6:261-268 (1945)).Furthermore, it is well known that chloride, bromide and iodine ions have little or no bactericidal effect on water. Eg. it can be mentioned that bacteria are not killed when contacted with dilute aqueous solutions of e.g. sodium chloride and potassium chloride. Tri-iodide ions in solution have been referred to as having negligible germicidal properties compared to diatomic iodine or other halogens in elemental form. (See J. Bacteriol., 69-413-417 (1955) and Arch. Biochem., 6: 261-268 (1945)).

I beskrivelsen til USA-patent nr. 3.316.173 omtales en fremgangsmåde til behandling af vand med brom, hvortil en stærkt basisk anionbytterharpiks anvendes som kilde for diatomar eller elementært brom, idet bromet fjernes fra harpiksen til dannelse af en relativt koncentreret vandig opløsning, som derefter blandes med et større volumen vand, såsom vand i en swimming-pool, for at give en baktericid koncentration af brom. Bromet elueres fra harpiksen i koncentrationer fra 10 ppm til 10.000 ppm, hvilket er langt over fysiologisk acceptable brommængder i vand til menneskeligt forbrug.In the disclosure of U.S. Patent No. 3,316,173, a process for treating water with bromine is disclosed in which a highly basic anion exchange resin is used as a source of diatomic or elemental bromine, removing the bromine from the resin to form a relatively concentrated aqueous solution which then mixed with a larger volume of water, such as water in a swimming pool, to give a bactericidal concentration of bromine. The bromine is eluted from the resin at concentrations from 10 ppm to 10,000 ppm, which is well above physiologically acceptable bromine levels in water for human consumption.

Beskrivelsen til USA-patent nr. 3.462.363 omhandler en videreudvikling af fremgangsmåden i ovennævnte patentskrift, idet en rense-harpiks anvendes i forlængelse af en stærkt basisk anionbytterharpiks på polyhalogenidform for at reducere det overskydende halogen i det behandlede vand til et fysiologisk acceptabelt niveau. I det første trin af fremgangsmåden eluerer vandet indeholdende mikroorganismer elementært halogen fra harpiksen til opnåelse af en halogenkoncentration i vandet på over 5 ppm. Ved fuldførelsen af den baktericide behandling reduceres det resterende halogen til en værdi på højst 1,0 ppm, ved at man lader opløsningen passere igennem en anden anionbytterharpiks, som er i stand til at absorbere halogenet.The disclosure of U.S. Patent No. 3,462,363 discloses a further development of the process of the above-mentioned patent, in which a purifying resin is used in extension of a highly basic polyhalide anion exchange resin to reduce the excess halogen in the treated water to a physiologically acceptable level. In the first step of the process, the water containing microorganisms elementally elutes halogen from the resin to achieve a halogen concentration in the water above 5 ppm. Upon completion of the bactericidal treatment, the residual halogen is reduced to a value not exceeding 1.0 ppm by passing the solution through another anion exchange resin capable of absorbing the halogen.

Fra USA-patentskrift nr. 3.436.345 kendes en polybromidholdig anionbytterharpiks til anvendelse ved desinficering af vand. Bromindholdet i denne anionbytterharpiks er eluerbart, idet der ved anvendelsen af harpiksen tilsigtes opnået en baktericid koncentration 3 141657 af brom i vandet. Den i USA-patentskriftet omhandlede opfindelse er en videreudvikling af den i ovennævnte USA-patentskrift nr. 3.316.173 omhandlede opfindelse og lider af samme ulemper med hensyn til fysiologisk uacceptable bromkoncentrationer i vandet.U.S. Patent No. 3,436,345 discloses a polybromide-containing anion exchange resin for use in disinfecting water. The bromine content of this anion exchange resin is eluted, with the intention of using the resin a bactericidal concentration of bromine in the water is intended. The invention disclosed in the United States Patent is a further development of the invention disclosed in the above-mentioned United States Patent No. 3,316,173 and suffers from the same disadvantages of physiologically unacceptable bromine concentrations in the water.

Det har overraskende vist sig, at man til desinficering af vand kan anvende en ionassociationsforbindelse mellem en stærkt basisk anionbytterharpiks og triiodid, som i alt væsentligt ikke indeholder oxiderende iod, hvorved der ikke sker eluering af iod, og man undgår, at desinficeringsmidlet overføres til vandet, der skal behandles. Fremgangsmåden ifølge opfindelsen er baseret herpå og er ejendommelig ved det i krav lTs kendetegnende del anførte.Surprisingly, it has been found that for the disinfection of water, an ionic association can be used between a highly basic anion exchange resin and triiodide, which contains essentially no oxidizing iodine, thereby avoiding elution of iodine and preventing the disinfectant from being transferred to the water. that needs to be addressed. The process of the invention is based thereon and is characterized by the characterizing part of claim 1.

Endvidere tilvejebringes et baktericid til udøvelse af fremgangsmåden ifølge opfindelsen, hvilket baktericid er ejendommeligt ved det i krav 4’s kendetegnende del anførte.Further, a bactericide is provided for practicing the method of the invention, which bactericide is peculiar to the characterizing part of claim 4.

Til fremstilling af baktericidet ifølge opfindelsen omsættes en stærkt basisk anionbytterharpiks med triiødidioner til dannelse af en stabil ionassociationsforbindelse med en ekstremt lav dissociation i vand. Associationen af triiodidionerne med de basiske byttepositioner (kationiske grupper) i harpiksen er således, at positionerne for ionbytning med opløsningen blokeres. Mængden af frigivet iod Cl2) eHer triiodid CI3D i vandet er forsvindende, idet den ligger under de sædvanlige grænser til bestemmelse deraf. Harpiksforbindelsen er ikke desto mindre et potent baktericid. Ved en eller anden mekanisme, som endnu ikke er forstået fuldtud, "reagerer" tfiiodidgrupperne på harpiksen med bakterier til opnåelse af et næsten øjeblikkeligt drab af bakterierne uden dannelse af en baktericid koncentration af iod (eller nogen oxiderende form deraf) i vandet. De dræbte bakterier forbliver ikke på harpiksen, men vil nemt passere gennem harpikslaget. Fuldstændig bakteriel sterilisation af stærkt forurenet vand kan således opnås uden indførelse af fysiologisk uacceptable mængder af iod i vandet. Mængden af eventuelt frigivet iod ved reaktionen mellem bakterierne og det uopløseliggjorte triiodid er under analysegrænserne ved undersøgelser, som er følsomme ned til mindst 100 dele pr. milliard iod (eller en oxiderende form deraf). Det desinficerede vand er herved klar til en umiddelbar anvendelse som drikkevand eller til andre anvendelser, hvor bakterielt sterilt iodfrit vand er ønskeligt. Der kræves sædvanligvis ingen yderligere behandling.To prepare the bactericide of the invention, a highly basic anion exchange resin is reacted with triiodide ions to form a stable ion association compound with an extremely low dissociation in water. The association of the triiodide ions with the basic exchange positions (cationic groups) in the resin is such that the positions of ion exchange with the solution are blocked. The amount of iodine released (Cl2) or triiodide CI3D in the water is vanishing, being below the usual limits for its determination. The resin compound is nonetheless a potent bactericide. By some mechanism that is not yet fully understood, the thioiodide groups "react" to the resin with bacteria to achieve an almost instantaneous killing of the bacteria without forming a bactericidal concentration of iodine (or any oxidizing form thereof) in the water. The killed bacteria do not remain on the resin but will easily pass through the resin layer. Thus, complete bacterial sterilization of highly contaminated water can be achieved without introducing physiologically unacceptable amounts of iodine into the water. The amount of possibly iodine released in the reaction between the bacteria and the insolubilized triiodide is below the limits of analysis in studies that are sensitive to at least 100 parts per minute. billion iodine (or an oxidizing form thereof). The disinfected water is thereby ready for immediate use as drinking water or for other applications where bacterially sterile iodine-free water is desirable. No further treatment is usually required.

