DE69938266T2 - INTRODUCTION DEVICE FOR A SELF-EXPANDABLE STENT - Google Patents
INTRODUCTION DEVICE FOR A SELF-EXPANDABLE STENT Download PDFInfo
- Publication number
- DE69938266T2 DE69938266T2 DE69938266T DE69938266T DE69938266T2 DE 69938266 T2 DE69938266 T2 DE 69938266T2 DE 69938266 T DE69938266 T DE 69938266T DE 69938266 T DE69938266 T DE 69938266T DE 69938266 T2 DE69938266 T2 DE 69938266T2
- Authority
- DE
- Germany
- Prior art keywords
- stent
- shaft
- proximal
- sheath
- distal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/962—Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
- A61F2/966—Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Description
BEREICH DER ERFINDUNGFIELD OF THE INVENTION
Die vorliegende Erfindung betrifft erweiterbare intraluminale Gefäßprothesen („Stents") für die Nutzung innerhalb eines Körperkanals oder eines Duktus, die insbesondere für die Wiederherstellung von durch Krankheit verengten oder verschlossenen Blutgefäßen nützlich sind. Die vorliegende Erfindung betrifft des Weiteren sogar Systeme für die Zuführung solcher Stents.The The present invention relates to expandable intraluminal vascular prostheses ("Stents") for use within a body canal or a ductus, in particular for the restoration of disease-restricted or closed blood vessels are useful. Furthermore, the present invention even relates to systems for the delivery of such Stents.
HINTERGRUND DER ERFINDUNGBACKGROUND OF THE INVENTION
Perkutane transluminale Koronarangioplastie (PTCA) ist ein therapeutischer medizinischer Eingriff, welcher zur Erhöhung des Blutflusses durch die Koronararterie genutzt wird und oft als Alternative zur Koronar-Bypass-Chirurgie genutzt werden kann. Während dieses Eingriffs wird der Angioplastie-Ballon innerhalb des verschlossenen Gefäßes oder des Körperkanals aufgeblasen, um die Wandbestandteile des Gefäßes zu scheren und auseinander zu drängen, um ein vergrößertes Lumen zu erhalten. Im Hinblick auf arterielle stenosierende Läsionen bleibt die relativ inkompressible Plaque unverändert, während sich die stärker elastischen medialen und adventitialen Schichten des Körperkanals um die Plaque dehnen. Dieser Prozess verursacht eine Dissektion oder eine Abspaltung und Reißen der Wandschichten des Körperkanals, wobei die Intima, oder interne Oberfläche der Arterie oder des Körperkanals eine Rissbildung (fissuring) erleidet. Diese Dissektion bildet eine „Lasche" aus darunterliegendem Gewebe, die den Blutfluss durch das Lumen verringern oder das Lumen blockieren kann. Der sich ausdehnende intraluminale Druck innerhalb des Körperkanals kann typischerweise die zerrissene Schicht oder Lasche in Position halten. Wenn die intimale Lasche, die durch den Vorgang der Ballon-Dilatation erzeugt wurde, nicht gegen die expandierte Intima an der Stelle gehalten wird, kann sich die intimale Lasche in das Lumen herunterfalten und das Lumen verschließen oder kann sich sogar ablösen und in den Körperkanal eintreten. Wenn die intimale Lasche den Körperkanal verschließt, ist eine unmittelbare Operation notwendig, um dieses Problem zu beheben.percutaneous Transluminal coronary angioplasty (PTCA) is a therapeutic Medical intervention, which increases the blood flow through The coronary artery is used and often as an alternative to coronary artery bypass surgery can be used. While This procedure will close the angioplasty balloon within the closed Vessel or of the body canal inflated to shear and divide the wall components of the vessel to urge around an enlarged lumen to obtain. With regard to arterial stenosing lesions remains the relatively incompressible plaque remains unchanged, while the more elastic Medial and adventitial layers of the body canal stretch around the plaque. This process causes a dissection or a split and Tear the wall layers of the body canal, being the intima, or internal surface of the artery or the body canal undergoes cracking (fissuring). This dissection forms a "tab" out of underneath Tissues that reduce blood flow through the lumen or the lumen can block. The expanding intraluminal pressure within of the body canal Typically, the torn layer or tab can be in position hold. If the intimal lug caused by the process of balloon dilatation was generated, not against the expanded intima at the site held, the intimal tab can fold down into the lumen and close the lumen or can even break away and enter the body passage. If the intimal flap closes the body canal is an immediate operation is necessary to resolve this issue.
In letzter Zeit wurden transluminale Prothesen in der Heilkunst verbreitet zur Implantation in Blutgefäßen, Gallengängen oder anderen ähnlichen Organen des lebenden Körpers genutzt.In Recently, transluminal prostheses have been used in the art of healing for implantation in blood vessels, bile ducts or other similar organs of the living body used.
Diese
Prothesen sind allgemein bekannt als Stents und werden zur Aufrechterhaltung, Öffnung oder
Dilatierung von tubularen Strukturen genutzt. Ein Beispiel eines
allgemein genutzten Stents ist im
Allerdings sind solche Stents oft unpraktisch für die Benutzung in manchen Gefäßen wie beispielsweise der Arteria Carotis. Die Arteria Carotis ist von außerhalb des menschlichen Körpers einfach erreichbar und bei Betrachten des Halses sichtbar. Ein Patient mit einem ballonerweiterbaren Stent, der aus nicht rostendem Stahl oder ähnlichem gemacht ist und der in dessen Arteria Carotis platziert ist, kann für ernsthafte Verletzungen durch tägliche Aktivität anfällig sein. Eine ausreichende, auf den Hals des Patienten einwirkende Kraft, wie z. B. beim Fallen, kann verursachen, dass der Stent kollabiert, was in einer Verletzung des Patienten resultiert. Um dies zu verhindern, wurden sich selbst erweiternde Stents für die Benutzung in solchen Gefäßen vorgeschlagen. Sich selbst erweiternde Stents verhalten sich wie Federn und kehren nach einem Drücken in deren erweiterte oder implantierte Konfiguration zurück.Indeed Such stents are often impractical for use in some Vessels like for example, the carotid artery. The carotid artery is from outside of the human body easily accessible and visible when looking at the neck. A patient with a balloon-expandable stent made of stainless steel or similar and placed in its arteria carotid for serious Injuries by daily activity susceptible be. A sufficient, acting on the neck of the patient Force, such as When falling, can cause the stent to collapse, which results in an injury to the patient. To prevent this, were self-expanding stents for use in such Suggested vessels. Yourself self-expanding stents behave like springs and return a press in its extended or implanted configuration.
Ein
Typ solcher sich selbst erweiternden Stents ist offenbart im
Andere Typen von sich selbst erweiternden Stents nutzen Legierungen, so z. B. Nitinol (Ni-Ti-Legierung), welche Formgedächtnis- und/oder superelastische Eigenschaften haben, in medizinischen Vorrichtungen, welche zum Einführen in den Körper des Patienten entworfen sind. Die Formgedächtniseigenschaften erlauben es, die Vorrichtung zu deformieren, um deren Einführen in das Körperlumen oder die Kavität zu vereinfachen, um danach im Körper erwärmt zu werden, so dass die Vorrichtung zu ihrer ursprünglichen Form zurückkehrt. Superelastische Eigenschaften erlauben andererseits im allgemeinen, dass das Metall deformiert und im deformierten Zustand eingespannt wird, um das Einführen der medizinischen Vorrichtung, welche das Metall enthält, in den Körper des Patienten zu vereinfachen, wobei mit einer solchen Deformation die Phasentransformation bewirkt wird. Innerhalb des Körperlumens kann nun die Einspannung des superelastischen Elements beseitigt werden, wodurch die Spannung darin reduziert wird, so dass das superelastische Element zu seiner ursprünglichen nicht deformierten Form mittels der Rücktransformation in die ursprüngliche Phase zurückkehren kann.Other types of self-expanding stents use alloys, such as. Nitinol (Ni-Ti alloy), which have shape memory and / or superelastic properties, in medical devices designed for insertion into the patient's body. The shape memory properties allow the device to be deformed to facilitate its insertion into the body lumen or cavity, and thereafter heated in the body, so that the device becomes an ur returns to its original shape. On the other hand, superelastic properties generally allow the metal to be deformed and clamped in the deformed state to facilitate insertion of the medical device containing the metal into the body of the patient, with such deformation causing the phase transformation. Within the body lumen, the restraint of the superelastic element can now be eliminated, thereby reducing the tension therein, so that the superelastic element can return to its original undeformed shape by means of the inverse transformation into the original phase.
Legierungen mit Formgedächtnis/superelastischen Eigenschaften haben generell mindestens zwei Phasen. Diese Phasen sind eine Martensitphase, die einen relativ niedrigen Verformungswiderstand hat und die bei relativ niedrigen Temperaturen stabil ist, sowie eine Austentitphase, die einen relativ hohen Verformungswiderstand hat und die bei höheren Temperaturen als bei der Martensitphase stabil ist.alloys with shape memory / superelastic Properties generally have at least two phases. These phases are a martensite phase that has a relatively low deformation resistance and which is stable at relatively low temperatures, as well an Austentitphase, which has a relatively high deformation resistance has and at higher Temperatures than in the martensite phase is stable.
