DE60118703T2 - Menschliche neurexin-ähnliche proteine und dafür kodierende polynukleotide - Google Patents

Menschliche neurexin-ähnliche proteine und dafür kodierende polynukleotide Download PDF

Info

Publication number
DE60118703T2
DE60118703T2 DE60118703T DE60118703T DE60118703T2 DE 60118703 T2 DE60118703 T2 DE 60118703T2 DE 60118703 T DE60118703 T DE 60118703T DE 60118703 T DE60118703 T DE 60118703T DE 60118703 T2 DE60118703 T2 DE 60118703T2
Authority
DE
Germany
Prior art keywords
nhp
sequence
sequences
nucleic acid
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE60118703T
Other languages
English (en)
Other versions
DE60118703D1 (de
Inventor
Alexander C. The Woodlands TURNER
Erin Denton HILBUN
Gregory Indianapolis DONOHO
John Pearland SCOVILLE
Frank Wattler
c/o Breland & Breland Glenn Houston FRIEDRICH
Alejandro The Woodlands ABUIN
Brian The Woodlands ZAMBROWICZ
T. Arthur The Woodlands SANDS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lexicon Pharmaceuticals Inc
Original Assignee
Lexicon Genetics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lexicon Genetics Inc filed Critical Lexicon Genetics Inc
Application granted granted Critical
Publication of DE60118703D1 publication Critical patent/DE60118703D1/de
Publication of DE60118703T2 publication Critical patent/DE60118703T2/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70571Receptors; Cell surface antigens; Cell surface determinants for neuromediators, e.g. serotonin receptor, dopamine receptor

