DE842330C - Wind power plant - Google Patents
Wind power plantInfo
- Publication number
- DE842330C DE842330C DEP29895A DEP0029895A DE842330C DE 842330 C DE842330 C DE 842330C DE P29895 A DEP29895 A DE P29895A DE P0029895 A DEP0029895 A DE P0029895A DE 842330 C DE842330 C DE 842330C
- Authority
- DE
- Germany
- Prior art keywords
- power plant
- wind power
- wing
- wind
- plant according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
- F03D80/60—Cooling or heating of wind motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D15/00—Transmission of mechanical power
- F03D15/05—Transmission of mechanical power using hollow exhausting blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
- F03D80/40—Ice detection; De-icing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/20—Wind motors characterised by the driven apparatus
- F03D9/25—Wind motors characterised by the driven apparatus the apparatus being an electrical generator
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Power Engineering (AREA)
- Wind Motors (AREA)
Description
Bei Windkraftwerken ist wegen des oft stoßartigen Anfalls der Windenergie mit vorübergehenden starken Überbelastungen der Stromerzeuger zu rechnen. Um bei solchen Überbelastungen eine Beschädigung der Stromerzeuger durch zu starke Erwärmung der elektrischen Wicklungen zu verhindern, ist eine- mit der Belastung zunehmende Kühlung der Stromerzeuger sehr bedeutungsvoll.In wind power plants is because of the often jerky occurrence of wind energy temporary heavy overloads of the power generators are to be expected. To at such overloads damage the generator due to excessive heating Preventing electrical windings is one that increases with the load Cooling the power generator is very important.
Da die Windturbinen 'von Windkraftwerken den Unbilden der Witterung ausgesetzt sind, kann de: Fall eintreten, daß sich besonders an den Vorderkanten der Flügel Eisansätze bilden. Solche Eisbildungen verändern die aerodynamische Form der Flügelquerschnitte, wodurch die Leistung der Windturbine herabgesetzt wird. Ein ungleichmäßiger Eisansatz kann ferner wegen der dadurch hervorgerufenen Unwucht die Windturbine und das Windkraftwerk zerstören. Es ist daher wichtig, die Eisbildung zu vermeiden.Because the wind turbines' of wind power plants cope with the rigors of the weather are exposed, de: Case can occur that especially at the leading edges the wings form ice deposits. Such ice formations change the aerodynamic shape the wing cross-sections, which reduces the performance of the wind turbine. An uneven ice accretion can also be caused by the imbalance it causes destroy the wind turbine and the wind power plant. It is therefore important to prevent ice formation to avoid.
Bei Stürmen können die Drehzahlen der Windturbinen und der Winddruck auf das Bauwerk zerstörende Werte annehmen. Es ist darum erforderlich, die Windturbine so zu bremsen, daß sie eine bestimmte höchstzulässige Drehzahl nicht überschreitet.During storms, the speeds of the wind turbines and the wind pressure take on values that are destructive to the building. It is therefore necessary to use the wind turbine to brake so that it does not exceed a certain maximum permissible speed.
Die im folgenden beschriebene Erfindung gibt ein Verfahren. an, mit dem i. eine zu starke Erwärmung der Stromerzeuger, 2. die Eisbildung an den Flügeln und 3. die zu hohe Umlaufzahlen der Windturbinen in einfachster Weise verhindert werden. Die Abb. i zeigt die beispielsweise Ausführung eines Windturbinentriebwerkes, bestehend aus der Windturbinenachse i, der Windturbine 2, dem Zahnradvorgelege 3, den Stromerzeugern 4, 5, 6 und der Gondel 7 im Längsschnitt. Die Abb. 2 stellt einen der drei (s. Windturbinennabe) vorhandenen Windturbinenflügel im Längsschnitt und die Abb. 3 einen Flügelquerschnitt dar. Die Flügel sind mit von der Flügelwurzel zur Flügelspitze verlaufenden Kanälen 8 durchzogen, wodurch die umlaufende Windturbine als Kreiselpumpe wirkt, indem unter dem Einfluh der Fliehkraft Luft an den Flügelwurzeln angesaugt und nach den Flügelspitzen getrieben wird, wo sie durch regelbare Schieber 9 ins Freie ausströmt. Die Luft nimmt dabei den gestrichelt angedeuteten Verlauf. Sie wird durch die Öffnungen io in den Rotorengehäusen der Stromerzeuger angesaugt, durchströmt die Stromerzeuger zwischen Stator- und Rotorwicklung, wobei die elektrischen Wicklungen gekühlt werden und die Luft selbst erwärmt wird. Von hier gelangt die erwärmte Luft durch Öffnungen 11 in die hohle Windturbinenachse und durch die Offnungen i2 in die hohlen Flügelholme und von dort durch Bohrungen 13 