DE60234620D1 - Verfahren zum aufbringen von metalllegierungsüberzügen und überzogene komponente - Google Patents

Verfahren zum aufbringen von metalllegierungsüberzügen und überzogene komponente

Info

Publication number
DE60234620D1
DE60234620D1 DE60234620T DE60234620T DE60234620D1 DE 60234620 D1 DE60234620 D1 DE 60234620D1 DE 60234620 T DE60234620 T DE 60234620T DE 60234620 T DE60234620 T DE 60234620T DE 60234620 D1 DE60234620 D1 DE 60234620D1
Authority
DE
Germany
Prior art keywords
dvd
gas
electron beam
vapor deposition
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE60234620T
Other languages
English (en)
Inventor
Derek D Hass
Haydn N G Wadley
Kumar P Dharmasena
Yosef Marciano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UVA Licensing and Ventures Group
University of Virginia UVA
Original Assignee
University of Virginia UVA
University of Virginia Patent Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23237501&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE60234620(D1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by University of Virginia UVA, University of Virginia Patent Foundation filed Critical University of Virginia UVA
Application granted granted Critical
Publication of DE60234620D1 publication Critical patent/DE60234620D1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/487Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using electron radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Coating Apparatus (AREA)
  • Electroplating Methods And Accessories (AREA)
DE60234620T 2001-09-10 2002-09-10 Verfahren zum aufbringen von metalllegierungsüberzügen und überzogene komponente Expired - Lifetime DE60234620D1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31828601P 2001-09-10 2001-09-10
PCT/US2002/028654 WO2003028428A2 (en) 2001-09-10 2002-09-10 Method and apparatus application of metallic alloy coatings

Publications (1)

Publication Number Publication Date
DE60234620D1 true DE60234620D1 (de) 2010-01-14

Family

ID=23237501

Family Applications (1)

Application Number Title Priority Date Filing Date
DE60234620T Expired - Lifetime DE60234620D1 (de) 2001-09-10 2002-09-10 Verfahren zum aufbringen von metalllegierungsüberzügen und überzogene komponente

Country Status (6)