Wenn ein Probestück eines Metalls wie Nitinol Spannungen ausgesetzt ist, dann zeigt es superelastische Eigenschaften bei einer Temperatur über derjenigen, bei der das Austentit stabil ist (d. h. derjenigen Temperatur, bei der die Transformation der Martensitphase in die Austentitphase abgeschlossen ist), deformiert das Probestück elastisch, bis es eine bestimmte Spannungsstufe erreicht, auf der die Legierung dann eine spannungsinduzierte Phasentransformation von der Austentitphase in die Martensitphase durchläuft. Mit dem Fortschreiben der Phasentransformation erfährt die Legierung eine wesentliche Zunahme der Verformung, allerdings nur eine geringe oder nicht korrespondierende Zunahme der Spannung. Während die Verformung zunimmt, bleibt die Spannung im Wesentlichen konstant, bis die Transformation von der Austentitphase in die Martensitphase vollendet ist. Hiernach ist eine weitere Zunahme der Spannung notwendig, um eine weitere Deformation zu verursachen. Das martensitische Metall deformiert zuerst elastisch bis zur Anwendung von zusätzlicher Spannung und hiernach plastisch mit einer permanent zurückbleibenden Deformation.If a test piece of a metal as nitinol is exposed to stresses then shows it has superelastic properties at a temperature above those where the austentite is stable (i.e., the temperature at the transformation of the martensite phase into the Austentitphase completed), the specimen deforms elastically until it reaches a certain Voltage level reached, on which the alloy then a voltage-induced phase transformation goes from the Austentitphase in the martensite phase. With As the phase transformation proceeds, the alloy undergoes an essential one Increase in deformation, but only a small or not corresponding Increase in tension. While the deformation increases, the voltage remains substantially constant, until the transformation from the austentite phase to the martensite phase is completed. After this, a further increase in the tension is necessary to cause further deformation. The martensitic metal first deforms elastically until the application of additional Tension and thereafter plastically with a permanent remaining Deformation.
Wenn
die Belastung auf das Probestück
entfernt wird, bevor eine permanente Deformation aufgetreten ist,
wird das martensitische Probestück elastisch
wiederhergestellt und transformiert zurück in die Austentitphase. Die
Verringerung der Spannung erzeugt zuerst eine Abnahme der Verformung. Wenn
die Reduzierung der Spannung dasjenige Niveau erreicht, bei dem
die Martensitphase zurück
in die Austentitphase transformiert, dann wird das Spannungsniveau
des Probestücks
im Wesentlichen konstant bleiben (allerdings wesentlich niedriger
als das konstante Spannungsniveau, bei dem das Austentit in das
Martensit transformiert), bis die Rücktransformation in die Austentitphase
abgeschlossen ist, d. h. es liegt eine signifikante Wiederherstellung der
Verformung mit nur einer vernachlässigbaren korrespondierenden
Spannungsreduzierung vor. Nach der vollständigen Rücktransformation zum Austentit
resultiert eine weitere Spannungsreduzierung aus der elastischen
Reduktion der Verformung. Diese Fähigkeit, eine signifikante
Verformung bei relativ konstanter Spannung unter Anwendung einer Belastung
zu übernehmen
und sich von der Deformation nach dem Entfernen der Belastung zu
erholen, wird allgemein als Superelastizität oder Pseudoelastizität bezeichnet.
Es ist diese Eigenschaft des Materials, welche es bei der Herstellung
von aus Röhren geschnittenen,
sich selbst erweiternden Stents nützlich macht. Im Stand der
Technik wird auf die Nutzung von Metalllegierungen mit superelastischen
Eigenschaften in medizinischen Vorrichtungen verwiesen, welche dazu
bestimmt sind, eingeführt
oder anderweitig innerhalb des Körpers
des Patienten benutzt zu werden. Vergleiche z. B.
Der
Entwurf von Zuführsystemen
für das
Zuführen
von sich selbst erweiternden Stents hat sich als schwierig erwiesen.
Ein Beispiel des Stands der Technik von Zuführsystemen für selbstexpandierende
Stents ist im
Das Zuführen des Stents durch die gesamte Länge des Katheters kann jedoch viele Probleme verursachen, einschließlich einer möglichen Schädigung eines Gefäßes oder des Stents bei seiner Bewegung. Zusätzlich ist es oft schwierig, einen Schieber zu entwerfen, der genug Flexibilität, um durch den Katheter zu navigieren, aber auch eine ausreichende Steifheit hat, um den Stent aus dem Katheter herauszuschieben. Aus diesem Grund wurde erkannt, dass das Vorladen des Stents in das distale Ende des Katheters und ein nachfolgendes Zuführen des Katheters durch das Gefäß an die Zielstelle ein besserer Ansatz sein kann. Um die richtige Platzierung des Stents innerhalb des Katheters zu gewährleisten, wird es oft vorgezogen, dass der Stent am Herstellungsort vorgeladen wird. Allerdings umfasst dies aus sich selbst heraus mehrere Probleme. Da der Katheter eine bedeutende Kraft auf den sich selbst erweiternden Stent ausübt, die ihn vom Erweitern abhält, kann der Stent dazu tendieren, innerhalb der inneren Wände des Katheters eingeschlossen zu werden. Falls dies passiert, hat der Katheter Schwierigkeiten, während der Zuführung über den Stent zu gleiten. Diese Situation kann darin resultieren, dass der Stent innerhalb des Katheters steckenbleibt oder dass der Stent während der Zuführung beschädigt werden kann.However, delivery of the stent through the entire length of the catheter can cause many problems, including potential damage to a vessel or stent as it moves. Additionally, it is often difficult to design a pusher that has enough flexibility to navigate through the catheter, but also has sufficient stiffness to push the stent out of the catheter. For this reason, it was recognized that pre-loading the stent into the distal End of the catheter and subsequent feeding of the catheter through the vessel to the target site may be a better approach. To ensure proper placement of the stent within the catheter, it is often preferred that the stent be preloaded at the site of manufacture. However, this by itself involves several problems. Because the catheter exerts a significant force on the self-expanding stent, preventing it from expanding, the stent may tend to become trapped within the inner walls of the catheter. If this happens, the catheter will have difficulty sliding over the stent during delivery. This situation can result in the stent getting stuck inside the catheter or the stent being damaged during delivery.
Ein
weiteres Beispiel des Stands der Technik von Zuführsystemen für sich selbst
erweiternde Stents ist im
Aus diesem Grund gab es die Notwendigkeit eines Zuführsystems für sich selbst erweiternde Stents, das die oben referenzierten Probleme mit Zuführsystemen aus dem Stand der Technik überwindet. Speziell gab es die Notwendigkeit eines Zuführsystems für einen sich selbst erweiternden Stent, bei dem der Stent am distalen Ende eines Katheters geladen wird und bei dem der Katheter den Stent effektiv daran hindert, sich darin einzuschließen. Die vorliegende Erfindung stellt ein solches Zuführgerät bereit.Out For this reason, there was a need for a delivery system for self-expanding stents, the above referenced problems with feeding systems from the state of Technology overcomes. Specifically, there was the need for a self-expanding feed system Stent in which the stent is loaded at the distal end of a catheter and where the catheter effectively prevents the stent from to be included in it. The present invention provides such a delivery device.
ABRISS DER ERFINDUNGSUMMARY OF THE INVENTION
Im Einklang mit der vorliegenden Erfindung wird eine Zuführvorrichtung für einen sich selbst erweiternden Stent zur Verfügung gestellt. Die Vorrichtung umfasst eine äußere Hülle, die ein gestrecktes rohrförmiges Element mit einem distalen und einem proximalen Ende ist. Die äußere Hülle ist aus einer äußeren Polymerschicht, einer inneren Polymerschicht und einer geflochtenen Verstärkungsschicht zwischen der inneren und der äußeren Schicht gefertigt. Die Verstärkungsschicht ist steifer als die innere und äußere Schicht. Die Vorrichtung enthält weiterhin einen inneren Schaft, der koaxial in der äußeren Hülle angeordnet ist. Die äußere Hülle weist eine Reihe von verbundenen Übergängen auf, die im Materialhärtegrad vom proximalen Ende zum distalen Ende entlang der äußeren Schicht der Hülle abnehmen. Der Schaft hat ein distales Ende, das sich distal zum distalen Ende der Hülle erstreckt, und ein proximales Ende, das sich proximal zum proximalen Ende der Hülle erstreckt. Der Schaft umfasst des Weiteren einen daran befestigten Anschlag. Der Anschlag ist proximal zum distalen Ende der Hülle. Schließlich umfasst die Vorrichtung einen sich selbst erweiternden Stent, der sich in der Hülle befindet. Der Stent hat einen Reibungskontakt mit der inneren Schicht der Hülle. Der Stent befindet sich zwischen dem Anschlag und dem distalen Ende der Hülle, wobei ein Teil des Schafts koaxial in einem Lumen des Stents angeordnet ist. Der Stent ist eingerichtet, einen Kontakt mit dem Anschlag beim Einsatz des Stents herzustellen.in the In accordance with the present invention, a delivery device for one self-expanding stent provided. The device includes an outer shell, the a stretched tubular Element with a distal and a proximal end. The outer shell is from an outer polymer layer, an inner polymer layer and a braided reinforcing layer between the inner and the outer layer manufactured. The reinforcing layer is stiffer than the inner and outer layers. The device contains further comprising an inner shaft coaxially disposed in the outer shell is. The outer shell has a series of connected transitions, in material hardness from the proximal end to the distal end along the outer layer the shell lose weight. The shaft has a distal end that is distal to the distal End of the case extends, and a proximal end that is proximal to the proximal End of the case extends. The shaft further includes an attached thereto Attack. The stop is proximal to the distal end of the sheath. Finally includes the device is a self-expanding stent that is in the shell located. The stent has a frictional contact with the inner layer of the Shell. The stent is located between the stop and the distal end the envelope, wherein a part of the shaft coaxially disposed in a lumen of the stent is. The stent is set up to make contact with the stop produce when using the stent.
