DE19947915A1 - Cooling system for wind power system components, feeds air flow at least partly produced by chimney effect through system in tower foot region through tower, machine room to air outlet - Google Patents

Cooling system for wind power system components, feeds air flow at least partly produced by chimney effect through system in tower foot region through tower, machine room to air outlet

Info

Publication number
DE19947915A1
DE19947915A1 DE19947915A DE19947915A DE19947915A1 DE 19947915 A1 DE19947915 A1 DE 19947915A1 DE 19947915 A DE19947915 A DE 19947915A DE 19947915 A DE19947915 A DE 19947915A DE 19947915 A1 DE19947915 A1 DE 19947915A1
Authority
DE
Germany
Prior art keywords
tower
cooling system
cooling
air
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19947915A
Other languages
German (de)
Inventor
Hans-Joachim Krokoszinski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
Original Assignee
ABB Research Ltd Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland filed Critical ABB Research Ltd Switzerland
Priority to DE19947915A priority Critical patent/DE19947915A1/en
Publication of DE19947915A1 publication Critical patent/DE19947915A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

The system has an arrangement for feeding an air flow at least partly produced by a chimney effect through the system (14) in the foot region of the tower (13) from the foot region, through the tower and a machine room (11) on the tower to an air outlet (9). The air is fed by filters (6) for air suction, a collection channel (7) and an air channel (8) passing through the tower.

Description

Die Erfindung bezieht sich auf ein Kühlsystem zur Kühlung verlustbehafteter Bau­ gruppen in einer Windkraftanlage. Das Kühlsystem arbeitet als Luftkühlung und ist insbesondere geeignet zur Kühlung von Stromrichtergeräten.The invention relates to a cooling system for cooling lossy construction groups in a wind turbine. The cooling system works as air cooling and is especially suitable for cooling converter devices.

Die Luftkühlung ist neben der Flüssigkeitskühlung eine allgemein bekannte und häu­ fig verwendete Kühlungsart für verlustbehaftete Baugruppen einer Leistungselektro­ nik. Bei der Luftkühlung wird in Anwendungsfällen, in denen die Größe und Masse des verwendeten Kühlkörpers nicht von entscheidender Bedeutung sind, die natürli­ che Konvektion bevorzugt, weil dadurch ein Ventilator vermieden werden kann. Ein Ventilator oder Kühlgebläse wirkt zwar durch eine Beschleunigung der Luftbewegung auf 3-5 m/s positiv im Sinne der Kühlleistung (der Wärmeübergangskoeffizient kann von nur ca. 9 W/m2K bei natürlicher Konvektion (incl. Wärmestrahlung) auf ca. 25-35 W/m2K verdrei- bis vierfacht werden), aber negativ im Sinne der Zuverlässigkeit, Komplexität und Kosten. Ein Kühlgebläse ist eine wichtige Komponente hinsichtlich der Verfügbarkeit eines Stromrichters: wenn es ausfällt, muß der Stromrichter abge­ schaltet werden, weil er sich sonst wegen Überhitzung selbst zerstört.In addition to liquid cooling, air cooling is a generally known and frequently used type of cooling for lossy assemblies in power electronics. In air cooling, in applications in which the size and mass of the heat sink used are not of critical importance, natural convection is preferred because a fan can thereby be avoided. A fan or cooling fan has a positive effect in terms of cooling capacity by accelerating the air movement to 3-5 m / s (the heat transfer coefficient can only be approx. 9 W / m 2 K with natural convection (incl. Heat radiation) to approx. 25- 35 W / m 2 K three to four times), but negative in terms of reliability, complexity and costs. A cooling fan is an important component with regard to the availability of a converter: if it fails, the converter must be switched off, otherwise it will self-destruct due to overheating.

In heutigen Windkraftanlagen, die noch meistens mit Festfrequenz (50 Hz) arbeiten, sind alle elektrischen Geräte wie Generator, Transformator sowie Schutz- und Re­ geleinrichtungen auf dem Anlagen-Turm in der Nähe der Windturbine angeordnet. Die Übersetzung der Rotorfrequenz in die 50 Hz Generatorfrequenz wird durch ein mechanisches Getriebe erreicht. Die vom Generator gelieferte Wechselspannung wird durch einen (je nach Leistung sehr schweren) Transformator auf die Netzspan­ nung gebracht und ins Netz eingespeist.In today's wind turbines, which mostly still work at a fixed frequency (50 Hz), are all electrical devices such as generator, transformer as well as protection and re Gel devices arranged on the turbine tower near the wind turbine. The translation of the rotor frequency into the 50 Hz generator frequency is indicated by a mechanical gearbox reached. The alternating voltage supplied by the generator  is transferred to the mains voltage by a (depending on the power very heavy) transformer brought and fed into the grid.

Zur Kühlung reicht meist die Luftbewegung auf dieser Höhe über dem Erdboden, die ja auch den Rotor antreibt: falls die Luftbewegung nicht ausreicht oder nutzbar ist, werden Lüfter eingesetzt, um die Verlustwärme dieser Anlagen abzuführen.The air movement at this height above ground is usually sufficient for cooling yes also drives the rotor: if the air movement is insufficient or usable, fans are used to dissipate the heat loss from these systems.