Description

  • 1. EINLEITUNG
  • Die vorliegende Erfindung betrifft die Entdeckung, Identifizierung und Charakterisierung von neuen humanen Polynucleotiden, welche Proteine codieren, die Sequenzähnlichkeit mit tierischen Neurexin-Proteinen aufweisen. Die Erfindung umfasst die beschriebenen Polynucleotide, die Expressionssysteme der Wirtszellen, die codierten Proteine, Fusionsproteine, Polypeptide und Peptide, die Antikörper für die codierten Proteine und Peptide und gentechnisch behandelte Tiere, denen die offenbarten Sequenzen fehlen oder die sie überexprimieren, Antagonisten und Agonisten der Proteine sowie andere Verbindungen, welche die Expression oder Aktivität der von den offenbarten Sequenzen codierten Proteine modulieren, die für die Diagnose, das Screening von Arzneimitteln, die Überwachung von klinischen Tests, die Behandlung von Krankheiten und Störungen oder für kosmetische Anwendungen oder Anwendungen in der Ernährung eingesetzt werden können.
  • 2. HINTERGRUND DER ERFINDUNG
  • Neurexine sind u.a. mit der Vermittlung von Nervenprozessen, epileptischen Anfällen, mit der Verständigung, der Exozytose, Krebs und der Entwicklung in Zusammenhang gebracht worden. Neurexine können auch als Rezeptoren für Latrotoxine dienen.
  • 3. ZUSAMMENFASSUNG DER ERFINDUNG
  • Die vorliegende Erfindung betrifft die Entdeckung, Identifizierung und Charakterisierung von neuen menschliche Proteine codierenden Nucleotiden sowie die entsprechenden Aminosäuresequenzen dieser Proteine. Die hier zum ersten Mal beschriebenen neuen humanen Proteine (NHPs) teilen eine strukturelle Ähnlichkeit mit Neurexin-Proteinen.
  • Die hier beschriebenen neuen humanen Nucleinsäuresequenzen codieren Proteine/offene Leseraster (ORFs, Open Reading Frames) von einer Länge von 1.307, 1.259, 35,250,279,582,534,745,697,839,791,1.298 und 1.175 Aminosäuren siehe SEQ ID NOs 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 bzw. 26).
  • Die Erfindung umfasst auch Agonisten und Antagonisten der beschriebenen NHPs, einschließlich kleiner Moleküle. großer Moleküle, Mutanten-NHPs oder Abschnitte derselben, die mit einem nativen NHP konkurrieren, Peptide und Antikörper sowie Nucleotidsequenzen, die dazu verwendet werden können, die Expression der beschriebenen NHPs zu inhibieren (z.B. Antisense- und Ribozym-Moleküle, sowie Gene oder regulatorische Konstrukte zum Genaustausch) oder die Expression der beschriebenen NHP-Sequenzen zu erhöhen (z.B. Expressionskonstrukte, welche die beschriebene Sequenz unter die Kontrolle eines starken Promotorsystems stellen) sowie transgene Tiere, welche NHP-Transgene exprimieren oder "Knock-Outs" (die bedingt sein können), die kein funktionales NHP exprimieren.
  • Die vorliegende Erfindung betrifft ferner Verfahren zur Identifizierung von Verbindungen, welche modulieren, d.h. als Agonisten oder Antagonisten der NHP-Expression und/oder der Aktivität des NHP-Produkts fungieren, welche gereinigte Präparationen der beschriebenen NHPs und/oder NHP-Produkte verwenden, oder Zellen welche sie exprimieren. Solche Verbindungen können als Therapeutika für die jeweilige Behandlung eines Symtoms aus der weiten Bandbreite von Symptomen, die mit biologischen Erkrankungen oder Unausgewogenheiten einhergehen eingesetzt werden.
  • 4. BESCHREIBUNG DES SEQUENZPROTOKOLLS UND DER FIGUREN
  • Das Sequenzprotokoll zeigt die Sequenzen von der beschriebenen NHP-ORFs, welche die beschriebenen NHP-Aminosäuresequenzen codieren. SEQ ID NO: 27 beschreibt einen NHP-ORF und flankierende Abschnitte.
  • 5. GENAUE BESCHREIBUNG DER ERFINDUNG
  • Die hier zum ersten Mal beschriebenen NHPs sind neue Proteine, die u .a. in menschlichen Zelllinien sowie im menschlichen fötalen Hirn, Hirn, Kleinhirn, Hoden, Nebenniere, Rückenmark, Dünndarm, Hypothalamus sowie humane Zellen, die einem gene-trapping unterzogen worden waren.
  • Die vorliegende Erfindung umfasst die im Sequenzprotokoll angegebenen Nucleotide, solche Nucleotide exprimierende Wirtszellen, die Expressionsprodukte solcher Nucleotide und: (a) Nucleotide, welche die Säugerhomologe der beschriebenen Gene einschließlich der speziell beschriebenen NHPs und die NHP-Produkte codieren; (b) Nucleotide, die einen oder mehr den funktionellen Domänen entsprechende Abschnitte der NHPs codieren, sowie die durch solche Nucleotidsequenzen spezifizierten Polypeptidprodukte einschließlich, aber nicht ausschließlich, der neuen Abschnitte jeder aktiven Domäne(n); (c) isolierte Nucleotide, die gentechnisch veränderte oder natürlich vorkommende Mutantenversionen der beschriebenen NHPs codieren, in welcher alle oder ein Teil von zumindest einer Domäne zerstört oder verändert ist sowie die durch solche Nucleotidsequenzen spezifizierten Polypeptidprodukte einschließlich, aber nicht ausschließlich, der löslichen Proteine und Peptide, in welchen die gesamte oder ein Teil der Signalsequenz zerstört ist; (d) Nucleotide, die chimäre Fusionsproteine codieren, welche den gesamten oder einen Teil eines codierenden Abschnitts eines NHP oder eine seiner Domänen enthalten (z.B. eine Rezeptor- oder Liganden-Bindungsdomäne, akzessorische Protein/Selbstassoziierungs-Domäne, usw.), welche an ein anderes Peptid oder Polypeptid fusioniert sind oder (e) therapeutische oder diagnostische Derivate der beschriebenen Polynucleotide wie z.B. Oligonucleotide, Antisense-Polynucleotide, Ribozyme, dsRNA oder gentherapeutische Konstrukte mit einer Sequenz, die zum ersten Mal im Sequenzprotokoll offenbart wird.
  • Wie oben beschrieben, umfasst die vorliegende Erfindung: (a) die im Sequenzprotokoll angegebenen humanen DNS-Sequenzen (und diese enthaltende Vektoren) und befasst sich zusätzlich mit jeder Nucleotidsequenz, welche ein benachbartes offenes Leseraster (ORF) codiert, das an eine im Sequenzprotokoll angegebene komplementäre DNA-Sequenz unter hoch stringenten Bedingungen hybridisiert, z.B. Hybridisierung an filtergebundene DNA in 0,5 M NaHPO4, 75 Natriumdodecylsulfat (SDS), 1 mM EDTA bei 65°C und Waschen in 0,1 × SSC/0,1 % SDS bei 68°C (Ausubel F.M. et al., Hrg., 1989, Current Protocols in Molecular Biology, Band X, Green Publishing Associates, Inc. und John Wiley & Sons, Inc., New York auf Seite 2.10.3), und ein funktionell äquivalentes Genprodukt kodiert. Zusätzlich befasst sich die Erfindung mit jeder Nucleotidsequenz, die an die komplementäre DNA-Sequenz hybridisiert, welche eine im Sequenzprotokoll angegebene Aminosäuresequenz unter mäßig stringenten Bedingungen, z.B. Waschen in 0,2 × SSC/0,1% SDS bei 42°C (Ausubel et al., 1989, supra), codiert und exprimiert und immer noch ein ein funktionell äquivalentes NHP-Produkt codiert. Funktionelle Äquivalente eines NHP umfassen in anderen Arten enthaltene natürlich vorkommende NHPs sowie mutante NHPs, unabhängig davon, ob sie natürlich vorkommen oder gentechnisch verändert wurden (durch zielgerichtete Mutagenese, Gen-shuffling, gerichtete Evolution, wie z.B. in den US-Patenten 5,837,458 und 5,723,323 beschrieben, welche hiermit beide vollständig als Referenz eingeführt werden). Die Erfindung umfasst auch degenerierte Nucleinsäurevarianten der offenbarten NHP-Polynucleotidsequenzen.
  • Zusätzlich befasst sich die Erfindung mit NHP-ORFs codierenden Polynucleotiden oder deren funktionellen Äquivalenten, die von Polynucleotidsequenzen codiert werden, welche eine etwa 99-, 95-, 90- oder 85-prozentige Ähnlichkeit oder Identität mit entsprechenden Abschnitten von SEQ ID NO: 1 aufweisen (ermittelt mit der BLAST-Sequenz-Vergleichsanalyse unter Verwendung von z.B. dem GCG-Sequenzanalyse-Programmpaket mit standardisierter Voreinstellung).
  • Die Erfindung umfasst auch Nucleinsäuremoleküle, vorzugsweise DNA-Moleküle, die an die beschriebenen Nucleotidsequenzen des NHP-Gens hybridisieren und daher komplementär zu letzteren sind. Solche Hybridisierungsbedingungen können, wie oben beschrieben, hoch stringent oder weniger hoch stringent sein. In Fällen, wo die Nucleinsäuremoleküle Desoxyoligonucleotide ("DNA-Oligos") sind, sind solche Moleküle im Allgemeinen ca. 16 bis ca. 100 Basen lang oder ca. 20 bis ca. 80 oder ca. 34 bis ca. 45 Basen lang oder jede Variation oder Kombination von darin vorkommenden Größen, die einen im Sequenzprotokoll zuerst offenbarten benachbarten Sequenzabschnitt enthalten. Solche Oligonucleotide können zusammen mit der Polymerasekettenreaktion (PCR) dazu verwendet werden, Bücherein zu durchsuchen, Clone zu isolieren und Klonierungs- und Sequenzierungsmatrizen herzustellen usw.
  • Alternativ können solche NHP-Oligonucleotide als Hybridisierungssonden zum Durchsuchen von Büchereien und zum Bewerten von Genexpressionsmustern verwendet werden (besonders unter Verwendung eines Mikroarray- oder "Chip"-Formats mit hohem Durchsatz). Zusätzlich kann eine Reihe der beschriebenen NHP-Nucleotidsequenzen oder deren komplementäre Sequenzen verwendet werden, um alle oder einen Teil der beschriebenen NHP-Sequenzen wiederzugeben. Eine in mindestens einem Teil der Sequenz-SEQ ID NOs 1–27 offenbarten Oligonucleotid- oder Polynucleotidsequenzen kann zusammen mit einem Matrix/Substrat-Feststoffträger (Harze, Kügelchen, Membranen, Kunststoffe, Polymere, Metall- oder metallisierte Substrate, kristalline oder polykristalline Substrate, usw.) als eine Hybridisierungssonde eingesetzt werden. Von besonderer Bedeutung sind räumliche ansteuerbare Arrays (d.h. Genchips, Mikrotiterplatten, usw.) von Oligonucleotiden und Polynucleotiden oder entsprechenden Oligonucleotiden und Polynucleotiden, wobei mindestens eines der auf dem räumlichen ansteuerbaren Array vorkommenden Biopolymere eine Oligonucleotid- oder Polynucleotidsequenz, die zuerst in mindestens einer der Sequenzen SEQ ID NOs 1–27 offenbart wurde oder eine von diesen codierte Aminosäuresequenz. aufweist. Verfahren zur Anheftung von Biopolymeren a oder zur Synthese von Biopolymeren auf Festkörpermatrizes und die Durchführung von Bindungsstudien darauf werden u.a. in den US-Patenten 5,700,637, 5,556,752, 5,744,305, 4,631,211, 5,445,934, 5,252,743, 4,713,326, 5,424,186, und 4,689,405 beschrieben, welche hiermit vollständig als Referenz eingeführt werden.
