DE842330C - Wind power plant - Google Patents

Wind power plant

Info

Publication number
DE842330C
DE842330C DEP29895A DEP0029895A DE842330C DE 842330 C DE842330 C DE 842330C DE P29895 A DEP29895 A DE P29895A DE P0029895 A DEP0029895 A DE P0029895A DE 842330 C DE842330 C DE 842330C
Authority
DE
Germany
Prior art keywords
power plant
wind power
wing
wind
plant according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DEP29895A
Other languages
German (de)
Inventor
Helmut Dipl-Ing Voigt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DEP29895A priority Critical patent/DE842330C/en
Application granted granted Critical
Publication of DE842330C publication Critical patent/DE842330C/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/05Transmission of mechanical power using hollow exhausting blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/40Ice detection; De-icing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Description

Bei Windkraftwerken ist wegen des oft stoßartigen Anfalls der Windenergie mit vorübergehenden starken Überbelastungen der Stromerzeuger zu rechnen. Um bei solchen Überbelastungen eine Beschädigung der Stromerzeuger durch zu starke Erwärmung der elektrischen Wicklungen zu verhindern, ist eine- mit der Belastung zunehmende Kühlung der Stromerzeuger sehr bedeutungsvoll.In wind power plants is because of the often jerky occurrence of wind energy temporary heavy overloads of the power generators are to be expected. To at such overloads damage the generator due to excessive heating Preventing electrical windings is one that increases with the load Cooling the power generator is very important.

Da die Windturbinen 'von Windkraftwerken den Unbilden der Witterung ausgesetzt sind, kann de: Fall eintreten, daß sich besonders an den Vorderkanten der Flügel Eisansätze bilden. Solche Eisbildungen verändern die aerodynamische Form der Flügelquerschnitte, wodurch die Leistung der Windturbine herabgesetzt wird. Ein ungleichmäßiger Eisansatz kann ferner wegen der dadurch hervorgerufenen Unwucht die Windturbine und das Windkraftwerk zerstören. Es ist daher wichtig, die Eisbildung zu vermeiden.Because the wind turbines' of wind power plants cope with the rigors of the weather are exposed, de: Case can occur that especially at the leading edges the wings form ice deposits. Such ice formations change the aerodynamic shape the wing cross-sections, which reduces the performance of the wind turbine. An uneven ice accretion can also be caused by the imbalance it causes destroy the wind turbine and the wind power plant. It is therefore important to prevent ice formation to avoid.

Bei Stürmen können die Drehzahlen der Windturbinen und der Winddruck auf das Bauwerk zerstörende Werte annehmen. Es ist darum erforderlich, die Windturbine so zu bremsen, daß sie eine bestimmte höchstzulässige Drehzahl nicht überschreitet.During storms, the speeds of the wind turbines and the wind pressure take on values that are destructive to the building. It is therefore necessary to use the wind turbine to brake so that it does not exceed a certain maximum permissible speed.

