DE821930C - Wind power machine - Google Patents
Wind power machineInfo
- Publication number
- DE821930C DE821930C DEP21768D DEP0021768D DE821930C DE 821930 C DE821930 C DE 821930C DE P21768 D DEP21768 D DE P21768D DE P0021768 D DEP0021768 D DE P0021768D DE 821930 C DE821930 C DE 821930C
- Authority
- DE
- Germany
- Prior art keywords
- wind
- power machine
- wind power
- shaft
- wind turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010276 construction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/04—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor having stationary wind-guiding means, e.g. with shrouds or channels
- F03D3/0436—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor
- F03D3/0445—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor the shield being fixed with respect to the wind motor
- F03D3/0463—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor the shield being fixed with respect to the wind motor with converging inlets, i.e. the shield intercepting an area greater than the effective rotor area
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/04—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor having stationary wind-guiding means, e.g. with shrouds or channels
- F03D3/0436—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor
- F03D3/0472—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor the shield orientation being adaptable to the wind motor
- F03D3/049—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor the shield orientation being adaptable to the wind motor with converging inlets, i.e. the shield intercepting an area greater than the effective rotor area
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/21—Rotors for wind turbines
- F05B2240/211—Rotors for wind turbines with vertical axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/21—Rotors for wind turbines
- F05B2240/211—Rotors for wind turbines with vertical axis
- F05B2240/213—Rotors for wind turbines with vertical axis of the Savonius type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/74—Wind turbines with rotation axis perpendicular to the wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Wind Motors (AREA)
Description
Die bisherigen Windmotoren mit um eine senkrechte Achse rotierendem Windrad besitzen keinen gleichmäßigen Umlauf, weil der Arbeitsimpuls im Laufe einer Umdrehung des Rades nur absatzweise erfolgt. Die Regelung der Drehzahl erfolgt unter Ausnutzung der Zentrifugalkraft und vertärkt dadurch noch di-e Unregelmäßigkeit des Laufes.The previous wind motors with rotating around a vertical axis Wind turbines do not have a uniform rotation because the work impulse in the course of a The wheel only rotates intermittently. The speed is controlled under Exploitation of the centrifugal force and thereby intensifies the irregularity of the run.
Die Bauweise der in der Abbildung dargestellten Windkraftmaschine gleicht den Lauf des Windrades aus durch Anwendung von mehreren übereinander und versetzt angeordneten Windrädern und durch eine von der Drehzahl unabhängige Regulierung. ' Die Zeichnung stellt dar in Fig. i einen vertikalen Schnitt durch die @Vindkraftmasc'hine, in Fig.2 einen horizontalen Schnitt durch die Windkraftmaschine, in Fig.3 schematisch die Anordnung der übereinanderliegenden Windräder.The construction of the wind power machine shown in the figure balances the run of the wind turbine by using several on top of each other and offset wind turbines and a regulation that is independent of the speed. 'The drawing shows in Fig. I a vertical section through the @ Vindkraftmasc'hine, in Figure 2 a horizontal section through the wind power machine, in Figure 3 schematically the arrangement of the superimposed wind turbines.