in die Flügelnasen, den vor den Holmen liegenden Flügelteilen. Indem sie die einzelnen von den Flügelrippen gebildeten Zellen 16 durchströmt, erwärmt sie die Flügelnasen, wodurch die Eisbildung verhindert wird. Je höher die Drehzahl der Windturbine ansteigt und je weiter die Schieber an den Flügelspitzen geöffnet werden, um so mehr Luft wind angesaugt, um so intensiver werden die Wicklungen der Stromerzeuger gekühlt, die Flügelnasen geheizt und um so mehr wird die Windturbine durch die Luftförderung gebremst. Man kann die Drehzahl mindernde Wirkung noch verstärken, indem man die Luft nicht an den Flügelspitzen, sondern durch an den Saug- und Druckseiten der Flügel vorgesehene Klappventile 14 und 15 (s. Abb. 3), und zwar entgegen der aerodynamischen Zirkulation um die Flügel ausströmen läßt.The invention described below provides a method. on, with the i. excessive heating of the generator, 2. ice formation on the wings and 3. which prevents the wind turbines from rotating too high in the simplest possible way will. Fig. I shows the example of a wind turbine engine, consisting of the wind turbine axis i, the wind turbine 2, the gear reduction 3, the power generators 4, 5, 6 and the nacelle 7 in longitudinal section. Fig. 2 represents one of the three (see wind turbine hub) existing wind turbine blades in longitudinal section and Fig. 3 shows a wing cross-section. The wings are with the wing root to the wing tip running channels 8 traversed, whereby the rotating wind turbine acts as a centrifugal pump by adding air to the wing roots under the influence of centrifugal force sucked in and driven to the wing tips, where they are controlled by adjustable slides 9 flows out into the open. The air takes the course indicated by dashed lines. It is sucked in through the openings io in the rotor housing of the generator, flows through the power generator between the stator and rotor windings, whereby the electrical Windings are cooled and the air itself is heated. From here comes the heated air through openings 11 in the hollow wind turbine axis and through the openings i2 into the hollow wing spars and from there through holes 13 into the wing noses, the wing parts lying in front of the spars. By removing the individual from the wing ribs formed cells 16 flows through, it heats the wing noses, whereby the ice formation is prevented. The higher the speed of the wind turbine increases and the further the Sliders on the wing tips are opened, the more air is sucked in to wind This is how intensely the windings of the power generators are cooled and the wing noses are heated and the more the wind turbine is braked by the air delivery. You can Enhance the speed-reducing effect by not allowing the air to reach the wing tips, but through flap valves 14 provided on the suction and pressure sides of the wings and 15 (see Fig. 3), against the aerodynamic circulation around the wings can flow out.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP29895A DE842330C (en) | 1949-01-01 | 1949-01-01 | Wind power plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP29895A DE842330C (en) | 1949-01-01 | 1949-01-01 | Wind power plant |
Publications (1)
Publication Number | Publication Date |
---|---|
DE842330C true DE842330C (en) | 1952-06-26 |
Family
ID=7371725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DEP29895A Expired DE842330C (en) | 1949-01-01 | 1949-01-01 | Wind power plant |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE842330C (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19528862A1 (en) * | 1995-08-05 | 1997-02-06 | Aloys Wobben | Process for de-icing a rotor blade of a wind turbine and rotor blade suitable for carrying out the process |
DE19802574A1 (en) * | 1998-01-23 | 1999-03-11 | Siemens Ag | Wind power generator plant |
DE19845907A1 (en) * | 1998-10-06 | 2000-04-13 | Janine Seemann | Wind power machine with axial rotors has rotor nave with aperture on front side and is hollow so that air can be sucked through it and through centrifugal force can be emitted through |
DE19947915A1 (en) * | 1999-10-06 | 2001-04-12 | Abb Research Ltd | Cooling system for wind power system components, feeds air flow at least partly produced by chimney effect through system in tower foot region through tower, machine room to air outlet |
EP1552143A1 (en) * | 2002-10-17 | 2005-07-13 | Lorenzo Battisti | Anti-icing system for wind turbines |
WO2007121501A1 (en) * | 2006-04-24 | 2007-11-01 | Kummer, Ursula | Method and apparatus for eliminating icing of the rotor blade surface of a wind power installation |