  • Ansteuerbare Assays mit zuerst in den SEQ ID NOs 1–27 offenbarten Sequenzen lassen sich einsetzen, um die zeit- und gewebsspezifische Expression eines Gens zu identifizieren und zu charakterisieren. Diese ansteuerbaren Arrays enthalten genügend lange Oligonucleotidsequenzen, um die erforderliche Spezifität zu verleihen, liegen aber noch innerhalb der durch die Produktionstechnologie bestimmten Grenzen. Die Länge dieser Sonden liegt im Bereich von etwa 8 bis etwa 2000 Nucleotide. Die Sonden bestehen vorzugsweise aus 60 Nucleotiden und mehr bevorzugt aus 25 Nucleotiden der zuerst in den SEQ ID NOs 1–27 offenbarten Sequenzen.
  • Beispielsweise kann eine Reihe der beschriebenen Oligonucleotidsequenzen oder komplementären Sequenzen davon in einem Chip-Format verwendet werden, um alle oder einen Teil der beschriebenen Sequenzen zu repräsentieren. Die Oligonucleotide, typischerweise mit einer Länge zwischen etwa 16 bis etwa 40 (oder jeder ganzen Zahl im angegebenen Bereich) Oligonucleotiden können teilweise miteinander überlappen und/oder die Sequenz kann durch Oligonucleotide repräsentiert sein, die nicht überlappen. Dementsprechend sollen die beschriebenen Polynucleotidsequenzen typischerweise mindestens zwei oder drei unterschiedliche Oligonucleotidsequenzen mit einer Länge von mindestens ca. 8 Nucleotiden umfassen, von denen jede zuerst in dem beschriebenen Sequenzprotokoll offenbart wurde. Derartige Oligonucleotidsequenzen können an jedem in einer Sequenz im Sequenzprotokoll vorkommenden Nucleotid beginnen und entweder in Sense-Richtung (5' zu 3') gegenüber der beschriebenen Sequenz oder in Antisense-Richtung fortschreiten.
  • Mit auf Mikroarrays basierender Analyse lässt sich eine weite Bandbreite genetischer Aktivität aufklären, welche zu einem neuen Verständnis der Genfunktionen führt und eine neue und unerwartete Einsicht in die Transkriptionsprozesse und biologischen Mechanismen schafft. Der Einsatz von ansteuerbaren Arrays mit zuerst in den SEQ ID NOs 1–27 offenbarten Sequenzen liefert eine genaue Information über Transkriptionsänderungen, die bei einem spezifischen Stoffwechselweg eine Rolle spielt und möglicherweise zur Identifizierung neuer Komponenten oder Genfunktionen führt, die sich selbst als neue Phänotypen erweisen.
  • Sonden, die aus den zum ersten Mal in den SEQ ID NOs 1–27 offenbarten Sequenzen bestehen lassen sich auch bei der Identifizierung, Selektion und Validität von neuen molekularen Zielen für die Entdeckung von Arzneimitteln verwenden. Mit dem Einsatz dieser einzigartigen Sequenzen kann man Ziele von Arzneimitteln und von Arzneimitteln abhängige Veränderungen bei der Genexpression direkt feststellen, die über Stoffwechselwege moduliert werden, welche sich von dem für das Arzneimittel beabsichtigten Ziel unterscheiden. Diese einzigartigen Sequenzen kommen daher bei der Abgrenzung und Überwachung von sowohl der Arzneimittelwirkung als auch der Toxizität zum Einsatz.
  • Als Beispiel für einen Einsatz können die zum ersten Mal in den SEQ ID NOs 1–27 offenbarten Sequenzen in Mikroarrays oder anderen Assay-Formaten zum Screening von Sammlungen von Genmaterial aus Patienten mit besonderem medizinischem Befinden verwendet werden. Diese Untersuchungen können auch unter Verwendung der zum ersten Mal in den SEQ ID NOs 1–27 offenbarten Sequenzen in silico durchgeführt werden und indem zuvor gesammelte genetische Datenbanken und die offenbarten Sequenzen unter Einsatz von dem Fachmann bekannter Computer-Software verglichen werden.
  • Somit lassen sich die zum ersten Mal in den SEQ ID NOs 1–27 offenbarten Sequenzen einsetzen, um mit einer besonderen Krankheit einhergehende Mutationen zu identifizieren und auch als ein diagnostischer oder prognostischer Assay.
  • Obwohl die hier beschriebenen Sequenzen speziell unter Verwendung der Nucleotidsequenz beschrieben wurden, sollte beachtet werden, dass jede der Sequenzen einzeln beschrieben werden kann, indem jedes aus breiten Spektrum der verschiedenen zusätzlichen strukturellen Attribute oder Kombinationen derselben herangezogen wird. Beispielsweise lässt sich eine gegebene Sequenz durch die Nettozusammensetzung der in einem gegebenen Abschnitt der Sequenz vorkommenden Nucleotide zusammen mit dem Vorkommen einer oder mehrerer zum ersten Mal in den SEQ ID NOs 1–27 offenbarter spezifischer Oligonucleotidsequenzen beschreiben. Alternativ können eine Reastriktionskarte, welche die relativen Positionen der Stellen für einen Verdau mit Restriktionsendonucleasen genau angibt, oder verschiedene Palindrome oder andere spezifische Oligonucleotidsequenzen verwendet werden, um eine gegebene Sequenz strukturell zu beschreiben. Solche Restriktionskarten, welche typischerweise von in breitem Umfang zur Verfügung stehenden Computerprogrammen (z.B. das GCG-Sequenzanalysepaket der Universität von Wisconsin SEQUENCHER 3.0, Gene Codes Corp., Ann Arbor, MI, usw.) erstellt werden, können wahlweise zusammen mit einer oder mehreren diskreten in der Sequenz vorkommenden Nucleotidsequenzen verwendet werden, die sich durch die relative Position der Sequenz relativ zu einer oder mehreren zusätzlichen Sequenzen oder einem oder mehreren in der offenbarten Sequenz vorkommenden Restriktionsstellen beschreiben lassen.
  • Für Oligonucleotidsonden kommen hoch stringente Bedingungen in Betracht, z.B. Waschen in 6xSSC/0,06% Natriumpyrophosphat bei 37°C (für Oligos von 14 Basen), bei 48°C (für Oligos von 17 Basen), bei 55°C (für Oligos von 20 Basen) und bei 60°C (für Oligos von 23 Basen). Diese Nucleinsäuremoleküle können Antisensemoleküle der NHP-Sequenz codieren oder als solche fungieren, welche z.B, für eine Regulierung der NHP-Sequenz brauchbar sind (für und/oder als Antisense-Primer in Amplifizierungsreaktionen von Nucleinsäuresequenzen des NHP). Bezüglich der Regulierung der NHP-Sequenz können solche Techniken eingesetzt werden, um biologische Funktionen zu regulieren. Ferner können solche Sequenzen als Teil eines Ribozyms und/oder als Tripelhelixsequenzen verwendet werden, welche ebenfalls für die Regulierung der NHP-Sequenz brauchbar sind.
  • Inhibitorische Antisense- oder Doppelstrang-Oligonucleotide können zusätzlich mindestens einen modifizierten Basenrest aufweisen, der ausgewählt ist, jedoch nicht ausschließlich, aus der Gruppe 5-Fluoruracil, 5-Bromuracil, 5-Chloruracil, 5-Ioduracil, Hypoxanthin, Xanthin, 4-Acetylcytosin, Uracil, 5-Carboxymethylaminomethyl-2-thiouridine, 5-Carboxymethylamino-methyluracil, Dihydrouracil, beta-D-Galactosylqueosin, Inosin, N6-isopentenyladenin, 1-Metnylguanin, 1-Methylinosin, 2,2-Dimethylguanin, 2-Methyladenin, 2-Methylguanin, 3-Methylcytosin, S-Methycytosin, N6-Adenin, 7-Methylguanin, 5-Methylaminomethyluracil, 5-Methoxyaminomethyl-2-thiouracil. beta-D-Mannosylqueosin, 5'-ethoxycarboxymethyluracil.
  • 5-Methoxyuracil, 2-Methylthio-N6-isopentenyladenin, Uracil-5-oxyessigsäure (v), Wybutoxosin, Pseudouracil, Queosin, 2-Thiocytosin, 5-Methyl-2-thiouracil, 2-Thiouracil, 4-Thiouracil, 5-Methyluracil, Uracil-5-oxyessigsäuremethylester, Uracil-5-oxyessigsäure (v), 5-Methyl-2-thiouracil, 3-(3-Amino-3-N-2-carboxypropyl)uracil, .(acp3)w und 2,6-Diamino-purin.
  • Die Antisense-Oligonucleotide können auch mindestens einen modifizierten Zuckerrest enthalten, ausgewählt, aber nicht ausschließlich, aus der Gruppe Arabinose, 2-Fluorarabinose, Xylulose und Hexose.
  • In noch einer anderen Ausführungsform umfassen die Antisense-Oligonucleotide ein Rückgrat mit mindestens einem modifizierten Phosphat, ausgewählt aus der Gruppe, bestehend aus einem Phosphorthioat, einem Phosphordithioat, einem Phosphoramidothioat, einem Phosphoramidat, einem Phosphordiamidat, einem Methylphosphonat, einem Alkylphosphotriester und einem Formacetal oder einem Analogen davon.
  • In noch einer anderen Ausführungsform ist das Antisense-Oligonucleotid ein α-anomeres Oligonucleotid. Ein α-anomeres Oligonucleotid bildet mit komplementärer RNA spezifische doppelsträngige Hybride, in welchen im Gegensatz zu den gewöhnlichen β-Einheiten die Stränge parallel zueinander verlaufen (Gautier et al., 1987, Nucl. Acids Res. 15: 6625–6641). Das Oligonucleotid ist ein 2'-0-Methylribonucleotid (Inoue et al., 15: 6131–6148) oder ein chimäres RNA-DNA-Analoges (Inoue et al., 1987 FEBS Lett. 215: 327–330). Alternativ kann doppelsträngige RNA verwendet werden, um die Expression und Funktion eines Ziel-NHP zu unterbrechen.
  • Die Oligonucleotide der Erfindung lassen sich nach im Stand der Technik bekannten Standardverfahren synthetisieren, z.B. unter Verwendung eines automatischen DNA-Synthesizers (wie er im Handel von Biosearch, Applied Biosystems usw. bezogen werden kann). Beispielsweise können Phosphorthioat-Oligonucleotide nach dem Verfahren von Stein et al. (1988, Nucl. Acids res. 16: 3209) synthetisiert werden und Methylphosphonat-Oligonucleotide lassen sich unter Verwendung von Polymerträgern des Typs Controlled Pore Glass herstellen (Sarin et al. 1988, Proc. Natl. Acad. Sci. USA. 85: 7448–7451), usw.
  • Niedrig stringente Bedingungen sind dem Fachmann gut bekannt und variieren in voraussagbarer Weise je nach den speziellen Organismen, von welchen die Bücherei und die markierten Sequenzen stammen. Für eine Anleitung zur Schaffung solcher Bedingungen siehe z.B. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual (and periodic Updates thereof), Cold Springs Harbor Press, N.Y.; sowie Ausubel et al., 1989, Current Protocols in Molecular Biology, Green Publishing Associates und Wiley Interscience, N.Y.