KURZE BESCHREIBUNG DER ABBILDUNGENBRIEF DESCRIPTION OF THE FIGURES
Die vorher genannten und andere Aspekte der vorliegenden Erfindung werden am besten unter Bezugnahme auf die detaillierte Beschreibung der Erfindung in Verbindung mit den begleitenden Abbildungen gewürdigt, worin:The previously mentioned and other aspects of the present invention best with reference to the detailed description of the invention appreciated in conjunction with the accompanying drawings, wherein:
DETAILLIERTE BESCHREIBUNG DER ERFINDUNGDETAILED DESCRIPTION THE INVENTION
Verweisend
auf die Figuren, in denen durchgehend in den Ansichten gleiche Ziffern
die gleichen Elemente bezeichnen, wird in den
Wie
in
Der
distale Abschnitt
Eine
Stenteinbettung
Distal
vom distalen Ende des geladenen Stents
Die
Hülle
Wie
oben angegeben, hatten frühere
sich selbst erweiternde Zuführsysteme
Probleme damit, dass der Stent in der Hülle oder dem Katheter, in der bzw.
dem er angeordnet ist, eingeschlossen wurde. Unter Verweis auf
Die
Hülle
Schichten
Bei Zuführsystemen für sich selbst erweiternde Stents nach dem Stand der Technik wurden geflochtene Schichten nicht verwendet, und es mag viele Gründe geben, warum andere dies nicht versucht haben. Da die Größe der meisten selbstexpandierenden Stents im Vergleich zu ballonexpandierbaren Koronar-Stents ziemlich groß ist, mussten die Durchmesser der Zuführvorrichtungen ebenfalls groß sein. Jedoch ist es immer vorteilhaft, über Katheter oder Zuführsysteme zu verfügen, die so klein wie möglich sind. Wenn dies so ist, können die Vorrichtungen in kleinere Gefäße reichen, so dass weniger Verletzungen am Patienten verursacht werden. Aus diesem Grund würden andere von der Verwendung einer solchen Schicht abgebracht. Es wurde jedoch herausgefunden, dass sogar eine sehr dünne geflochtene Schicht in einer Stent-Zuführvorrichtung einen solchen Vorteil bietet, so dass jede inkrementelle Vergrößerung der Größe des Katheters es wert ist.at feeding systems for themselves Self-expanding stents of the prior art were braided Layers are not used, and there may be many reasons why others do so did not try. Because the size of most Self-expanding stents compared to balloon expandable Coronary stents is pretty big, had to change the diameter of the feeders also be big. However, it is always beneficial to use catheters or delivery systems to dispose of the smallest possible are. If so, you can The devices reach into smaller vessels, causing less injury be caused to the patient. That's why others would dissuaded from the use of such a layer. However, it was found that even a very thin one braided layer in a stent delivery device such Advantage provides, so any incremental enlargement of the size of the catheter it is worth it.
Während des
Einführens
in den Patienten werden Hülle
Das
Verfahren, mit dem die Vorrichtung
Der
Stent
Die
oben beschriebene Geometrie hilft dabei, die Spannung über den
Stent besser zu verteilen, verhindert einen Metall-zu-Metall-Kontakt,
wenn der Stent gebogen wird, und minimiert die Öffnungsgröße zwischen den Merkmalen,
Streben, Schleifen und Brücken.
Die Anzahl und die Natur des Aufbaus der Streben, Schleifen und
Brücken
sind wichtige Faktoren beim Bestimmen der Arbeitseigenschaften und
den Eigenschaften der Lebensdauer des Stents. Bevorzugt hat jeder
Reifen zwischen
Beim Versuch, die maximale auf Mauptmerkmale einwirkende Belastung zu minimieren, benutzt die vorliegende Erfindung eine Strukturgeometrie, die die Belastung auf Bereiche des Stents verteilt, die weniger als andere für Ausfälle anfällig sind. Ein gefährdeter Bereich des Stents ist z. B. der innere Radius der verbindenden Schleifen. Die verbindenden Schleifen werden von allen Merkmalen des Stents der größten Deformation unterzogen. Der innere Radius der Schleife wäre normalerweise derjenige Bereich mit dem höchsten Spannungsniveau im Stent. Dieser Bereich ist ebenfalls darin kritisch, dass er normalerweise den kleinsten Radius am Stent hat. Spannungskonzentrationen werden generell kontrolliert oder minimiert, indem die größtmöglichen Radien eingehalten werden. In ähnlicher Weise wollen wir die lokalen Spannungskonzentrationen auf den Brücken und den Brücke-zu-Schleife-Verbindungspunkten minimieren. Eine Möglichkeit dies zu bewerkstelligen, ist die größtmöglichen Radien zu verwenden, während die Merkmalsbreiten, die konsistent zu den angewandten Kräften sind, beibehalten werden. Eine weitere Überlegung ist die Minimierung des maximalen offenen Bereichs des Stents. Eine effiziente Verwendung des ursprünglichen Rohrs, aus dem der Stent geschnitten wurde, vergrößert die Stärke des Stents und seine Fähigkeit, embolisches Material einzufangen.At the Try to maximize the load on main features minimize, the present invention uses a structural geometry, the the load is distributed to areas of the stent that are less than others for losses susceptible are. A vulnerable one Area of the stent is z. B. the inner radius of the connecting Grind. The connecting loops are of all characteristics of the stent of the greatest deformation subjected. The inner radius of the loop would normally be the one Area with the highest Tension level in the stent. This area is also critical in that he usually has the smallest radius on the stent. stress concentrations are generally controlled or minimized by using the largest possible Radii are maintained. In similar Way we want the local stress concentrations on the bridges and the bridge-to-loop connection points minimize. A possibility To accomplish this, use the largest possible radii while the Feature widths that are consistent with the applied forces, to be kept. Another consideration is minimization the maximum open area of the stent. An efficient use of the original one Tube from which the stent was cut, enlarges the Strength of the stent and its ability to capture embolic material.
Obwohl bestimmte Ausführungsformen der vorliegenden Erfindung gezeigt und beschrieben wurden, können Veränderungen an der Vorrichtung und/oder dem Verfahren vorgenommen, ohne dass vom Umfang der vorliegenden Erfindung, wie er in den beigefügten Ansprüchen definiert wird, abgewichen wird. Die zur Beschreibung der Erfindung benutzten Begriffe wurden in ihrem beschreibenden Sinn und nicht als einschränkende Begriffe verwendet.Even though certain embodiments Variations of the present invention have been shown and described made on the device and / or the method, without the vom Scope of the present invention as defined in the appended claims will, is deviated. Those used to describe the invention Terms were used in their descriptive sense rather than as limiting terms used.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/042,276 US6019778A (en) | 1998-03-13 | 1998-03-13 | Delivery apparatus for a self-expanding stent |
US42276 | 1998-03-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
DE69938266D1 DE69938266D1 (en) | 2008-04-17 |
DE69938266T2 true DE69938266T2 (en) | 2009-03-26 |
Family
ID=21920992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE69938266T Expired - Lifetime DE69938266T2 (en) | 1998-03-13 | 1999-03-12 | INTRODUCTION DEVICE FOR A SELF-EXPANDABLE STENT |
Country Status (6)
Country | Link |
---|---|
US (1) | US6019778A (en) |
EP (1) | EP0941716B1 (en) |
JP (1) | JP4601738B2 (en) |
AU (1) | AU736076B2 (en) |
CA (1) | CA2265123C (en) |
DE (1) | DE69938266T2 (en) |
Families Citing this family (237)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6039749A (en) | 1994-02-10 | 2000-03-21 | Endovascular Systems, Inc. | Method and apparatus for deploying non-circular stents and graftstent complexes |
US8728143B2 (en) * | 1996-06-06 | 2014-05-20 | Biosensors International Group, Ltd. | Endoprosthesis deployment system for treating vascular bifurcations |
US7238197B2 (en) * | 2000-05-30 | 2007-07-03 | Devax, Inc. | Endoprosthesis deployment system for treating vascular bifurcations |