EP2163761A1 (en) * | 2008-09-11 | 2010-03-17 | General Electric Company | Heating and cooling system for a wind turbine |
US20110012362A1 (en) * | 2007-11-22 | 2011-01-20 | Mitsubishi Heavy Industries, Ltd. | Wind turbine generator |
US8029239B2 (en) * | 2005-11-18 | 2011-10-04 | General Electric Company | Rotor for a wind energy turbine and method for controlling the temperature inside a rotor hub |
WO2013107457A1 (en) | 2012-01-20 | 2013-07-25 | Vestas Wind Systems A/S | Method of de-icing a wind turbine blade |
-
1949
- 1949-01-01 DE DEP29895A patent/DE842330C/en not_active Expired
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19528862A1 (en) * | 1995-08-05 | 1997-02-06 | Aloys Wobben | Process for de-icing a rotor blade of a wind turbine and rotor blade suitable for carrying out the process |
WO1997006367A1 (en) * | 1995-08-05 | 1997-02-20 | Aloys Wobben | Process for de-icing the rotor blades of a wind driven power station |
DE19802574A1 (en) * | 1998-01-23 | 1999-03-11 | Siemens Ag | Wind power generator plant |
DE19845907A1 (en) * | 1998-10-06 | 2000-04-13 | Janine Seemann | Wind power machine with axial rotors has rotor nave with aperture on front side and is hollow so that air can be sucked through it and through centrifugal force can be emitted through |
DE19947915A1 (en) * | 1999-10-06 | 2001-04-12 | Abb Research Ltd | Cooling system for wind power system components, feeds air flow at least partly produced by chimney effect through system in tower foot region through tower, machine room to air outlet |
US7637715B2 (en) | 2002-10-17 | 2009-12-29 | Lorenzo Battisti | Anti-icing system for wind turbines |
EP1552143B1 (en) * | 2002-10-17 | 2007-04-18 | Lorenzo Battisti | Anti-icing system for wind turbines |
EP1552143A1 (en) * | 2002-10-17 | 2005-07-13 | Lorenzo Battisti | Anti-icing system for wind turbines |
US8029239B2 (en) * | 2005-11-18 | 2011-10-04 | General Electric Company | Rotor for a wind energy turbine and method for controlling the temperature inside a rotor hub |
EP1788239A3 (en) * | 2005-11-18 | 2012-01-25 | General Electric Company | Rotor for a wind energy turbine and method for controlling the temperature inside a rotor hub |
WO2007121501A1 (en) * | 2006-04-24 | 2007-11-01 | Kummer, Ursula | Method and apparatus for eliminating icing of the rotor blade surface of a wind power installation |
US20110012362A1 (en) * | 2007-11-22 | 2011-01-20 | Mitsubishi Heavy Industries, Ltd. | Wind turbine generator |
US8322985B2 (en) * | 2007-11-22 | 2012-12-04 | Mitsubishi Heavy Industries, Ltd | Wind turbine generator |
EP2163761A1 (en) * | 2008-09-11 | 2010-03-17 | General Electric Company | Heating and cooling system for a wind turbine |
US8047774B2 (en) | 2008-09-11 | 2011-11-01 | General Electric Company | System for heating and cooling wind turbine components |
WO2013107457A1 (en) | 2012-01-20 | 2013-07-25 | Vestas Wind Systems A/S | Method of de-icing a wind turbine blade |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE842330C (en) | Wind power plant | |
DE2852554A1 (en) | ROTOR FOR USE IN A FLOW MEDIUM | |
WO2008148876A2 (en) | Wind power tower comprising a passive cooling device | |
WO2018211055A1 (en) | Wind turbine rotor blade | |
DE1526862A1 (en) | Power plant | |
EP2280164A3 (en) | Wind power plant | |
DE112017004377B4 (en) | wind turbine plant | |
DE867380C (en) | Wind turbine | |
DE202004017309U1 (en) | Wind powered rotor has a vertical axis with profiled vertical blades which are driven by the wind and which has a set resistance on the return path | |
AT525831B1 (en) | Vertical wind turbine with integrated centrifugal flaps | |
DE1628297A1 (en) | Axial flow apparatus | |
DE739482C (en) | Large wind power plant | |
DE2327125C3 (en) | Axial fan with housing | |
DE4320180A1 (en) | Rotor unit for axial flow turbo-engine - with constant profile variation of fluid passage between rotor core and outer jacket | |
CH564687A5 (en) | Wind power driven rotor with hollow blade - has air flow diverting channel on side facing wind | |
EP1577546A2 (en) | Wind turbine | |
EP0163646A1 (en) | Method and device for utilizing wind energy | |
DE724470C (en) | Internally cooled gas turbine blade | |
DE102011017373A1 (en) | Wind turbine | |
DE900079C (en) | windmill | |
DE102014211741A1 (en) | Rotor blade of a wind turbine, a wind turbine and a method for operating a wind turbine | |
DE8434578U1 (en) | DEVICE FOR OBTAINING ELECTRICAL OR MECHANICAL ENERGY FROM WIND POWER | |
DE68916796T2 (en) | DEVICE FOR OBTAINING ENERGY FROM FLOWING FLUIDS. | |
DE2601069C3 (en) | Wind power plant | |
EP3500750A1 (en) | Vertical-rotor wind turbine having an intake duct construction |