Die Windkraftmaschine kann zum unmittelbaren Antrieb eines Stromerzeugers oder einer Kreiselpumpe und auch unter Zwischenschaltung eines geeigneten Getriebes zum mittelbaren Betrieb solcher oder anderer Arbeitsmaschinen benutzt werden. Mit einem Stromerzeuger gekuppelt ist sie in der "Zeichnung im Prinzip dargestellt. Sie setzt sich zusammen aus einer vertikalen Welle i, welche im Gehäuse 2 drehbar gelagert und von diesem gehalten wird, und zwar mittels Wälzlager 3. Unterhalb des Gehäuses 2 befindet sich der Stromerzeuger 4. Bei mittelbarem Betrieb wird der Stromerzeuger durch das Getriebe ersetzt. Das Gehäuse wird mit dem Maschinenträger in Gestalt eines Bockes, eines Mastes oder auch eines Rohres verbunden, dessen Höhe über dem Erdboden durch die Windverhältnisse und die Umgebung bestimmt wird. Über drei oder mehrere Flansche ist die Welle i mit dem Rotorteil 5 durch Schrauben verbunden. Der in den Fig. i bis 3 gezeigte Rotor 5 setzt sich aus einem unteren, einem mittleren und einem oberen Blech 7 sowie aus vertikal gestellten, zylindrisch gebogenen Leitschaufeln 6 zusammen. Die drei Bodenbleche 7 sind mit den Schaufeln 6 durch Vernietung fest verbunden. Die,Schaufeln 6 sind paarweise angeordnet. Sie sind in den beiden übereinanderliegenden Rädern um 9o° gegeneinander versetzt (Fig. 3). Der sich um seine vertikale Achse drehende Rotor 5 ist von zwei Mantelblechen 8 und 8a umschlossen, welche je einen Quadranten seines Umfanges bedecken und die anderen beiden sich gegenüberliegenden Quadranten für den Ein- und Austritt der Luftströmung frei lassen. Jedes dieser Mantelbleche 8 und 8° i,st oben und unten durch flache Speichen mit einer Nabe starr verbunden, die mit Wälzlagern 9 versehen sind, die auf der Welle i sitzen. Jedes Mantelblech 8 bzw. 8a kann sich somit unabhängig um die Welle i drehen. Wie aus Fig. i ersichtlich, ist jedes Mantelblech 8 bzw. 8a über ein Gestänge io bzw. ioa mit einer Fahne i i bzw. i ia versehen. Eine Feder 12 verbindet beide Gestänge io und io° und hält sie in gekreuzter Stellung, wobei die Fahnen i i und i i° in einem bestimmten Winkel zueinander stehen, der sich in Abhängigkeit von der Windstärke ändert. Jede Stellungsänderung dieser Fahnen i i und i ja wird über die Gestänge io und ioa auf die Mantelbleche 8 und 8a übertragen, welche sich bei starken Winden und dadurch gegebener Parallelstellung der Fahnen i i und i ia schließen. Bei abflauendem Winde überwiegt die Zugkraft der Feder 12, und die Mantelbleche 8 und 8° geben dem Winde wieder freien Eintritt, indem sie ihre Stellung einander gegenüber einnehmen (s. Fig. 2). Als 20ischluß und zum Schutze der Welle, der Regeleinrichtung und des Rotors trägt,die Welle an ihrem obersten Ende eine kreisrunde Platte 13, welche die Umdrehungen mitmacht.The wind power machine can be used to directly drive an electricity generator or a centrifugal pump and also with the interposition of a suitable gear are used for the indirect operation of such or other work machines. With Coupled to a power generator, it is shown in principle in the "drawing. It is composed of a vertical shaft i, which rotates in the housing 2 is stored and held by this, namely by means of roller bearings 3. Below the Housing 2 is the power generator 4. In the case of indirect operation, the power generator replaced by the gearbox. The housing is in shape with the machine carrier a trestle, a mast or a pipe connected, the height of which is above the Ground is determined by the wind conditions and the environment. About three or several flanges, the shaft i is connected to the rotor part 5 by screws. The rotor 5 shown in FIGS. I to 3 consists of a lower one, a middle one and an upper plate 7 as well as vertically positioned, cylindrically curved guide vanes 6 together. The three bottom plates 7 are fixed to the blades 6 by riveting tied together. The blades 6 are arranged in pairs. They are in the two superimposed Wheels offset from one another by 90 ° (Fig. 3). Which revolves around its vertical axis rotating rotor 5 is enclosed by two shell plates 8 and 8a, each one Cover quadrants of its perimeter and the other two opposite one another Leave the quadrants free for the entry and exit of the air flow. Each of these Shell plates 8 and 8 ° i, stiff at the top and bottom by flat spokes with a hub connected, which are provided with roller