Country Link
US (2) US8124178B2 (de)
EP (1) EP1436441B2 (de)
AT (1) ATE450631T1 (de)
AU (1) AU2002356523A1 (de)
DE (1) DE60234620D1 (de)
WO (1) WO2003028428A2 (de)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002356523A1 (en) * 2001-09-10 2003-04-14 University Of Virginia Patent Foundation Method and apparatus application of metallic alloy coatings
US7556695B2 (en) * 2002-05-06 2009-07-07 Honeywell International, Inc. Apparatus to make nanolaminate thermal barrier coatings
US20060062912A1 (en) * 2002-11-21 2006-03-23 Wortman David J Bond coat for a thermal barrier coating system and related method thereof
US7509734B2 (en) 2003-03-03 2009-03-31 United Technologies Corporation Repairing turbine element
US7216428B2 (en) 2003-03-03 2007-05-15 United Technologies Corporation Method for turbine element repairing
US8122600B2 (en) * 2003-03-03 2012-02-28 United Technologies Corporation Fan and compressor blade dovetail restoration process
US7128986B2 (en) * 2003-10-16 2006-10-31 Seagate Technology, Llc Nanoclustered magnetic materials for high moment write pole applications
US6979498B2 (en) * 2003-11-25 2005-12-27 General Electric Company Strengthened bond coats for thermal barrier coatings
US20050205415A1 (en) 2004-03-19 2005-09-22 Belousov Igor V Multi-component deposition
US7404986B2 (en) 2004-05-07 2008-07-29 United Technologies Corporation Multi-component deposition
US8084086B2 (en) * 2005-06-30 2011-12-27 University Of Virginia Patent Foundation Reliant thermal barrier coating system and related methods and apparatus of making the same
WO2007095376A2 (en) * 2006-02-15 2007-08-23 Kennametal Inc. Method and apparatus for coating particulates utilizing physical vapor deposition
US20080292903A1 (en) * 2007-05-25 2008-11-27 United Technologies Corporation Coated gas turbine engine component repair
US8709160B2 (en) 2008-08-22 2014-04-29 United Technologies Corporation Deposition apparatus having thermal hood
US8404047B2 (en) 2008-09-16 2013-03-26 United Technologies Corporation Electron beam vapor deposition apparatus and method
US8343591B2 (en) 2008-10-24 2013-01-01 United Technologies Corporation Method for use with a coating process
US20100189929A1 (en) * 2009-01-28 2010-07-29 Neal James W Coating device and deposition apparatus
PL2401232T3 (pl) * 2009-02-24 2016-10-31 Bezpośrednie napylanie próżniowe wspomagane plazmą z współosiowej drążonej katody i związany z nim sposób
US8419857B2 (en) 2009-03-31 2013-04-16 United Technologies Corporation Electron beam vapor deposition apparatus and method of coating
UA92556C2 (uk) * 2009-06-10 2010-11-10 Астромонт Лимитед Спосіб одержання наночастинок системи метал-кисень із заданим складом електронно-променевим випаровуванням і конденсацією у вакуумі
KR101084234B1 (ko) * 2009-11-30 2011-11-16 삼성모바일디스플레이주식회사 증착원, 이를 구비하는 증착 장치 및 박막 형성 방법
US20130129938A1 (en) * 2010-01-06 2013-05-23 Direct Vapor Technologies International Method for the co-evaporation and deposition of materials with differing vapor pressures
DE102010017896A1 (de) * 2010-04-21 2011-10-27 Ald Vacuum Technologies Gmbh Vorrichtung und Verfahren zum Beschichten von Substraten nach dem EB/PVD-Verfahren
WO2012027442A1 (en) * 2010-08-27 2012-03-01 Rolls-Royce Corporation Rare earth silicate environmental barrier coatings
US8642140B2 (en) * 2011-03-09 2014-02-04 United Technologies Corporation Ceramic coating deposition
US8541069B2 (en) 2011-04-11 2013-09-24 United Technologies Corporation Method of guided non-line of sight coating
US9023422B1 (en) * 2011-08-31 2015-05-05 Maxim Integrated Products, Inc. High rate deposition method of magnetic nanocomposites
WO2013085625A2 (en) * 2011-10-17 2013-06-13 Directed Vapor Technologies International Impact and erosion resistant thermal and environmental barrier coatings
US9581042B2 (en) 2012-10-30 2017-02-28 United Technologies Corporation Composite article having metal-containing layer with phase-specific seed particles and method therefor
US9527107B2 (en) 2013-01-11 2016-12-27 International Business Machines Corporation Method and apparatus to apply material to a surface
US9745736B2 (en) 2013-08-27 2017-08-29 University Of Virginia Patent Foundation Three-dimensional space frames assembled from component pieces and methods for making the same
US10233533B2 (en) * 2014-01-09 2019-03-19 United Technologies Corporation Coating process using gas screen
US10378861B2 (en) 2014-09-04 2019-08-13 University Of Virginia Patent Foundation Impulse mitigation systems for media impacts and related methods thereof
NL2013836B1 (en) * 2014-11-20 2016-10-10 Univ Delft Tech Production of nanostructured materials.
US10184759B2 (en) 2015-11-17 2019-01-22 University Of Virgina Patent Foundation Lightweight ballistic resistant anti-intrusion systems and related methods thereof
GB201600645D0 (en) * 2016-01-13 2016-02-24 Rolls Royce Plc Improvements in additive layer manufacturing methods
US11866816B2 (en) * 2016-07-06 2024-01-09 Rtx Corporation Apparatus for use in coating process
US10724133B2 (en) * 2016-09-14 2020-07-28 Raytheon Technologies Corporation EBPVD columnated vapor stream
CN111699276A (zh) * 2017-12-06 2020-09-22 亚利桑那薄膜研究有限责任公司 用于金属和陶瓷材料沉积的增材制造系统和方法