US7686846B2 (en) * | 1996-06-06 | 2010-03-30 | Devax, Inc. | Bifurcation stent and method of positioning in a body lumen |
US6070589A (en) | 1997-08-01 | 2000-06-06 | Teramed, Inc. | Methods for deploying bypass graft stents |
US6503271B2 (en) * | 1998-01-09 | 2003-01-07 | Cordis Corporation | Intravascular device with improved radiopacity |
US6129755A (en) * | 1998-01-09 | 2000-10-10 | Nitinol Development Corporation | Intravascular stent having an improved strut configuration |
US6425898B1 (en) * | 1998-03-13 | 2002-07-30 | Cordis Corporation | Delivery apparatus for a self-expanding stent |
US6290731B1 (en) | 1998-03-30 | 2001-09-18 | Cordis Corporation | Aortic graft having a precursor gasket for repairing an abdominal aortic aneurysm |
US6656215B1 (en) * | 2000-11-16 | 2003-12-02 | Cordis Corporation | Stent graft having an improved means for attaching a stent to a graft |
US6520983B1 (en) * | 1998-03-31 | 2003-02-18 | Scimed Life Systems, Inc. | Stent delivery system |
WO2000018330A1 (en) * | 1998-09-30 | 2000-04-06 | Impra, Inc. | Delivery mechanism for implantable stent |
US7018401B1 (en) | 1999-02-01 | 2006-03-28 | Board Of Regents, The University Of Texas System | Woven intravascular devices and methods for making the same and apparatus for delivery of the same |
US6726712B1 (en) * | 1999-05-14 | 2004-04-27 | Boston Scientific Scimed | Prosthesis deployment device with translucent distal end |
US6375676B1 (en) * | 1999-05-17 | 2002-04-23 | Advanced Cardiovascular Systems, Inc. | Self-expanding stent with enhanced delivery precision and stent delivery system |
US6315790B1 (en) | 1999-06-07 | 2001-11-13 | Scimed Life Systems, Inc. | Radiopaque marker bands |
US6287329B1 (en) | 1999-06-28 | 2001-09-11 | Nitinol Development Corporation | Stent keeper for a self-expanding stent delivery system |
US8328829B2 (en) | 1999-08-19 | 2012-12-11 | Covidien Lp | High capacity debulking catheter with razor edge cutting window |
US7713279B2 (en) | 2000-12-20 | 2010-05-11 | Fox Hollow Technologies, Inc. | Method and devices for cutting tissue |
US7708749B2 (en) | 2000-12-20 | 2010-05-04 | Fox Hollow Technologies, Inc. | Debulking catheters and methods |
US6299622B1 (en) | 1999-08-19 | 2001-10-09 | Fox Hollow Technologies, Inc. | Atherectomy catheter with aligned imager |
US6613075B1 (en) | 1999-10-27 | 2003-09-02 | Cordis Corporation | Rapid exchange self-expanding stent delivery catheter system |
US6287291B1 (en) | 1999-11-09 | 2001-09-11 | Advanced Cardiovascular Systems, Inc. | Protective sheath for catheters |
US7758624B2 (en) * | 2000-11-13 | 2010-07-20 | C. R. Bard, Inc. | Implant delivery device |
WO2001034061A1 (en) | 1999-11-11 | 2001-05-17 | Angiomed Gmbh & Co. | Implant delivery device |
US6368344B1 (en) * | 1999-12-16 | 2002-04-09 | Advanced Cardiovascular Systems, Inc. | Stent deployment system with reinforced inner member |
US6443979B1 (en) | 1999-12-20 | 2002-09-03 | Advanced Cardiovascular Systems, Inc. | Expandable stent delivery sheath and method of use |
US6602280B2 (en) | 2000-02-02 | 2003-08-05 | Trivascular, Inc. | Delivery system and method for expandable intracorporeal device |
US6344044B1 (en) * | 2000-02-11 | 2002-02-05 | Edwards Lifesciences Corp. | Apparatus and methods for delivery of intraluminal prosthesis |
US6629953B1 (en) * | 2000-02-18 | 2003-10-07 | Fox Hollow Technologies, Inc. | Methods and devices for removing material from a vascular site |
US6942688B2 (en) * | 2000-02-29 | 2005-09-13 | Cordis Corporation | Stent delivery system having delivery catheter member with a clear transition zone |
US20030139803A1 (en) * | 2000-05-30 | 2003-07-24 | Jacques Sequin | Method of stenting a vessel with stent lumenal diameter increasing distally |
US6773446B1 (en) * | 2000-08-02 | 2004-08-10 | Cordis Corporation | Delivery apparatus for a self-expanding stent |
US20020016597A1 (en) * | 2000-08-02 | 2002-02-07 | Dwyer Clifford J. | Delivery apparatus for a self-expanding stent |
US20020193863A1 (en) * | 2000-09-18 | 2002-12-19 | Endotex Interventional Systems, Inc. | Apparatus for delivering endoluminal prosthesis and methods for preparing such apparatus for delivery |
US6945989B1 (en) | 2000-09-18 | 2005-09-20 | Endotex Interventional Systems, Inc. | Apparatus for delivering endoluminal prostheses and methods of making and using them |
US20020111590A1 (en) * | 2000-09-29 | 2002-08-15 | Davila Luis A. | Medical devices, drug coatings and methods for maintaining the drug coatings thereon |
US7163552B2 (en) | 2000-10-13 | 2007-01-16 | Medtronic Vascular, Inc. | Stent delivery system with hydraulic deployment |
US7314483B2 (en) * | 2000-11-16 | 2008-01-01 | Cordis Corp. | Stent graft with branch leg |
JP4080874B2 (en) | 2000-12-20 | 2008-04-23 | フォックス ハロウ テクノロジーズ,インコーポレイティド | Bulking catheter |
US6783542B2 (en) | 2001-02-22 | 2004-08-31 | Scimed Life Systems, Inc | Crimpable balloon/stent protector |
US6733521B2 (en) | 2001-04-11 | 2004-05-11 | Trivascular, Inc. | Delivery system and method for endovascular graft |
US20040138734A1 (en) * | 2001-04-11 | 2004-07-15 | Trivascular, Inc. | Delivery system and method for bifurcated graft |
US6761733B2 (en) * | 2001-04-11 | 2004-07-13 | Trivascular, Inc. | Delivery system and method for bifurcated endovascular graft |
DE10118944B4 (en) * | 2001-04-18 | 2013-01-31 | Merit Medical Systems, Inc. | Removable, essentially cylindrical implants |
US20050021123A1 (en) | 2001-04-30 | 2005-01-27 | Jurgen Dorn | Variable speed self-expanding stent delivery system and luer locking connector |
US7828833B2 (en) | 2001-06-11 | 2010-11-09 | Boston Scientific Scimed, Inc. | Composite ePTFE/textile prosthesis |
US7560006B2 (en) * | 2001-06-11 | 2009-07-14 | Boston Scientific Scimed, Inc. | Pressure lamination method for forming composite ePTFE/textile and ePTFE/stent/textile prostheses |
CA2450160C (en) * | 2001-06-11 | 2011-03-22 | Boston Scientific Limited | Composite eptfe/textile prosthesis |
DE60230143D1 (en) * | 2001-07-06 | 2009-01-15 | Angiomed Ag | DISTRIBUTION SYSTEM WITH A SLIDER ARRANGEMENT FOR A SELF-EXPANDING STENT AND A QUICK-CHANGE CONFIGURATION |
DE10148185B4 (en) * | 2001-09-28 | 2005-08-11 | Alveolus, Inc. | Instrument for implanting vascular prostheses |
GB0123633D0 (en) * | 2001-10-02 | 2001-11-21 | Angiomed Ag | Stent delivery system |
US6866669B2 (en) * | 2001-10-12 | 2005-03-15 | Cordis Corporation | Locking handle deployment mechanism for medical device and method |
US6939352B2 (en) | 2001-10-12 | 2005-09-06 | Cordis Corporation | Handle deployment mechanism for medical device and method |
US20100016943A1 (en) | 2001-12-20 | 2010-01-21 | Trivascular2, Inc. | Method of delivering advanced endovascular graft |
US7326237B2 (en) * | 2002-01-08 | 2008-02-05 | Cordis Corporation | Supra-renal anchoring prosthesis |
US20030135256A1 (en) * | 2002-01-14 | 2003-07-17 | Gallagher Brendan P. | Stent delivery system |
US7169170B2 (en) * | 2002-02-22 | 2007-01-30 | Cordis Corporation | Self-expanding stent delivery system |
US20040006380A1 (en) * | 2002-07-05 | 2004-01-08 | Buck Jerrick C. | Stent delivery system |
ATE281800T1 (en) * | 2002-09-09 | 2004-11-15 | Abbott Lab Vascular Entpr Ltd | SYSTEM FOR INSERTING A SELF-EXPANDING STENT |
US20040093056A1 (en) * | 2002-10-26 | 2004-05-13 | Johnson Lianw M. | Medical appliance delivery apparatus and method of use |
US7637942B2 (en) * | 2002-11-05 | 2009-12-29 | Merit Medical Systems, Inc. | Coated stent with geometry determinated functionality and method of making the same |
US7959671B2 (en) * | 2002-11-05 | 2011-06-14 | Merit Medical Systems, Inc. | Differential covering and coating methods |
US7875068B2 (en) * | 2002-11-05 | 2011-01-25 | Merit Medical Systems, Inc. | Removable biliary stent |
WO2004041126A1 (en) | 2002-11-08 | 2004-05-21 | Jacques Seguin | Endoprosthesis for vascular bifurcation |