bearings 9 that sit on the shaft i. Each The jacket plate 8 or 8a can thus rotate independently about the shaft i. How out Fig. I can be seen, each jacket sheet 8 or 8a via a linkage io or ioa provided with a flag i i or i ia. A spring 12 connects the two rods io and io ° and holds them in a crossed position, the flags i i and i i ° in one certain angle to each other, which depends on the wind strength changes. Every change of position of these flags i i and i ja is controlled by the linkage io and ioa transferred to the jacket sheets 8 and 8a, which are in strong winds and the resulting parallel position of the flags i i and i ia close. When the Wind outweighs the tensile force of the spring 12, and the jacket plates 8 and 8 ° give the Win free entry again by taking their positions opposite one another (see Fig. 2). As a closure and to protect the shaft, the control device and the Rotor carries, the shaft at its uppermost end a circular plate 13, which goes along with the revolutions.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP21768D DE821930C (en) | 1948-11-16 | 1948-11-16 | Wind power machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP21768D DE821930C (en) | 1948-11-16 | 1948-11-16 | Wind power machine |
Publications (1)
Publication Number | Publication Date |
---|---|
DE821930C true DE821930C (en) | 1951-11-22 |
Family
ID=7368426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DEP21768D Expired DE821930C (en) | 1948-11-16 | 1948-11-16 | Wind power machine |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE821930C (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2291379A1 (en) * | 1974-11-13 | 1976-06-11 | Guis Paul | Wind driven turbine with vertical axis - has blades pivoted by rotor rotation mounted between two discs |
FR2465897A1 (en) * | 1979-09-25 | 1981-03-27 | Naquet Nelson | Wind driven electric generator system - has generators mounted in hub of paddle wheel style wind turbine |
US4288200A (en) * | 1979-04-25 | 1981-09-08 | Hare Louis R O | Wind tower turbine |
US4428711A (en) | 1979-08-07 | 1984-01-31 | John David Archer | Utilization of wind energy |
US4474529A (en) * | 1983-03-21 | 1984-10-02 | Kinsey Lewis R | Windmill |
US4652206A (en) * | 1985-03-29 | 1987-03-24 | Yeoman David R | Wind turbine |
WO1987003340A1 (en) * | 1985-11-22 | 1987-06-04 | Benesh Alvin H | Wind turbine system using a savonius-type rotor |
US4784568A (en) * | 1987-07-01 | 1988-11-15 | Benesh Alvin H | Wind turbine system using a vertical axis savonius-type rotor |
US4830570A (en) * | 1987-12-15 | 1989-05-16 | Benesh Alvin H | Wind turbine system using twin savonius-type rotors |
US4850792A (en) * | 1985-03-29 | 1989-07-25 | Yeoman David R | Wind turbine |
DE3913948A1 (en) * | 1989-04-27 | 1991-01-03 | Ulrich Bufe | Vertical wind turbine on a carrier mast - makes use of screen attached to weather vane |
US5494407A (en) * | 1994-12-16 | 1996-02-27 | Benesh; Alvin H. | Wind turbine with savonius-type rotor |
NL1033514C2 (en) * | 2007-03-07 | 2008-09-09 | Edwin Aronds | Rotor in the direction, windmill and working method. |
US7766600B1 (en) * | 2002-06-07 | 2010-08-03 | Robert A. Vanderhye | Savonius rotor with spillover |
FR2971560A1 (en) * | 2011-02-16 | 2012-08-17 | Gilles Baratoux | Peripheral device for use in wind turbine that is installed in land to produce electricity, has support fixed to vertical axle of rotor of wind turbine, and fixed wing supporting counterweight of adjustable wing and centrifugal drive system |
WO2015189155A1 (en) * | 2014-06-10 | 2015-12-17 | Philéole | Savonius wind power rotor |
-
1948
- 1948-11-16 DE DEP21768D patent/DE821930C/en not_active Expired
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2291379A1 (en) * | 1974-11-13 | 1976-06-11 | Guis Paul | Wind driven turbine with vertical axis - has blades pivoted by rotor rotation mounted between two discs |
US4288200A (en) * | 1979-04-25 | 1981-09-08 | Hare Louis R O | Wind tower turbine |
US4428711A (en) | 1979-08-07 | 1984-01-31 | John David Archer | Utilization of wind energy |
FR2465897A1 (en) * | 1979-09-25 | 1981-03-27 | Naquet Nelson | Wind driven electric generator system - has generators mounted in hub of paddle wheel style wind turbine |
US4474529A (en) * | 1983-03-21 | 1984-10-02 | Kinsey Lewis R | Windmill |
US4652206A (en) * | 1985-03-29 | 1987-03-24 | Yeoman David R | Wind turbine |