Die Entwicklung moderner Konzepte für Windkraftanlagen geht in Richtung höherer Leistungen, höherer Wirkungsgrade und vor allem geringerer Kosten. Man wird Stromrichteranlagen einsetzen und die gesamte Stromrichter- und Transformatoran­ lage aus dem Turmkopf an oder in den Turmfuß verlegen, um Gewicht im Turmkopf zu sparen, was dann entweder durch eine größere Windturbine (höhere Leistung bei gleicher Turmbauweise) oder aber durch eine leichtere Bauweise des Turmes und seines Fundaments (bei gleicher Leistung) ausgenutzt werden kann.The development of modern concepts for wind turbines is moving towards higher ones Performance, higher efficiency and, above all, lower costs. You will Use converter systems and the entire converter and transformer lay from the tower head on or in the tower base to weight in the tower head to save what is then either a larger wind turbine (higher power at same tower construction) or by a lighter construction of the tower and its foundation (with the same performance) can be used.

Zusätzlich werden durch Einsatz von PM-erregten Synchrongeneratoren variable Drehzahlen und damit höheren Stromrichter-Taktfrequenzen möglich, um das teuere, schwere und geräuschproduzierende Getriebe einsparen zu können, den Wirkungs­ grad, der je nach Windgeschwindigkeit verschieden von der Drehzahl abhängt, stän­ dig in das Optimum regeln zu können, und die magnetischen Komponenten wie Transformatoren oder Spulen kleiner aufbauen zu können.In addition, by using PM-excited synchronous generators, variable Speeds and thus higher converter clock frequencies possible to the expensive, being able to save heavy and noise-producing gears, the effect degree, which depends on the speed depending on the wind speed dig to be able to regulate to the optimum, and the magnetic components like To be able to build transformers or coils smaller.

Zur Realisierung dieser neuartigen Konzepte für Windkraftanlagen werden moderne Stromrichtertechnologien basierend auf IGBT-Modulen oder abschaltbaren Thyristo­ ren (IGCTs) verwendet werden, die immer eine Kühlung benötigen. Bekannte Kühl­ konzepte haben für die vorgesehene Anwendung die Nachteile, daß die natürliche Konvektion zu große Kühlkörper erfordert, forcierte Kühlung durch elektrische Geblä­ se zu unzuverlässig und teuer ist, und eine Flüssigkühlung zu komplex und zu teuer ist.To implement these new concepts for wind turbines, modern ones are being used Converter technologies based on IGBT modules or Thyristo that can be switched off ren (IGCTs) are used, which always require cooling. Known cooling Concepts have the disadvantages for the intended application that the natural Convection requires large heat sinks, forced cooling by electric fans it is too unreliable and expensive, and liquid cooling is too complex and too expensive is.

Der Erfindung liegt daher die Aufgabe zugrunde, für eine Windkraftanlage, bei der verlustbehaftete Baugruppen im Bereich des Turmfußes angeordnet sind, ein geeig­ netes Kühlsystem anzugeben. The invention is therefore based on the object for a wind turbine in which lossy modules are arranged in the area of the tower base, a geeig to specify the cooling system.  

Diese Aufgabe wird durch ein Kühlsystem mit den im Anspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen sind in weiteren Ansprüchen ange­ geben.This object is achieved by a cooling system with those specified in claim 1 Features resolved. Advantageous refinements are set out in further claims give.

Bei dem Kühlsystem wird die Möglichkeit genutzt, durch eine Luftführung durch den Turm eine Kaminwirkung und damit einen für Kühlzwecke nutzbaren Luftstrom zu erzeugen.The cooling system takes advantage of the possibility of air flow through the Tower creates a chimney effect and thus an air flow that can be used for cooling purposes produce.

Es wird damit ein Kühlsystem erreicht, das
A cooling system is thus achieved that

  • - ausfallsichere Funktion gewährleistet, wann immer die Windturbine rotiert;- failsafe function guaranteed whenever the wind turbine rotates;
  • - weitgehend wartungsfrei ist;- is largely maintenance-free;
  • - geringstmöglichen Alterungsprozessen (Korrosion, Verschleiß) unterworfen ist;- is subject to the lowest possible aging processes (corrosion, wear);
  • - hinreichend Kühlleistung zur Verfügung stellt, um die Kühleroberflächentempera­ tur unter einem vorgegebenen Maximalwert zu halten, und- Provides sufficient cooling capacity to keep the cooler surface temperature keep below a predetermined maximum value, and
  • - im Turmfuß oder in einem separaten Gebäude nur wenig Raum einnimmt.- takes up little space in the base of the tower or in a separate building.

Eine forcierte Kühlung mittels Gebläse ist möglich.Forced cooling using a fan is possible.

Eine weitere Beschreibung der Erfindung erfolgt nachstehend anhand eines in der Zeichnung dargestellten Ausführungsbeispiels.A further description of the invention is given below with the aid of a Drawing shown embodiment.

In Fig. 1 ist eine Windkraftanlage 1 mit einer mittels eines einfachen oder mehrstufi­ gen Sauggebläses 4 forcierten Luftkühlung dargestellt. Bei hinreichend geringen Kühlleistungsanforderungen ist jedoch auch eine Anordnung ohne Gebläse, also mit alleiniger Nutzung eines durch Kaminwirkung erzeugten Luftstromes 12 möglich.In Fig. 1, a wind turbine 1 is shown with a forced by means of a simple or Mehrstufi gene suction fan 4 air cooling. If the cooling power requirements are sufficiently low, however, an arrangement without a fan, that is to say with the sole use of an air flow 12 generated by the chimney effect, is also possible.

Bei der Windkraftanlage 1 ist auf einem Turm 13 ein Maschinenraum 11 angeordnet. Der Maschinenraum 11 enthält eine Windturbine mit Generator 2, an deren Achse mittels einer mechanischen oder hydraulischen Kupplung mit Getriebe 3 das Saug­ gebläse 4 gekoppelt ist.In the wind turbine 1 , a machine room 11 is arranged on a tower 13 . The machine room 11 contains a wind turbine with generator 2 , on the axis of which the suction fan 4 is coupled by means of a mechanical or hydraulic coupling with gear 3 .