GB0327306D0 (en) * | 2003-11-24 | 2003-12-24 | Angiomed Gmbh & Co | Catheter device |
CA2513082C (en) * | 2003-01-15 | 2010-11-02 | Angiomed Gmbh & Co. Medizintechnik Kg | Trans-luminal surgical device |
ITTO20030037A1 (en) | 2003-01-24 | 2004-07-25 | Sorin Biomedica Cardio S P A Ora S Orin Biomedica | CATHETER DRIVE DEVICE. |
JP2006518625A (en) * | 2003-02-14 | 2006-08-17 | サルヴィアック・リミテッド | Stent delivery and placement system |
US7438712B2 (en) * | 2003-03-05 | 2008-10-21 | Scimed Life Systems, Inc. | Multi-braid exterior tube |
US20040181186A1 (en) * | 2003-03-13 | 2004-09-16 | Scimed Life Systems, Inc. | Medical device |
US7637934B2 (en) * | 2003-03-31 | 2009-12-29 | Merit Medical Systems, Inc. | Medical appliance optical delivery and deployment apparatus and method |
US8246640B2 (en) | 2003-04-22 | 2012-08-21 | Tyco Healthcare Group Lp | Methods and devices for cutting tissue at a vascular location |
US7604660B2 (en) * | 2003-05-01 | 2009-10-20 | Merit Medical Systems, Inc. | Bifurcated medical appliance delivery apparatus and method |
GB0310714D0 (en) | 2003-05-09 | 2003-06-11 | Angiomed Ag | Fluid flow management in stent delivery system |
US8318078B2 (en) * | 2003-06-23 | 2012-11-27 | Boston Scientific Scimed, Inc. | Asymmetric stent delivery system with proximal edge protection and method of manufacture thereof |
US20050010138A1 (en) * | 2003-07-11 | 2005-01-13 | Mangiardi Eric K. | Lumen-measuring devices and method |
JP2007501661A (en) * | 2003-08-07 | 2007-02-01 | アルヴィオラス,インコーポレイテッド | Medical instrument, delivery device and method of use |
US7780716B2 (en) * | 2003-09-02 | 2010-08-24 | Abbott Laboratories | Delivery system for a medical device |
JP4713478B2 (en) * | 2003-09-02 | 2011-06-29 | アボット・ラボラトリーズ | Medical device delivery system |
US7794489B2 (en) * | 2003-09-02 | 2010-09-14 | Abbott Laboratories | Delivery system for a medical device |
US8292943B2 (en) | 2003-09-03 | 2012-10-23 | Bolton Medical, Inc. | Stent graft with longitudinal support member |
US7763063B2 (en) * | 2003-09-03 | 2010-07-27 | Bolton Medical, Inc. | Self-aligning stent graft delivery system, kit, and method |
US8500792B2 (en) | 2003-09-03 | 2013-08-06 | Bolton Medical, Inc. | Dual capture device for stent graft delivery system and method for capturing a stent graft |
US11259945B2 (en) | 2003-09-03 | 2022-03-01 | Bolton Medical, Inc. | Dual capture device for stent graft delivery system and method for capturing a stent graft |
US20070198078A1 (en) * | 2003-09-03 | 2007-08-23 | Bolton Medical, Inc. | Delivery system and method for self-centering a Proximal end of a stent graft |
US20080264102A1 (en) | 2004-02-23 | 2008-10-30 | Bolton Medical, Inc. | Sheath Capture Device for Stent Graft Delivery System and Method for Operating Same |
US9198786B2 (en) | 2003-09-03 | 2015-12-01 | Bolton Medical, Inc. | Lumen repair device with capture structure |
US11596537B2 (en) | 2003-09-03 | 2023-03-07 | Bolton Medical, Inc. | Delivery system and method for self-centering a proximal end of a stent graft |
US7867268B2 (en) * | 2003-09-24 | 2011-01-11 | Boston Scientific Scimed, Inc. | Stent delivery system for self-expanding stent |
DE10346200A1 (en) | 2003-09-30 | 2005-05-04 | Jotec Gmbh | Delivery system with a self-expanding stent |
US7867271B2 (en) * | 2003-11-20 | 2011-01-11 | Advanced Cardiovascular Systems, Inc. | Rapid-exchange delivery systems for self-expanding stents |
US20050125050A1 (en) * | 2003-12-04 | 2005-06-09 | Wilson Cook Medical Incorporated | Biliary stent introducer system |
EP1699517B1 (en) * | 2003-12-31 | 2010-04-21 | C.R.Bard, Inc. | Reinforced multi-lumen catheter |
US9254213B2 (en) * | 2004-01-09 | 2016-02-09 | Rubicon Medical, Inc. | Stent delivery device |
US7468070B2 (en) * | 2004-01-23 | 2008-12-23 | Boston Scientific Scimed, Inc. | Stent delivery catheter |
JP4714736B2 (en) * | 2004-03-31 | 2011-06-29 | ウィルソン−クック・メディカル・インコーポレーテッド | Stent introducer system |
ES2607402T3 (en) | 2004-05-25 | 2017-03-31 | Covidien Lp | Flexible vascular occlusion device |
US8267985B2 (en) | 2005-05-25 | 2012-09-18 | Tyco Healthcare Group Lp | System and method for delivering and deploying an occluding device within a vessel |
US8623067B2 (en) * | 2004-05-25 | 2014-01-07 | Covidien Lp | Methods and apparatus for luminal stenting |
WO2010120926A1 (en) | 2004-05-25 | 2010-10-21 | Chestnut Medical Technologies, Inc. | Vascular stenting for aneurysms |
US20060206200A1 (en) * | 2004-05-25 | 2006-09-14 | Chestnut Medical Technologies, Inc. | Flexible vascular occluding device |
US8617234B2 (en) * | 2004-05-25 | 2013-12-31 | Covidien Lp | Flexible vascular occluding device |
US20050273151A1 (en) * | 2004-06-04 | 2005-12-08 | John Fulkerson | Stent delivery system |
US7955370B2 (en) | 2004-08-06 | 2011-06-07 | Boston Scientific Scimed, Inc. | Stent delivery system |
AU2005289393B2 (en) * | 2004-09-28 | 2011-04-21 | Cardinal Health 529, Llc | Thin film medical device and delivery system |
US7666217B2 (en) * | 2004-10-29 | 2010-02-23 | Boston Scientific Scimed, Inc. | Implantable medical endoprosthesis delivery systems and related components |
DE102005003632A1 (en) | 2005-01-20 | 2006-08-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Catheter for the transvascular implantation of heart valve prostheses |
US7740652B2 (en) * | 2005-03-30 | 2010-06-22 | Boston Scientific Scimed, Inc. | Catheter |
WO2006108010A2 (en) | 2005-04-04 | 2006-10-12 | Burpee Materials Technology, Llc | Flexible stent |
US20060259061A1 (en) * | 2005-04-22 | 2006-11-16 | Kick George F | Expandable sheath for percutaneous upper gastrointestinal tract access |
JP4917089B2 (en) * | 2005-05-09 | 2012-04-18 | アンギオメット ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コムパニー メディツィンテヒニク コマンデイトゲゼルシャフト | Implant delivery device |
US9480589B2 (en) * | 2005-05-13 | 2016-11-01 | Boston Scientific Scimed, Inc. | Endoprosthesis delivery system |
WO2006127005A1 (en) | 2005-05-25 | 2006-11-30 | Chestnut Medical Technologies, Inc. | System and method for delivering and deploying and occluding device within a vessel |
US8273101B2 (en) | 2005-05-25 | 2012-09-25 | Tyco Healthcare Group Lp | System and method for delivering and deploying an occluding device within a vessel |
WO2007005799A1 (en) * | 2005-06-30 | 2007-01-11 | Abbott Laboratories | Delivery system for a medical device |
EP1915113B1 (en) | 2005-08-17 | 2010-03-03 | C.R. Bard, Inc. | Variable speed stent delivery system |
US7225825B1 (en) * | 2005-12-15 | 2007-06-05 | Hartman Brian T | Valve seal and method of installing a valve seal |
US11026822B2 (en) | 2006-01-13 | 2021-06-08 | C. R. Bard, Inc. | Stent delivery system |
WO2007084370A1 (en) | 2006-01-13 | 2007-07-26 | C.R. Bard, Inc. | Stent delivery system |
US8152833B2 (en) | 2006-02-22 | 2012-04-10 | Tyco Healthcare Group Lp | Embolic protection systems having radiopaque filter mesh |
US20070225659A1 (en) * | 2006-03-21 | 2007-09-27 | Cook Incorporated | Introducer sheath having frangible tip |
US20100234852A1 (en) | 2006-03-31 | 2010-09-16 | Naoki Shinohara | Stent Delivery Catheter |
US20070276419A1 (en) | 2006-05-26 | 2007-11-29 | Fox Hollow Technologies, Inc. | Methods and devices for rotating an active element and an energy emitter on a catheter |
GB0615658D0 (en) * | 2006-08-07 | 2006-09-13 | Angiomed Ag | Hand-held actuator device |
EP3150177B1 (en) | 2006-10-22 | 2021-06-02 | Idev Technologies, Inc. | Methods for securing strand ends and the resulting devices |
MX2009004292A (en) | 2006-10-22 | 2009-08-12 | Idev Technologies Inc | Devices and methods for stent advancement. |
US8070799B2 (en) | 2006-12-19 | 2011-12-06 | Sorin Biomedica Cardio S.R.L. | Instrument and method for in situ deployment of cardiac valve prostheses |
US7896915B2 (en) | 2007-04-13 | 2011-03-01 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
