DE68910411T2 - Oxidation hydrolysis of iodoalkanes. - Google Patents

Oxidation hydrolysis of iodoalkanes.

Info

Publication number
DE68910411T2
DE68910411T2 DE68910411T DE68910411T DE68910411T2 DE 68910411 T2 DE68910411 T2 DE 68910411T2 DE 68910411 T DE68910411 T DE 68910411T DE 68910411 T DE68910411 T DE 68910411T DE 68910411 T2 DE68910411 T2 DE 68910411T2
Authority
DE
Germany
Prior art keywords
iodine
reaction
iodoalkanes
iodoalkane
iodomethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE68910411T
Other languages
German (de)
Other versions
DE68910411D1 (en
Inventor
Victor Hugh C O Eastman Agreda
Mark C O Eastman Kodak Rule
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Chemical Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Application granted granted Critical
Publication of DE68910411D1 publication Critical patent/DE68910411D1/en
Publication of DE68910411T2 publication Critical patent/DE68910411T2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/09Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
    • C07C29/12Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of esters of mineral acids
    • C07C29/124Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of esters of mineral acids of halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/13Iodine; Hydrogen iodide
    • C01B7/14Iodine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A process comprising preparation of an alkanol and elemental iodine by contacting an iodoalkane containing 1 to 20 carbons, water and molecular oxygen at a temperature in the range of 50 DEG to 200 DEG C and recovering the elemental iodine.

Description

Diese Erfindung betrifft die Oxidationshydrolyse von Iodoalkanen, bei der ein Alkanol und elementares Iod durch Kontaktieren eines Iodoalkans, Wasser und molekularem Sauerstoff erzeugt werden. Da das Iod in elementarer Form vorliegt, läßt es sich leicht gewinnen.This invention relates to the oxidation hydrolysis of iodoalkanes, in which an alkanol and elemental iodine are produced by contacting an iodoalkane, water and molecular oxygen. Since the iodine is in elemental form, it is easily recovered.

Es sind eine Anzahl von Verfahren entwickelt worden, um Iodwerte aus anorganischen Iod enthaltenden Verbindungen zu gewinnen. Beispielsweise wird Iod im technischen Maßstab aus Tiefbrunnensole durch Chloroxidation gewonnen. Iodwerte lassen sich auch durch Oxidation von sauren Solen mit Cuprisulfat oder Ferrisulfat gewinnen. Alternativ kann eine Elektrolyse von Ammoniumiodidlösungen durchgeführt werden, wie es in der U.S.- Patentschrift 3,975,439 beschrieben wird. Die katalytische Oxidation von Ammoniumiodidlösungen durch Sauerstoff in Gegenwart von Kupferkatalysatoren wird in der japanischen Patentanmeldung Kokai Nr. 73489/1978 beschrieben. In jüngerer Zeit wurde in der EP 0218998 ein Verfahren zur Gewinnung von elementarem Iod aus wäßrigem Natriumiodid oder einer Mischung von Iodobenzol und NaI beschrieben, und zwar durch Ansäuern mit Kohlendioxid und Oxidation mit molekularem Sauerstoff. Diese Verfahren ermöglichen jedoch nicht die Gewinnung von elementarem Iod aus Iodoalkanen oder substituierten Iodoalkanen. In der U.S.-Patentschrift 4,085,200 wird ein Verfahren zur thermochemischen Erzeugung von Methan und Sauerstoff aus Wasser und Kohlendioxid beschrieben, bei dem als Zwischenstufe die Hydrolyse von Iodomethan zu Methanol, Dimethylether und waßrigem HI durchgeführt wird; dies Verfahren ermöglicht jedoch nicht die Produktion von elementarem Iod oder von einem Alkanol. Eine einfache Hydrolyse von Iodoalkanen durch Wasser führt im PrinziP zu Alkanol und wäßriger Iodwasserstoffsäure; dies ermöglicht jedoch nicht die Durchführung eines vom kommerziellen Standpunkt aus gesehen geeigneten Verfahrens, da das Reaktions- Gleichgewicht A number of processes have been developed to recover iodine values from inorganic iodine-containing compounds. For example, iodine is recovered on an industrial scale from deep well brine by chlorine oxidation. Iodine values can also be recovered by oxidation of acidic brines with cupric sulfate or ferric sulfate. Alternatively, electrolysis of ammonium iodide solutions can be carried out as described in US Patent 3,975,439. The catalytic oxidation of ammonium iodide solutions by oxygen in the presence of copper catalysts is described in Japanese Patent Application Kokai No. 73489/1978. More recently, EP 0218998 describes a process for recovering elemental iodine from aqueous sodium iodide or a mixture of iodobenzene and NaI by acidification with carbon dioxide and oxidation with molecular oxygen. However, these processes do not enable the recovery of elemental iodine from iodoalkanes or substituted iodoalkanes. US Patent 4,085,200 describes a process for the thermochemical production of methane and oxygen from water and carbon dioxide, in which the intermediate step is the hydrolysis of iodomethane to methanol, dimethyl ether and aqueous HI; however, this process does not allow the production of elemental iodine or an alkanol. A simple hydrolysis of iodoalkanes by water leads in principle to alkanol and aqueous hydriodic acid; however, this does not allow the implementation of a process suitable from a commercial point of view, since the reaction equilibrium