  • Alternativ können geeignete markierte NHP-Nucleotidsonden eingesetzt werden, um eine humane Genombibliothek unter Einsatz von ausreichend stringenten Bedingungen oder mittels PCR zu durchsuchen. Die Identifizierung und Charakterisierung von menschlichen Genomklonen ist zur Identifizierung von Polymorphismus hilfreich (einschließlich, jedoch nicht ausschließlich, von Nucleotid-Repeats, Mikrosatelliten-Allelen, Einzelnucleotid-Polymorphismus oder codierender Einzelnucleotid-Polymorphismus), zur Ermittlung der Genomstruktur eines gegebenen Locus/Allels und zur Planung diagnostischer Tests. Beispielsweise lassen sich Sequenzen, die von Abschnitten abstammen, welche den Intron/Exon-Grenzen des Humangens benachbart sind, zur Entwicklung von Primern für die Verwendung in Amplifikationsassays einsetzen, um in den Exons, Introns, Spleißorten (z.B. an der Spleißakzeptor- und/oder Donorstelle) Mutationen aufzuspüren usw., welche in der Diagnose und Pharmakogenetik zum Einsatz kommen können.
  • Ferner lässt sich ein NHP-Sequenzhomologes aus Nucleinsäuren von einem in Frage kommenden Organismus isolieren, indem eine PCR durchgeführt wird, in welcher zwei degenerierte oder "Wobble" Oligonucleotidprimer-Pools verwendet werden, die auf Grundlage der Aminosäuresequenzen in den hier offenbarten NHP-Produkten entworfen wurden. Die Matrize für die Reaktion kann Gesamt-RNA, mRNA und/oder cDNA sein, welche durch reverse Transcription von mRNA erhalten wurde, welche aus humanen oder nicht humanen Zelllinien oder von Gewebe erhalten wurde, von dem angenommen wird, dass es ein Allel eines NHP-Gens exprimiert.
  • Das PCR-Produkt kann subcloniert und sequenziert werden, um sicher zu gehen, dass die amplifizierten Sequenzen die Sequenz des gewünschten NHP-Gens darstellen. Das PCR-Fragment kann sodann verwendet werden, um mit verschiedenen Methoden einen cDNA-Klon mit voller Länge zu isolieren. Beispielsweise kann das amplifizierte Fragment markiert und dazu verwendet werden, eine cDNA-Bibliothek wie z.B. eine Bakteriophagen-cDNA-Bibliothek zu durchsuchen. Alternativ kann das markierte Fragment dazu verwendet werden, über das Durchsuchen einer Genombibliothek genomische Klone zu isolieren.
  • Die PCR-Technologie lässt sich auch zur Isolierung einer cDNA-Sequenz in vollständiger Länge einsetzen. Beispielsweise kann RNA aus einer geeigneten Quelle aus Zellen oder Gewebe nach Standardverfahren isoliert werden (d.h. aus einer Quelle, von der man weiß oder annimmt, dass sie eine NHP-Sequenz exprimiert). An der RNA wird eine Reaktion mit reverser Transkriptase (RT) durchgeführt, wobei ein Oligonucleotid-Primer verwendet wird, der für die meisten 5'-Enden des amplifizierten Fragments für das Priming der Synthese des ersten Strangs spezifisch ist. Das erhaltene RNA/DNA-Hybrid kann dann "zurechtgestutzt" werden, indem man eine Standardreaktion mit terminaler Transferase verwendet, das Hybrid kann mit RNase verdaut werden und die Synthese des zweiten Strangs kann dann mit einem komplementären Primer geprimt werden. Somit lassen sich cDNA-Sequenzen stromauf zum amplifizierten Fragment isolieren. Für einen Überblick über die Klonierungsstrategien, die eingesetzt werden können, siehe Sambrook et al., 1989, supra.
  • Durch Einsatz der PCR kann z.B. eine eine mutierte NHP-Sequenz codierende cDNA isoliert werden. In diesem Falle kann der erste cDNA-Strang synthetisiert werden, indem ein Oligo-dT-Oligonucleotid an eine mRNA anhybridisiert wird, welche aus einem Gewebe isoliert wurde, von dem bekannt ist oder angenommen wird, dass es in einem Individuum exprimiert wird, welches vermeintlich ein mutiertes NHP-Allel trägt, und indem der neue Strang mit reverser Transkriptase verlängert wird. Der zweite Strang der cDNA wird sodann synthetisiert, indem ein Oligonucleotid eingesetzt wird, welches spezifisch an das 5'-Ende des normalen Gens hybridisiert. Unter Einsatz dieser beiden Primer wird das Produkt sodann mit der PCR amplifiziert, wahlweise in einen geeigneten Vektor cloniert und mit Verfahren, die dem Fachmann bekannt sind einer DNA-Sequenzanalyse unterzogen. Durch Vergleich der DNA-Sequenz des mutierten NHP-Allels mit der eines entsprechenden normalen NHP-Allels kann (können) die Mutation(en) ermittelt werden, die für den Verlust oder die Änderung der Funktion des mutierten NHP-Sequenzprodukts verantwortlich sind.
  • Alternativ lässt sich eine Genombibliothek aufbauen, indem eine DNA eingesetzt wird, die aus einem Individuum gewonnen wurde, von dem angenommen wird oder bekannt ist, dass es ein mutiertes NHP-Allel trägt (z.B. eine Person, die einen auf NHP zurückzuführenden Phänotyp aufweist, wie z.B. Fettsucht, Sehstörungen, hoher Blutdruck, Depressionen, epileptische Anfälle, Unfruchtbarkeit usw.), oder es lässt sich eine cDNA-Bibliothek aufbauen, indem RNA aus einem Gewebe eingesetzt wird, von dem bekannt ist oder vermutet wird, dass es ein mutiertes NHP-Allel exprimiert. Eine normale NHP-Sequenz oder ein geeignetes Fragment davon kann sodann markiert werden und als Sonde zur Identifizierung des entsprechenden mutierten NHP-Allels in solchen Büchereien eingesetzt werden. Klone mit mutierte NHP codierenden Sequenzen können sodann gereinigt und nach dem Fachmann bekannten Verfahren einer Sequenzanalyse unterzogen werden.
  • Zusätzlich kann eine Expressionsbücherei aufgebaut werden, indem cDNA eingesetzt wird, welche z.B. aus RNA synthetisiert wurde, die aus einem Gewebe isoliert wurde, von dem bekannt ist oder angenommen wird, dass es ein mutiertes NHP-Allel exprimiert in einem Individuum, von dem angenommen wird oder bekannt ist, dass es solch ein mutiertes Allel trägt. Auf diese Weise können aus dem vermeintlich mutierten Gewebe gewonnene Genprodukte exprimiert und unter Verwendung von standardisierten Antikörper-Screeningtechniken zusammen mit, wie unten beschrieben, gegen ein normales NHP-Produkt gerichteten Antikörpern gescreent werden. (Zu Screeningtechniken siehe z.B: Harlow, E. und Lane, Hrg., 1988, "Antibodies: A Laboratory Manual", Cold Spring Harbor Press, Cold Spring Harbor.) Zusätzlich kann das Screening erfolgen, indem mit markierten NHP-Fusionsproteinen wie z.B. der alkalische Phosphatase-NHP oder den alkalischen NHP-Phosphatase-Fusions-proteinen gescreent wird. In Fällen, wo eine Mutation der NHP zu einem Genprodukt mit veränderter Funktion führt (z.B. als Ergebnis einer Missense-Mutation oder einer Mutation in Folge einer Rasterverschiebung), gehen gegen NHP gerichtete polyklonale Antikörper wahrscheinlich mit einem entsprechenden mutierten NHP-Sequenzprodukt eine Kreuzreaktion ein. Klone aus Büchereien, die über ihre Reaktion mit solchen markierten Antikörpern aufgefunden wurden können gereinigt und nach im Stand der Technik bekannten Verfahren einer Sequenzanalyse unterzogen werden.
  • Die Erfindung umfasst auch (a) DNA-Vektoren, die jede der vorgenannten NHP codierenden Sequenzen und/oder der komplementären (d.h. Antisense-) Sequenzen enthalten; (b) DNA-Expressionsvektoren, die jede der vorgenannten NHP codierenden Sequenzen enthalten, die mit einem regulatorischen Element assoziiert sind, welches die Expression der codierenden Sequenzen lenkt (z.B. ein Baculo-Virus, wie es im US-Patent 5,869,336 beschrieben wird, welches hiermit als Referenz eingeführt wird); (c) gentechnisch bearbeitete Wirtszellen, die jede der vorgenannten NHP codierenden Sequenzen enthalten, die mit einem regulatorischen Element assoziiert sind, welches die Expression der codierenden Sequenzen in der Wirtszelle lenkt und (d) gentechnisch veränderte Wirtszellen, die eine endogene NHP-Sequenz unter der Kontrolle eines exogen eingeführten regulatorischen Elements (d.h. Genaktivierung) exprimieren. Unter dem hier verwendeten Begriff regulatorische Elemente werden, jedoch nicht ausschließlich, induzierbare und nicht induzierbare Promotoren, Enhancer, Operatoren und andere dem Fachmann bekannte Elemente verstanden, welche die Expression steuern und kontrollieren. Solche regulatorischen Elemente sind, jedoch nicht ausschließlich, das unmittelbar frühe Gen des humanen Cytomegalovirus (hCMV), regulierbare virale Elemente (insbesondere LTR-Promotoren von Retroviren)., die frühen oder späten Promotoren des SV40-Adenovirus, das lac-System, das trp-System, das TAC-System, das TRC-System, die hauptsächlichen Operator- und Promotorabschnitte des Lambdaphagen, die Kontrollabschnitte des fd-Kapsidproteins, die Promotoren der sauren Phosphatase sowie die Promotoren der Alpha Mating Faktoren aus Hefe.
  • Die vorliegende Erfindung umfasst auch Antikörper und antiidiotypische Antikörper (einscjließlich Fab-Fragmente), Antagonisten und Agonisten der NHP sowie Verbindungen oder Nucleotidkonstrukte, welche die Expression einer NHP-Sequenz inhibieren (Inhibitoren des Transskriptionsfaktors, Antisense- und Ribozymmoleküle oder Konstrukte zum Ersatz eines Gens oder einer regulatorischen Sequenz) oder die Expression eines NHP begünstigen (z.B. Expressionskonstrukte, in denen die NHP codierende Sequenz operativ an die Expression von Kontrollelementen wie z.B. Promotoren, Promotoren/Enhancern usw. gekoppelt ist).
  • Die NHPs oder NHP-Peptide, NHP-Fusionsproteine, NHP-Nucleotidsequenzen, -Antikörper, -Antagonisten und -Agonisten können für den Nachweis von mutierten NHPs oder unvollständig exprimierten NHPs für die Diagnose von Krankheiten nützlich sein. Die NHP-Proteine oder -Peptide, NHP-Fusionsproteine, NHP-Nucleotidsequenzen, Wirtszellex-pressionssysteme, Antikörper, Antagonisten, Agonisten und gentechnisch bearbeiteten Zellen und nicht menschliche Tiere können zum Screening nach Arzneimitteln verwendet werden (oder zum Screening von kombinatorischen Bücherein mit großem Durchsatz), welche für die Behandlung der symptomatischen oder phänotypischen Symptome einer Störung der normalen Funktion von NHP im Körper wirksam sind. Die Verwendung von gentechnisch veränderten Wirtszellen und/oder nicht menschlichen Tieren kann insofern einen Vorteil bieten, als solche Systeme nicht nur die Identifizierung von Verbindungen berücksichtigen, die an einen endogenen Rezeptor/Liganden von NHP binden, sondern auch Verbindungen identifizieren, die eine von NHP vermittelte Aktivität auslösen.