GB0713497D0 (en) * | 2007-07-11 | 2007-08-22 | Angiomed Ag | Device for catheter sheath retraction |
US8252035B2 (en) * | 2007-08-01 | 2012-08-28 | Cappella, Inc. | Device delivery system with two stage withdrawal |
US7988723B2 (en) | 2007-08-02 | 2011-08-02 | Flexible Stenting Solutions, Inc. | Flexible stent |
US9034007B2 (en) * | 2007-09-21 | 2015-05-19 | Insera Therapeutics, Inc. | Distal embolic protection devices with a variable thickness microguidewire and methods for their use |
US8066755B2 (en) * | 2007-09-26 | 2011-11-29 | Trivascular, Inc. | System and method of pivoted stent deployment |
US20090082845A1 (en) * | 2007-09-26 | 2009-03-26 | Boston Scientific Corporation | Alignment stent apparatus and method |
US20090082841A1 (en) * | 2007-09-26 | 2009-03-26 | Boston Scientific Corporation | Apparatus for securing stent barbs |
US8663309B2 (en) * | 2007-09-26 | 2014-03-04 | Trivascular, Inc. | Asymmetric stent apparatus and method |
US8226701B2 (en) | 2007-09-26 | 2012-07-24 | Trivascular, Inc. | Stent and delivery system for deployment thereof |
AU2008308474B2 (en) | 2007-10-04 | 2014-07-24 | Trivascular, Inc. | Modular vascular graft for low profile percutaneous delivery |
US8114144B2 (en) | 2007-10-17 | 2012-02-14 | Abbott Cardiovascular Systems Inc. | Rapid-exchange retractable sheath self-expanding delivery system with incompressible inner member and flexible distal assembly |
WO2009055286A1 (en) * | 2007-10-24 | 2009-04-30 | Edwards Lifesciences Corporation | Percutaneous nitinol stent extraction device |
US8083789B2 (en) * | 2007-11-16 | 2011-12-27 | Trivascular, Inc. | Securement assembly and method for expandable endovascular device |
US8328861B2 (en) | 2007-11-16 | 2012-12-11 | Trivascular, Inc. | Delivery system and method for bifurcated graft |
US20100331958A1 (en) * | 2007-12-20 | 2010-12-30 | Trivascular, Inc. | Hinged endovascular device |
US8784440B2 (en) | 2008-02-25 | 2014-07-22 | Covidien Lp | Methods and devices for cutting tissue |
US9044318B2 (en) | 2008-02-26 | 2015-06-02 | Jenavalve Technology Gmbh | Stent for the positioning and anchoring of a valvular prosthesis |
ES2903231T3 (en) | 2008-02-26 | 2022-03-31 | Jenavalve Tech Inc | Stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart |
US9675482B2 (en) | 2008-05-13 | 2017-06-13 | Covidien Lp | Braid implant delivery systems |
US20090287145A1 (en) * | 2008-05-15 | 2009-11-19 | Altura Interventional, Inc. | Devices and methods for treatment of abdominal aortic aneurysms |
AU2009269146B2 (en) | 2008-06-30 | 2013-05-16 | Bolton Medical, Inc. | Abdominal aortic aneurysms: systems and methods of use |
US9149376B2 (en) | 2008-10-06 | 2015-10-06 | Cordis Corporation | Reconstrainable stent delivery system |
RU2503422C2 (en) | 2008-10-13 | 2014-01-10 | ТАЙКО ХЕЛСКЕА ГРУП эЛПи | Devices and methods of manipulating catheter rod |
WO2010105195A2 (en) | 2009-03-13 | 2010-09-16 | Bolton Medical, Inc. | System and method for deploying an endoluminal prosthesis at a surgical site |
EP2424450B1 (en) | 2009-04-29 | 2014-12-17 | Covidien LP | Devices for cutting and abrading tissue |
US9168105B2 (en) | 2009-05-13 | 2015-10-27 | Sorin Group Italia S.R.L. | Device for surgical interventions |
JP5281195B2 (en) | 2009-05-14 | 2013-09-04 | コヴィディエン リミテッド パートナーシップ | Atherotomy catheter that can be easily cleaned and method of use |
US8858613B2 (en) | 2010-09-20 | 2014-10-14 | Altura Medical, Inc. | Stent graft delivery systems and associated methods |
KR101846034B1 (en) * | 2009-10-30 | 2018-04-05 | 코디스 코포레이션 | Intraluminal device with improved flexibility and durability |
CA2782385A1 (en) * | 2009-12-01 | 2011-06-09 | Altura Medical, Inc. | Modular endograft devices and associated systems and methods |
CN104490454A (en) | 2009-12-02 | 2015-04-08 | 泰科保健集团有限合伙公司 | Methods And Devices For Cutting Tissue |
JP5511107B2 (en) | 2009-12-11 | 2014-06-04 | コヴィディエン リミテッド パートナーシップ | Substance removal device and method with improved substance capture efficiency |
US20110218609A1 (en) * | 2010-02-10 | 2011-09-08 | Trivascular, Inc. | Fill tube manifold and delivery methods for endovascular graft |
US10856978B2 (en) * | 2010-05-20 | 2020-12-08 | Jenavalve Technology, Inc. | Catheter system |
US11278406B2 (en) * | 2010-05-20 | 2022-03-22 | Jenavalve Technology, Inc. | Catheter system for introducing an expandable heart valve stent into the body of a patient, insertion system with a catheter system and medical device for treatment of a heart valve defect |
JP2013526388A (en) | 2010-05-25 | 2013-06-24 | イエナバルブ テクノロジー インク | Artificial heart valve, and transcatheter delivery prosthesis comprising an artificial heart valve and a stent |
US9023095B2 (en) | 2010-05-27 | 2015-05-05 | Idev Technologies, Inc. | Stent delivery system with pusher assembly |
US9119662B2 (en) | 2010-06-14 | 2015-09-01 | Covidien Lp | Material removal device and method of use |
BR112013003601A2 (en) | 2010-08-17 | 2016-08-16 | St Jude Medical | placement system for placing a flexible prosthetic heart valve, and method for producing a delivery system |
US8540759B2 (en) | 2010-10-20 | 2013-09-24 | Stryker Corporation | Stent delivery catheter with rapid exchange capabilities |
GB201017834D0 (en) | 2010-10-21 | 2010-12-01 | Angiomed Ag | System to deliver a bodily implant |
AU2011319797B2 (en) | 2010-10-28 | 2015-04-09 | Covidien Lp | Material removal device and method of use |
AU2011326420B2 (en) | 2010-11-11 | 2014-11-27 | Covidien Lp | Flexible debulking catheters with imaging and methods of use and manufacture |
JP5891236B2 (en) | 2010-11-17 | 2016-03-22 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Stent delivery system |
EP2640324B1 (en) | 2010-11-17 | 2015-02-18 | Boston Scientific Scimed, Inc. | Stent delivery system |
CN103298433B (en) | 2010-11-17 | 2016-03-16 | 波士顿科学西美德公司 | Stent delivery system and the Lock Part for using together with stent delivery system |
US9101507B2 (en) | 2011-05-18 | 2015-08-11 | Ralph F. Caselnova | Apparatus and method for proximal-to-distal endoluminal stent deployment |
US20120303048A1 (en) | 2011-05-24 | 2012-11-29 | Sorin Biomedica Cardio S.R.I. | Transapical valve replacement |
US9131959B2 (en) | 2011-08-22 | 2015-09-15 | Cook Medical Technologies Llc | Splittable dilator delivery system |
WO2013033426A2 (en) | 2011-09-01 | 2013-03-07 | Covidien Lp | Catheter with helical drive shaft and methods of manufacture |
US10058443B2 (en) | 2011-11-02 | 2018-08-28 | Boston Scientific Scimed, Inc. | Stent delivery systems and methods for use |
US8992595B2 (en) | 2012-04-04 | 2015-03-31 | Trivascular, Inc. | Durable stent graft with tapered struts and stable delivery methods and devices |
US9498363B2 (en) | 2012-04-06 | 2016-11-22 | Trivascular, Inc. | Delivery catheter for endovascular device |
CN104363862B (en) | 2012-04-12 | 2016-10-05 | 波顿医疗公司 | Blood vessel prosthesis conveyer device and using method |
US9155647B2 (en) | 2012-07-18 | 2015-10-13 | Covidien Lp | Methods and apparatus for luminal stenting |
KR101416524B1 (en) | 2012-08-09 | 2014-07-14 | 연세대학교 산학협력단 | Apparatus of deliverying self expanding stent |
CA2881535A1 (en) | 2012-08-10 | 2014-02-13 | Altura Medical, Inc. | Stent delivery systems and associated methods |
US9532844B2 (en) | 2012-09-13 | 2017-01-03 | Covidien Lp | Cleaning device for medical instrument and method of use |
EP2710985A3 (en) * | 2012-09-20 | 2016-01-13 | Biotronik AG | Implant, system formed of an implant and a catheter, and method for producing such a system |
US9114001B2 (en) | 2012-10-30 | 2015-08-25 | Covidien Lp | Systems for attaining a predetermined porosity of a vascular device |
US9452070B2 (en) | 2012-10-31 | 2016-09-27 | Covidien Lp | Methods and systems for increasing a density of a region of a vascular device |
US9943427B2 (en) | 2012-11-06 | 2018-04-17 | Covidien Lp | Shaped occluding devices and methods of using the same |