weit links liegt, wodurch die Umwandlung auf einige wenige Prozent begrenzt wird. Weiterhin ist die Gewinnung von konzentriertem HI aus dem verdünnten wäßrigen Medium sehr kostspielig.lies far to the left, limiting the conversion to a few percent. Furthermore, the recovery of concentrated HI from the dilute aqueous medium is very costly.

Es wurde nun gefunden, daß die lodwerte in Iodoalkanen leicht in ökonomischer Weise gewonnen werden können, indem man eine oxidative Hydrolyse in flüssiger Phase durchführt, wobei die Hydrolyse des Iodoalkans in Gegenwart von molekularem Sauerstoff und Wasser bei einer TemPeratur von über 100ºC erfolgt. Unter diesen Bedingungen wird das durch Hydrolyse freigesetzte HI schnell zu elementarem Iod oxidiert. Die Gesamt-Reaktion ist demnach wie folgt:It has now been found that the iodine values in iodoalkanes can be easily recovered economically by carrying out an oxidative hydrolysis in the liquid phase, whereby the hydrolysis of the iodoalkane takes place in the presence of molecular oxygen and water at a temperature of over 100ºC. Under these conditions, the HI released by hydrolysis is quickly oxidized to elemental iodine. The overall reaction is therefore as follows:

R-I + 1/2 H&sub2;O + 1/4 O&sub2; T ROH + 1/2 I&sub2;.R-I + 1/2 H₂O + 1/4 O₂ T ROH + 1/2 I₂.

Das in diesem Verfahren erzeugte Iod ist in dem wäßrigen Medium relativ unlöslich und läßt sich leicht durch eine Vielzahl von Verfahren gewinnen, einschließlich Dekantieren, wenn das Iod geschmolzen ist, Filtrieren, wenn das Iod durch Abkühlen verfestigt ist oder durch Extrahieren mit einem Kohlenwasserstofflösungsmittel. Die Alkanolwerte können aus der wäßrigen Lösung auch durch Destillation entfernt werden, und zwar im Falle von niedrigsiedenden Alkanolen, wie z. B. Methanol oder Ethanol oder durch Extraktion im Falle von höhersiedenden, weniger hydrophilen Alkanolen.The iodine produced in this process is relatively insoluble in the aqueous medium and is readily recovered by a variety of methods, including decantation if the iodine is molten, filtration if the iodine is solidified by cooling, or extraction with a hydrocarbon solvent. The alkanol values can also be removed from the aqueous solution by distillation in the case of lower boiling alkanols such as methanol or ethanol or by extraction in the case of higher boiling, less hydrophilic alkanols.