Am Turm 13 oder in dessen Fußbereich ist in einem Anlagenraum 10 eine Anlage 14 mit verlustbehafteten Baugruppen 7 angeordnet. Die Anlage 14 mit den Baugruppen 7 kann beispielsweise eine Stromrichteranlage sein. A system 14 with lossy assemblies 7 is arranged on the tower 13 or in the foot region thereof in a system room 10 . The system 14 with the modules 7 can be, for example, a converter system.

Zur Führung des Luftstromes 12 sind im Fußbereich des Turms 13 Filter 6 zur Luft­ ansaugung und oberhalb der Baugruppen 7 ein Sammelkanal 15 angeordnet. Im Turm 13 ist der Luftstrom 12 durch einen Luftkanal 8 zum Gebläse 4 geführt. An ei­ nem Luftaustritt 9 tritt der Luftstrom aus. Mit 5 sind elektrische Leitungen zur Verbin­ dung des Generators 2 mit der Stromrichteranlage 14 bezeichnet.To guide the air flow 12 13 filters 6 for air intake in the foot region of the tower and above the assemblies 7, a collecting duct 15 is arranged. In the tower 13 , the air flow 12 is guided through an air duct 8 to the blower 4 . The air flow exits at an air outlet 9 . With 5 electrical lines for connec tion of the generator 2 with the converter system 14 are designated.

Wesentliche Vorteile der vorgeschlagenen Gesamtanordnung bestehen darin, daß die Kaminwirkung sowohl bei Ausführungen mit, als auch ohne Gebläse nutzbar ist und im Fußbereich des Turms kein zusätzlicher Raum für Einrichtungen zur Forcie­ rung der Luftbewegung benötigt wird.The main advantages of the proposed overall arrangement are that the chimney effect can be used both with and without a fan and in the foot area of the tower no additional space for forcie facilities air movement is required.

Bei Anordnung eines Sauggebläses wird kein elektrischer Gebläseantrieb benötigt, da eine mechanische Ankopplung an die Turbinenachse vorgesehen ist.If a suction blower is arranged, no electric blower drive is required, since a mechanical coupling to the turbine axis is provided.

Der durch das Sauggebläse erzeugte Luftstrom wird so durch den Anlagenraum, z. B. ein Stromrichterkabinett geführt, daß entwederThe air flow generated by the suction fan is so through the plant room, for. B. a power converter cabinet managed that either

a) die Kühlkörper der Stromrichterkomponenten direkt durch die forcierte Luft­ bewegung gekühlt werden, odera) the heat sink of the converter components directly through the forced air motion can be cooled, or

b) der Rückkühler eines Flüssigkeitskühlsystems von der Luft durchströmt wird.b) the recooler of a liquid cooling system is flowed through by the air.

Fall b) wird in der Regel häufiger vorkommen, weil dabei die Verlustleistung durch die Flüssigkühlung von den Halbleitern auf eine große Kühlfläche ein Luftstrom ver­ teilt wird.Case b) will usually occur more often because of the power loss the liquid cooling from the semiconductors to a large cooling surface ver an air flow is shared.

Die Kühlleistung ist in diesem Fall über die Rotationsfrequenz der Turbinenachse direkt gekoppelt an die anfallende elektrische Leistung der Turbine und damit auch an die anfallende Verlustleistung in der Leistungselektronik. Wenn die Turbine ruht, fällt auch keine Verlustwärme an: das Gebläse steht. Wenn die Turbine maximale Leistung bei maximaler Frequenz erbringt, läuft auch das Kühlgebläse mit maximaler Leistung. Diese wird zwar der Nutzleistung der Windturbine entzogen, jedoch mit hö­ herem Wirkungsgrad als im Fall eines elektrischen Gebläses. In this case, the cooling capacity is above the rotational frequency of the turbine axis directly coupled to the electrical power of the turbine and thus also of the power loss in power electronics. When the turbine is at rest there is also no heat loss: the fan stops. If the turbine is maximum The cooling fan runs at maximum frequency Power. This is deprived of the useful power of the wind turbine, but with a higher efficiency than in the case of an electric blower.  

Ein weiterer wesentlicher Vorteil sind die geringen Kosten der Anlage: ein elektri­ sches Gebläse für forcierte Luftkühlung bedarf außer der Anschaffung des motori­ schen Antriebs auch einer elektrischen Speisung (Motorschutzschalter oder Strom­ richter), ggf. einer elektronischen Regeleinrichtung und jedenfalls einer Schutzein­ richtung, die die Funktion des Gebläses überwacht und die Stromrichter durch Ab­ schalten gegen Überhitzung schützt. Ein einfaches, mechanisch angetriebenes Ge­ bläse erfordert dagegen lediglich eine mechanische oder hydraulische Kupplung (mit oder ohne Drehzahlübersetzung), die eine zu vernachlässigende Ausfallwahrschein­ lichkeit hat. Eine periodische Wartung dieser Komponente ist dennoch notwendig.Another significant advantage is the low cost of the system: an electri This blower for forced air cooling requires the purchase of the motor electrical drive (motor protection switch or electricity judge), possibly an electronic control device and in any case a protective device Direction that monitors the function of the fan and the converter by Ab protect against overheating. A simple, mechanically driven Ge blower, on the other hand, only requires a mechanical or hydraulic clutch (with or without speed ratio), which is a negligible failure probability has. Periodic maintenance of this component is still necessary.