Enhver stærkt basisk anionbytterharpiks kan anvendes, men kva-ternære ammoniumanionbyttere foretrækkes. Udtrykket "stærkt basisk anionbytterharpiks" angiver en gruppe harpikser, som enten indeholder stærkt basiske (kationiske) grupper såsom kvaternære ammoniumgrupper, 4 141657 eller som har stærkt basiske egenskaber, som i det væsentlige er ækvivalente med kvaternasre ammoniumanionbytterharpikser. Klassificeringen af "stærkt basiske" harpikser står i modsætning til "svagt basiske" harpikser, hvor de basiske grupper er aminnitrogen snarere end kvaternære ammoniumgrupper. Foruden de kvaternære ammoniumharpikser, som er kommercielt tilgængelige fra et antal firmaer, kendes der andre stærkt basiske harpikser, såsom de tertiære sulfonium-harpikser, de kvaternære phosphoniumharpikser og alkylpyridinhar-pikser. Litteraturhenvisninger, som viser· fremgangsmåder til fremstilling af ikke kommercielt tilgængelige stærkt basiske anionbyttere, * er:Any highly basic anion exchange resin can be used, but quaternary ammonium anion exchangers are preferred. The term "highly basic anion exchange resin" refers to a group of resins which either contain highly basic (cationic) groups such as quaternary ammonium groups, or which have highly basic properties which are essentially equivalent to quaternary pure ammonium anion exchange resins. The classification of "highly basic" resins contrasts with "weakly basic" resins, wherein the basic groups are amine nitrogen rather than quaternary ammonium groups. In addition to the quaternary ammonium resins which are commercially available from a number of companies, other highly basic resins are known, such as the tertiary sulfonium resins, the quaternary phosphonium resins and alkyl pyridine resins. Literature references showing · methods for making non-commercially available highly basic anion exchangers * are:

Tertiære sulfoniumanionbyttere: G.J. deJong (til Stami-carbon N.V.), USA-patent nr. 2.713.038, 12. juli 1955, og - Staatmijnen in Limburg, Directie van de, hollandske patenter nr. 72.245, 15. april 1953 og nr. 75.968, 15. september 1954, samt britisk patent nr. 737.924, 15. oktober 1955.Tertiary sulfonium anion exchangers: G.J. deJong (to Stami-carbon NV), United States Patent No. 2,713,038, July 12, 1955, and - Staatmijnen in Limburg, Directie van de, Dutch Patents No. 72,245, April 15, 1953 and No. 75,968, 15. September 1954, and British Patent No. 737,924, October 15, 1955.

Kvaternære phosphoniumanionbyttere: Stamicarbon N.V., hollandsk patent nr. 75.705, 16. august 1954.Quaternary phosphonium anion exchangers: Stamicarbon N.V., Dutch Patent No. 75,705, August 16, 1954.

Alkylpyridiniumanionbyttere: USA-patent nr. 2.739.948, 27. marts 1956.Alkylpyridinium anion exchangers: U.S. Patent No. 2,739,948, March 27, 1956.

Kommercielt tilgængelige kvaternære ammoniumanionbytterharpikser som kan anvendes ved udøvelsen af den foreliggende opfindelse, omfatter "Rexyn 201" (Fisher Scientific Co.), "Amberlite®IR 400" og "Amberlite ®IR 401 S” (Mallinckrodt Chemical Works), "Ionac A-504" (Matheson, Coleman & Bell) og "Dowex ®1" og "Dowex ® 2" (Dow Chemical Co.). Disse harpikser er alle karakteriserede ved at have kvaternære ammoniumbyttergrupper på saltform, sædvanligvis på chlorid-eller sulfatformerne.Commercially available quaternary ammonium anion exchange resins which may be used in the practice of the present invention include "Rexyn 201" (Fisher Scientific Co.), "Amberlite®IR 400" and "Amberlite®IR 401 S" (Mallinckrodt Chemical Works), "Ionac A 504 "(Matheson, Coleman & Bell) and" Dowex®1 "and" Dowex®2 "(Dow Chemical Co.). These resins are all characterized by having quaternary ammonium exchange groups in salt form, usually in the chloride or sulfate forms.

Udtrykkene "triiodid" eller "triiodidion", som er anvendt i denne beskrivelse med krav, refererer til ioner dannet af iod, som har valensen -1, men som indeholder tre iodatomer. lodionen (I~) forener sig med molekylært iod (^) til dannelse af triiodidionen (I^-). Hvis mere af det elementære iod (^) forener sig med den monovalente triiodidion (I^-), kan højere polyiodidioner dannes, f.eks. poly-iodidionerne 1^ og Ij~.The terms "triiodide" or "triiodide ion" as used in this specification with claims refer to ions formed by iodine having the valence -1 but containing three iodine atoms. the lodion (I ~) unites with molecular iodine (^) to form the triiodide ion (I ^ -). If more of the elemental iodine ()) unites with the monovalent triiodide ion (I ^ -), higher polyiodide ions can be formed, e.g. the polyiodide ions 1 ^ and Ij ~.

Det til baktericidet ifølge den foreliggende opfindelse eneste anvendelige polyiodid er triiodidet. Højere polyiodidioner frigiver 5 141657 molekylært iod (I2) til opløsningen, skønt de er forenede med den stærkt basiske anionbytterharpiks. Andre trihalogenider end triiodid frigiver også halogen til vandet, selvom de er absorberet på stærkt basiske anionbytterharpikser. Triiodidet er enestående, idet iodet i denne ionassociationsforbindelse ikke elueres ved kontakt med vand til og under analysegrænserne på 100 dele pr. milliard.The only polyiodide useful for the bactericide of the present invention is the triiodide. Higher polyiodide ions release molecular iodine (I2) to the solution, although they are united with the highly basic anion exchange resin. Trihalides other than triiodide also release halogen to the water, although absorbed on highly basic anion exchange resins. The triiodide is unique in that the iodine in this ion association compound is not eluted by contact with water at and below the 100-per-ml assay limits. billion.

Egnede fremgangsmåder til fremstilling af opløsninger og salte af polyhalogenidioner, omfattende polyiodider, er beskrevet i litteraturen. (Se f.eks. A.I. Popov og R.E. Buckles, "Polyhalogen Complex Salts", præparat nr. 46, og "Typical Polyhalogen Complex Salts", præparat nr. 47, i INORGANIC SYNTHESES vol. V, udgivet af T. Moeller, McGraw-Hill Book Company, Inc., New York 1957, pp- 167-178). Idet man følger sådanne fremgangsmåder med henblik på den foreliggende opfindelse, kan molekylært iod opløses i en vandopløsning af iodid-saltet. F.eks. opløses iod i en opløsning af natrium- eller kalium-iodid. Denne opløsning vil indeholde den monovalente ion I , som vil forene sig med det opløste iod I'2 til dannelse af polyiodidionerne. Ved i det væsentlige at anvende et mol I2 pr. mol I , vil der hovedsageligt kun blive dannet triiodidioner. Hvis der anvendes støkiometrisk overskydende mængder af I2, kan der dannes nogle af polyiodidionerne, og særlige skridt kan vare ønskelige til fjernelse af det overskydende iod fra harpiksen. Ved en alternativ fremgangsmåde kan harpiksen først omdannes til iodidformen (I ) ved at bringe den i kontakt med en opløsning af kalium- eller natriumiodid eller et andet iodidsalt, og en omrørt vandig opslæmning af den omdannede harpiks bringes i kontakt med elementært iod (I2) for at reagere med det absorberede I til dannelse af bundet . Denne fremgangsmåde er mindre ønskelig, da det er vanskeligere at sikre en mætning af kolonnen med triiodid.Suitable methods for preparing solutions and salts of polyhalide ions, comprising polyiodides, are described in the literature. (See, for example, AI Popov and RE Buckles, "Polyhalogen Complex Salts", Preparation No. 46, and "Typical Polyhalogen Complex Salts", Preparation No. 47, in INORGANIC SYNTHESES vol. V, published by T. Moeller, McGraw —Hill Book Company, Inc., New York 1957, pp- 167-178). Following such methods for the purposes of the present invention, molecular iodine can be dissolved in an aqueous solution of the iodide salt. Eg. iodine is dissolved in a solution of sodium or potassium iodide. This solution will contain the monovalent ion I which will combine with the dissolved iodine I₂ to form the polyiodide ions. By essentially using one mole of I mol I, mainly only triiodide ions will be formed. If stoichiometric excess amounts of I 2 are used, some of the polyiodide ions may be formed, and particular steps may be desirable to remove the excess iodine from the resin. In an alternative method, the resin can first be converted to the iodide form (I) by contacting it with a solution of potassium or sodium iodide or another iodide salt, and a stirred aqueous slurry of the converted resin is contacted with elemental iodine (I2). to react with the absorbed I to form the bound. This process is less desirable as it is more difficult to ensure saturation of the column with triiodide.