Die im folgenden beschriebene Erfindung gibt ein Verfahren. an, mit dem i. eine zu starke Erwärmung der Stromerzeuger, 2. die Eisbildung an den Flügeln und 3. die zu hohe Umlaufzahlen der Windturbinen in einfachster Weise verhindert werden. Die Abb. i zeigt die beispielsweise Ausführung eines Windturbinentriebwerkes, bestehend aus der Windturbinenachse i, der Windturbine 2, dem Zahnradvorgelege 3, den Stromerzeugern 4, 5, 6 und der Gondel 7 im Längsschnitt. Die Abb. 2 stellt einen der drei (s. Windturbinennabe) vorhandenen Windturbinenflügel im Längsschnitt und die Abb. 3 einen Flügelquerschnitt dar. Die Flügel sind mit von der Flügelwurzel zur Flügelspitze verlaufenden Kanälen 8 durchzogen, wodurch die umlaufende Windturbine als Kreiselpumpe wirkt, indem unter dem Einfluh der Fliehkraft Luft an den Flügelwurzeln angesaugt und nach den Flügelspitzen getrieben wird, wo sie durch regelbare Schieber 9 ins Freie ausströmt. Die Luft nimmt dabei den gestrichelt angedeuteten Verlauf. Sie wird durch die Öffnungen io in den Rotorengehäusen der Stromerzeuger angesaugt, durchströmt die Stromerzeuger zwischen Stator- und Rotorwicklung, wobei die elektrischen Wicklungen gekühlt werden und die Luft selbst erwärmt wird. Von hier gelangt die erwärmte Luft durch Öffnungen 11 in die hohle Windturbinenachse und durch die Offnungen i2 in die hohlen Flügelholme und von dort durch Bohrungen 13 in die Flügelnasen, den vor den Holmen liegenden Flügelteilen. Indem sie die einzelnen von den Flügelrippen gebildeten Zellen 16 durchströmt, erwärmt sie die Flügelnasen, wodurch die Eisbildung verhindert wird. Je höher die Drehzahl der Windturbine ansteigt und je weiter die Schieber an den Flügelspitzen geöffnet werden, um so mehr Luft wind angesaugt, um so intensiver werden die Wicklungen der Stromerzeuger gekühlt, die Flügelnasen geheizt und um so mehr wird die Windturbine durch die Luftförderung gebremst. Man kann die Drehzahl mindernde Wirkung noch verstärken, indem man die Luft nicht an den Flügelspitzen, sondern durch an den Saug- und Druckseiten der Flügel vorgesehene Klappventile 14 und 15 (s. Abb. 3), und zwar entgegen der aerodynamischen Zirkulation um die Flügel ausströmen läßt.The invention described below provides a method. on, with the i. excessive heating of the generator, 2. ice formation on the wings and 3. which prevents the wind turbines from rotating too high in the simplest possible way will. Fig. I shows the example of a wind turbine engine, consisting of the wind turbine axis i, the wind turbine 2, the gear reduction 3, the power generators 4, 5, 6 and the nacelle 7 in longitudinal section. Fig. 2 represents one of the three (see wind turbine hub) existing wind turbine blades in longitudinal section and Fig. 3 shows a wing cross-section. The wings are with the wing root to the wing tip running channels 8 traversed, whereby the rotating wind turbine acts as a centrifugal pump by adding air to the wing roots under the influence of centrifugal force sucked in and driven to the wing tips, where they are controlled by adjustable slides 9 flows out into the open. The air takes the course indicated by dashed lines. It is sucked in through the openings io in the rotor housing of the generator, flows through the power generator between the stator and rotor windings, whereby the electrical Windings are cooled and the air itself is heated. From here comes the heated air through openings 11 in the hollow wind turbine axis and through the openings i2 into the hollow wing spars and from there through holes 13 into the wing noses, the wing parts lying in front of the spars. By removing the individual from the wing ribs formed cells 16 flows through, it heats the wing noses, whereby the ice formation is prevented. The higher the speed of the wind turbine increases and the further the Sliders on the wing tips are opened, the more air is sucked in to wind This is how intensely the windings of the power generators are cooled and the wing noses are heated and the more the wind turbine is braked by the air delivery. You can Enhance the speed-reducing effect by not allowing the air to reach the wing tips, but through flap valves 14 provided on the suction and pressure sides of the wings and 15 (see Fig. 3), against the aerodynamic circulation around the wings can flow out.

Claims (5)