US4850792A (en) * | 1985-03-29 | 1989-07-25 | Yeoman David R | Wind turbine |
US4838757A (en) * | 1985-11-22 | 1989-06-13 | Benesh Alvin H | Wind turbine system using a savonius type rotor |
US4715776A (en) * | 1985-11-22 | 1987-12-29 | Benesh Alvin H | Wind turbine system using a savonius type rotor |
WO1987003340A1 (en) * | 1985-11-22 | 1987-06-04 | Benesh Alvin H | Wind turbine system using a savonius-type rotor |
US4784568A (en) * | 1987-07-01 | 1988-11-15 | Benesh Alvin H | Wind turbine system using a vertical axis savonius-type rotor |
US4830570A (en) * | 1987-12-15 | 1989-05-16 | Benesh Alvin H | Wind turbine system using twin savonius-type rotors |
DE3913948A1 (en) * | 1989-04-27 | 1991-01-03 | Ulrich Bufe | Vertical wind turbine on a carrier mast - makes use of screen attached to weather vane |
US5494407A (en) * | 1994-12-16 | 1996-02-27 | Benesh; Alvin H. | Wind turbine with savonius-type rotor |
US7766600B1 (en) * | 2002-06-07 | 2010-08-03 | Robert A. Vanderhye | Savonius rotor with spillover |
WO2008108637A2 (en) * | 2007-03-07 | 2008-09-12 | Edwin Aronds | Rotor device, wind turbine and method |
WO2008108637A3 (en) * | 2007-03-07 | 2009-04-09 | Edwin Aronds | Rotor device, wind turbine and method |
NL1033514C2 (en) * | 2007-03-07 | 2008-09-09 | Edwin Aronds | Rotor in the direction, windmill and working method. |
FR2971560A1 (en) * | 2011-02-16 | 2012-08-17 | Gilles Baratoux | Peripheral device for use in wind turbine that is installed in land to produce electricity, has support fixed to vertical axle of rotor of wind turbine, and fixed wing supporting counterweight of adjustable wing and centrifugal drive system |
WO2015189155A1 (en) * | 2014-06-10 | 2015-12-17 | Philéole | Savonius wind power rotor |
BE1022436B1 (en) * | 2014-06-10 | 2016-03-30 | Phileole | WIND ROTOR OF SAVONIUS TYPE |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE821930C (en) | Wind power machine | |
DE7502622U (en) | WIND POWER MACHINE | |
DE883428C (en) | Wind power plant | |
WO2005100785A1 (en) | Flow-controlled windmill comprising wind-dependent blade orientation | |
DE834077C (en) | Wind or water power machine | |
DE8533964U1 (en) | Horizontal acting wind vane motor | |
DE623361C (en) | ||
DE3026649A1 (en) | Horizontal wind-driven rotor - maintains favourable wind wings and rotor axis ratio by using laminated wing structure | |
EP2984738B1 (en) | Device to produce electrical energy | |
EP0040597A1 (en) | Wind turbine having a shaft arranged perpendicularly with respect to the wind direction on a vertical axis, and flettner rotors parallel to the shaft | |
DE2919328A1 (en) | Vertical or horizontal axis windmill with several blades - has system of gears and cams controlling angle of attack of blades throughout rotation | |
DE2539058A1 (en) | Wind driven turbine has rotor with blades - in enclosed housing with adjustable taper section intake for air flow | |
DE3230072C2 (en) | Wind turbine | |
DE102009008805A1 (en) | Wind turbine for use in generation of power, has vane whose surface is formed such that counter torque is less around vertical yaw axis by wind effect on vane and lesser than torque around yaw axis by wind effect on wind wheel | |
DE907398C (en) | Wind power plant with blades rotating around vertical axes and performing a swinging movement | |
DE2922593A1 (en) | Wind turbine funnel - has wind direction indicator to keep funnel facing into wind | |
DE952250C (en) | Wind turbine with automatic storm protection | |
DE3918184A1 (en) | Wind turbine driving electrical generator - has horizontal arms supporting rotatable plates adjusted to match detected wind direction | |
DE3040508C2 (en) | ||
CH237845A (en) | Machine with impeller working in the air. | |
DE563255C (en) | Wind power machine with main wind turbine rotating around a horizontal axis and auxiliary wind turbines rotatably connected to it and rotating with it | |
DE3042426A1 (en) | Wind-energy conversion plant - has controlled wind vanes mounted on rotation framework | |
DE102018010172A1 (en) | Single-wing wind turbine with a starter wind turbine. | |
DE844028C (en) | Arrangement for voltage and speed control for wind power-electrical systems, especially for capacitor-excited asynchronous generators and synchronous generators with load-dependent excitation | |
DE814880C (en) | Wind power machine |