Reaktionen mellem triiodidioneme og den stærke basiske anionbytterharpiks kræver ikke nogen særlig teknik eller særlige reaktionsbetingelser. Den vandige opløsning af triiodidioneme kan bringes i kontakt med en saltform af harpiksen ved sædvanlige stuetemperaturer (25 - 30°C) til opnåelse af associationsfarbindelsen. Reaktionen kan udføres i batch, idet den omdannede harpiks separeres fra opløsningen ved filtrering eller centrifugering. Det er imidlertid formålstjenligt at lade harpiksen reagere i et lag eller en kolonne ved at lade triiodidopløsningen strømme igennem harpiksen. Den væsentlige reaktion kan belyses således: 141657 6 +The reaction between the triiodide ions and the strong basic anion exchange resin does not require any particular technique or reaction conditions. The aqueous solution of the triiodide ions can be contacted with a salt form of the resin at usual room temperatures (25-30 ° C) to obtain the association compound. The reaction can be carried out in batches, separating the resin from the solution by filtration or centrifugation. However, it is advisable to react the resin in a layer or column by allowing the triiodide solution to flow through the resin. The essential reaction can be illustrated as follows: 141657 6 +

CC

C /=\ -N - CH3 C1' + K+Ii ? CH,C / = \ -N - CH3 C1 '+ K + Ii? CH

C JC J

i c c __, CH, I /ΓΛ I + .i c c __, CH, I / ΓΛ I +.

-^ c-Η: v-ch7 - n---i“ + k ci i\=/ 2/\ 3 , CH, CH, C 0 5 I de ovenstående formler er den kvaternære ammoniumanionbytter-harpiks repræsenteret med tre methylgrupper bundet til det basiske nitrogen, og harpiksen er vist som værende oprindelig på chloridform. Det vil imidlertid kunne forstås, at andre kortkædede alifatiske grupper kan bindes til nitrogenet, såsom ethyl- eller hydroxylgrupper. Visse kommercielle, stærkt basiske kvaternære ammoniumanionbytter-harpikser, såsom "Dowex®2n (Dow Chemical Company), indeholder alkyl-og alkanolgrupper. Det vil også kunne forstås, at disse harpikser vil kunne leveres og anvendes i saltformer, som er forskellige fra chloridformen, såsom sulfatet.- ^ c-Η: v-ch7 - n --- i “+ k ci i \ = / 2 / \ 3, CH, CH, C 0 5 In the above formulas, the quaternary ammonium anion exchange resin represented by three methyl groups is bonded to the basic nitrogen and the resin is shown to be originally in chloride form. However, it will be appreciated that other short chain aliphatic groups may be bonded to the nitrogen such as ethyl or hydroxyl groups. Certain commercial highly basic quaternary ammonium anion exchange resins, such as "Dowex®2n (Dow Chemical Company), contain alkyl and alkanol groups. It will also be appreciated that these resins may be delivered and used in salt forms different from the chloride form, such as the sulfate.

I ionassociationsforbindelsen bliver triiodidet, som vist, bundet til den fikserede kvaternære ammoniumgruppe eller anden basisk gruppe og går ikke i opløsning. Kalium- og chloridionerne kan nemt udvaskes af harpiksforbindelsen. Hvis der er overskydende triiodid eller iod til stede i reaktionsopløsningen, kan dette også udvaskes af harpiksforbindelsen, ved at man lader vand trænge gennem en kolonne eller et lag eller ved batch-vaskning efterfulgt af filtrering eller centrifugering. Det foretrækkes, at harpiksforbindelsen vaskes fri for ikke-reageret iod og/eller overskydende triiodid. Destilleret eller ionfrit vand kan anvendes til udvaskningen.In the ion association compound, as shown, the triiodide is bound to the fixed quaternary ammonium group or other basic group and does not dissolve. The potassium and chloride ions can be easily washed out by the resin compound. If excess triiodide or iodine is present in the reaction solution, this can also be washed out by the resin compound by allowing water to pass through a column or layer or by batch washing followed by filtration or centrifugation. It is preferred that the resin compound be washed free of unreacted iodine and / or excess triiodide. Distilled or ion-free water can be used for the leaching.

Alternativt kan den omdannede harpiks først udvaskes med en vandig iodidsaltopløsning, før den udvaskes med vand. Denne fremstillingsmåde er særlig ønskelig, hvis reaktionsopløsningen kan have indeholdt højere polyhalogenidioner end I3 . En iodidsaltopløsning (I ) som f.eks. na- 7 141657 trium-, kalium- eller ammoniumiodid kan anvendes. Iodidsaltopløsningen vil omdanne alle eventuelle harpiksbundne højere polyiodider (f.eks.Alternatively, the converted resin may first be washed out with an aqueous iodide salt solution before being washed out with water. This method of preparation is particularly desirable if the reaction solution may have contained higher polyhalide ions than I3. An iodide salt solution (I), e.g. Nauminum, potassium or ammonium iodide can be used. The iodide salt solution will convert all possible resin bound higher polyiodides (e.g.

Is" og I7") til triiodidet ved fjernelse af det overskydende til dannelse af I3 -ioner i opløsning fra opløsningens I~-ioner. Udvaskning med vand vil, hvis man fortsætter længe nok, medføre samme resultat, eller der kan udvises omhyggelighed ved at anvende eksakt støkiometriske forhold af I Og Iså at hovedsageligt kun triiodid bindes til harpiksen.Is "and I7") to the triiodide by removing the excess to form I3 ions in solution from the I ~ ions of the solution. Washing out with water, if continued long enough, will produce the same result, or caution may be shown by using exact stoichiometric ratios of I and Is that mainly only triiodide is bonded to the resin.

Triiodidionassociationsforbindelsen, fremstillet som beskrevet, kan anvendes til at desinficere vand ved en batchreaktion med det forurenede vand, men en kontinuert fremgangsmåde foretrækkes. Vand indeholdende de levedygtige bakterier, som skal dræbes, bringes fortrinsvis igennem et lag af porøst granulærf materiale, som består af den stærke basiske anionbytterharpiks, som forinden har reageret med triiodidionerae. De maksimalt tilladelige gennemstrømningshastigheder for total bakteriel sterilisation. vil Variere med koncentrationen af triiodidgrupperne i harpiksen og mad koncentrat i onen af levende bakterier i vandet. Tilstrækkelig Køje gennemstrømningshastigheder er imidlertid mulige, således at vandet, som skal désin-ficeres, kan pumpes gennem kolonner af harpiksforbindelsen, medens der opnås 1001 drab af bakterierne. Forløbet af desinfektionen kan kontrolleres ved at tage prøver af vandet efter behandlingen. Drikkeligt, giftfrit vand fremstilles nemt i praksis, idet det forurenede vand gøres bakterielt sterilt, uden af det bliver udrikkeligt ved i-blanding af physiologisk uacceptabelt frit iod.The triiodide ion association compound, prepared as described, can be used to disinfect water by a batch reaction with the contaminated water, but a continuous process is preferred. Water containing the viable bacteria to be killed is preferably passed through a layer of porous granular material consisting of the strong basic anion exchange resin which has previously reacted with triiodide ioners. The maximum permissible flow rates for total bacterial sterilization. will vary with the concentration of the triiodide groups in the resin and food concentrate in the onion of living bacteria in the water. However, sufficient Beam flow rates are possible so that the water to be disinfected can be pumped through columns of the resin compound while obtaining 1001 kills of the bacteria. The course of disinfection can be controlled by taking samples of the water after treatment. Drinkable, non-toxic water is readily prepared in practice, making the contaminated water bacterially sterile, without being rendered unaffected by the admixture of physiologically unacceptable free iodine.

Den foreliggende opfindelse belyses nærmere i de følgende eksempler.The present invention is elucidated in the following Examples.

