DE821930C - Wind power machine - Google Patents

Wind power machine

Info

Publication number
DE821930C
DE821930C DEP21768D DEP0021768D DE821930C DE 821930 C DE821930 C DE 821930C DE P21768 D DEP21768 D DE P21768D DE P0021768 D DEP0021768 D DE P0021768D DE 821930 C DE821930 C DE 821930C
Authority
DE
Germany
Prior art keywords
wind
power machine
wind power
shaft
wind turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DEP21768D
Other languages
German (de)
Inventor
Piotr Suffczynski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GERTRUD SUFFCZYNSKI GEB SENFTL
Original Assignee
GERTRUD SUFFCZYNSKI GEB SENFTL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GERTRUD SUFFCZYNSKI GEB SENFTL filed Critical GERTRUD SUFFCZYNSKI GEB SENFTL
Priority to DEP21768D priority Critical patent/DE821930C/en
Application granted granted Critical
Publication of DE821930C publication Critical patent/DE821930C/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0436Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor
    • F03D3/0445Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor the shield being fixed with respect to the wind motor
    • F03D3/0463Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor the shield being fixed with respect to the wind motor with converging inlets, i.e. the shield intercepting an area greater than the effective rotor area
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0436Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor
    • F03D3/0472Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor the shield orientation being adaptable to the wind motor
    • F03D3/049Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor the shield orientation being adaptable to the wind motor with converging inlets, i.e. the shield intercepting an area greater than the effective rotor area
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/213Rotors for wind turbines with vertical axis of the Savonius type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Description

Die bisherigen Windmotoren mit um eine senkrechte Achse rotierendem Windrad besitzen keinen gleichmäßigen Umlauf, weil der Arbeitsimpuls im Laufe einer Umdrehung des Rades nur absatzweise erfolgt. Die Regelung der Drehzahl erfolgt unter Ausnutzung der Zentrifugalkraft und vertärkt dadurch noch di-e Unregelmäßigkeit des Laufes.The previous wind motors with rotating around a vertical axis Wind turbines do not have a uniform rotation because the work impulse in the course of a The wheel only rotates intermittently. The speed is controlled under Exploitation of the centrifugal force and thereby intensifies the irregularity of the run.

Die Bauweise der in der Abbildung dargestellten Windkraftmaschine gleicht den Lauf des Windrades aus durch Anwendung von mehreren übereinander und versetzt angeordneten Windrädern und durch eine von der Drehzahl unabhängige Regulierung. ' Die Zeichnung stellt dar in Fig. i einen vertikalen Schnitt durch die @Vindkraftmasc'hine, in Fig.2 einen horizontalen Schnitt durch die Windkraftmaschine, in Fig.3 schematisch die Anordnung der übereinanderliegenden Windräder.The construction of the wind power machine shown in the figure balances the run of the wind turbine by using several on top of each other and offset wind turbines and a regulation that is independent of the speed. 'The drawing shows in Fig. I a vertical section through the @ Vindkraftmasc'hine, in Figure 2 a horizontal section through the wind power machine, in Figure 3 schematically the arrangement of the superimposed wind turbines.