Die Iodoalkane, die bei diesem Verfahren verwendet werden können, enthalten 1 - 20 Kohlenstoffatome, wobei zu ihnen primäre, sekundäre und tertiäre Iodoalkane gehören. Vorzugsweise ist das Iodoalkan ein sekundäres oder primäres Iodoalkan mit 1 - 5 Kohlenstoffatomen. Zu geeigneten Iodoalkanen gehören Iodomethan, Iodoethan, 1-Iodopropan, 2-Iodopropan, 1-Iodobutan und 2-Iodobutan. Besonders vorteilhaft ist ein primäres Iodoalkan mit 1 - 3 Kohlenstoffatomen, wie z. B. Iodomethan und Iodoethan. Das am meisten bevorzugte Iodoalkan ist Iodomethan.The iodoalkanes that can be used in this process contain 1-20 carbon atoms and include primary, secondary and tertiary iodoalkanes. Preferably, the iodoalkane is a secondary or primary iodoalkane having 1-5 carbon atoms. Suitable iodoalkanes include iodomethane, iodoethane, 1-iodopropane, 2-iodopropane, 1-iodobutane and 2-Iodobutane. Particularly advantageous is a primary iodoalkane with 1 - 3 carbon atoms, such as iodomethane and iodoethane. The most preferred iodoalkane is iodomethane.

Die Umsetzung erfolgt bei Temperaturen von 50ºC - 250ºC. Bei niedrigeren Temperaturen wird die Reaktionsgeschwindigkeit in nicht akzeptierbarer Weise gering, wohingegen bei den höheren Temperaturen der Reaktionsdruck in nicht akzeptierbarer Weise hoch wird. Dies bedeutet, daß praktische Reaktionstemperaturen bei 100ºC - 200ºC liegen, vorzugsweise bei Temperaturen im Bereich von 125ºC - 175ºC.The reaction takes place at temperatures of 50ºC - 250ºC. At lower temperatures the reaction rate becomes unacceptably low, whereas at higher temperatures the reaction pressure becomes unacceptably high. This means that practical reaction temperatures are 100ºC - 200ºC, preferably at temperatures in the range of 125ºC - 175ºC.

Der molekulare Sauerstoff kann der Reaktion in jeder geeigneten Form zugeführt werden, einschließlich in Form von Luft, in Form von angereicherter Luft, in Form von reinem Sauerstoff und in Form von erschöpfter Luft.The molecular oxygen can be supplied to the reaction in any suitable form, including air, enriched air, pure oxygen and depleted air.

Der Druck des zugeführten Sauerstoffs kann variieren von unteratmosphärischem bis überatmosphärischem Druck, wobei überatmosphärische Drucke bevorzugt sind. Bevorzugte Gesamtdrucke liegen bei 1 - 105 kg/cm², wobei der bevorzugten Bereich bei 7 - 70,3 kg/cm² liegt. Der Reaktionsdruck muß ausreichend sein, so daß eine wäßrige Phase im Reaktor aufrechterhalten wird.The pressure of the oxygen supplied can vary from subatmospheric to superatmospheric pressure, with superatmospheric pressures being preferred. Preferred total pressures are 1 - 105 kg/cm², with the preferred range being 7 - 70.3 kg/cm². The reaction pressure must be sufficient so that an aqueous phase is maintained in the reactor.

Die Reaktion kann entweder kontinuierlich oder chargenweise durchgeführt werden. Im Falle einer Verfahrensweise im großen Maßstab ist eine kontinuierliche Verfahrensweise vorzuziehen, während ein chargenweises Verfahren bei Verfahren in kleinerem Maßstabe vorteilhaft sein kann.The reaction can be carried out either continuously or batchwise. In case of large-scale operation, a continuous operation is preferable, while a batchwise operation may be advantageous in smaller-scale operations.

Die Reaktionsdauer hängt von der Reaktionstemperatur und dem Druck ab, liegt im allgemeinen jedoch zwischen 10 Stunden und 10 Minuten. Höhere Temperaturen und höhere Drucke begünstigen kürzere Reaktionszeiten.The reaction time depends on the reaction temperature and pressure, but is generally between 10 hours and 10 minutes. Higher temperatures and higher pressures favor shorter reaction times.

Beim Verfahren dieser Erfindung ist kein Katalysator erforderlich. Dies vereinfacht die Verfahrensdurchführung, da keine Anlage zur Katalysatorentfernung erforderlich ist und da keine zusätzlichen Kosten bezüglich der Verwendung eines Katalysators auftreten.The process of this invention does not require a catalyst. This simplifies the process because no A catalyst removal system is required and there are no additional costs associated with using a catalyst.