Eksempel 1Example 1

En foretrukken fremgangsmåde til fremstilling af baktericidet ifølge den foreliggende opfindelse er som følger:A preferred method of preparing the bactericide of the present invention is as follows:

Lad en opløsning bestående af 5 vægtdele kaliumiodid og 7,6 vægtdele iod opløst i 100 vægtdele vand langsomt passere igennem 10 vægtdele kvaternære ammoniumharpiksperler i en glaskolonne. Vask omhyggeligt med destilleret vand indtil vaskevandet giver negativ reaktion for iod, polyiodid eller anden oxidant aed et lineært stivelse-cadmiumiodidreagens (se eksempel 2)., og negativ for iodid-ion med sølvnitratopløsning. Alternativt, vaskes den omdannede harpiks med en vandig opløsning af kaliumiodid før udvaskning med destilleret vand for at sikre omdannelsen af ethvert overskud af iod 8 141657 eller højere polyiodidioner til Ij , idet man herved sikrer en mætning af harpiksernes byttepositioner med triiodidioner.Slowly pass a solution consisting of 5 parts by weight of potassium iodide and 7.6 parts by weight of iodine dissolved in 100 parts by weight of water to 10 parts by weight of quaternary ammonium resin beads in a glass column. Wash thoroughly with distilled water until the wash water gives a negative reaction for iodine, polyiodide or other oxidant with a linear starch-cadmium iodide reagent (see Example 2), and negative for iodide ion with silver nitrate solution. Alternatively, the resin is washed with an aqueous solution of potassium iodide before leaching with distilled water to ensure the conversion of any excess of iodine 8 or higher polyiodide ions to Ij, thereby ensuring a saturation of the resin exchange positions with triiodide ions.

Lignende harpiks-polyiodidforbindelser, fremstillet af "Ionac A-540"(Matheson, Coleman og Bell),"Rexyn 201" (Fisher Scientific Co.) eller'Amberlite^RA-400"(Mallinckrodt Chemical Works), som er stærke basiske ionbytterharpikser på chlorid- eller sulfatformer, var alle effektive til at give fuldstændige drab af bakterier i koncentrationer på 10^ pr. milliliter og højere. (Se eksemplerne 3 og 6).Similar resin polyiodide compounds made from "Ionac A-540" (Matheson, Coleman and Bell), "Rexyn 201" (Fisher Scientific Co.) or Amberlite ^ RA-400 "(Mallinckrodt Chemical Works), which are strong basic ion exchange resins on chloride or sulphate forms, all were effective in giving complete killing of bacteria at concentrations of 10 ^ per milliliter and higher (see Examples 3 and 6).

Eksempel 2Example 2

Harpiks-triiodidkolonnen kan, når den er fremstillet som beskrevet i eksempel 1, behandles med destilleret vand eller med opløsninger af op til 500 ppm af sulfat-, bicarbonat-, chlorid-, eller nitrationer uden påviselige koncentrationer af iod, triiodid eller anden oxidant i elueringsmidlet. Prøverne blev foretaget med ét lineært stivelse- cadmiumiodidreagens (Lambert and Olguin Anal. Chem., 41, 838 (1969)), som kan bestemme koncentrationer af iod eller dets ækvivalent i form af andet oxiderende middel ned til mindst 0,1 ppm. Den totale koncentration af iod i enhver form (iod, triiodid og iodid) i elueringsmidlet er, når destilleret vand passerer gennem kolonnen, mindre end 0,5 ppm, når det bestemmes ved neutronaktiveringsanalyse. Når destilleret vand passerer gennem kolonnen, giver iodidionfrigørelse ikke mere end en svag uklarhed af sølviodid, når der prøves med sølvnitratopløsning.The resin triiodide column, when prepared as described in Example 1, can be treated with distilled water or with solutions of up to 500 ppm of sulfate, bicarbonate, chloride, or nitrate ions without detectable concentrations of iodine, triiodide or other oxidant in eluent. The tests were performed with one linear starch cadmium iodide reagent (Lambert and Olguin Anal. Chem., 41, 838 (1969)), which can determine concentrations of iodine or its equivalent in the form of other oxidizing agents down to at least 0.1 ppm. The total concentration of iodine in any form (iodine, triiodide and iodide) in the eluent when distilled water passes through the column is less than 0.5 ppm when determined by neutron activation analysis. When distilled water passes through the column, iodide ion release gives no more than a slight cloudiness of silver iodide when tested with silver nitrate solution.

Når opløsninger af de følgende anioner passerer gennem kolonnen: 50 ppm sulfation eller 100 ppm hver af chlorid-, nitrateller bicarbonationer, er iodidionfrigørelsen ikke større end med destilleret vand.When solutions of the following anions pass through the column: 50 ppm sulfation or 100 ppm each of chloride, nitrate or bicarbonate ions, the iodide ion release is not greater than with distilled water.

Eksempel 3 Når 3,8 g "ionac A 540'kvaternær ammoniumionbytterharpiks på triiodidform blev anvendt i en ca. 4 3/4 cm gange 10 cm kolonne med en gennemstrømningshastighed på 20 milliliter pr. minut, var typiske bakteriedrab som følger: suspensioner af Escherichia coli blev reduceret fra 1,3 x 10^ til nul levedygtige talte bakterier pr. ml; suspensioner af Streptococcus faecalis blev reduceret fra 1,1 x 10^ til nul levedygtige talte bakterier pr. ml; og suspensioner af Staphylococcus aureus blev reduceret fra 1,8 x 10^ til nul levedygtige talte bakterier pr. ml. Standard membranfilter-metoden blev anvendt til at tælle E. coli og S. faecalis. Standard agarpladetællingen blev anvendt til bestemmelse af antallet af 9 141657 S. aureus. Med den ubehandlede harpiks på chlorid- eller sulfatform blev suspensioner af E. coli reduceret fra 200 levedygtige bakterier pr. milliliter til 120 pr. milliliter, hvilket indicerede et lille eller intet drab eller tilbageholdelse i den ubehandlede kolonne.Example 3 When 3.8 g of ionac A 540 quaternary ammonium ion exchange resin in triiodide form was used in an approximately 4 3/4 cm by 10 cm column at a flow rate of 20 milliliters per minute, typical bacterial killings were as follows: suspensions of Escherichia coli was reduced from 1.3 x 10 5 to zero viable spoken bacteria per ml; suspensions of Streptococcus faecalis were reduced from 1.1 x 10 6 to zero viable spoken bacteria per ml; and suspensions of Staphylococcus aureus were reduced from 1 , 8 x 10 5 to zero viable spoken bacteria per ml. The standard membrane filter method was used to count E. coli and S. faecalis. The standard agar plate count was used to determine the number of 9 141657 S. aureus. in chloride or sulphate form, suspensions of E. coli were reduced from 200 viable bacteria per milliliter to 120 per milliliter, indicating little or no killing or retention in the untreated column.

Når 30g Rexyn 201' harpiks-polyiodidforbindelse blev anvendt i en kolonne, blev suspensioner af -mærkede E. coli med 3,0 x 105 talte levedygtige bakterier pr. ml. reduceret til nul pr. ml.When 30g of Rexyn 201 'resin polyiodide compound was used in one column, suspensions of labeled E. coli with 3.0 x 10 5 ml. reduced to zero per day. ml.

Genvindelse af radioaktiviteten i elueringsmidiet gav et gennemsnit på 05,21, når prøver blev udtaget i 100 milliliterintervaller op til 600 milliliter totalt, hvilket indicerde, at praktisk taget alle de dræbte bakterier passerede gennem kolonnen.Recovery of radioactivity in the eluent gave an average of 05.21 when samples were taken in 100 milliliter intervals up to 600 milliliters in total, indicating that virtually all of the killed bacteria passed through the column.

t *t *

Lignende resultater blev opnået med ^C-mærkede S. faecalis. Ved et tilstræbt udmattelsesforsøg drabte en 4,0 g*s kolonne med“lonac A-540*harpiks-triiodidfarbimdelse 1,95 x 10*® E. coli i 15 liter med et lille tab i effektivitet op til det tidspunkt, forsøget blev afbrudt. Kolonnen viste sig, når den blev regenereret med tri-iodidionopløsning, at være et lige så effektivt baktericid, som når den var friskt fremstillet. Standard steril næringssubstrdf med ca. 100 E. coli pr. milliliter blev ledt gennem enlanac A-540* triiodid-kolonne, hvorved antallet af talte bakterier blev reduceret til nul; men næringssubstratet ernærede vækst af E. coli ved efterfølgende indpodning. Dette indicerer, at organisk stof i et vandigt medium, såsom næringssubstrat, ikke ændres væsentligt ved kontakt med kolonnen.Similar results were obtained with CC-labeled S. faecalis. In a targeted fatigue trial, a 4.0 g * s column of “lonac A-540 * resin triiodide dye decay killed 1.95 x 10 * ® E. coli in 15 liters with a slight loss in efficiency up to the time the test was discontinued . The column, when regenerated with triiodide ion solution, was found to be as effective a bactericide as it was freshly prepared. Standard sterile nutrient substrate with approx. 100 E. coli per milliliters were passed through the Enlanac A-540 * triiodide column, reducing the number of bacteria counted to zero; but the nutrient substrate nourished the growth of E. coli by subsequent inoculation. This indicates that organic matter in an aqueous medium, such as nutrient substrate, does not change significantly upon contact with the column.