PATENTANSPRÜCHE: i. Windkraftwerk mit um horizontale Achsen umlaufenden Windturbinen, dadurch gekennzeichnet, daß die Windturbinenflügel mit von der Flügelwurzel zur Flügelspitze verlaufenden Kanälen (8) versehen sind, durch die nach Art einer Kreiselpumpe unter dem Einfluß der Fliehkraft gefilterte Luft gefördert wird, die zuvor die Wicklungen der in Achsnähe angeordneten Stromerzeuger zur intensiven Kühlung derselben umspült hat. PATENT CLAIMS: i. Wind power plant with wind turbines rotating about horizontal axes, characterized in that the wind turbine blades are provided with channels (8) running from the blade root to the blade tip, through which the air filtered in the manner of a centrifugal pump under the influence of centrifugal force is conveyed, which beforehand has the windings of the in Has washed around the generator arranged close to the axis for intensive cooling of the same. 2. Windkraftwerk nach Anspruch i, dadurch gekennzeichnet, daß die Kanäle (8) vorzugsweise durch in Verbindung stehende Hohlräume (16) der Flügelnasen gebildet sind. 2. Wind power plant according to claim i, characterized in that the channels (8) preferably by communicating Cavities (16) of the wing noses are formed. 3. Windkraftwerk nach Anspruch i und 2, dadurch gekennzeichnet, daß vor Inbetriebnahme des Windkraftwerkes die in den Flügelnasen befindliche Luft vorzugsweise elektrisch erwärmt wird. 3. Wind power plant according to claim i and 2, characterized in that before commissioning the wind power plant in the Air located in the wing noses is preferably heated electrically. 4. Windkraftwerk nach Anspruch i, dadurch gekennzeichnet, daß an den Flügelspitzen Schieber (9) eingebaut sind, mit deren Hilfe die Luftförderung durch die Flügelkanäle (8) geregelt wird. 4. Wind power plant according to claim i, characterized in that slides (9) are built into the wing tips with the help of which the air flow through the wing channels (8) is regulated. 5. Windkraftwerk nach Anspruch i und 4, dadurch gekennzeichnet, daß auf der Saug- und Druckseite der äußeren Flügelpartien schließbare Klappventile (14 und 15) so angeordnet sind, daß die geförderte Luft entgegen der aerodynamischen Zirkulation ausgeblasen werden kann.5. Wind power plant according to claim i and 4, characterized in that on the suction and pressure side of the outer wing parts closable flap valves (14 and 15) so are arranged that the conveyed air against the aerodynamic circulation can be blown out.
DEP29895A 1949-01-01 1949-01-01 Wind power plant Expired DE842330C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DEP29895A DE842330C (en) 1949-01-01 1949-01-01 Wind power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEP29895A DE842330C (en) 1949-01-01 1949-01-01 Wind power plant

Publications (1)

Publication Number Publication Date
DE842330C true DE842330C (en) 1952-06-26

Family

ID=7371725

Family Applications (1)

Application Number Title Priority Date Filing Date
DEP29895A Expired DE842330C (en) 1949-01-01 1949-01-01 Wind power plant

Country Status (1)

Country Link
DE (1) DE842330C (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19528862A1 (en) * 1995-08-05 1997-02-06 Aloys Wobben Process for de-icing a rotor blade of a wind turbine and rotor blade suitable for carrying out the process
DE19802574A1 (en) * 1998-01-23 1999-03-11 Siemens Ag Wind power generator plant
DE19845907A1 (en) * 1998-10-06 2000-04-13 Janine Seemann Wind power machine with axial rotors has rotor nave with aperture on front side and is hollow so that air can be sucked through it and through centrifugal force can be emitted through
DE19947915A1 (en) * 1999-10-06 2001-04-12 Abb Research Ltd Cooling system for wind power system components, feeds air flow at least partly produced by chimney effect through system in tower foot region through tower, machine room to air outlet
EP1552143A1 (en) * 2002-10-17 2005-07-13 Lorenzo Battisti Anti-icing system for wind turbines
WO2007121501A1 (en) * 2006-04-24 2007-11-01 Kummer, Ursula Method and apparatus for eliminating icing of the rotor blade surface of a wind power installation
EP2163761A1 (en) * 2008-09-11 2010-03-17 General Electric Company Heating and cooling system for a wind turbine
US20110012362A1 (en) * 2007-11-22 2011-01-20 Mitsubishi Heavy Industries, Ltd. Wind turbine generator
US8029239B2 (en) * 2005-11-18 2011-10-04 General Electric Company Rotor for a wind energy turbine and method for controlling the temperature inside a rotor hub
WO2013107457A1 (en) 2012-01-20 2013-07-25 Vestas Wind Systems A/S Method of de-icing a wind turbine blade