BEISPIELEEXAMPLES

Die folgenden Beispiele veranschaulichen das Verfahren der vorliegenden Erfindung. In jedem Beispiel wurden die angegebenen Reaktionskomponenten in einen 330 mL fassenden Autoklaven vom Typ Hastelloy C gegeben, in dem sie den angegebenen Reaktionsbedingungen und Zeiten unterworfen wurden. Die Reaktionsprodukte wurder dann entfernt und analysiert. Alle Prozentangaben sind in Gew.-%.The following examples illustrate the process of the present invention. In each example, the indicated reaction components were placed in a 330 mL Hastelloy C autoclave and subjected to the indicated reaction conditions and times. The reaction products were then removed and analyzed. All percentages are in weight percent.

Beispiel 1example 1

100 mL H&sub2;O100 mL H₂O

10 mL Iodomethan10 mL iodomethane

120ºC120ºC

14,0 kg/cm² Luft14.0 kg/cm² air

1 Stunde.1 hour.

Bei der Reaktion wurde sämtlicher zur Verfügung stehender Sauerstoff verbraucht. Die Reaktions1ösung enthielt 81,82 % H&sub2;O, 3,85 % Methanol und 12 % Iod sowie 0,0 % Iodomethan. Zusätzlich wurden mehrere Gramm von kristallinem Iod im Autoklaven gefunden.During the reaction, all available oxygen was consumed. The reaction solution contained 81.82% H₂O, 3.85% methanol and 12% iodine as well as 0.0% iodomethane. In addition, several grams of crystalline iodine were found in the autoclave.

Beispiel 2Example 2

100 mL H&sub2;O100 mL H₂O

10 mL Iodomethan10 mL iodomethane

150ºC150ºC

28,1 kg/cm² Luft28.1 kg/cm² air

1 Stunde.1 hour.

Im Verlaufe der Reaktion trat ein Druckabfall von 7 kg/cm² innerhalb von 30 Minuten auf. Die Reaktionslösung enthielt 89,7 % Wasser, 3,71 % Methanol, 3,78 % Iod und 0,0 % Iodomethan.During the course of the reaction, a pressure drop of 7 kg/cm² occurred within 30 minutes. The reaction solution contained 89.7% water, 3.71% methanol, 3.78% iodine and 0.0% iodomethane.

Zusätzlich wurden im Autoklaven 15 g kristallines Iod gefunden. Dieses Beispiel zeigt die hohe Reaktionsgeschwindigkeit für die oxidative Hydrolysenreaktion bei 150ºC.Additionally, 15 g of crystalline iodine were found in the autoclave. This example shows the high reaction rate for the oxidative hydrolysis reaction at 150ºC.

Beispiel 3Example 3

100 mL H&sub2;O100 mL H₂O

10 mL Iodomethan10 mL iodomethane

100ºC100ºC

28,1 kg/cm² Luft28.1 kg/cm² air

1 Stunde.1 hour.

Die Reaktionslösung enthielt 95,1 % Wasser, 1,15 % Methanol, 1,1 % Iod und 0,7 % Iodomethan. Zusätzlich wurde flüssiges Iodomethan in Form einer zweiten Schicht festgestellt. Es hatte sich kein kristallines Iod gebildet. Dieses Beispiel zeigt die geringere Reaktionsgeschwindigkeit für die oxidative Hydrolysenreaktion bei 100ºC.The reaction solution contained 95.1% water, 1.15% methanol, 1.1% iodine and 0.7% iodomethane. In addition, liquid iodomethane was found in the form of a second layer. No crystalline iodine had formed. This example shows the lower reaction rate for the oxidative hydrolysis reaction at 100ºC.

Beispiel 4Example 4

100 mL H&sub2;O100 mL H₂O

10 mL Iodoethan10 mL iodoethane

120ºC120ºC

28,1 kg/cm² Luft28.1 kg/cm² air

2 Stunden.2 hours.

Der Reaktionsdruck fiel innerhalb eines Zeitraumes von 1 Stunde um 6,6 kg/cm² ab. Die Reaktionslösung enthielt 12,3 % Ethanol, 4,5 % Diethylether, 5,3 % Iod und 76,1 % H&sub2;O. Zusätzlich wurden in dem Autoklaven 10,1 g kristallines Iod gefunden.The reaction pressure dropped by 6.6 kg/cm² within a period of 1 hour. The reaction solution contained 12.3% ethanol, 4.5% diethyl ether, 5.3% iodine and 76.1% H₂O. In addition, 10.1 g of crystalline iodine were found in the autoclave.