Eksempel 4Example 4

Præparater i laboratorieskala af kvatemære ammoniumionbytter-harpikser (stærkt basiske) ifølge en fremgangsmåde svarende til den i eksempel 1 blev fremstillet ud fra^exyn 201* (Fisher Scientific Co.) og’Jb^erliti^RAMOD* (Mallinckredt Chemical Vorks) , og forsøg med bakteriedrab blev udført. 30 g*Rexyn 201-triiodid i en kolonne, som målte ca. 2,5 cm gange ca. 20 cm reducerde en suspension med 10^ levedygtige Escherichia coli pr. milliliter til nul talte bakterier, når der anvendtes en gennemstrømningshastighed på 60 milliliter pr. minut. Den samme harpiks uden det bundne tri-iodid reducerede en suspension på 100 bakterier pr. milliliter til 30 levedygtige talte bakterier pr. ml., hvilket indicerede et lille eller intet drab ved den ubehandlede harpiks-kolonne. Den samme *hexyn 201*harpiks-triiodidforbindelse i en kolonne, som vejede 4 g og målte 4 3/4 cm gange ca. 10 cm reducerede ved en hastighed på 20 ml./min. de talte levedygtige bakterier i en suspension med 10^ Streptococcus faecalis pr. milliliter til nul. En lignende 10 141667 kolonne med "Amberlite®IRA-400" harpiks-triiodidionforbindelse gav et totalt drab af en suspension med 1,3 x 10^ E. coli ved at reducere de talte levedygtige bakterier til nul.Laboratory scale preparations of quaternary ammonium ion exchange resins (highly basic) according to a procedure similar to that of Example 1 were prepared from Exyn 201 * (Fisher Scientific Co.) and Jb ^ erliti ^ RAMOD * (Mallinckredt Chemical Vorks), and Bacterial killing experiments were performed. 30 g * Rexyn 201 triiodide in a column measuring approx. 2.5 cm times approx. 20 cm reduced a suspension of 10 5 viable Escherichia coli per milliliters to zero numbered bacteria when a flow rate of 60 milliliters per milliliter was used. minute. The same resin without the bound triiodide reduced a suspension of 100 bacteria per milliliters to 30 viable spoken bacteria per ml, indicating little or no killing by the untreated resin column. The same * hexyn 201 * resin triiodide compound in a column weighing 4 g and measuring 4 3/4 cm times approx. 10 cm reduced at a rate of 20 ml./min. they counted viable bacteria in a suspension of 10 ^ Streptococcus faecalis per milliliters to zero. A similar column of "Amberlite®IRA-400" resin triiodide ion compound gave a total killing of a suspension of 1.3 x 10 6 E. coli by reducing the number of viable bacteria to zero.

Eksempel 5Example 5

Andre stærke basiske harpikser kan anvendes til fremstilling af et harpiks-triiodidionbaktericid, som ligner dem, der er fremstillet med kvaternære ammoniumb>tterharpikser, indbefattet tertiære sulfoniumharpikser, kvaternære phosphoniumharpikser og alkyl-pyridiniumharpikser. Der blev tilvejebragt en prøve af en tertiær sulfoniumionbytterharpiks på sulfatform, og en harpiks-triiodidion-kolonne blev fremstillet på samme måde, som ovenfor beskrevet for stærke basiske kvaternære ammoniumharpikser. Kapaciteten af denne særlige harpiks viste sig ikke at være så stor som af den anvendte kvaternære ammoniumharpiks; men ved behandling af en suspension med 1,35 x 10^ E. coli pr. milliliter med en kolonne af denne forbindelse, blev de talte levedygtige bakterier reduceret til nul. Dette viser, at andre stærke basiske harpikser end kvaternære ammoniumharpikser kan anvendes til fremstilling af effektive bak-tericider med triiodid.Other strong basic resins can be used to produce a resin triiodide ion bactericide similar to those made with quaternary ammonium exchange resins, including tertiary sulfonium resins, quaternary phosphonium resins and alkyl pyridinium resins. A sample of a tertiary sulfonium ion exchange resin was provided in sulfate form and a resin triiodide ion column was prepared in the same manner as described above for strong basic quaternary ammonium resins. The capacity of this particular resin was not found to be as great as that of the quaternary ammonium resin used; but by treating a suspension with 1.35 x 10 milliliters with one column of this compound, the viable bacteria count was reduced to zero. This shows that strong basic resins other than quaternary ammonium resins can be used to produce effective bacterioids with triiodide.

Eksempel 6Example 6

Antibakterielle forsøgsdata er opsummeret nedenunder i tabellerne A og B: H U16B7Antibacterial experimental data are summarized below in Tables A and B: H U16B7

TABEL ATABLE A

Antibakterielle egenskaber af angivne harpiks-I, komplekserAntibacterial properties of specified resin-I, complexes

Harpiksmærke Beskrivelse Talte levedygtige E. coli pr. mlb Før Efter "Ionac A 540" Polystyren kvater- gennemgang_ (Matheson, Coleman nær alkyltype, , n ·* m5 o & Bell) mediumporøsitet * "Stamex S 44" Polystyren ter- .Resin mark Description Spoken viable E. coli per mlb Before After "Ionac A 540" Polystyrene Quater Review_ (Matheson, Coleman near alkyl type,, n · * m5 o & Bell) medium porosity * "Stamex S 44" Polystyrene ter-.

(Private source) tiær sulfonium- 1,3 x 10** 0 type "Rexyn 201" Polystyren alkyl 5 (Fisher Scienti- kvaternær amin- 1,0 x ΙΟ5 0 fic Co.) type, medium porøsitet "Amberlite^ IRA Polystyren.kvater- 4 400M(Mallinck- nær ammoniumtype, 1,4 x 104 0 rodt Chemical mediumporøsitet(Private source) for sulfonium 1.3 x 10 ** 0 type "Rexyn 201" Polystyrene alkyl 5 (Fisher Scienti quaternary amine 1.0 x f 50 fic Co.) type, medium porosity "Amberlite ^ IRA Polystyrene. quaternary 4,400M (Mallinck- near ammonium type, 1.4 x 10 4 0 root Chemical medium porosity

Works)Works)

<D<D

"Amberiite IRA Polystyren kvater- ."Amberiite IRA Polystyrene Quater-.

400 S" nær ammoniumtype, 1,2 x 104 0 (Mallinckrodt høj porøsitet400 S "near ammonium type, 1.2 x 104 0 (Mallinckrodt high porosity

Chemical Works) a-* 3,8 g af hver harpiks blev mætte t med triiodidion og afprøvet for evnen til drab af E. coli suspenderet i vand med en gennemstrømningshastighed på 20 ml. pr. minut.Chemical Works) 3.8 g of each resin were saturated with triiodide ion and tested for the ability to kill E. coli suspended in water at a flow rate of 20 ml. per. minute.

k) Standardmetoder til undersøgelse af vand og spildevand, pp. 592-593, 12th ed. 1965, American Public Health Association,k) Standard Methods for the Study of Water and Wastewater, pp. 592-593, 12th ed. 1965, American Public Health Association,

New York.New York.

12 14165712 141657

TABEL BTABLE B

Tælningex af angivne organismer før og efter gennemgang af 5,8 g*s kolonner af “tonac A 540-lJ3 A rCounting of specified organisms before and after review of 5.8 g * s columns of “tonac A 540-lJ3 A r

Organisme Tælning pr. ml.Organism Counting per ml.

_ Før gennemgang_Efter gennemgang_ Before Review_After Review

Salmonella typhimurium 1,0 x 10^ 0Salmonella typhimurium 1.0 x 10 5

Escherichia coli 3,0 x 10^ 0Escherichia coli 3.0 x 10 5

Pseudomonas aeruginosa 1,3 x 10^ 0 4Pseudomonas aeruginosa 1.3 x 10 4

Staphylococcus aureus 1,8 x 10 0 4Staphylococcus aureus 1.8 x 10 0 4

Streptococcus faecalis 1,1 x 10 0 ^Ubehandlede og iodidmættede kolonner havde ubetydelige virkninger på antallet af levende bakterier.Streptococcus faecalis 1.1 x 10 0 ^ Untreated and iodide-saturated columns had negligible effects on the number of live bacteria.

Cellerne blev suspenderet i vand og passerede gennem kolonnerne med en gennemstrømningshastighed på 20 ml. pr. minut.The cells were suspended in water and passed through the columns at a flow rate of 20 ml. per. minute.