Claims (7)

1. Kühlsystem zur Kühlung verlustbehafteter Baugruppen (7) einer Anlage (14), insbesondere einer Stromrichteranlage, in einer Windkraftanlage (1), wobei
  • - auf einem Turm (13) der Windkraftanlage (1) in einem Maschinenraum (11) eine Windturbine mit Generator (2) angeordnet ist,
  • - in einem Anlagenraum (10) am oder im Fußbereich des Turms (13) die Anla­ ge (14) mit den verlustbehafteten Baugruppen (7) angeordnet ist, und
  • - Mittel (6, 8, 15) zur Führung eines zumindest teilweise durch Kaminwirkung erzeugten Luftstromes (12) durch die Anlage (14) aus dem Fußbereich des Turms (13), durch den Turm (13) und den Maschinenraum (11) zu einem Luftaustritt (9) vorhanden sind.
1. Cooling system for cooling lossy assemblies ( 7 ) of a system ( 14 ), in particular a converter system, in a wind turbine ( 1 ), wherein
  • - A wind turbine with generator ( 2 ) is arranged on a tower ( 13 ) of the wind power plant ( 1 ) in a machine room ( 11 ),
  • - In a plant room ( 10 ) on or in the foot region of the tower ( 13 ) the Anla ge ( 14 ) with the lossy modules ( 7 ) is arranged, and
  • - Means ( 6 , 8 , 15 ) for guiding an air flow ( 12 ) generated at least partially by the chimney effect through the system ( 14 ) from the foot region of the tower ( 13 ), through the tower ( 13 ) and the machine room ( 11 ) into one Air outlet ( 9 ) are available.
2. Kühlsystem nach Anspruch 1, dadurch gekennzeichnet, daß als Mittel (6, 8, 15) zur Führung des durch Kaminwirkung erzeugten Luftstromes (12) Filter (6) zur Luftansaugung, ein Sammelkanal (15) oberhalb der verlustbehafteten Baugrup­ pen (7) und ein durch den Turm (13) geführter Luftkanal (8) vorhanden sind.2. Cooling system according to claim 1, characterized in that as a means ( 6 , 8 , 15 ) for guiding the air flow generated by the chimney effect ( 12 ) filter ( 6 ) for air intake, a collecting duct ( 15 ) above the lossy components ( 7 ) and an air duct ( 8 ) guided through the tower ( 13 ) is present. 3. Kühlsystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß au­ ßerdem zur forcierten Kühlung im Maschinenraum (11) ein ein- oder mehrstufiges Sauggebläse (4) mittels einer mechanischen oder hydraulischen Kupplung mit Ge­ triebe (3) an die Achse der Windturbine mit Generator (2) gekoppelt ist, mit dem der Luftstrom (12) zum Luftaustritt (9) transportiert wird.3. Cooling system according to claim 1 or 2, characterized in that in addition for forced cooling in the machine room ( 11 ) a single or multi-stage suction fan ( 4 ) by means of a mechanical or hydraulic clutch with Ge gearboxes ( 3 ) on the axis of the wind turbine Generator ( 2 ) is coupled, with which the air stream ( 12 ) is transported to the air outlet ( 9 ). 4. Kühlsystem nach Anspruch 3, dadurch gekennzeichnet, daß die Kupplung mit Getriebe (3) ein Drehzahlübersetzungsverhältnis von mehr als 1 bewirkt. 4. Cooling system according to claim 3, characterized in that the clutch with gear ( 3 ) causes a speed ratio of more than 1. 5. Kühlsystem nach Anspruch 3, dadurch gekennzeichnet, daß ein mehrstu­ figes Getriebe (3) eingesetzt ist, wobei die Drehzahl der Gebläsestufen des Gebläses (4) gleich oder unterschiedlich gewählt ist.5. Cooling system according to claim 3, characterized in that a multi-stage gearbox ( 3 ) is used, the speed of the blower stages of the blower ( 4 ) being chosen to be the same or different. 6. Kühlsystem nach Anspruch 2, dadurch gekennzeichnet, daß die vom Luft­ strom zu kühlenden verlustbehafteten Baugruppen (7) massive, mit Finnen versehe­ ne Kühlkörper mit aufmontierten Leistungshalbleiterbauelementen sind.6. Cooling system according to claim 2, characterized in that the lossy assemblies ( 7 ) to be cooled by the air flow are massive, provided with fins ne heat sinks with mounted power semiconductor components. 7. Kühlsystem nach Anspruch 2, dadurch gekennzeichnet, daß eine der vom Luftstrom zu kühlenden verlustbehafteten Baugruppen (7) ein Rückkühler eines ge­ schlossenen Flüssigkühlsystems ist.7. Cooling system according to claim 2, characterized in that one of the lossy assemblies to be cooled by the air stream ( 7 ) is a recooler of a closed liquid cooling system.
DE19947915A 1999-10-06 1999-10-06 Cooling system for wind power system components, feeds air flow at least partly produced by chimney effect through system in tower foot region through tower, machine room to air outlet Withdrawn DE19947915A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19947915A DE19947915A1 (en) 1999-10-06 1999-10-06 Cooling system for wind power system components, feeds air flow at least partly produced by chimney effect through system in tower foot region through tower, machine room to air outlet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19947915A DE19947915A1 (en) 1999-10-06 1999-10-06 Cooling system for wind power system components, feeds air flow at least partly produced by chimney effect through system in tower foot region through tower, machine room to air outlet

Publications (1)