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3620815A (en) * 1969-03-13 1971-11-16 United Aircraft Corp Vapor collimation in vacuum deposition of coatings
JPS5472954A (en) * 1977-11-23 1979-06-11 Noboru Tsuya Semiconductor thin film and method of fabricating same
US4272612A (en) * 1979-05-09 1981-06-09 The United States Of America As Represented By The Secretary Of The Army Erosion lithography to abrade a pattern onto a substrate
US4439463A (en) * 1982-02-18 1984-03-27 Atlantic Richfield Company Plasma assisted deposition system
JPS591676A (ja) * 1982-06-29 1984-01-07 Citizen Watch Co Ltd イオンブレ−テイング装置
US4777908A (en) * 1986-11-26 1988-10-18 Optical Coating Laboratory, Inc. System and method for vacuum deposition of thin films
JPS63274762A (ja) 1987-05-01 1988-11-11 Ulvac Corp 反応蒸着膜の形成装置
JP2709162B2 (ja) * 1989-11-15 1998-02-04 株式会社日立製作所 マイクロ波プラズマ処理装置
US5356673A (en) * 1991-03-18 1994-10-18 Jet Process Corporation Evaporation system and method for gas jet deposition of thin film materials
US5356718A (en) * 1993-02-16 1994-10-18 Ppg Industries, Inc. Coating apparatus, method of coating glass, compounds and compositions for coating glasss and coated glass substrates
DE4304613C1 (de) 1993-02-16 1994-05-26 Fraunhofer Ges Forschung Verfahren zur Stabilisierung der Plasmaerzeugung mittels Elektronenstrahlverdampfer
US5560779A (en) * 1993-07-12 1996-10-01 Olin Corporation Apparatus for synthesizing diamond films utilizing an arc plasma
DE4412906C1 (de) 1994-04-14 1995-07-13 Fraunhofer Ges Forschung Verfahren und Einrichtung für die ionengestützte Vakuumbeschichtung
JPH10506150A (ja) * 1994-08-01 1998-06-16 フランツ ヘーマン、 非平衡軽量合金及び製品のために選択される処理
US5464667A (en) 1994-08-16 1995-11-07 Minnesota Mining And Manufacturing Company Jet plasma process and apparatus
US5534314A (en) * 1994-08-31 1996-07-09 University Of Virginia Patent Foundation Directed vapor deposition of electron beam evaporant
US5573682A (en) 1995-04-20 1996-11-12 Plasma Processes Plasma spray nozzle with low overspray and collimated flow
DE19544584A1 (de) * 1995-11-30 1997-06-05 Leybold Ag Vakuumbeschichtungsanlage mit einem in der Vakuumkammer angeordneten Tiegel zur Aufnahme von zu verdampfendem Material
US5628464A (en) * 1995-12-13 1997-05-13 Xerox Corporation Fluidized bed jet mill nozzle and processes therewith
US6123997A (en) 1995-12-22 2000-09-26 General Electric Company Method for forming a thermal barrier coating
US5736073A (en) 1996-07-08 1998-04-07 University Of Virginia Patent Foundation Production of nanometer particles by directed vapor deposition of electron beam evaporant
US6258467B1 (en) 2000-08-17 2001-07-10 Siemens Westinghouse Power Corporation Thermal barrier coating having high phase stability
AUPO850597A0 (en) * 1997-08-11 1997-09-04 Silverbrook Research Pty Ltd Image processing method and apparatus (art01a)
SG71151A1 (en) * 1997-09-17 2000-03-21 Gen Electric Bond coat for a thermal barrier coating system and method therefor
US6172331B1 (en) * 1997-09-17 2001-01-09 General Electric Company Method and apparatus for laser drilling
US6096381A (en) 1997-10-27 2000-08-01 General Electric Company Process for densifying and promoting inter-particle bonding of a bond coat for a thermal barrier coating
US6012652A (en) * 1998-01-30 2000-01-11 Mobil Oil Corporation Atomizing nozzle and method of use thereof
US6168874B1 (en) 1998-02-02 2001-01-02 General Electric Company Diffusion aluminide bond coat for a thermal barrier coating system and method therefor
US7136173B2 (en) * 1998-07-09 2006-11-14 Acm Research, Inc. Method and apparatus for end-point detection
DE19841012C1 (de) 1998-09-08 2000-01-13 Fraunhofer Ges Forschung Einrichtung zum plasmaaktivierten Bedampfen im Vakuum
DE19845803C2 (de) 1998-09-30 2002-10-17 Siemens Ag Verfahren zum Vakuumbeschichten von Metallbauteilen
US6153313A (en) 1998-10-06 2000-11-28 General Electric Company Nickel aluminide coating and coating systems formed therewith
US6291084B1 (en) 1998-10-06 2001-09-18 General Electric Company Nickel aluminide coating and coating systems formed therewith
US6306524B1 (en) 1999-03-24 2001-10-23 General Electric Company Diffusion barrier layer
US6478931B1 (en) 1999-08-06 2002-11-12 University Of Virginia Patent Foundation Apparatus and method for intra-layer modulation of the material deposition and assist beam and the multilayer structure produced therefrom
US6273678B1 (en) 1999-08-11 2001-08-14 General Electric Company Modified diffusion aluminide coating for internal surfaces of gas turbine components
AU7993400A (en) * 1999-10-04 2001-05-10 Textron Inc. Method and system for high pressure liquid injection of turf seed
US7194197B1 (en) * 2000-03-16 2007-03-20 Global Solar Energy, Inc. Nozzle-based, vapor-phase, plume delivery structure for use in production of thin-film deposition layer
CA2411174C (en) * 2000-05-23 2008-05-06 James F. Groves A process and apparatus for plasma activated deposition in a vacuum
SG106639A1 (en) * 2000-10-10 2004-10-29 Gen Electric Apparatus and method for introducing small amounts of refractory elements into a vapor deposition coating
US6641673B2 (en) * 2000-12-20 2003-11-04 General Electric Company Fluid injector for and method of prolonged delivery and distribution of reagents into plasma
US7879411B2 (en) * 2001-04-30 2011-02-01 University Of Virginia Patent Foundation Method and apparatus for efficient application of substrate coating
AU2002356523A1 (en) * 2001-09-10 2003-04-14 University Of Virginia Patent Foundation Method and apparatus application of metallic alloy coatings
US7718222B2 (en) * 2002-04-25 2010-05-18 University Of Virginia Patent Foundation Apparatus and method for high rate uniform coating, including non-line of sight
US20050287296A1 (en) * 2002-07-25 2005-12-29 Wadley Haydn N G Method and apparatus for dispersion strengthened bond coats for thermal barrier coatings
WO2004043691A1 (en) * 2002-11-12 2004-05-27 University Of Virginia Patent Foundation Extremely strain tolerant thermal protection coating and related method and apparatus thereof
US20060062912A1 (en) * 2002-11-21 2006-03-23 Wortman David J Bond coat for a thermal barrier coating system and related method thereof
WO2005047202A2 (en) * 2003-07-29 2005-05-26 University Of Virginia Patent Foundation Method for application of a thermal barrier coating and resultant structure thereof
WO2005089107A2 (en) * 2004-01-08 2005-09-29 University Of Virginia Patent Foundation Apparatus and method for applying coatings onto the interior surfaces of components and related structures produced therefrom
US8084086B2 (en) * 2005-06-30 2011-12-27 University Of Virginia Patent Foundation Reliant thermal barrier coating system and related methods and apparatus of making the same
WO2009023744A1 (en) * 2007-08-13 2009-02-19 University Of Virginia Patent Foundation Thin film battery synthesis by directed vapor deposition
PL2401232T3 (pl) * 2009-02-24 2016-10-31 Bezpośrednie napylanie próżniowe wspomagane plazmą z współosiowej drążonej katody i związany z nim sposób
US8153958B2 (en) * 2009-07-10 2012-04-10 Sphere Renewable Energy Corp. Method and apparatus for producing hyperthermal beams
WO2013106006A1 (en) * 2011-03-15 2013-07-18 Directed Vapor Technologies International Method for applying aluminum alloy coatings for corrosion protection of steel
US8541069B2 (en) * 2011-04-11 2013-09-24 United Technologies Corporation Method of guided non-line of sight coating