Standardmetoder til undersøgelse af vand og spildevand, pp. 592-593, 12th ed. 1965, American Public Health Association,Standard Methods for the Study of Water and Wastewater, pp. 592-593, 12th ed. 1965, American Public Health Association,

New York.New York.

*^E. coli og S. faecalis anvendes som indikatorer for fækal forurening i henholdsvis U.S-A. og Europa. Salmonella og Staphyl-lococcus er pathogene. Pseudomonas (species) er vandforureningskilde. Escherichia. Salmonella og Pseudomonas (species) er gramnegative, hvorimod S. faecalis og S. aureus er grampositive.* ^ E. coli and S. faecalis are used as indicators of faecal contamination in the U.S-A, respectively. and Europe. Salmonella and Staphyl lococcus are pathogenic. Pseudomonas (species) is a source of water pollution. Escherichia. Salmonella and Pseudomonas (species) are gram negative, whereas S. faecalis and S. aureus are gram positive.

13 ΙΑ 165713 ΙΑ 1657

Eksempel 7Example 7

Triiodidharpiks-desinficeringsmiddel fremstilledes som beskrevet ovenfor og vaskedes ved stuetemperatur, indtil der ikke mere kunne konstateres noget indhold af oxiderende iod i vaskevandet. Desinficeringsmidlet udsattes så for temperaturprøver.Triiodide resin disinfectant was prepared as described above and washed at room temperature until no oxidizing iodine content was found in the wash water. The disinfectant was then subjected to temperature tests.

Kogende vand ved næsten 100°C ledtes igennem tre 30 g kolonner af desinficeringsmidlet. Ifølge prøven med cadmiumiodid-lineært stivelsesreagens elueredes intet iod. Temperaturen forblev over de 85°C, som vaskevandet udviste ved opsamling i en kolbe. Spor af halogenidionen, l“, konstateredes i alle elueringsmidlerne efter elueringen. Det skal bemærkes, at cadmiumiodid-lineær stivelsesprøven foretoges efter afkøling af elueringsmidlerne til stuetemperatur, da reagenset ikke virker ved så høje temperaturer som 85°C eller 100°C.Boiling water at nearly 100 ° C was passed through three 30 g columns of the disinfectant. According to the cadmium iodide linear starch reagent sample, no iodine was eluted. The temperature remained above the 85 ° C that the wash water exhibited when collected in a flask. Traces of the halide ion, l ", were found in all the eluents after elution. It should be noted that the cadmium iodide linear starch test was performed after cooling the eluents to room temperature, since the reagent does not operate at temperatures as high as 85 ° C or 100 ° C.

Selv når de tre kolonner anbragtes i et bad ved 80°C i 24 timer, udvaskedes ifølge cadmiumiodid-lineær stivelsesprøven, når de afkølede opløsninger undersøgtes med intervaller på adskillige timer, intet iod derfra. En af kolonnerne var stadig i stand til effektivt af dræbe bakterier, selv efter 6 dage i et bad ved 80°C.Even when the three columns were placed in a bath at 80 ° C for 24 hours, according to the cadmium iodide-linear starch test, when the cooled solutions were examined at intervals of several hours, no iodine therefrom. One of the columns was still capable of effectively killing bacteria, even after 6 days in a bath at 80 ° C.

Eksempel 8Example 8

Et eksperiment til belysning af det stabile triiodidharpiks-des-inficeringsmiddels virkning udførtes.An experiment to elucidate the effect of the stable triiodide resin-disinfectant was performed.

Tre dialysesække med en diameter på 0,25 inch indeholdende 3 ml, hver især med 1,4 x 106 E. coli pr. ml, anbragtes i en kolbe indeholdende triiodidharpiks-desinficeringsmidlet. Sækkene blev sikkert tilbundet i begge ender. De anbragtes i et bad indeholdende desinficeringsmidlet ved 37°C og omrystedes. Sækkene åbnedes og undersøgtes som angivet i tabel C.Three 0.25 inch diameter dialysis bags containing 3 ml each with 1.4 x 10 6 E. coli ml, was placed in a flask containing the triiodide resin disinfectant. The bags were securely tied at both ends. They were placed in a bath containing the disinfectant at 37 ° C and shaken. The bags were opened and examined as indicated in Table C.

Tabel CTable C

Sæk nr. Tid i timer Antal tilbageværende Opløst iod i levedygtige E. coli sækopløsningen _ _ i sækken (pr. ml)1 0 1,4 x 106 1 2 1,05 x 10^ intet 2 4 1,93 x 10** intet 3 25 0XX intet Dødelighed sandsynligvis tilnærmelsesvis svarende til normal nedbrydning (man kan imidlertid ikke stole på, at nedbrydningen fører til fuldstændigt steriliseret vand).Sack No. Time in hours Number of residual Dissolved iodine in viable E. coli sack solution _ _ in sack (per ml) 1 0 1.4 x 106 1 2 1.05 x 10 ^ nothing 2 4 1.93 x 10 ** nothing 3 25 0XX nothing Mortality probably roughly similar to normal degradation (however, the degradation cannot lead to completely sterilized water).

En plade udviste et ækvivalent på 3,7 x 10 E. coli; 14 plader var absolut sterile.One plate exhibited an equivalent of 3.7 x 10 14 plates were absolutely sterile.

14 141.65714 141,657

Konklusionen må være, at kontakt eller nær kontakt mellem bakterier og desinficeringsmiddel er nødvendig. Opløst iod, der alene er elueret fra desinficeringsmidlet er ikke i stand til fuldstændig at dræbe 10® E. coli pr. ml undtagen efter et længere tidsrum. Imidlertid, hvis den sædvanlige desinficeringsmetode, hvor kolonnepassage for vandet plus levedygtige bakterier anvendes, forekommer drab af 10® E. coli pr. ml i løbet af sekunder. Dette er et bevis for, at desinficeringen beror på kontakt mellem desinficeringsmiddel og det bakterie-holdige vand. Hvis kontakt mellem desinficeringsmiddel og bakteriehol-digt vand ikke forekommer, dræbes der ikke 10® E. coli pr. ml, før tilstrækkeligt iod er fjernet fra triiodidharpiksen til tilfredsstillelse af de statiske ligevægtsbetingelser.The conclusion must be that contact or close contact between bacteria and disinfectant is necessary. Dissolved iodine, eluted from the disinfectant alone, is unable to completely kill 10® E. coli per day. ml except after a longer period of time. However, if the usual disinfection method, where column passage for the water plus viable bacteria is used, killing of 10® E. coli per ml in seconds. This is proof that the disinfection is due to contact between the disinfectant and the bacteria-containing water. If contact between disinfectant and bacteria-containing water does not occur, 10® E. coli per kill is not killed. before sufficient iodine is removed from the triiodide resin to satisfy the static equilibrium conditions.

Eksempel 9Example 9

Der udførtes et eksperiment, som havde til formål at vise, at drabsmekanismen ikke afhænger af elueret iod. Vand ledt igennem kolonner indeholdende desinficeringsmidlet indeholder mindre end 200 dele iod, som I2, pr. milliard dele vand, hvilket kan påvises ved hjælp af et cadmiumiodid-lineært stivelsesreagens.An experiment was conducted which aimed to show that the killing mechanism does not depend on eluted iodine. Water passed through columns containing the disinfectant contains less than 200 parts of iodine, such as I billion parts of water, which can be detected by a cadmium iodide linear starch reagent.

Når en del bakterieprotoplasma pr. million dele vand (10® E. coli pr. ml) suspenderes i dette vand, som er passeret igennem kolonnen indeholdende triiodidharpiks-desinficeringsmidlet, dræbes ikke alle E. coli bakterierne, idet over 10 pr. ml forbliver levedygtige. Nar der- 7 imod en suspension af 7,4 x 10 E. coli passeres igennem en kolonne, dræbes alle bakterierne. 7,4 x 10 bakterier udgør 74 dele bakterieprotoplasma pr. million dele vand. Den eneste måde at opnå en 1001 desinficering er altså at anbringe det bakterieholdige vand i kontakt med desinficeringsmidlet. Opløsning af iod til en koncentration på 200 dele pr. milliard dele vand vil ikke dræbe 10® levende E. coli pr. ml vand.When one bacterial protoplasm per One million parts of water (10® E. coli per ml) is suspended in this water, which has passed through the column containing the triiodide resin disinfectant, not all E. coli bacteria are killed, ml remains viable. By contrast, when a suspension of 7.4 x 10 5 E. coli is passed through a column, all the bacteria are killed. 7.4 x 10 bacteria make up 74 parts of bacterial protoplasm per million parts of water. Thus, the only way to obtain a 1001 disinfectant is to put the bacterial water in contact with the disinfectant. Solution of iodine to a concentration of 200 parts per One billion parts of water will not kill 10® live E. coli per day. ml of water.