  • Schließlich können die NHP-Produkte als Therapeutika Verwendung finden. Beispielsweise können lösliche Derivate wie z.B. den NHPs entsprechende NHP-Peptide/Domänen, ausgeschiedene Formen von NHP, Proteinprodukte einer Fusion mit NHP (insbesondere NHP-IG-Fusionsproteine, d.h. Fusionen eines NHP oder einer Domäne eines NHP an ein IgFc), NHP-Antikörper oder antiidiotypische Antikörper (einschließlich Fab-Fragmente), Antagonisten oder Agonisten (einschließlich Verbindungen, welche downstream gelegene Ziele in einem NHP vermittelten Stoffwechselweg modulieren oder auf sie einwirken) zur direkten Behandlung von Krankheiten oder Störungen eingesetzt werden. Beispielsweise könnte die Verabreichung einer wirksamen Menge eines löslichen NHP oder eines NHP-IgFc-Fusionsproteins oder eines antiidiotypischen Antikörpers (oder dessen Fab), der das NHP nachahmt, den endogenen NHP-Rezeptor aktivieren oder wirksam antagonisieren. Nucleotid-Konstrukte, die solche NHP-Produkte codieren können eingesetzt werden, um Wirtszellen zur Expression solcher Produkte in vivo gentechnisch zu behandeln; diese gentechnisch behandelten Zellen wirken im Körper als "Bioreaktoren", welche einen kontinuierlichen Strom eines NHP, eines NHP-Pepetids oder eines NHP-Fusionsproteins liefern. Nucleotidkonstrukte, die funktionelle NHPs, mutierte NHPs sowie Antisense- und Ribozym-Moleküle codieren können auch in Ansätzen einer "Gentherapie" für die Modulation der NHP-Expression eingesetzt werden. Somit umfasst die Erfindung auch pharmazeutische Formulierungen und Verfahren zur Behandlung von biologischen Störungen.
  • Verschiedene Aspekte der Erfindung werden nun genauer in den folgenden Unterabschnitten beschrieben.
  • 5.1 DIE NHP-SEQUENZEN
  • Die cDNA-Sequenzen und die entsprechenden abgeleiteten Aminosäuresequenzen der beschriebenen NHPs sind im Sequenzprotokoll dargestellt. Die NHP-Nucleotide wurden aus gebündelten menschlichen Genen, die einem gene trapping unterzogen worden waren, aus ESTs und aus cDNAs erhalten, die aus dem Hiern des Menschen, aus dem Hirn eines Fötus, aus dem Kleinhirn und aus Bibliotheken von Hypothalamus-cDNA isoliert worden waren. Die beschriebenen Sequenzen teilen eine begrenzte strukturelle Ähnlichkei mit verschiedenen Proteinen, einschließlich aber nicht ausschließlich mit Neurexinen/einschließlich der sekretierten Typen) und mit Contactin-assoziierten Proteinen. Es wurde ein Polymorphismus identifiziert, der z.B. bei der dem Nucleotid 812 der SEQ ID NO: 1 entsprechenden Position zu einer Transition von C oder T führt, was zur Folge hat, dass z.B in der Aminosäureposition 271 der SEQ ID NO: 2 Ser oder Leu vorkommt.
  • 5.2 NHPs UND NHP-POLYPEPTIDE
  • NHPs, Polypeptide, Peptidfragmente, mutierte, gekürzte oder einer Deletion unterzogene Formen der NHPs und/oder Fusionsproteine können für verschiedene Verwendungen hergestellt werden. Diese Verwendungen sind, jedoch nicht ausschließlich, die Erzeugung von Antikörpern, als Reagenzien in diagnostischen Assays, für die Identifizierung von anderen mit NHP in Verbindung stehenden Zellgenprodukten, als Reagenzien in Assays zum Screening von Verbindungen, die als pharmazeutische Reagenzien bei der therapeutischen Behandlung von mentalen, biologischen oder medizinischen Störungen und Krankheiten von Nutzen sein können. In Anbetracht der Information über die Ähnlichkeit und der Daten über die Expression können die beschriebenen NHPs als Ziel (für Arzneimittel, Oloigos, Antikörper usw.) dienen, um eine Krankheit zu behandeln oder um die Wirksamkeit von therapeutischen Mitteln zu steigern.
  • Das Sequenzprotokoll zeigt die von den beschriebenen NHP-Polynucleotiden codierten Aminosäuresequenzen. Die NHPs weisen Initiations-Methionine in DNA-Sequenzkontexten auf, die mit einer Translations-Initiations-Stelle übereinstimmen sowie Signalsequenzen, die für eine Membran oder ausgeschiedene Proteine charakteristisch sind.
  • Die erfindungsgemäßen Aminosäuresequenzen für die NHPs umfassen sowohl die im Sequenzprotokoll angegebenen Aminosäuresequenzen als auch Analoga und Derivate davon. Ferner werden von der Erfindung die entsprechenden NHP-Analogen aus anderen Species mit umfasst. Daher liegt jedes von den oben beschriebenen NHP-Nucleotidsequenzen codierte NHP-Protein mit im Schutzumfang der Erfindung sowie jede neue Polynucleotidsequenz, die alle oder irgend einen neuen Abschnitt einer im Sequenzprotokoll angegebenen Aminosäuresequenz codiert. Es ist bekannt, dass der genetische Code degeneriert ist und entsprechend steht jede im Sequenzprotokoll angegebene Aminosäure generisch für das bekannte Nucleinsäure-"Triplett"-Codon oder in vielen Fällen Codons, welche die Aminosäure codieren können. Die im Sequenzprotokoll angegebenen Aminosäuresequenzen als solche sollen im Zusammenhang mit dem genetischen Code (siehe z.B. Table 4-1 auf Seite 109 von "Molecular Cell Biology", 1986, J. Darnell et al. Hrg. Scientific American Books, New York, NY, welche hiermit als Referenz eingeführt wird) generisch für alle verschiedenen Permutationen und Kombinationen von Nucleinsäure-Sequenzen stehen, welche solche Aminosäuresequenzen codieren können.
  • Die Erfindung umfasst auch Proteine, die funktionell den von den hier beschriebenen Nucleotidsequenzen codierten NHPs äquivalent sind, beurteilt nach jeder Anzahl von Kriterien einschließlich, jedoch nicht ausschließlich, der Fähigkeitein ein Substrat eines NHP zu binden und zu spalten, oder der Fähigkeit, einen identischen oder komplementären stromab gelegenen Weg zu bewirken oder eine Änderung im Zellmetabolismus (z.B. proteolytische Aktivität, Ionenfluss, Phosphoryierung des Tyrosins usw.). Solche funktionell äquivalenten NHP-Proteine sind, aber nicht ausschließlich, Additionen oder Substitutionen von Aminosäureresten in der von den oben beschriebenen NHP-Nucleotidsequenzen codierten Aminosäuresequenz, die aber zu einer stillen Änderung führen, indem sie ein funktionell äquivalentes Genprodukt liefern. Substitutionen von Aminosäuren können auf Basis einer Ähnlichkeit in der Polarität, der Ladung, der Löslichkeit, der Hydrophobizität, der Hydrophilizität und/oder der amphipatischen Natur der betroffenen Reste erfolgen. Beispielsweise sind nicht polare (hydrophobe) Aminosäuren Alanin, Leucin, Isoleucin, Valin, Prolin, Phenylalanin, Tryptophan und Methionin; polare neutrale Aminosäuren sind Glycin, Serin, Threonin, Cystein, Tyrosin, Asparagin und Glutamin; positiv geladene (basische) Aminosäuren sind Arginin, Lysin und Histidin; und negativ geladene saure Aminosäuren sind Asparaginsäure und Glutaminsäure.
  • Es können verschiedene Wirts-Expressions-Vektorsysteme eingesetzt werden, um die NHP-Nucleotidsequenzen der Erfindung zu exprimieren. Wo, wie im vorliegenden Fall, die NHP-Peptide oder -Polypeptide Membranproteine sein sollen, können die hydrophoben Abschnitte des Proteins auf der Ebene der Proteine oder Nucleinsäure herausgeschnitten werden (d.h. der z.B. in der SEQ ID NO. 2 annähernd von der Aminosäureposition 1.240 bis zur Aminosäureposition 1.265 reichende hydrophobe Abschnitt) und die erhaltenen löslichen Peptide oder Polypeptide können aus dem Kulturmedium gewonnen werden. Solche Expressionssysteme umfassen auch gentechnisch bearbeitete Wirtszellen, die ein NHP oder ein funktionelles Äquivalent in situ exprimieren. Die Reinigung oder Anreicherung eines NHP aus solchen Expressionssystemen kann erfolgen, indem geeignete Detergentien und Lipidmicellen und dem Fachmann bekannte Verfahren eingesetzt werden. Es können jedoch solche gentechnisch bearbeiteten Wirtszellen selbst in Situationen eingesetzt werden, wo es wichtig ist, die strukturellen und funktionellen Eigenschaften des NHP zu bewahren, aber die biologische Aktivität zu beurteilen, z.B. in Screeningassays für Arzneimittel.
  • Die Expressionssysteme, die sich für die Zwecke der Erfindung einsetzen lassen sind, jedoch nicht ausschließlich, Mikroorganismen wie z.B. Bakterien (z.B. E. coli, B. subtilis), die mit NHP-Nucleotidsequenzen enthaltenden rekombinanten Expressionsvektoren aus Bakteriophagen-DNA, Plasmid-DNA oder Cosmid-DNA transformiert wurden; Hefe (z.B. Saccharomyces Pichia), die mit NHP-Nucleotidsequenzen enthaltenden Expressionsvektoren aus Hefe transformiert wurde; Insektenzellsysteme, die mit NHP-Nucleotidsequenzen enthaltenden rekombinanten Expressionsvektoren aus Viren (z.B. Baculovirus) infiziert wurden; Pflanzenzellsysteme, die mit rekombinanten Expressionsvektoren aus Viren (z.B. Blumenkohlmosaikvirus, CaMV; Tabakmosaikvirus, TMV) infiziert oder mit NHP-Nucleotidsequenzen enthaltenden rekombinaten Plasmidexpressionsvektoren (z.B. Ti-Plasmid) transformiert wurden; oder Säugerzellsysteme (z.B. COS, CHO, BHK, 293, 3T3), die rekombinante Expressions-Konstrukte beherbergen, welche von dem Säugerzellen-Genom stammende Promotoren (z.B. Metallothionein-Promotor) oder von Säugerviren stammende Promotoren (z.B. der Adenovirus-Late-Promotor; der Vacciniavirus-7,5K-Promotor) enthalten.
  • Aus bakteriellen Systemen lässt sich vorteilhafterweise je nach der beabsichtigten Verwendung für das zu exprimierende NHP-Produkt eine Anzahl von Expressionsvektoren auswählen. Ist beispielsweise eine große Menge eines solchen Proteins zur Erzeugung von pharmazeutischen Zusammensetzungen herzustellen, die aus NHP bestehen oder NHP enthalten, oder zur Erzeugung von Antikörpern gegen ein NHP, können Vektoren erwünscht sein, die eine große Menge an leicht zu reinigenden Fusionsproteinprodukten steuern. Solche Vektoren sind, jedoch nicht ausschließlich, der Expressionsvektor pUR278 Von E. coli (Ruther et al., 1983, EMBO J. 2:1791), in welchem eine NHP-codierende Sequenz im richtigen Raster mit dem lacZ codierenden Abschnitt einzeln in den Vektor ligiert ist, so dass ein Fusionsprotein entsteht; pIN-Vektoren (Inouye & Inouye, 1985, Nucleic Acids Res. 13:3101–3109; Van Heeke & Schuster, 1989, J. Biol. Chem. 254:5503–5509); und dergl. pGEX-Vektoren (Pharmacia oder American Type Culture Collection) können ebenfalls eingesetzt werden, um fremde Polypeptide als Fusionsproteine mit Glutathion-S-Transferase (GST) zu exprimieren. Im Allgemeinen sind solche Fusionsproteine löslich und lassen sich mittels Adsorption an Gluththion-Agarose-Kügelchen gefolgt von einer Elution in Gegenwart von freiem Glutathion leicht von lysierten Zellen reinigen. Die pGEX-Vektoren sind so beschaffen, dass sie Schnittstellen für Thrombin oder die Faktor Xa-Protease aufweisen, so dass das geklonte Zielsequenzprodukt vom GST-Rest befreit werden kann.