US9943329B2 (en) | 2012-11-08 | 2018-04-17 | Covidien Lp | Tissue-removing catheter with rotatable cutter |
US9498249B2 (en) | 2012-11-21 | 2016-11-22 | P Tech, Llc | Expandable access systems and methods |
US20140180380A1 (en) | 2012-12-20 | 2014-06-26 | Sanford Health | Stent Deployment Device and Methods for Use |
US9157174B2 (en) | 2013-02-05 | 2015-10-13 | Covidien Lp | Vascular device for aneurysm treatment and providing blood flow into a perforator vessel |
CN109730806B (en) | 2013-03-15 | 2023-01-24 | 伊瑟拉医疗公司 | Vascular treatment device and method |
US9439751B2 (en) | 2013-03-15 | 2016-09-13 | Bolton Medical, Inc. | Hemostasis valve and delivery systems |
US8715315B1 (en) | 2013-03-15 | 2014-05-06 | Insera Therapeutics, Inc. | Vascular treatment systems |
US8715314B1 (en) | 2013-03-15 | 2014-05-06 | Insera Therapeutics, Inc. | Vascular treatment measurement methods |
WO2014144809A1 (en) | 2013-03-15 | 2014-09-18 | Altura Medical, Inc. | Endograft device delivery systems and associated methods |
US8679150B1 (en) | 2013-03-15 | 2014-03-25 | Insera Therapeutics, Inc. | Shape-set textile structure based mechanical thrombectomy methods |
US10010328B2 (en) | 2013-07-31 | 2018-07-03 | NeuVT Limited | Endovascular occlusion device with hemodynamically enhanced sealing and anchoring |
WO2015015314A2 (en) | 2013-07-31 | 2015-02-05 | EMBA Medical Limited | Methods and devices for endovascular embolization |
JP6563394B2 (en) | 2013-08-30 | 2019-08-21 | イェーナヴァルヴ テクノロジー インコーポレイテッド | Radially foldable frame for an artificial valve and method for manufacturing the frame |
CN105578999A (en) * | 2013-09-16 | 2016-05-11 | 延世大学校产学协力团 | Self-expanding stent transfer device |
AU2015249283B2 (en) | 2014-04-25 | 2019-07-18 | Flow Medtech, Llc | Left atrial appendage occlusion device |
WO2015200702A1 (en) | 2014-06-27 | 2015-12-30 | Covidien Lp | Cleaning device for catheter and catheter including the same |
EP3193790A4 (en) * | 2014-09-19 | 2018-10-03 | Flow Medtech, Inc. | Left atrial appendage occlusion device delivery system |
US10159587B2 (en) | 2015-01-16 | 2018-12-25 | Boston Scientific Scimed, Inc. | Medical device delivery system with force reduction member |
US10314667B2 (en) | 2015-03-25 | 2019-06-11 | Covidien Lp | Cleaning device for cleaning medical instrument |
US10327933B2 (en) * | 2015-04-28 | 2019-06-25 | Cook Medical Technologies Llc | Medical cannulae, delivery systems and methods |
EP4403138A3 (en) | 2015-05-01 | 2024-10-09 | JenaValve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
US10292721B2 (en) | 2015-07-20 | 2019-05-21 | Covidien Lp | Tissue-removing catheter including movable distal tip |
EP4327786A3 (en) * | 2015-09-18 | 2024-05-01 | Terumo Corporation | Pushable implant delivery system |
US10314664B2 (en) | 2015-10-07 | 2019-06-11 | Covidien Lp | Tissue-removing catheter and tissue-removing element with depth stop |
US11351048B2 (en) | 2015-11-16 | 2022-06-07 | Boston Scientific Scimed, Inc. | Stent delivery systems with a reinforced deployment sheath |
JP2017140112A (en) * | 2016-02-08 | 2017-08-17 | テルモ株式会社 | Therapeutic method, and stent |
CN108697423A (en) | 2016-02-16 | 2018-10-23 | 伊瑟拉医疗公司 | The part flow arrangement of suction unit and anchoring |
CN109069281B (en) | 2016-02-26 | 2021-03-09 | 波士顿科学国际有限公司 | Stent delivery system with reduced profile |
CN109475419B (en) | 2016-05-13 | 2021-11-09 | 耶拿阀门科技股份有限公司 | Heart valve prosthesis delivery systems and methods for delivering heart valve prostheses through guide sheaths and loading systems |
US11197754B2 (en) | 2017-01-27 | 2021-12-14 | Jenavalve Technology, Inc. | Heart valve mimicry |
US10940030B2 (en) | 2017-03-10 | 2021-03-09 | Serenity Medical, Inc. | Method and system for delivering a self-expanding stent to the venous sinuses |
WO2018207542A1 (en) * | 2017-05-11 | 2018-11-15 | 株式会社 京都医療設計 | Stent supply device |
US10925763B2 (en) | 2017-09-13 | 2021-02-23 | CARDINAL HEALTH SWITZERLAND 515 GmbH | Stent delivery catheter with convertible living-hinge for slow to fast retraction |
IL270209B2 (en) | 2017-09-13 | 2023-10-01 | Cardinal Health 515 Gmbh | Stent delivery catheter with fast slider and slow thumbwheel control |
US11241324B2 (en) | 2017-09-13 | 2022-02-08 | CARDINAL HEALTH SWITZERLAND 515 GmbH | Stent delivery catheter with fine thumbwheel control and fast crank handle |
IL274080B1 (en) | 2017-10-29 | 2024-09-01 | Cardinal Health 515 Gmbh | Stent delivery catheter system with slow speed control via pin and slot with fast speed control tab |
US11013627B2 (en) | 2018-01-10 | 2021-05-25 | Boston Scientific Scimed, Inc. | Stent delivery system with displaceable deployment mechanism |
JP7109657B2 (en) | 2018-05-23 | 2022-07-29 | コーシム・ソチエタ・ア・レスポンサビリタ・リミタータ | heart valve prosthesis |
US10441449B1 (en) | 2018-05-30 | 2019-10-15 | Vesper Medical, Inc. | Rotary handle stent delivery system and method |
US10953195B2 (en) | 2018-06-01 | 2021-03-23 | Covidien Lp | Flexible tip catheter |
US10449073B1 (en) | 2018-09-18 | 2019-10-22 | Vesper Medical, Inc. | Rotary handle stent delivery system and method |
CN113645927A (en) | 2019-02-13 | 2021-11-12 | 波士顿科学国际有限公司 | Stent delivery system |
US11219541B2 (en) | 2020-05-21 | 2022-01-11 | Vesper Medical, Inc. | Wheel lock for thumbwheel actuated device |
CN116056671A (en) * | 2020-08-03 | 2023-05-02 | 株式会社钟化 | Tubular medical device delivery apparatus and method for manufacturing tubular medical device delivery apparatus |
JP7449627B2 (en) | 2021-01-17 | 2024-03-14 | インスパイア エム.ディー リミテッド | Shunt with blood flow indicator |
CN116685367B (en) | 2021-03-25 | 2024-09-10 | 印斯拜尔Md有限公司 | Device for dividing blood between arterial and venous systems |
Family Cites Families (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3585707A (en) * | 1966-04-13 | 1971-06-22 | Cordis Corp | Method of making tubular products |
US3485234A (en) * | 1966-04-13 | 1969-12-23 | Cordis Corp | Tubular products and method of making same |
US3612058A (en) * | 1968-04-17 | 1971-10-12 | Electro Catheter Corp | Catheter stylets |
US4516972A (en) * | 1982-01-28 | 1985-05-14 | Advanced Cardiovascular Systems, Inc. | Guiding catheter and method of manufacture |
SE445884B (en) * | 1982-04-30 | 1986-07-28 | Medinvent Sa | DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION |
CA1232814A (en) * | 1983-09-16 | 1988-02-16 | Hidetoshi Sakamoto | Guide wire for catheter |
JPS60126170A (en) * | 1983-12-14 | 1985-07-05 | テルモ株式会社 | Catheter and its production |
US4580568A (en) * | 1984-10-01 | 1986-04-08 | Cook, Incorporated | Percutaneous endovascular stent and method for insertion thereof |
US4665771A (en) * | 1984-10-15 | 1987-05-19 | Mitchell Frank R | Hypocyclic drive |
ES8705239A1 (en) * | 1984-12-05 | 1987-05-01 | Medinvent Sa | A device for implantation and a method of implantation in a vessel using such device. |
US4705511A (en) * | 1985-05-13 | 1987-11-10 | Bipore, Inc. | Introducer sheath assembly |
US4733665C2 (en) * | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US4665918A (en) * | 1986-01-06 | 1987-05-19 | Garza Gilbert A | Prosthesis system and method |
DE3786721D1 (en) * | 1986-02-24 | 1993-09-02 | Fischell Robert | DEVICE FOR DETECTING BLOOD VESSELS AND SYSTEM FOR ITS INTRODUCTION. |
US4676229A (en) * | 1986-04-09 | 1987-06-30 | Welch Allyn, Inc. | Biopsy channel for an endoscope |
US4665905A (en) * | 1986-06-09 | 1987-05-19 | Brown Charles S | Dynamic elbow and knee extension brace |
US4817613A (en) * | 1987-07-13 | 1989-04-04 | Devices For Vascular Intervention, Inc. | Guiding catheter |
JPS6446477A (en) * | 1987-08-13 | 1989-02-20 | Terumo Corp | Catheter |
WO1989003197A1 (en) * | 1987-10-08 | 1989-04-20 | Terumo Kabushiki Kaisha | Instrument and apparatus for securing inner diameter of lumen of tubular organ |
FR2624747A1 (en) * | 1987-12-18 | 1989-06-23 | Delsanti Gerard | REMOVABLE ENDO-ARTERIAL DEVICES FOR REPAIRING ARTERIAL WALL DECOLLEMENTS |