Eksempel 10Example 10

Et yderligere eksperiment for at vise, at triiodidharpiks-desinfi-ceringsmidlet kun virker ved direkte kontakt og uden eluering af store koncentrationer af iod eller triiodidioner ud i opløsningen, udførtes som følger. Fire kolonner fremstilledes og afprøvedes med hensyn til desinficeringsevne. Desinficeringsmidlet i to af kolonnerne var 100¾ mættet, og desinficeringsmidlet i de andre to kolonner var 97¾ mættet med hensyn til triiodid. 1,8 x 10 E. coli pr. ml suspenderedes i de- 15 141657 stilleret vand og ledtes igennem kolonnerne. Indholdet af levende E. coli i vandet formindskedes herved til nul. Dernæst fremstilledes iod-opløsninger indeholdende mindst 0,2 dele iod pr. million del vand, hvilket måltes med cadmiumiodid-lineær stivelsesreagenset. Når disse opløsninger ledtes gennem hver af de fire kolonner, opsamledes og straks afprøvedes for iod eller andre oxiderende, iodholdige bestanddele, viste det sig, at indholdet var for lille til at kunne måles. Dette viste, at desinficeringsmidlet fjerner iod, når dette er til stede i større koncentrationer end den for bestemmelse nødvendige mindste koncentration. Letale koncentrationer af iod i den umiddelbare nærhed af det desinficerende harpiksmateriale er tilgængeligt efter behov til dræbning af bakterier, men iodkoncentrationerne i vandet i kontakt med det desinficerende materiale holdes på en størrelse, som ligger under grænsen for bestemmelse.A further experiment to show that the triiodide resin disinfectant only works by direct contact and without elution of large concentrations of iodine or triiodide ions into the solution was performed as follows. Four columns were prepared and tested for disinfection. The disinfectant in two of the columns was 100¾ saturated and the disinfectant in the other two columns was 97¾ saturated for triiodide. 1.8 x 10 ml was suspended in distilled water and passed through the columns. The content of live E. coli in the water was thereby reduced to zero. Next, iodine solutions containing at least 0.2 parts of iodine per ml were prepared. million parts of water, which was measured with the cadmium iodide linear starch reagent. When these solutions were passed through each of the four columns, collected and immediately tested for iodine or other oxidizing iodine-containing constituents, it appeared that the contents were too small to be measured. This showed that the disinfectant removes iodine when present at concentrations greater than the minimum concentration required for determination. Lethal concentrations of iodine in the immediate vicinity of the disinfectant resin material are available as needed for killing bacteria, but the iodine concentrations in the water in contact with the disinfectant are kept at a size below the limit of determination.

Reaktionsmekanismen af det uopløseliggjorte triiodid er ikke blevet videnskabeligt bevist. Den antibakterielle virkning kan muligvis forklares ved en antagelse af en ladningsfordeling i det bundne triiodid:The mechanism of the reaction of the insolubilized triiodide has not been scientifically proven. The antibacterial effect may be explained by assuming a charge distribution in the bound triiodide:

Harpiks N - - - “i" Λ 16 141657Resin N - - - “i" Λ 16 141657

Hvis Ij -ionen, er polariseret som vist, kunne den partielle positive ladning på endeiodatomet være effektiv til tiltrækning af negativt ladede bakterier. Når bakterien og den bundne -gruppe først er kommet hinanden tiltrækkeligt nær, er det muligt, at ét eller endog to iodatomer vil reagere direkte med -SH-grupper i cellevæggen. Det er kendt, at drabsmekanismen ikke afhænger af opløsningskoncentrationen af 1^, hvilket vises af den kendsgerning, at de disinficerede opløsninger ikke indeholder kimdræbende koncentrationer af Da de disinficerede opløsninger også er fri for oxiderende iodioner (f.eks. I^-, IO-, IOj” og fremgår det, at rodet i bundne triiodidgrupper direkte må reagere med bakteriecellerne.If the Ij ion is polarized as shown, the partial positive charge on the end date could be effective in attracting negatively charged bacteria. Once the bacterium and the bound group have become sufficiently close together, it is possible that one or even two iodine atoms will react directly with -SH groups in the cell wall. It is known that the killing mechanism does not depend on the solution concentration of 1 ^, as evidenced by the fact that the disinfected solutions do not contain germicidal concentrations of As the disinfected solutions are also free of oxidizing iodine (e.g., , IOj, and it appears that the root of bound triiodide groups must directly react with the bacterial cells.

I almindelighed antages det, at koncentrationer af elementært halogen i vand på mindre end 0,1 ppm ikke giver en effektiv baktericid virkning. Fremgangsmåden ifølge den foreliggende opfindelse afviger væsentligt fra tidligere anvendelse af iod til disinficering af vand, idet mængden af oxiderende iod tilført vandet er under 0,1 ppm. Det disinficerende harpiks-triiodid-middel indeholder iodet i en sådan fast bundet form, at der ikke er nogen analyserbar frigivelse af iod, målt ved analytiske prøver, som vides at være følsomme ned til mindst 100 dele pr. milliard oxiderende iod.Generally, it is believed that concentrations of elemental halogen in water of less than 0.1 ppm do not produce an effective bactericidal effect. The process of the present invention differs substantially from previous use of iodine for disinfecting water, the amount of oxidizing iodine supplied to the water being below 0.1 ppm. The disinfectant resin triiodide agent contains the iodine in such a firmly bound form that there is no detectable release of iodine, as measured by analytical samples known to be sensitive to at least 100 parts per minute. billion oxidizing iodine.

Udtrykket "oxiderende iod", som er anvendt her, betyder til iod i enhver oxiderende form deraf, omfattende f.eks. I^, 1^ , 10 , 1Ο3" og lO^ . Fuldt reduceret iod i form af iodidion (I ) er ikke indbefattet.The term "oxidizing iodine" as used herein means to iodine in any oxidizing form thereof, including e.g. Fully reduced iodine in the form of iodide ion (I) is not included.

Iodidioner er ikke-toksiske ved lave koncentrationer i vand. Iodidioner kan imidlertid i tilstrækkelige koncentrationer tilføre vandet en mærkbar bitter smag, og er derved organoleptisk uønskelige i drikkevand. Hvis meget hårdt vand eller vand med et højt ionindhold passerer gennem en kolonne af triiodid-har-piksbaktericidet, kan iodidioner forekomme i elueringsmidlet i koncentrationer, som er tilstrækkelige til at påvirke organoleptisk kvalitet. I sådanne tilfælde kan overskydende iodid fjernes ved velkendte og fastsatte ionbytningsfremgangsmåder. Dette vil sædvanligvis ikke være nødvendigt, idet mængden af iodidioner i det behandlede vand er uskadelig, ikke-toksisk og under opfattelsesgrænsen for bitter smag hos en gennemsnitsperson.Iodide ions are non-toxic at low concentrations in water. However, iodide ions can give the water a noticeably bitter taste at sufficient concentrations, and are thus organoleptically undesirable in drinking water. If very hard water or high ionic water passes through a column of the triiodide-resin bactericide, iodide ions may be present in the eluent at concentrations sufficient to affect organoleptic quality. In such cases, excess iodide can be removed by well known and established ion exchange methods. This is usually not necessary as the amount of iodide ions in the treated water is harmless, non-toxic and below the threshold of bitter taste in an average person.

Ifølge velkendte fremgangsmåder, kan tilstedeværelsen af iodidion (I~) i det behandlede vand om ønsket påvises ved under- 17 1A1B57 søgelse af vandet med sølvnitrat. Sædvanligvis vil der ikke observeres mere end en svag uklarhed i vandet.According to well-known methods, the presence of iodide ion (I ~) in the treated water, if desired, can be detected by examining the water with silver nitrate. Usually, no more than a slight cloudiness will be observed in the water.