  • In einem Insektensystem wird das Autographa-Californica-Nuclear-Polyhydrosis-Virus (AcNPV) als Vektor zue Erxpression von fremden Sequenzen eingestzt. Das Virus wächst in Zellen von Spodoptera frugiperda. Eine NHP codierende Sequenz kann einzeln in nicht essentielle Abschnitte (z.B. das Polyhedrin-Gen) des Virus kloniert und unter die Kontrolle eines AcNPV-Promotors (t.B. des Polyhedrin-Promotors) gestellt werden. Eine erfolgreiche Insertion der NHP codierenden Sequenz führt zu einer Inaktivierung des Polyhedrin-Gens und der Produktion von einem nackten rekombinanten Virus (d.h. einem Virus ohne Proteinhülle, die von dem Polyhedrin-Gen codiert wird). Diese rekombinanten Viren werden sodann benutzt, um Zellen von Sodoptera frugiperda zu infizieren, in welchen die insertierte Sequenz exprimiert wird (siehe z.B. Smith et al., 1983, J. Virol. 46: 584; Smith, US-Patent 4,215,051).
  • In Wirtszellen von Säugern lässt sich eine Anzahl von auf Viren beruhenden Expressions-systemen einsetzen. In den Fällen, wo ein Adenovirus als Expressionsvektor verwendet wird, kann die in Frage stehende Nucleotidsequenz an einen Transkriptions/Translations-Kontrollkomplex, z.B. die Late Promotor- und Tripartite-Leader-Sequenz des Adenovirus ligiert sein. Diese chimäre Sequenz kann sodann mittels in vitro- oder in vivo-Rekombination in das Genom des Adenoviorus insertiert sein. Die Insertion in einen nicht essentiellen Abschnitt des viralen Genoms (z.B. Abschnitt E1 oder E3) führt zu einem rekombinaten Virus, das lebensfähig und in der Lage ist, in infizierten Wirten ein NHP-Produkt zu exprimieren (siehe z.B. Logan & Shenk, 1984, Proc. Natl. Acad. Sci. USA 81: 3655–3659). Für eine wirkungsvolle Translation von insertierten NHP-Nucleotidsequenzen können auch spezifische Initiationssignale erforderlich sein. Diese Signale umfassen das ATG-Initiationscodon und angrenzende Sequenzen. In den Fällen, wo eine ganze NHP-Sequenz oder cDNA einschließlich des eigenen Initiationscodons und der angrenzenden Sequenzen in einen passenden Expressionsvektor insertiert wird, sind keine zusätzlichen Kontrollsignale für die Translation nötig. In Fällen jedoch, wo nur ein Teil einer NHP codierenden Sequenz insertiert wird, müssen exogene Kontrollsignale für die Translation einschließlich vielleicht des ATG-Initiationscodons zur Verfügung gestellt werden. Außerdem muss das Initiationscodon in Phase mit dem Leseraster der gewünschten codierenden Sequenz sein, um eine Translation des gesamten Insertionselements sicher zu stellen. Diese exogenen Kontrollsignale für die Translation und die Initiationscodons können verschiedenen, entweder natürlichen oder synthetischen Ursprungs sein. Die Effezienz der Expression lässt sich durch Einbeziehung geeigneter Transkriptions-Enhancerelemente, Transkriptionsterminatoren usw. steigern (siehe Bittner et al., 1987, Methods in Enzymol. 153: 516–544).
  • Zusätzlich kann ein Wirtszellstamm ausgesucht werden, der die Expression der insertierten Sequenzen moduliert oder das Sequenzprodukt auf die gewünschte spezifische Weise modifiziert und weiterbehandelt. Solche Modifikationen (z.B. eine Glykosylierung) und Weiterbehandlungen (z.B. eine Spaltung) der Proteinprodukte können für die Funktion des Proteins wichtig sein. Verschiedene Wirtszellen weisen charakteristische und spezifische Mechanismen für die posttranslationale Weiterbehandlung und Modifikation von Proteinen und Genprodukten auf. Es können passende Zelllinien oder Wirtssysteme ausgewählt werden, um die korrekte Modifikation und Weiterbehandlung des exprimierten Fremdproteins sicher zu stellen. Hierfür lassen sich eukaryotische Wirtszellen einsetzen, die über die zelluläre Maschinerie für eine richtige Weiterbehandlung des Primärtranskripts, die Glykosylierung und die Phosphorylierung des Genprodukts verfügen. Solche Wirtszellen von Säugern sind, jedoch nicht ausschließlich, CHO-, VERO-, BHK-, HeLa-, COS-, MDCK-, 293-, 3T3-, WI38- und insbesondere menschliche Zelllinien.
  • Für eine langzeitige Produktion rekombinanter Proteine mit hoher Ausbeute ist eine stabile Expression bevorzugt. Beispielsweise können Zelllinien, welche die oben beschriebenen NHP-Sequenzen exprimieren, gentechnisch bearbeitet werden. Eher als die Verwendung von Expressionsvektoren, die virale Ursprünge der Replikation enthalten, lassen sich Wirtszellen mit DNA transformieren, die von geeigneten Expressions-Kontrollelementen (z.B. Promotoren, Enhancer-Sequenzen, Transkriptionsterminatoren, Polyadenylierungsstellen usw) und einem auswählbaren Marker kontrolliet werden. Nach Einführung der Fremd-DNA werden gentechnisch behandelte Zellen 1–2 Tage in einem angereicherten Medium wachsen gelassen und sodann in ein selektives Medium überführt. Die auswählbaren Marker in dem rekombinanten Plasmid verleihen gegenüber einer Selektion Resistenz und bringen die Zellen dazu, das Plasmid in ihre Chromosomen stabil zu integrieren und zu wachsen, um Foci zu bilden, die ihrerseits geklont werden können und sich zu Zelllinien vermehren. Dieses Verfahren lässt sich vorteilhaft einsetzen, um Zelllinien gentechnisch zu verändern, welche das Genprodukt exprimieren. Solche gentechnisch bearbeiteten Zelllinien sind vorteilhaft beim Screening und der Auswertung von Verbindungen zu gebrauchen, welche die endogene Aktivität des NHP-Produkts beeinflussen.
  • Es kann eine Anzahl von Selektionssystemen eingesetzt werden, einschließlich, aber nicht ausschließlich, die Thymidinkinase aus Herpes simplex (Wigler, et al., 1977, Cell 11: 223), die Hypoxanthin-Guanin-Phosphoribosyltransferase (Szybalska & Szybalski, 1962, Proc. Natl. Acad. Sci. USA 48: 2026) und Adenosin-Phosphoribosyltransferasegene (Lowy, et al., 1980, Cell 22: 817) können jeweils in tk-, hgprt-oder aprt-Zellen eingesetzt werden. Auch Resistenz gegen Antimetaboliten kann für die folgenden Gene als Basis für eine Selektion verwendet werden: dhfr, das Resistenz gegen Methotrexat verleiht (Wigler, et al., 1980, Natl. Acad. Sci. USA 77: 3567; O'Hare, et al., 1981, Proc. Natl. Acad. Sci. USA 78: 1527), gpt, das Resistenz gegen Mycophenolsäure verleiht (Mulligan & Berg 1981, Proc. Natl. Acad. Sci. USA 78: 2072); neo, das Resistenz gegen das Aminoglycosid G-418 verleiht (Colberre-Garapin, et al., 1981, J. Mol. Biol. 150: 1) und hygro, das Resistenz gegen Hygromycin verleiht (Santerre, et al., 1984, Gene 30: 147).
  • Alternativ lässt sich jedes Fusionsprotein leicht reinigen, indem ein für das exprimierte Fusionsprotein spezifischer Antikörper verwendet wird. Beispielsweise lässt sich mit einem von Janknecht et al. beschriebenen System ein in menschlichen Zelllinien exprimiertes nicht denaturiertes Fusionsprotein leicht reinigen (Janknecht, et al., 1991, Proc. Natl. Acad. Sci. USA 88: 8972–8976). In diesem System wird das betreffende Gen in ein Vaccinia-Rkombinationsplasmid subcloniert, so dass das offene Leseraster translational an ein aus sechs Histidinresten bestehendes aminoendständiges Tag fusioniert wird. Die Extrakte aus mit rekombinantem Vaccinia-Virus infizierten Zellen werden auf Ni2+-Nitriloessigsäure-Agarose-Säulen aufgetragen und die Proteine mit freien Histidinenden selektiv mit Imidazol enthaltenden Puffern eluiert.
  • Von der vorliegenden Erfindung werden auch Fusionsproteine umfasst, welche das NHP zu einem Zielorgan lenken und/oder den Transport durch die Membran in das Cytosol erleichtern. Die Konjugation von NHPs an Antikörpermoleküle oder deren Fab-Fragmente könnte ausgenutzt werden, um besondere Epitope tragende Zellen an das Ziel zu bringen. Ein Anheften der passenden Signalsequenz an das NHP würde das NHP auch an den gewünschten Ort innerhalb der Zelle transportieren. Alternativ könnte eine Zielausrichtung von NHP oder von dessen Nucleinsäuresequenz erreicht werden, indem Übertragungssysteme auf Basis von Liposomen oder Lipid-Komplexen eingesetzt werden. Derartige Technologien werden in Liposomes: A Practical Approach, Neue RRC-Ausgabe, Oxford University Press, New York und in den US-Patenten. 4,594 595, 5,459,127, 5,948,767 und 6,110,490 sowie in deren entsprechenden Offenbarungen beschrieben, welche hiermit in voller Länge als Referenz eingeführt werden. Eine zusätzliche Ausführungsform stellen neue Protein-Konstrukte dar, die gentechnisch so behandelt wurden, dass sie den Transport des NHP an den Zielort oder das gewünschte Organ erleichtern, wobei sie die Zellmembran und/oder den Kern durchqueren, wo das NHP seine funktionelle Aktivität entfalten kann. Dieses Ziel kann erreicht werden, indem das NHP an ein Cytokin oder einen anderen Liganden gekoppelt wird, der für eine zielgerichtete Spezifität sorgt, und/oder an eine ein Protein transduzierende Domäne (siehe allgemein die US-Anmeldungen 60/111, 701 und 60/056,713, welche hiermit beide als Referenz für z.B. derartige transduzierenden Sequenzen eingeführt werden), um den Durchtritt durch Zellmembranen zu erleichtern und es kann wahlweise gentechnisch so bearbeitet werden, dass es Sequenzen für eine Lokalisierung im Kern enthält.
  • SEQUENZPROTOKOLL
    Figure 00230001
  • Figure 00240001
  • Figure 00250001
  • Figure 00260001
  • Figure 00270001
  • Figure 00280001
  • Figure 00290001
  • Figure 00300001
  • Figure 00310001
  • Figure 00320001
  • Figure 00330001
  • Figure 00340001
  • Figure 00350001
  • Figure 00360001
  • Figure 00370001
  • Figure 00380001
  • Figure 00390001
  • Figure 00400001
  • Figure 00410001
  • Figure 00420001
  • Figure 00430001
  • Figure 00440001
  • Figure 00450001
  • Figure 00460001
  • Figure 00470001
  • Figure 00480001
  • Figure 00490001
  • Figure 00500001
  • Figure 00510001
  • Figure 00520001
  • Figure 00530001
  • Figure 00540001
  • Figure 00550001
  • Figure 00560001