Die Windkraftmaschine kann zum unmittelbaren Antrieb eines Stromerzeugers oder einer Kreiselpumpe und auch unter Zwischenschaltung eines geeigneten Getriebes zum mittelbaren Betrieb solcher oder anderer Arbeitsmaschinen benutzt werden. Mit einem Stromerzeuger gekuppelt ist sie in der "Zeichnung im Prinzip dargestellt. Sie setzt sich zusammen aus einer vertikalen Welle i, welche im Gehäuse 2 drehbar gelagert und von diesem gehalten wird, und zwar mittels Wälzlager 3. Unterhalb des Gehäuses 2 befindet sich der Stromerzeuger 4. Bei mittelbarem Betrieb wird der Stromerzeuger durch das Getriebe ersetzt. Das Gehäuse wird mit dem Maschinenträger in Gestalt eines Bockes, eines Mastes oder auch eines Rohres verbunden, dessen Höhe über dem Erdboden durch die Windverhältnisse und die Umgebung bestimmt wird. Über drei oder mehrere Flansche ist die Welle i mit dem Rotorteil 5 durch Schrauben verbunden. Der in den Fig. i bis 3 gezeigte Rotor 5 setzt sich aus einem unteren, einem mittleren und einem oberen Blech 7 sowie aus vertikal gestellten, zylindrisch gebogenen Leitschaufeln 6 zusammen. Die drei Bodenbleche 7 sind mit den Schaufeln 6 durch Vernietung fest verbunden. Die,Schaufeln 6 sind paarweise angeordnet. Sie sind in den beiden übereinanderliegenden Rädern um 9o° gegeneinander versetzt (Fig. 3). Der sich um seine vertikale Achse drehende Rotor 5 ist von zwei Mantelblechen 8 und 8a umschlossen, welche je einen Quadranten seines Umfanges bedecken und die anderen beiden sich gegenüberliegenden Quadranten für den Ein- und Austritt der Luftströmung frei lassen. Jedes dieser Mantelbleche 8 und 8° i,st oben und unten durch flache Speichen mit einer Nabe starr verbunden, die mit Wälzlagern 9 versehen sind, die auf der Welle i sitzen. Jedes Mantelblech 8 bzw. 8a kann sich somit unabhängig um die Welle i drehen. Wie aus Fig. i ersichtlich, ist jedes Mantelblech 8 bzw. 8a über ein Gestänge io bzw. ioa mit einer Fahne i i bzw. i ia versehen. Eine Feder 12 verbindet beide Gestänge io und io° und hält sie in gekreuzter Stellung, wobei die Fahnen i i und i i° in einem bestimmten Winkel zueinander stehen, der sich in Abhängigkeit von der Windstärke ändert. Jede Stellungsänderung dieser Fahnen i i und i ja wird über die Gestänge io und ioa auf die Mantelbleche 8 und 8a übertragen, welche sich bei starken Winden und dadurch gegebener Parallelstellung der Fahnen i i und i ia schließen. Bei abflauendem Winde überwiegt die Zugkraft der Feder 12, und die Mantelbleche 8 und 8° geben dem Winde wieder freien Eintritt, indem sie ihre Stellung einander gegenüber einnehmen (s. Fig. 2). Als 20ischluß und zum Schutze der Welle, der Regeleinrichtung und des Rotors trägt,die Welle an ihrem obersten Ende eine kreisrunde Platte 13, welche die Umdrehungen mitmacht.The wind power machine can be used to directly drive an electricity generator or a centrifugal pump and also with the interposition of a suitable gear are used for the indirect operation of such or other work machines. With Coupled to a power generator, it is shown in principle in the "drawing. It is composed of a vertical shaft i, which rotates in the housing 2 is stored and held by this, namely by means of roller bearings 3. Below the Housing 2 is the power generator 4. In the case of indirect operation, the power generator replaced by the gearbox. The housing is in shape with the machine carrier a trestle, a mast or a pipe connected, the height of which is above the Ground is determined by the wind conditions and the environment. About three or several flanges, the shaft i is connected to the rotor part 5 by screws. The rotor 5 shown in FIGS. I to 3 consists of a lower one, a middle one and an upper plate 7 as well as vertically positioned, cylindrically curved guide vanes 6 together. The three bottom plates 7 are fixed to the blades 6 by riveting tied together. The blades 6 are arranged in pairs. They are in the two superimposed Wheels offset from one another by 90 ° (Fig. 3). Which revolves around its vertical axis rotating rotor 5 is enclosed by two shell plates 8 and 8a, each one Cover quadrants of its perimeter and the other two opposite one another Leave the quadrants free for the entry and exit of the air flow. Each of these Shell plates 8 and 8 ° i, stiff at the top and bottom by flat spokes with a hub connected, which are provided with roller bearings 9 that sit on the shaft i. Each The jacket plate 8 or 8a can thus rotate independently about the shaft i. How out Fig. I can be seen, each jacket sheet 8 or 8a via a linkage io or ioa provided with a flag i i or i ia. A spring 12 connects the two rods io and io ° and holds them in a crossed position, the flags i i and i i ° in one certain angle to each other, which depends on the wind strength changes. Every change of position of these flags i i and i ja is controlled by the linkage io and ioa transferred to the jacket sheets 8 and 8a, which are in strong winds and the resulting parallel position of the flags i i and i ia close. When the Wind outweighs the tensile force of the spring 12, and the jacket plates 8 and 8 ° give the Win free entry again by taking their positions opposite one another (see Fig. 2). As a closure and to protect the shaft, the control device and the Rotor carries, the shaft at its uppermost end a circular plate 13, which goes along with the revolutions.

Claims (4)