Publication Number Publication Date
DE19947915A1 true DE19947915A1 (en) 2001-04-12

Family

ID=7924544

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19947915A Withdrawn DE19947915A1 (en) 1999-10-06 1999-10-06 Cooling system for wind power system components, feeds air flow at least partly produced by chimney effect through system in tower foot region through tower, machine room to air outlet

Country Status (1)

Country Link
DE (1) DE19947915A1 (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014629A1 (en) * 2001-08-10 2003-02-20 Aloys Wobben Wind energy installation
DE10233947A1 (en) * 2002-07-25 2004-02-12 Siemens Ag Wind power system has generator in gondola, turbine with rotor blade(s); generator has a closed primary cooling circuit; the gondola has an arrangement enabling cooling of primary cooling circuit
DE10351844A1 (en) * 2003-11-06 2005-06-09 Alstom Wind power plant for producing electricity has electrical components connected to radiator projecting through cutout in shell of gondola
WO2005124799A2 (en) * 2004-06-18 2005-12-29 Siemens Aktiengesellschaft System for cooling components of wind power stations
DE102005029463A1 (en) * 2005-06-24 2006-12-28 Repower Systems Ag Tower humidification of a wind energy plant
WO2008102184A2 (en) * 2007-02-22 2008-08-28 Dionysios Choidas Cooling apparatus for a wind turbine
EP2000668A1 (en) * 2007-06-06 2008-12-10 ICEC Holding AG Wind turbine tower with passive cooling
WO2009081269A2 (en) * 2007-12-20 2009-07-02 Innovative Windpower Ag Media transporting device in a foundation for wind energy generating plants
DE102008019271A1 (en) * 2008-04-16 2009-10-22 Kenersys Gmbh Wind turbine with improved cooling air flow
ES2330491A1 (en) * 2007-05-25 2009-12-10 GAMESA INNOVATION & TECHNOLOGY, S.L. Climatisation system for wind turbines
EP2151833A1 (en) * 2008-08-07 2010-02-10 Starkstrom-gerätebau GmbH Transformer system
EP2161446A1 (en) 2008-09-09 2010-03-10 Suez Environnement Wind turbine
ITMI20082006A1 (en) * 2008-11-12 2010-05-13 Rolic Invest Sarl WIND GENERATOR
WO2010103114A1 (en) * 2009-03-13 2010-09-16 Xemc Darwind B.V. Method of constructing a wind turbine and bottom tower section of wind turbine
DE102009025118A1 (en) * 2009-06-11 2010-12-16 Aerodyn Energiesysteme Gmbh Wind energy plant with cooling current feedback
US20110001371A1 (en) * 2009-07-06 2011-01-06 Gamesa Innovation & Technology, S.L. System for the circulation of filtered air inside the wind turbine
US7893555B2 (en) 2001-09-13 2011-02-22 Wilic S.Ar.L. Wind power current generator
US7936102B2 (en) 2005-11-29 2011-05-03 Wilic S.Ar.L Magnet holder for permanent magnet rotors of rotating machines
US7946591B2 (en) 2005-09-21 2011-05-24 Wilic S.Ar.L. Combined labyrinth seal and screw-type gasket bearing sealing arrangement
CN101023265B (en) * 2004-09-24 2011-08-31 艾劳埃斯·乌本 Wind turbine comprising a generator cooling system
US8120198B2 (en) 2008-07-23 2012-02-21 Wilic S.Ar.L. Wind power turbine
DE102010040911A1 (en) * 2010-09-16 2012-03-22 Aloys Wobben Magnus rotor
CN102644557A (en) * 2011-02-21 2012-08-22 株式会社日立产机系统 Wind turbine power generating facilities
US8274170B2 (en) 2009-04-09 2012-09-25 Willic S.A.R.L. Wind power turbine including a cable bundle guide device
CN102705179A (en) * 2012-06-08 2012-10-03 华锐风电科技(江苏)有限公司 Micro positive pressure generating device
CN102753822A (en) * 2010-02-08 2012-10-24 三菱重工业株式会社 Wind-powered electrical generator
US8310122B2 (en) 2005-11-29 2012-11-13 Wilic S.A.R.L. Core plate stack assembly for permanent magnet rotor or rotating machines
US8358189B2 (en) 2009-08-07 2013-01-22 Willic S.Ar.L. Method and apparatus for activating an electric machine, and electric machine
US8410623B2 (en) 2009-06-10 2013-04-02 Wilic S. AR. L. Wind power electricity generating system and relative control method
EP2196667A3 (en) * 2008-12-09 2013-04-03 General Electric Company Cooling system for wind turbine components
EP2589805A1 (en) * 2010-06-30 2013-05-08 Mitsubishi Heavy Industries, Ltd. Wind power generation device
US8492919B2 (en) 2008-06-19 2013-07-23 Wilic S.Ar.L. Wind power generator equipped with a cooling system
CN103306891A (en) * 2012-03-14 2013-09-18 歌美飒创新技术公司 An off-shore wind turbine with a thermal conditioning system
US8541902B2 (en) 2010-02-04 2013-09-24 Wilic S.Ar.L. Wind power turbine electric generator cooling system and method and wind power turbine comprising such a cooling system
EP2453451A3 (en) * 2010-11-12 2013-12-25 Hitachi Industrial Equipment Systems Co., Ltd. Transformer for wind power station and/or wind power generating facilities installed with transformer for wind power station
US8618689B2 (en) 2009-11-23 2013-12-31 Wilic S.Ar.L. Wind power turbine for generating electric energy
US8659867B2 (en) 2009-04-29 2014-02-25 Wilic S.A.R.L. Wind power system for generating electric energy
US8669685B2 (en) 2008-11-13 2014-03-11 Wilic S.Ar.L. Wind power turbine for producing electric energy
AT513671A1 (en) * 2012-11-15 2014-06-15 Green Tower Entwicklungs Gmbh Device for controlling the climate inside a building made essentially of wood
CN104047811A (en) * 2013-03-12 2014-09-17 上海电气风能有限公司 Ventilation and filter system for tower bottom of wind driven generator
US8937398B2 (en) 2011-03-10 2015-01-20 Wilic S.Ar.L. Wind turbine rotary electric machine
US8937397B2 (en) 2010-03-30 2015-01-20 Wilic S.A.R.L. Wind power turbine and method of removing a bearing from a wind power turbine
US8957555B2 (en) 2011-03-10 2015-02-17 Wilic S.Ar.L. Wind turbine rotary electric machine
US8975770B2 (en) 2010-04-22 2015-03-10 Wilic S.Ar.L. Wind power turbine electric generator and wind power turbine equipped with an electric generator
US9006918B2 (en) 2011-03-10 2015-04-14 Wilic S.A.R.L. Wind turbine
CN106438955A (en) * 2016-06-22 2017-02-22 大唐向阳风电有限公司 Fan gear box air filter screen protection device
DE102015015338A1 (en) 2015-11-26 2017-06-01 Munters Euroform Gmbh Wind turbine, nacelle and cooling device for a wind turbine
CN111042993A (en) * 2019-12-31 2020-04-21 新疆新风新能环保科技有限公司 Tower heat dissipation device of wind driven generator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE842330C (en) * 1949-01-01 1952-06-26 Helmut Dipl-Ing Voigt Wind power plant
DE4431361A1 (en) * 1994-09-02 1996-03-07 Jaehnke Klaus Peter Wind power generating machine
DE19802574A1 (en) * 1998-01-23 1999-03-11 Siemens Ag Wind power generator plant
WO1999030031A1 (en) * 1997-12-08 1999-06-17 Siemens Aktiengesellschaft Wind power plat and method for cooling a generator in a wind power plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE842330C (en) * 1949-01-01 1952-06-26 Helmut Dipl-Ing Voigt Wind power plant
DE4431361A1 (en) * 1994-09-02 1996-03-07 Jaehnke Klaus Peter Wind power generating machine
WO1999030031A1 (en) * 1997-12-08 1999-06-17 Siemens Aktiengesellschaft Wind power plat and method for cooling a generator in a wind power plant
DE19802574A1 (en) * 1998-01-23 1999-03-11 Siemens Ag Wind power generator plant