Claims (9)

  1. Ein isoliertes Nukleinsäuremolekül umfassend die Nukleotidsequenz zuerst offenbart in SEQ ID Nr: 1.
  2. Ein isoliertes Nukleinsäuremolekül umfassend eine Nukleotidsequenz, welche: (a) Für die in SEQ ID Nr: 2 gezeigte Aminosäuresequenz codiert; und (b) unter stringenten Bedingungen mit der Nukleotidsequenz aus SEQ ID Nr: 1 oder der Komplementärsequenz davon hybridisiert.
  3. Ein isoliertes Nukleinsäuremolekül umfassend eine Nukleotidsequenz, welche für die in SEQ ID Nr: 2 gezeigte Aminosäuresequenz codiert.
  4. Ein isoliertes Nukleinsäuremolekül umfassend eine Nukleotidsequenz, welche für die in SEQ ID Nr: 4 gezeigte Aminosäuresequenz codiert.
  5. Ein isoliertes Nukleinsäuremolekül aufweisend eine Nukleotidsequenz, welche für die in SEQ ID Nr: 24 gezeigte Aminosäuresequenz codiert.
  6. Ein Polypeptid codiert durch eine Nukleinsäure wie in einem der Ansprüche 1 bis 5 beansprucht.
  7. Eine Wirtszelle, die eine Nukleinsäure umfasst wie in einem der Ansprüche 1 bis 5 beansprucht und die in der Lage ist, das Polypeptid, das durch die Nukleinsäure codiert wird, gegebenenfalls in einer löslichen Form zu exprimieren.
  8. Ein nicht-menschliches Tier, das in der Lage ist, eine Nukleinsäure wie in einem der Ansprüche 1 bis 5 beansprucht, zu exprimieren, oder welches ein optional konditionales „knock-out"-Tier ist, das nicht ein Polypeptid wie in Anspruch 6 beansprucht exprimiert.
  9. Verwendung einer Nukleinsäure wie in einem der Ansprüche 1 bis 5 beansprucht, eines Polypeptids wie in Anspruch 6 beansprucht, einer Wirtszelle wie in Anspruch 7 beansprucht oder eines Tieres wie in Anspruch 8 beansprucht, in einem Verfahren zum Screening von Verbindungen auf die Fähigkeit die Expression einer Nukleinsäure wie in einem der Ansprüche 1 bis 5 beansprucht oder eines Polypeptids wie in Anspruch 6 beansprucht zu modulieren, oder welche die Aktivität eines Polypeptids wie in Anspruch 6 beansprucht modulieren, beispielsweise zum Hochdurchsatz-Screening von kombinatorischen Bibliotheken.
DE60118703T 2000-01-26 2001-01-26 Menschliche neurexin-ähnliche proteine und dafür kodierende polynukleotide Expired - Fee Related DE60118703T2 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US17855700P 2000-01-26 2000-01-26
US178557P 2000-01-26
US19951300P 2000-04-25 2000-04-25
US199513P 2000-04-25
PCT/US2001/010815 WO2001058938A2 (en) 2000-01-26 2001-01-26 Human neurexin-like proteins and polynucleotides encoding the same