PATENTANSPRÜCHE: i. Windkraftmaschiiie mit senkrechter Drehac'hse und einem Windrad nach Art eines Savoniusrotors, dadurch gekennzeichnet, daß das Windrad durch rechtwinklich zur Drehachse angeordnete Scheiben in zwei oder mehrere Teilräder unterteilt ist und daß die Schaufeln der einzelnen Teilräder gegeneinander versetzt angeordnet sind. PATENT CLAIMS: i. Wind power machine with a vertical axis of rotation and a wind wheel in the manner of a Savonius rotor, characterized in that the wind wheel is divided into two or more part wheels by disks arranged at right angles to the axis of rotation and that the blades of the individual part wheels are offset from one another. 2. Windkraftmaschine nach Anspruch i, dadurch gekennzeichnet, daß das Windrad am äußeren Umfange von zwei Mantelblechen (8 und 8a) teilweise umgeben ist (Fig.1 und 2), welche sich unabhängig vom Windrad um die vertikale Welle als Achse bewegen können. 2. Wind power machine according to claim i, characterized in that that the wind turbine is partially surrounded on the outer circumference by two casing sheets (8 and 8a) is (Fig.1 and 2), which is independent of the wind turbine around the vertical wave as Axis can move. 3. Windkraftmaschine nach Anspruch 1 und 2, dadurch gekennzeichnet, daß , an den beiden Mantelblechen (8 und 811) Windfahnen (i i bzw. ,ja) befestigt sind, die sich überkreuzen und durch eine Feder (12) miteinander gekuppelt sind. 3. Wind power machine according to claim 1 and 2, characterized in that that, attached to the two jacket sheets (8 and 811) wind vanes (i i or, yes) which cross each other and are coupled to one another by a spring (12). 4. Windkraftmaschine nach Anspruch i bis 3, dadurch gekennzeichnet, daß die Welle (i) des Windrades unmittelbar mit der Welle einer Arbeitsmaschine verbunden ist, die als Träger des Windrades ausgebildet ist.4. Wind power machine according to claim i to 3, characterized in that the shaft (i) the wind turbine is directly connected to the shaft of a work machine, which is designed as a carrier of the wind turbine.
DEP21768D 1948-11-16 1948-11-16 Wind power machine Expired DE821930C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DEP21768D DE821930C (en) 1948-11-16 1948-11-16 Wind power machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEP21768D DE821930C (en) 1948-11-16 1948-11-16 Wind power machine

Publications (1)

Publication Number Publication Date
DE821930C true DE821930C (en) 1951-11-22

Family

ID=7368426

Family Applications (1)

Application Number Title Priority Date Filing Date
DEP21768D Expired DE821930C (en) 1948-11-16 1948-11-16 Wind power machine

Country Status (1)

Country Link
DE (1) DE821930C (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2291379A1 (en) * 1974-11-13 1976-06-11 Guis Paul Wind driven turbine with vertical axis - has blades pivoted by rotor rotation mounted between two discs
FR2465897A1 (en) * 1979-09-25 1981-03-27 Naquet Nelson Wind driven electric generator system - has generators mounted in hub of paddle wheel style wind turbine
US4288200A (en) * 1979-04-25 1981-09-08 Hare Louis R O Wind tower turbine
US4428711A (en) 1979-08-07 1984-01-31 John David Archer Utilization of wind energy
US4474529A (en) * 1983-03-21 1984-10-02 Kinsey Lewis R Windmill
US4652206A (en) * 1985-03-29 1987-03-24 Yeoman David R Wind turbine
WO1987003340A1 (en) * 1985-11-22 1987-06-04 Benesh Alvin H Wind turbine system using a savonius-type rotor
US4784568A (en) * 1987-07-01 1988-11-15 Benesh Alvin H Wind turbine system using a vertical axis savonius-type rotor
US4830570A (en) * 1987-12-15 1989-05-16 Benesh Alvin H Wind turbine system using twin savonius-type rotors
US4850792A (en) * 1985-03-29 1989-07-25 Yeoman David R Wind turbine
DE3913948A1 (en) * 1989-04-27 1991-01-03 Ulrich Bufe Vertical wind turbine on a carrier mast - makes use of screen attached to weather vane
US5494407A (en) * 1994-12-16 1996-02-27 Benesh; Alvin H. Wind turbine with savonius-type rotor
NL1033514C2 (en) * 2007-03-07 2008-09-09 Edwin Aronds Rotor in the direction, windmill and working method.
US7766600B1 (en) * 2002-06-07 2010-08-03 Robert A. Vanderhye Savonius rotor with spillover
FR2971560A1 (en) * 2011-02-16 2012-08-17 Gilles Baratoux Peripheral device for use in wind turbine that is installed in land to produce electricity, has support fixed to vertical axle of rotor of wind turbine, and fixed wing supporting counterweight of adjustable wing and centrifugal drive system
WO2015189155A1 (en) * 2014-06-10 2015-12-17 Philéole Savonius wind power rotor