Cited By (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014629A1 (en) * 2001-08-10 2003-02-20 Aloys Wobben Wind energy installation
US7874165B2 (en) 2001-08-10 2011-01-25 Aloys Wobben Wind power installation
EP1647779A2 (en) * 2001-08-10 2006-04-19 Aloys Wobben Wind energy installation
EP1647779A3 (en) * 2001-08-10 2006-05-31 Aloys Wobben Wind energy installation
US7886546B2 (en) 2001-08-10 2011-02-15 Aloys Wobben Wind power installation
US7893555B2 (en) 2001-09-13 2011-02-22 Wilic S.Ar.L. Wind power current generator
DE10233947A1 (en) * 2002-07-25 2004-02-12 Siemens Ag Wind power system has generator in gondola, turbine with rotor blade(s); generator has a closed primary cooling circuit; the gondola has an arrangement enabling cooling of primary cooling circuit
US7057305B2 (en) 2002-07-25 2006-06-06 Siemens Aktiengasellschaft Wind power installation with separate primary and secondary cooling circuits
US7161260B2 (en) 2002-07-25 2007-01-09 Siemens Aktiengesellschaft Wind power installation with separate primary and secondary cooling circuits
DE10351844A1 (en) * 2003-11-06 2005-06-09 Alstom Wind power plant for producing electricity has electrical components connected to radiator projecting through cutout in shell of gondola
US7443273B2 (en) 2004-06-18 2008-10-28 Siemens Aktiengesellschaft Arrangement for cooling of components of wind energy installations
WO2005124799A3 (en) * 2004-06-18 2006-06-01 Siemens Ag System for cooling components of wind power stations
WO2005124799A2 (en) * 2004-06-18 2005-12-29 Siemens Aktiengesellschaft System for cooling components of wind power stations
CN101023265B (en) * 2004-09-24 2011-08-31 艾劳埃斯·乌本 Wind turbine comprising a generator cooling system
DE102005029463A1 (en) * 2005-06-24 2006-12-28 Repower Systems Ag Tower humidification of a wind energy plant
DE102005029463B4 (en) * 2005-06-24 2015-10-29 Senvion Gmbh Tower humidification of a wind energy plant
US7946591B2 (en) 2005-09-21 2011-05-24 Wilic S.Ar.L. Combined labyrinth seal and screw-type gasket bearing sealing arrangement
US8310122B2 (en) 2005-11-29 2012-11-13 Wilic S.A.R.L. Core plate stack assembly for permanent magnet rotor or rotating machines
US7936102B2 (en) 2005-11-29 2011-05-03 Wilic S.Ar.L Magnet holder for permanent magnet rotors of rotating machines
WO2008102184A2 (en) * 2007-02-22 2008-08-28 Dionysios Choidas Cooling apparatus for a wind turbine
WO2008102184A3 (en) * 2007-02-22 2008-11-20 Dionysios Choidas Cooling apparatus for a wind turbine
GR20070100109A (en) * 2007-02-22 2008-09-19 Διονυσιος Χαραλαμπους Χοϊδας Cooling device of wind power generator.
ES2330491A1 (en) * 2007-05-25 2009-12-10 GAMESA INNOVATION & TECHNOLOGY, S.L. Climatisation system for wind turbines
CN101311529B (en) * 2007-05-25 2012-05-09 歌美飒创新技术公司 Acclimatization system for wind turbine
EP2000668A1 (en) * 2007-06-06 2008-12-10 ICEC Holding AG Wind turbine tower with passive cooling
WO2008148876A3 (en) * 2007-06-06 2009-12-17 Icec Holding Ag Wind power tower comprising a passive cooling device
WO2008148876A2 (en) * 2007-06-06 2008-12-11 Icec Holding Ag Wind power tower comprising a passive cooling device
WO2009081269A3 (en) * 2007-12-20 2009-12-30 Innovative Windpower Ag Media transporting device in a foundation for wind energy generating plants
WO2009081269A2 (en) * 2007-12-20 2009-07-02 Innovative Windpower Ag Media transporting device in a foundation for wind energy generating plants
DE102008019271A1 (en) * 2008-04-16 2009-10-22 Kenersys Gmbh Wind turbine with improved cooling air flow
US8482149B2 (en) 2008-04-16 2013-07-09 Kenersys Gmbh Wind power plant with improved cooling air conduction
US9312741B2 (en) 2008-06-19 2016-04-12 Windfin B.V. Wind power generator equipped with a cooling system
US8492919B2 (en) 2008-06-19 2013-07-23 Wilic S.Ar.L. Wind power generator equipped with a cooling system
US8120198B2 (en) 2008-07-23 2012-02-21 Wilic S.Ar.L. Wind power turbine
US8416042B2 (en) 2008-08-07 2013-04-09 Starkstrom-Geratebau Gmbh Transformer system
WO2010015651A1 (en) * 2008-08-07 2010-02-11 Starkstrom-Gerätebau Gmbh Transformer system
EP2151833A1 (en) * 2008-08-07 2010-02-10 Starkstrom-gerätebau GmbH Transformer system
JP2011530185A (en) * 2008-08-07 2011-12-15 スタークストロム−ジェラテバウ ゲーエムベーハー Transformer system
EP2161446A1 (en) 2008-09-09 2010-03-10 Suez Environnement Wind turbine
FR2935762A1 (en) * 2008-09-09 2010-03-12 Suez Environnement WIND TURBINE
EP2187047A2 (en) 2008-11-12 2010-05-19 Wilic S.Àr.L. Wind power turbine
EP2187047A3 (en) * 2008-11-12 2014-07-16 Wilic S.Ar.L Wind power turbine
US8319362B2 (en) 2008-11-12 2012-11-27 Wilic S.Ar.L. Wind power turbine with a cooling system
ITMI20082006A1 (en) * 2008-11-12 2010-05-13 Rolic Invest Sarl WIND GENERATOR
US8669685B2 (en) 2008-11-13 2014-03-11 Wilic S.Ar.L. Wind power turbine for producing electric energy