Beispiel 5Example 5

100 mL H&sub2;O100 mL H₂O

10 mL 2-Iodopropan10 mL 2-iodopropane

120ºC120ºC

28,1 kg/cm² Luft28.1 kg/cm² air

2 Stunden.2 hours.

Der Reaktionsdruck fiel um 5,3 kg/cm² Innerhalb eines Zeitraumes von 1 Stunde. Die Reaktionslösung enthielt 13,2 % 2-Propanol, 6,2 % Iod und 78,3 % Wasser. Zusätzlich wurden im Autoklaven 3,4 g kristallines Iod gefunden.The reaction pressure dropped by 5.3 kg/cm2 within a period of 1 hour. The reaction solution contained 13.2% 2-propanol, 6.2% iodine and 78.3% water. In addition, 3.4 g of crystalline iodine were found in the autoclave.

Claims (3)

1. Verfahren, bei dem man1. Procedure in which A. ein Alkanol sowie elementares Iod durch Inkontaktbringen eines Iodoalkans oder eines substituierten Iodoalkans mit 1 bis 20 Kohlenstoffatomen, Wasser und molekularem Sauerstoff bei einer Temperatur im Bereich von 1000 bis 200ºC herstellt undA. an alkanol and elemental iodine are produced by bringing into contact an iodoalkane or a substituted iodoalkane with 1 to 20 carbon atoms, water and molecular oxygen at a temperature in the range of 1000 to 200ºC and B. das elementare Iod isoliert.B. the elemental iodine is isolated. 2. Verfahren nach Anspruch 1, bei dem das Iodoalkan 1 bis 5 Kohlenstoffatome enthält.2. The process of claim 1, wherein the iodoalkane contains 1 to 5 carbon atoms. 3. Verfahren, bei dem man3. Procedure in which A. Methanol und elementares Iod durch Inkontaktbringen von Iodomethan, Wasser und molekularem Sauerstoff bei einer Temperatur im Bereich von 125º bis 175ºC herstellt undA. producing methanol and elemental iodine by contacting iodomethane, water and molecular oxygen at a temperature in the range of 125º to 175ºC and B. das elementare Iod isoliert.B. the elemental iodine is isolated.
DE68910411T 1988-07-15 1989-07-13 Oxidation hydrolysis of iodoalkanes. Expired - Fee Related DE68910411T2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/220,844 US4863710A (en) 1988-07-15 1988-07-15 Oxidation hydrolysis of iodoalkanes

Publications (2)

Publication Number Publication Date
DE68910411D1 DE68910411D1 (en) 1993-12-09
DE68910411T2 true DE68910411T2 (en) 1994-06-01

Family

ID=22825218

Family Applications (1)

Application Number Title Priority Date Filing Date
DE68910411T Expired - Fee Related DE68910411T2 (en) 1988-07-15 1989-07-13 Oxidation hydrolysis of iodoalkanes.

Country Status (9)