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19528862A1 (en) * 1995-08-05 1997-02-06 Aloys Wobben Process for de-icing a rotor blade of a wind turbine and rotor blade suitable for carrying out the process
WO1997006367A1 (en) * 1995-08-05 1997-02-20 Aloys Wobben Process for de-icing the rotor blades of a wind driven power station
DE19802574A1 (en) * 1998-01-23 1999-03-11 Siemens Ag Wind power generator plant
DE19845907A1 (en) * 1998-10-06 2000-04-13 Janine Seemann Wind power machine with axial rotors has rotor nave with aperture on front side and is hollow so that air can be sucked through it and through centrifugal force can be emitted through
DE19947915A1 (en) * 1999-10-06 2001-04-12 Abb Research Ltd Cooling system for wind power system components, feeds air flow at least partly produced by chimney effect through system in tower foot region through tower, machine room to air outlet
US7637715B2 (en) 2002-10-17 2009-12-29 Lorenzo Battisti Anti-icing system for wind turbines
EP1552143B1 (en) * 2002-10-17 2007-04-18 Lorenzo Battisti Anti-icing system for wind turbines
EP1552143A1 (en) * 2002-10-17 2005-07-13 Lorenzo Battisti Anti-icing system for wind turbines
US8029239B2 (en) * 2005-11-18 2011-10-04 General Electric Company Rotor for a wind energy turbine and method for controlling the temperature inside a rotor hub
EP1788239A3 (en) * 2005-11-18 2012-01-25 General Electric Company Rotor for a wind energy turbine and method for controlling the temperature inside a rotor hub
WO2007121501A1 (en) * 2006-04-24 2007-11-01 Kummer, Ursula Method and apparatus for eliminating icing of the rotor blade surface of a wind power installation
US20110012362A1 (en) * 2007-11-22 2011-01-20 Mitsubishi Heavy Industries, Ltd. Wind turbine generator
US8322985B2 (en) * 2007-11-22 2012-12-04 Mitsubishi Heavy Industries, Ltd Wind turbine generator
EP2163761A1 (en) * 2008-09-11 2010-03-17 General Electric Company Heating and cooling system for a wind turbine
US8047774B2 (en) 2008-09-11 2011-11-01 General Electric Company System for heating and cooling wind turbine components
WO2013107457A1 (en) 2012-01-20 2013-07-25 Vestas Wind Systems A/S Method of de-icing a wind turbine blade

Similar Documents

Publication Publication Date Title
DE842330C (en) Wind power plant
DE2852554A1 (en) ROTOR FOR USE IN A FLOW MEDIUM
WO2008148876A2 (en) Wind power tower comprising a passive cooling device
WO2018211055A1 (en) Wind turbine rotor blade
DE1526862A1 (en) Power plant
EP2280164A3 (en) Wind power plant
DE112017004377B4 (en) wind turbine plant
DE867380C (en) Wind turbine
DE202004017309U1 (en) Wind powered rotor has a vertical axis with profiled vertical blades which are driven by the wind and which has a set resistance on the return path
AT525831B1 (en) Vertical wind turbine with integrated centrifugal flaps
DE1628297A1 (en) Axial flow apparatus
DE739482C (en) Large wind power plant
DE2327125C3 (en) Axial fan with housing
DE4320180A1 (en) Rotor unit for axial flow turbo-engine - with constant profile variation of fluid passage between rotor core and outer jacket
CH564687A5 (en) Wind power driven rotor with hollow blade - has air flow diverting channel on side facing wind
EP1577546A2 (en) Wind turbine
EP0163646A1 (en) Method and device for utilizing wind energy
DE724470C (en) Internally cooled gas turbine blade
DE102011017373A1 (en) Wind turbine
DE900079C (en) windmill
DE102014211741A1 (en) Rotor blade of a wind turbine, a wind turbine and a method for operating a wind turbine
DE8434578U1 (en) DEVICE FOR OBTAINING ELECTRICAL OR MECHANICAL ENERGY FROM WIND POWER
DE68916796T2 (en) DEVICE FOR OBTAINING ENERGY FROM FLOWING FLUIDS.
DE2601069C3 (en) Wind power plant
EP3500750A1 (en) Vertical-rotor wind turbine having an intake duct construction