EP2196667A3 (en) * 2008-12-09 2013-04-03 General Electric Company Cooling system for wind turbine components
CN102395779A (en) * 2009-03-13 2012-03-28 湘电达尔文有限责任公司 Method of constructing a wind turbine and bottom tower section of wind turbine
WO2010103114A1 (en) * 2009-03-13 2010-09-16 Xemc Darwind B.V. Method of constructing a wind turbine and bottom tower section of wind turbine
US8274170B2 (en) 2009-04-09 2012-09-25 Willic S.A.R.L. Wind power turbine including a cable bundle guide device
US8659867B2 (en) 2009-04-29 2014-02-25 Wilic S.A.R.L. Wind power system for generating electric energy
US8410623B2 (en) 2009-06-10 2013-04-02 Wilic S. AR. L. Wind power electricity generating system and relative control method
DE102009025118A1 (en) * 2009-06-11 2010-12-16 Aerodyn Energiesysteme Gmbh Wind energy plant with cooling current feedback
ES2377696A1 (en) * 2009-07-06 2012-03-30 GAMESA INNOVATION & TECHNOLOGY S.L. System for the circulation of filtered air inside the wind turbine
CN101943137A (en) * 2009-07-06 2011-01-12 歌美飒创新技术公司 System for the circulation of filtered air inside the wind turbine
US20110001371A1 (en) * 2009-07-06 2011-01-06 Gamesa Innovation & Technology, S.L. System for the circulation of filtered air inside the wind turbine
US8810347B2 (en) 2009-08-07 2014-08-19 Wilic S.Ar.L Method and apparatus for activating an electric machine, and electric machine
US8358189B2 (en) 2009-08-07 2013-01-22 Willic S.Ar.L. Method and apparatus for activating an electric machine, and electric machine
US8618689B2 (en) 2009-11-23 2013-12-31 Wilic S.Ar.L. Wind power turbine for generating electric energy
US8541902B2 (en) 2010-02-04 2013-09-24 Wilic S.Ar.L. Wind power turbine electric generator cooling system and method and wind power turbine comprising such a cooling system
CN102753822A (en) * 2010-02-08 2012-10-24 三菱重工业株式会社 Wind-powered electrical generator
US8937397B2 (en) 2010-03-30 2015-01-20 Wilic S.A.R.L. Wind power turbine and method of removing a bearing from a wind power turbine
US8975770B2 (en) 2010-04-22 2015-03-10 Wilic S.Ar.L. Wind power turbine electric generator and wind power turbine equipped with an electric generator
EP2589805A1 (en) * 2010-06-30 2013-05-08 Mitsubishi Heavy Industries, Ltd. Wind power generation device
EP2589805A4 (en) * 2010-06-30 2014-04-30 Mitsubishi Heavy Ind Ltd Wind power generation device
DE102010040911A1 (en) * 2010-09-16 2012-03-22 Aloys Wobben Magnus rotor
EP2453451A3 (en) * 2010-11-12 2013-12-25 Hitachi Industrial Equipment Systems Co., Ltd. Transformer for wind power station and/or wind power generating facilities installed with transformer for wind power station
EP2518315A1 (en) * 2011-02-21 2012-10-31 Hitachi Industrial Equipment Systems Co., Ltd. Wind turbine power generating facilities
CN102644557A (en) * 2011-02-21 2012-08-22 株式会社日立产机系统 Wind turbine power generating facilities
CN102644557B (en) * 2011-02-21 2014-11-26 株式会社日立产机系统 Wind turbine power generating facilities
US9006918B2 (en) 2011-03-10 2015-04-14 Wilic S.A.R.L. Wind turbine
US8937398B2 (en) 2011-03-10 2015-01-20 Wilic S.Ar.L. Wind turbine rotary electric machine
US8957555B2 (en) 2011-03-10 2015-02-17 Wilic S.Ar.L. Wind turbine rotary electric machine
CN103306891B (en) * 2012-03-14 2017-11-14 埃德温海上有限公司 Offshore wind turbines with heat regulating system
EP2639451A3 (en) * 2012-03-14 2014-12-31 Gamesa Innovation & Technology, S.L. An off-shore wind turbine with a thermal conditioning system
CN103306891A (en) * 2012-03-14 2013-09-18 歌美飒创新技术公司 An off-shore wind turbine with a thermal conditioning system
CN102705179A (en) * 2012-06-08 2012-10-03 华锐风电科技(江苏)有限公司 Micro positive pressure generating device
CN102705179B (en) * 2012-06-08 2014-05-14 华锐风电科技(江苏)有限公司 Micro positive pressure generating device
AT513671B1 (en) * 2012-11-15 2014-11-15 Green Tower Entwicklungs Gmbh Device for controlling the climate inside a building made essentially of wood
AT513671A1 (en) * 2012-11-15 2014-06-15 Green Tower Entwicklungs Gmbh Device for controlling the climate inside a building made essentially of wood
CN104047811A (en) * 2013-03-12 2014-09-17 上海电气风能有限公司 Ventilation and filter system for tower bottom of wind driven generator
DE102015015338A1 (en) 2015-11-26 2017-06-01 Munters Euroform Gmbh Wind turbine, nacelle and cooling device for a wind turbine
WO2017088846A2 (en) 2015-11-26 2017-06-01 Munters Euroform Gmbh Wind turbine, nacelle and cooling device for a wind turbine
CN106438955A (en) * 2016-06-22 2017-02-22 大唐向阳风电有限公司 Fan gear box air filter screen protection device
CN111042993A (en) * 2019-12-31 2020-04-21 新疆新风新能环保科技有限公司 Tower heat dissipation device of wind driven generator
CN111042993B (en) * 2019-12-31 2020-12-18 新疆新风新能环保科技有限公司 Tower heat dissipation device of wind driven generator