Country Link
US (1) US4863710A (en)
EP (2) EP0351338B1 (en)
JP (1) JPH04500496A (en)
KR (1) KR970000891B1 (en)
AT (1) ATE96761T1 (en)
CA (1) CA1320037C (en)
DE (1) DE68910411T2 (en)
ES (1) ES2045522T3 (en)
WO (1) WO1990000520A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7010961B2 (en) * 2002-09-10 2006-03-14 Gilbarco Inc. Power head secondary containment leak prevention and detection system and method
US7251983B2 (en) * 2002-09-10 2007-08-07 Gilbarco Inc. Secondary containment system and method
US6978661B2 (en) * 2002-09-10 2005-12-27 Gilbarco Inc. Secondary containment leak prevention and detection system and method in fuel dispenser
US6997042B2 (en) * 2002-09-10 2006-02-14 Gilbarco Inc. Secondary containment leak prevention and detection system and method
US6834534B2 (en) * 2003-03-17 2004-12-28 Veeder-Root Company Fuel storage tank leak prevention and detection system and method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1849844A (en) * 1926-02-06 1932-03-15 Lloyd Stewart Joseph Method for hydrolyzing the halides of hydrocarbons and their derivatives
US1936553A (en) * 1932-01-18 1933-11-21 Jones Chemical Company Inc Preparation of pure iodine
US3006731A (en) * 1957-10-29 1961-10-31 Shell Oil Co Process for the recovery of iodine
GB887678A (en) * 1959-07-16 1962-01-24 Distillers Co Yeast Ltd Production of aliphatic alcohols
US3425798A (en) * 1966-01-10 1969-02-04 Eastman Kodak Co Process for the removal of iodine from organic compounds
US3839547A (en) * 1972-12-01 1974-10-01 Gulf Research Development Co Process for recovering hbr and bromine from 2,3,3-tribromo-2-alkylalkanes
US3975439A (en) * 1973-07-26 1976-08-17 E. I. Du Pont De Nemours And Company Preparation and amination of iodoaniline
DE2606886A1 (en) * 1976-02-20 1977-09-01 Rheinische Braunkohlenw Ag THERMOCHEMICAL PROCESS FOR GENERATING METHANE FROM CARBON DIOXIDE AND WATER
JPS5373489A (en) * 1976-12-14 1978-06-29 Teijin Ltd Production of iodine
IT1207506B (en) * 1985-10-15 1989-05-25 Montedipe Spa PROCESS FOR THE RECOVERY OF THE IODINE FROM THE SODIUM IODIDE.

Also Published As

Publication number Publication date
US4863710A (en) 1989-09-05
CA1320037C (en) 1993-07-13
JPH04500496A (en) 1992-01-30
KR900701648A (en) 1990-12-04
ES2045522T3 (en) 1994-01-16
EP0425570A1 (en) 1991-05-08
ATE96761T1 (en) 1993-11-15
EP0351338B1 (en) 1993-11-03
EP0351338A1 (en) 1990-01-17
KR970000891B1 (en) 1997-01-21
WO1990000520A1 (en) 1990-01-25
DE68910411D1 (en) 1993-12-09

Similar Documents

Publication Publication Date Title
DE3823645C1 (en)
DE69207098T2 (en) Continuous process for the production of dimethyl carbonate
DE69007993T2 (en) Process for the recovery of hydrobromic acid and methanol.
CH398564A (en) Process for the production of cyclohexanone
DE2223541A1 (en) METHOD FOR PURIFYING MONOCARBONIC ACID STREAMS
EP0455004A1 (en) Process for the preparation of dimethyl ether
DE2447551B2 (en) Process for the production of methyl chloride
EP0784047B1 (en) Process for producing highly pure glycolic acid
DE3143149C2 (en) Process for the preparation of 1,1,1,3,3,3-hexafluoropropan-2-ol by catalytic hydrogenation of hexafluoroacetone hydrate in the vapor phase
DE68910411T2 (en) Oxidation hydrolysis of iodoalkanes.
DE2407834A1 (en) PROCESS FOR SEPARATION AND PURIFICATION OF PERHALOGCARBONIC ACIDS CONTAINING FLUORINE AND CHLORINE
DE69111410T4 (en) Process for cleaning carboxylic acids.
DE69400696T2 (en) METHOD FOR PRODUCING IRON CHLORIDE
DE2713401B2 (en) Process for the production of anhydrous magnesium chloride
DE68904760T2 (en) REGENERATION OF EXHAUSTED SULFURIC ACIDS WITH HYDROGEN PEROXYD.
DE2613113A1 (en) PROCESS FOR PRODUCING ALKALIMETAL HYDRIDES
DE3642410C2 (en)
DE69002877T2 (en) Process for the production of paraffin sulfonic acids.
EP0249870A2 (en) Process for the removal of dimethyl ether from methyl chloride
DE2423079C2 (en) Process for obtaining technically pure acetic acid by distillation
DE68921224T2 (en) METHOD FOR RECOVERING CATALYST VALUES.
DE2202204C2 (en) Process for the preparation of 2-mercaptobenzimidazole
DE2504638C2 (en) Process for the recovery of butadiene from the exhaust gas of an acetoxylation process
EP0061057B1 (en) Process for the production of formaldehyde
DE2912956C3 (en) Process for the production of ethylene glycol

Legal Events

Date Code Title Description
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: EASTMAN CHEMICAL CO., KINGSPORT, TENN., US

8339 Ceased/non-payment of the annual fee