Til bestemmelse af fuldkommenheden ved udvaskningen af har-piks-triiodidforbindelsen, kan vandet undersøges med et analytisk reagens, som er følsomt over for oxiderende iod, såsom et iod-stivelsereagens. Reagenset bør fortrinsvis være følsomt ned til mindst 100 dele pr. milliard oxiderende iod. Et velegnet reagens af denne type er det lineære stivelse-cadmiumiodidreagens , som er beskrevet i Lambert and Olguin, Anal.Chem., 41. 838 (1969). Det samme reagens kan anvendes til bestemmelse af indholdet af oxiderende iod i vand, som er blevet behandlet med harpiks-triiodidforbin-delsen for at dræbe bakterierne deri. En velegnet fremgangsmåde for sådanne undersøgelser er som følger: tilsæt én ml. lineært stivelse-cadmiumiodidreagens til en 20 ml. prøve af det behandlede vand og bemærk om der forekommer en blå farve, hvilket angiver oxiderende midler, såsom en oxiderende fora af iod. Tilstedeværelsen af en blå farve vil angive, at der mindst er 100 dele pr. milliard eller mere oxiderende iod tilstede i opløsningen, mens udeblivelsen af en blå farve vil angive, at-mængden af tilstedeværende iod, hvis der i det hele taget er noget, er under 100 dele pr. milliard. Hvor det er ønskeligt på forhånd at undersøge en frisk fremstillet eller netop regenereret batch af harpiks-triiodid-forbindelsen til anvendelse i en kolonne, kan prøven på 20 ml. vand opnås på følgende måde: anbring 3,8 g prøve af det tørre harpiks -triiodidemne i et glasrør med en indre diameter på ca. 4,7cm.To determine the perfection of the leaching of the resin triiodide compound, the water can be tested with an analytical reagent which is sensitive to oxidizing iodine such as an iodine starch reagent. The reagent should preferably be sensitive to at least 100 parts per minute. billion oxidizing iodine. A suitable reagent of this type is the linear starch cadmium iodide reagent described in Lambert and Olguin, Anal. Chem., 41. 838 (1969). The same reagent can be used to determine the content of oxidizing iodine in water which has been treated with the resin triiodide compound to kill the bacteria therein. A suitable procedure for such studies is as follows: add one ml. linear starch-cadmium iodide reagent to a 20 ml. sample of the treated water and note if a blue color is present indicating oxidizing agents such as an oxidizing forums of iodine. The presence of a blue color will indicate that there are at least 100 parts per a billion or more oxidizing iodine present in the solution, while the absence of a blue color will indicate that the amount of iodine present, if at all, is less than 100 parts per minute. billion. Where it is desirable to test in advance a freshly prepared or just regenerated batch of the resin triiodide compound for use in a column, the sample may be 20 ml. water is obtained as follows: Place 3.8 g sample of the dry resin triiodide in an inner diameter glass tube of approx. 4,7cm.

Lad destilleret vand passere gennem det således dannede harpikslag med en hastighed på ca. 20 ml. pr. minut. Vandet kan have sædvanlig stuetemperatur (f.eks. 25-30°C). Udtag en prøve på 20 ml. elueringsmiddel fra prøvekolonnen, og undersøg ved hjælp af fremgangsmåden beskrevet ovenfor, idet det lineære stivelse-cadmiumiodidreagens anvendes. En negativ reaktion (ingen blå farve) angiver, at harpiks-triiodidet er på optimal form til anvendelse ved behandling af bakterielt forurenet vand ved hjælp af fremgangsmåden ifølge den foreliggende opfindelse.Allow distilled water to pass through the resin layer thus formed at a rate of approx. 20 ml. per. minute. The water may have the usual room temperature (eg 25-30 ° C). Take a sample of 20 ml. eluent from the sample column, and investigate by the method described above using the linear starch-cadmium iodide reagent. A negative reaction (no blue color) indicates that the resin triiodide is in optimum form for use in treating bacterially contaminated water by the method of the present invention.

DK615170AA 1969-12-03 1970-12-03 Process for disinfecting water and ion exchange resin for use in the process. DK141657B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US88192369A 1969-12-03 1969-12-03
US88192369 1969-12-03
US8624670A 1970-11-02 1970-11-02
US8624670 1970-11-02

Publications (2)

Publication Number Publication Date
DK141657B true DK141657B (en) 1980-05-19
DK141657C DK141657C (en) 1980-12-08

Family

ID=26774521

Family Applications (1)

Application Number Title Priority Date Filing Date
DK615170AA DK141657B (en) 1969-12-03 1970-12-03 Process for disinfecting water and ion exchange resin for use in the process.

Country Status (12)

Country Link
JP (1) JPS4834701B1 (en)
CA (1) CA942188A (en)
CH (1) CH528445A (en)
DE (1) DE2059379C2 (en)
DK (1) DK141657B (en)
FR (1) FR2072807A5 (en)
GB (1) GB1331648A (en)
IL (1) IL35761A (en)
IT (1) IT1053676B (en)
NL (1) NL169983C (en)
NO (1) NO133528C (en)
SE (1) SE373555B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100316166B1 (en) * 1992-09-16 2001-12-12 메시에 삐에르 Method For Disinfecting A Liquid Containing Microorganisms
US6680050B1 (en) 1992-09-16 2004-01-20 Triosyn Holdings, Inc. Iodine/resin disinfectant and a procedure for the preparation thereof
WO2000064264A1 (en) * 1999-04-27 2000-11-02 Ebara Corporation Bactericidal organic polymeric material
US6506737B1 (en) 2000-04-05 2003-01-14 Ecolab, Inc. Antimicrobial phosphonium and sulfonium polyhalide compositions
JP5146816B2 (en) * 2008-03-14 2013-02-20 アルピコ株式会社 Dechlorinated iodine free disinfectant for tap water

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3462363A (en) * 1967-07-14 1969-08-19 Dow Chemical Co Control of microorganisms with polyhalide resins

Also Published As

Publication number Publication date
CH528445A (en) 1972-09-30
DE2059379C2 (en) 1984-06-14
DK141657C (en) 1980-12-08
NL169983C (en) 1982-09-16
IL35761A (en) 1974-03-14
SE373555B (en) 1975-02-10
IT1053676B (en) 1981-10-10
DE2059379A1 (en) 1971-06-09
IL35761A0 (en) 1971-02-25
JPS4834701B1 (en) 1973-10-23
NO133528B (en) 1976-02-09
NO133528C (en) 1976-05-19
NL7017469A (en) 1971-06-07
CA942188A (en) 1974-02-19
GB1331648A (en) 1973-09-26
FR2072807A5 (en) 1971-09-24

Similar Documents

Publication Publication Date Title
US3817860A (en) Method of disinfecting water and demand bactericide for use therein
US3923665A (en) Demand bactericide for disinfecting water and process of preparation
CA1064630A (en) Process and apparatus for treating drinking water
Cursons et al. Effect of disinfectants on pathogenic free-living amoebae: in axenic conditions
DE69334096T2 (en) Method for disinfecting air by means of disinfecting iodine resin and systems for disinfecting microorganisms contained in air
Taylor et al. New water disinfectant: an insoluble quaternary ammonium resin-triiodide combination that releases bactericide on demand
HU200944B (en) Process for producing concentrate mixable into disinfectant by hydrogen peroxide and the disinfectant containing the concentrate
US3316173A (en) Process for treating water with bromine
US6863905B1 (en) Enhanced iodine treatment of drinking water
JP2006502225A (en) Disinfecting and purifying composition by synergistic effect of organic compound and metal ion and method for producing the same
CA2000586C (en) Method of cleaning and/or disinfecting and sterilizing hemodyalisis apparatus
Backer Water disinfection for international travelers
US4749537A (en) Process for the production of formed members for the disinfection of water
Singh et al. E. coli inactivation by metals and effects of changes in water chemistry
DK141657B (en) Process for disinfecting water and ion exchange resin for use in the process.
US6331514B1 (en) Sterilizing and disinfecting compound
Burkett et al. A NOVEL CHLORAMINE COMPOUND FOR WATER DISINFECTION 1
RU2563390C1 (en) Method of preparing bactericide for water disinfection
Sharma et al. Water: Disinfection & Microbiological Analysis
RU2213063C1 (en) Method for preparing bactericidal preparation
RU2077504C1 (en) Disinfecting solution
CN1114526A (en) Process for preparation of germicide containing triiodo resin
JP6931256B2 (en) Disinfectants for Legionella spp., Water treatment methods, bath water additives, and air conditioning cooling tower water additives
Brown et al. Observations on halogens as bathing water disinfectants
JPS6241641B2 (en)

Legal Events

Date Code Title Description
PUP Patent expired