Similar Documents

Publication Publication Date Title
DE19947915A1 (en) Cooling system for wind power system components, feeds air flow at least partly produced by chimney effect through system in tower foot region through tower, machine room to air outlet
EP1200733B1 (en) Wind energy facility with a closed cooling circuit
DE10000370B4 (en) Wind energy plant with a closed cooling circuit
DE102007042338A1 (en) Wind turbine with heat exchanger system
DE19932394A1 (en) Wind power plant with completely closed or at least partly closed cooling circuit with which heat to be abstracted from cooling circuit is transmitted to wind power plant across tower or nacelle
EP1848260B1 (en) Inverter
WO1999030031A1 (en) Wind power plat and method for cooling a generator in a wind power plant
EP1525396A1 (en) Wind turbine comprising a closed cooling circuit
DE102006026287A1 (en) Two-shaft engine for aircraft with high power requirements
WO2013075915A2 (en) Device and method for acquiring energy from a fluid flow
DE202012102872U1 (en) Energy recovery plant
DE112008002100T5 (en) A method for improving the cooling performance of a direct air cooling system for a power plant and the cooling system thereof
WO2001057396A2 (en) Group of at least two windmills
DE202012012783U1 (en) Apparatus and system for converting kinetic energy of an exhaust air stream into electrical energy
AT511282A1 (en) PUMPED STORAGE PLANT
DE102020112554B4 (en) Device for cooling electrical elements and an electrical element equipped with such a device
DE102014115191A1 (en) Apparatus and method for driving variable speed work machines
AT604U1 (en) EXCITATION DEVICE
DE3115175A1 (en) ROTARY DRIVE FOR DRIVING MACHINES
DE102010045660B4 (en) Air conditioning II
DE102016100621A1 (en) Cooling arrangement for a generator part of a wind turbine
DE10132997A1 (en) Generator, preferably generating electricity in small wind power systems, has asynchronous machine with preferably eight poles connected or disconnected depending on rotor revolution rate
EP1529333A1 (en) Dynamoelectric generator
EP3571402A1 (en) Nacelle of a wind power plant
DE19708801A1 (en) Energy converter for energy of fluid flow into electrical energy

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8139 Disposal/non-payment of the annual fee