Also Published As

Publication number Publication date
ATE450631T1 (de) 2009-12-15
AU2002356523A1 (en) 2003-04-14
US20120137974A1 (en) 2012-06-07
EP1436441A4 (de) 2004-11-24
WO2003028428A2 (en) 2003-04-10
EP1436441B1 (de) 2009-12-02
WO2003028428A3 (en) 2003-07-10
EP1436441A2 (de) 2004-07-14
US10260143B2 (en) 2019-04-16
EP1436441B2 (de) 2012-11-28
US20050000444A1 (en) 2005-01-06
US8124178B2 (en) 2012-02-28

Similar Documents

Publication Publication Date Title
DE60234620D1 (de) Verfahren zum aufbringen von metalllegierungsüberzügen und überzogene komponente
EP2511396B1 (de) Geleitete Nicht-Sichtverbindungs-Beschichtung
EP0705912B1 (de) Beschichtete Formkörper
US9951630B2 (en) Self-healing environmental barrier coating
US7879411B2 (en) Method and apparatus for efficient application of substrate coating
MXPA04004205A (es) Metodo para aplicar o reparar recubrimientos de barrera termica.
JP2012082519A (ja) 熱遮蔽被覆構造体を製造する方法
US20050287296A1 (en) Method and apparatus for dispersion strengthened bond coats for thermal barrier coatings
CA2482085A1 (en) A plasma spraying method
US20080131611A1 (en) Method for Application of a Thermal Barrier Coating and Resultant Structure Thereof
US7556695B2 (en) Apparatus to make nanolaminate thermal barrier coatings
RU2492276C1 (ru) Способ многослойного нанесения покрытий на подложку
CN106567076A (zh) 一种钛金属表面合成TiC‑DLC复合涂层制备方法
SMITH Plasma spray deposition-A review of technology and research opportunities
JPH04128366A (ja) 濃度傾斜合金被膜の形成方法
Meyer et al. Production Coating Cost Comparison
Mason Jr Introduction to Thin Film Deposition Techniques: Key Topics in Materials Science and Engineering
Yumoto et al. Application of supersonic free-jet PVD to overlay coating
JPS61190061A (ja) 金属のセラミツク溶射方法
JPH01132756A (ja) 耐摩耗性膜被覆方法
JPS6331549B2 (de)
Berry Three Firms Using Chromalloy's New Coating Method
Barthwal et al. A Review of Application of Protective Coatings to Avoid Silt Erosion of Underwater Turbine Parts
Tucker Jr et al. On the Surface Engineering Technologies Available to Today’s Engineer
RU99100336A (ru) Изделие с системой защитных покрытий, содержащей улучшенный адгезионный слой, и ее изготовление

Legal Events

Date Code Title Description
8363 Opposition against the patent
R102 Epo decision maintaining patent in amended form now final

Ref document number: 1436441

Country of ref document: EP

Effective date: 20121128