US4898591A (en) * | 1988-08-09 | 1990-02-06 | Mallinckrodt, Inc. | Nylon-PEBA copolymer catheter |
US4985022A (en) * | 1988-11-23 | 1991-01-15 | Med Institute, Inc. | Catheter having durable and flexible segments |
US4875468A (en) * | 1988-12-23 | 1989-10-24 | Welch Allyn, Inc. | Elastomer-ePTFE biopsy channel |
US5045072A (en) * | 1989-06-13 | 1991-09-03 | Cordis Corporation | Catheter having highly radiopaque, flexible tip |
EP0408245B1 (en) * | 1989-07-13 | 1994-03-02 | American Medical Systems, Inc. | Stent placement instrument |
US5217440A (en) * | 1989-10-06 | 1993-06-08 | C. R. Bard, Inc. | Multilaminate coiled film catheter construction |
US5057092A (en) * | 1990-04-04 | 1991-10-15 | Webster Wilton W Jr | Braided catheter with low modulus warp |
US5279596A (en) * | 1990-07-27 | 1994-01-18 | Cordis Corporation | Intravascular catheter with kink resistant tip |
US5190520A (en) * | 1990-10-10 | 1993-03-02 | Strato Medical Corporation | Reinforced multiple lumen catheter |
US5160341A (en) * | 1990-11-08 | 1992-11-03 | Advanced Surgical Intervention, Inc. | Resorbable urethral stent and apparatus for its insertion |
US5254107A (en) * | 1991-03-06 | 1993-10-19 | Cordis Corporation | Catheter having extended braid reinforced transitional tip |
US5221270A (en) * | 1991-06-28 | 1993-06-22 | Cook Incorporated | Soft tip guiding catheter |
US5306252A (en) * | 1991-07-18 | 1994-04-26 | Kabushiki Kaisha Kobe Seiko Sho | Catheter guide wire and catheter |
CA2079417C (en) * | 1991-10-28 | 2003-01-07 | Lilip Lau | Expandable stents and method of making same |
US5316023A (en) * | 1992-01-08 | 1994-05-31 | Expandable Grafts Partnership | Method for bilateral intra-aortic bypass |
US5221372A (en) * | 1992-02-13 | 1993-06-22 | Northwestern University | Fracture-tough, high hardness stainless steel and method of making same |
US5290295A (en) * | 1992-07-15 | 1994-03-01 | Querals & Fine, Inc. | Insertion tool for an intraluminal graft procedure |
US5707376A (en) * | 1992-08-06 | 1998-01-13 | William Cook Europe A/S | Stent introducer and method of use |
JPH08500757A (en) * | 1992-12-30 | 1996-01-30 | シュナイダー・(ユーエスエイ)・インコーポレーテッド | Device for deploying a stent implantable in the body |
WO1994023786A1 (en) * | 1993-04-13 | 1994-10-27 | Boston Scientific Corporation | Prosthesis delivery system |
US5480423A (en) * | 1993-05-20 | 1996-01-02 | Boston Scientific Corporation | Prosthesis delivery |
IL105828A (en) * | 1993-05-28 | 1999-06-20 | Medinol Ltd | Medical stent |
DE4428914C2 (en) * | 1993-08-18 | 2000-09-28 | Scimed Life Systems Inc | Thin-walled multi-layer catheter |
JPH07178176A (en) * | 1993-12-24 | 1995-07-18 | Terumo Corp | Catheter |
JP2703510B2 (en) * | 1993-12-28 | 1998-01-26 | アドヴァンスド カーディオヴァスキュラー システムズ インコーポレーテッド | Expandable stent and method of manufacturing the same |
US5538510A (en) * | 1994-01-31 | 1996-07-23 | Cordis Corporation | Catheter having coextruded tubing |
US5449373A (en) * | 1994-03-17 | 1995-09-12 | Medinol Ltd. | Articulated stent |
US5415664A (en) * | 1994-03-30 | 1995-05-16 | Corvita Corporation | Method and apparatus for introducing a stent or a stent-graft |
US5683451A (en) * | 1994-06-08 | 1997-11-04 | Cardiovascular Concepts, Inc. | Apparatus and methods for deployment release of intraluminal prostheses |
WO1996013228A1 (en) * | 1994-10-27 | 1996-05-09 | Schneider (Usa) Inc. | Stent delivery device |
AU4242996A (en) * | 1994-11-23 | 1996-06-17 | Navarre Biomedical, Ltd. | Flexible catheter |
US5591197A (en) * | 1995-03-14 | 1997-01-07 | Advanced Cardiovascular Systems, Inc. | Expandable stent forming projecting barbs and method for deploying |
AU4632196A (en) * | 1995-04-14 | 1996-10-30 | Schneider (Usa) Inc. | Rolling membrane stent delivery device |
US5534007A (en) * | 1995-05-18 | 1996-07-09 | Scimed Life Systems, Inc. | Stent deployment catheter with collapsible sheath |
US5700269A (en) * | 1995-06-06 | 1997-12-23 | Corvita Corporation | Endoluminal prosthesis deployment device for use with prostheses of variable length and having retraction ability |
US5863366A (en) * | 1995-06-07 | 1999-01-26 | Heartport, Inc. | Method of manufacture of a cannula for a medical device |
US5702418A (en) * | 1995-09-12 | 1997-12-30 | Boston Scientific Corporation | Stent delivery system |
US5775781A (en) * | 1996-01-26 | 1998-07-07 | Randy R. Sawtelle | Pavement marking removal tool and method |
US5697971A (en) * | 1996-06-11 | 1997-12-16 | Fischell; Robert E. | Multi-cell stent with cells having differing characteristics |
US5776140A (en) * | 1996-07-16 | 1998-07-07 | Cordis Corporation | Stent delivery system |
US5755781A (en) * | 1996-08-06 | 1998-05-26 | Iowa-India Investments Company Limited | Embodiments of multiple interconnected stents |
US5968068A (en) * | 1996-09-12 | 1999-10-19 | Baxter International Inc. | Endovascular delivery system |
US5735859A (en) * | 1997-02-14 | 1998-04-07 | Cathco, Inc. | Distally attachable and releasable sheath for a stent delivery system |
-
1998
- 1998-03-13 US US09/042,276 patent/US6019778A/en not_active Expired - Lifetime
-
1999
- 1999-03-10 AU AU20333/99A patent/AU736076B2/en not_active Expired
- 1999-03-10 CA CA002265123A patent/CA2265123C/en not_active Expired - Lifetime
- 1999-03-12 JP JP6744099A patent/JP4601738B2/en not_active Expired - Lifetime
- 1999-03-12 DE DE69938266T patent/DE69938266T2/en not_active Expired - Lifetime
- 1999-03-12 EP EP99301879A patent/EP0941716B1/en not_active Revoked
Also Published As
Publication number | Publication date |
---|---|
EP0941716A3 (en) | 2001-07-18 |
CA2265123A1 (en) | 1999-09-13 |
CA2265123C (en) | 2007-01-30 |
JP4601738B2 (en) | 2010-12-22 |
EP0941716A2 (en) | 1999-09-15 |
DE69938266D1 (en) | 2008-04-17 |
AU736076B2 (en) | 2001-07-26 |
US6019778A (en) | 2000-02-01 |
JPH11313893A (en) | 1999-11-16 |
AU2033399A (en) | 1999-09-23 |
EP0941716B1 (en) | 2008-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69938266T2 (en) | INTRODUCTION DEVICE FOR A SELF-EXPANDABLE STENT | |
DE60029150T3 (en) | Import device for a self-expanding stent | |
DE60128300T2 (en) | Insertion device for a self-expanding stent | |
DE60221552T2 (en) | INTRODUCTION DEVICE FOR A SELF-EXPANDING STENT | |
DE60110141T2 (en) | Stent delivery system with a delivery zone having a clear transition zone | |
DE60019027T2 (en) | Holder for a delivery system of a self-expanding stent | |
DE60317730T2 (en) | System for introducing a self-expanding stent | |
DE60025302T2 (en) | Intravascular stent with tapered struts | |
DE69915895T2 (en) | Intravascular stent with improved strut geometry | |
DE60120325T2 (en) | Intravascular device with improved radiopacity | |
DE602004012640T2 (en) | Anti-friction agent for loading a self-expanding stent | |
DE602004010347T2 (en) | Stent with independent segments that can be uncoupled during expansion | |
DE69828375T2 (en) | DISPOSABLE DEVICE FOR INTRODUCING ENDOLUMINARY PROSTHESIS | |
DE60226354T2 (en) | Guidewire device for total occlusion | |
DE602004010344T2 (en) | Catheter without balloon for inserting a stent | |
DE69732122T2 (en) | DEVICE FOR THE EXPANSION OF A BODY LUMEN AND THE INSERTING OF A PROSTHESIS IN THIS LUMEN | |
DE69626108T2 (en) | STENTING DEVICE WITH ROLLING MEMBRANE | |
DE60131216T2 (en) | Spiral stent with flat ends | |
DE69528385T2 (en) | VASCULAR DILATION DEVICE | |
DE60207692T2 (en) | RÖNTGENOPAKES INTRALUMINAL MEDICAL DEVICE | |
DE69827192T2 (en) | Stent and stent-graft for the treatment of branched blood vessels | |
DE602005005567T2 (en) | Insertion device with a low deployment force | |
DE602004012037T2 (en) | Covering device for an aneurysm neck | |
DE60319765T2 (en) | Intraluminal medical device with radiopaque markers | |
DE69908736T2 (en) | Balloon expandable covered stent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8363 | Opposition against the patent |