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2291379A1 (en) * 1974-11-13 1976-06-11 Guis Paul Wind driven turbine with vertical axis - has blades pivoted by rotor rotation mounted between two discs
US4288200A (en) * 1979-04-25 1981-09-08 Hare Louis R O Wind tower turbine
US4428711A (en) 1979-08-07 1984-01-31 John David Archer Utilization of wind energy
FR2465897A1 (en) * 1979-09-25 1981-03-27 Naquet Nelson Wind driven electric generator system - has generators mounted in hub of paddle wheel style wind turbine
US4474529A (en) * 1983-03-21 1984-10-02 Kinsey Lewis R Windmill
US4652206A (en) * 1985-03-29 1987-03-24 Yeoman David R Wind turbine
US4850792A (en) * 1985-03-29 1989-07-25 Yeoman David R Wind turbine
US4838757A (en) * 1985-11-22 1989-06-13 Benesh Alvin H Wind turbine system using a savonius type rotor
US4715776A (en) * 1985-11-22 1987-12-29 Benesh Alvin H Wind turbine system using a savonius type rotor
WO1987003340A1 (en) * 1985-11-22 1987-06-04 Benesh Alvin H Wind turbine system using a savonius-type rotor
US4784568A (en) * 1987-07-01 1988-11-15 Benesh Alvin H Wind turbine system using a vertical axis savonius-type rotor
US4830570A (en) * 1987-12-15 1989-05-16 Benesh Alvin H Wind turbine system using twin savonius-type rotors
DE3913948A1 (en) * 1989-04-27 1991-01-03 Ulrich Bufe Vertical wind turbine on a carrier mast - makes use of screen attached to weather vane
US5494407A (en) * 1994-12-16 1996-02-27 Benesh; Alvin H. Wind turbine with savonius-type rotor
US7766600B1 (en) * 2002-06-07 2010-08-03 Robert A. Vanderhye Savonius rotor with spillover
WO2008108637A2 (en) * 2007-03-07 2008-09-12 Edwin Aronds Rotor device, wind turbine and method
WO2008108637A3 (en) * 2007-03-07 2009-04-09 Edwin Aronds Rotor device, wind turbine and method
NL1033514C2 (en) * 2007-03-07 2008-09-09 Edwin Aronds Rotor in the direction, windmill and working method.
FR2971560A1 (en) * 2011-02-16 2012-08-17 Gilles Baratoux Peripheral device for use in wind turbine that is installed in land to produce electricity, has support fixed to vertical axle of rotor of wind turbine, and fixed wing supporting counterweight of adjustable wing and centrifugal drive system
WO2015189155A1 (en) * 2014-06-10 2015-12-17 Philéole Savonius wind power rotor
BE1022436B1 (en) * 2014-06-10 2016-03-30 Phileole WIND ROTOR OF SAVONIUS TYPE

Similar Documents

Publication Publication Date Title
DE821930C (en) Wind power machine
DE7502622U (en) WIND POWER MACHINE
WO2005100785A1 (en) Flow-controlled windmill comprising wind-dependent blade orientation
DE834077C (en) Wind or water power machine
DE8533964U1 (en) Horizontal acting wind vane motor
DE623361C (en)
DE4216531A1 (en) Rotor system with one or more rotor blades - having axes of rotation lying vertical to flow direction of medium and rotor blades arranged on common carrier rotational around axis vertical to carrier plane
EP2984738B1 (en) Device to produce electrical energy
EP0040597A1 (en) Wind turbine having a shaft arranged perpendicularly with respect to the wind direction on a vertical axis, and flettner rotors parallel to the shaft
DE2919328A1 (en) Vertical or horizontal axis windmill with several blades - has system of gears and cams controlling angle of attack of blades throughout rotation
DE3230072C2 (en) Wind turbine
DE4025354A1 (en) Flywheel for storing energy - is mounted on air cushion bearing to reduce energy loss due to friction
DE835580C (en) Wind power plant
DE907398C (en) Wind power plant with blades rotating around vertical axes and performing a swinging movement
DE2922593A1 (en) Wind turbine funnel - has wind direction indicator to keep funnel facing into wind
DE952250C (en) Wind turbine with automatic storm protection
DE3918184A1 (en) Wind turbine driving electrical generator - has horizontal arms supporting rotatable plates adjusted to match detected wind direction
CH237845A (en) Machine with impeller working in the air.
DE563255C (en) Wind power machine with main wind turbine rotating around a horizontal axis and auxiliary wind turbines rotatably connected to it and rotating with it
DE3042426A1 (en) Wind-energy conversion plant - has controlled wind vanes mounted on rotation framework
DE102009008805A1 (en) Wind turbine for use in generation of power, has vane whose surface is formed such that counter torque is less around vertical yaw axis by wind effect on vane and lesser than torque around yaw axis by wind effect on wind wheel
DE836930C (en) Wind power plant
DE102018010172A1 (en) Single-wing wind turbine with a starter wind turbine.
DE844028C (en) Arrangement for voltage and speed control for wind power-electrical systems, especially for capacitor-excited asynchronous generators and synchronous generators with load-dependent excitation
DE814880C (en) Wind power machine