Publications (2)

Publication Number Publication Date
DE60118703D1 DE60118703D1 (de) 2006-05-24
DE60118703T2 true DE60118703T2 (de) 2006-12-14

Family

ID=26874434

Family Applications (1)

Application Number Title Priority Date Filing Date
DE60118703T Expired - Fee Related DE60118703T2 (de) 2000-01-26 2001-01-26 Menschliche neurexin-ähnliche proteine und dafür kodierende polynukleotide

Country Status (8)

Country Link
US (2) US20020077464A1 (de)
EP (1) EP1250435B1 (de)
JP (1) JP2004500084A (de)
AT (1) ATE323162T1 (de)
AU (3) AU2001253117B8 (de)
CA (1) CA2398483A1 (de)
DE (1) DE60118703T2 (de)
WO (1) WO2001058938A2 (de)

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4215051A (en) * 1979-08-29 1980-07-29 Standard Oil Company (Indiana) Formation, purification and recovery of phthalic anhydride
US4376110A (en) * 1980-08-04 1983-03-08 Hybritech, Incorporated Immunometric assays using monoclonal antibodies
DE3301833A1 (de) * 1983-01-20 1984-07-26 Gesellschaft für Biotechnologische Forschung mbH (GBF), 3300 Braunschweig Verfahren zur simultanen synthese mehrerer oligonocleotide an fester phase
US4713326A (en) * 1983-07-05 1987-12-15 Molecular Diagnostics, Inc. Coupling of nucleic acids to solid support by photochemical methods
US4594595A (en) * 1984-04-18 1986-06-10 Sanders Associates, Inc. Circular log-periodic direction-finder array
US4631211A (en) * 1985-03-25 1986-12-23 Scripps Clinic & Research Foundation Means for sequential solid phase organic synthesis and methods using the same
DE3587814T2 (de) * 1985-03-30 1994-11-10 Marc Ballivet Verfahren zum erhalten von dns, rns, peptiden, polypeptiden oder proteinen durch dns-rekombinant-verfahren.
US4946778A (en) * 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US5700637A (en) * 1988-05-03 1997-12-23 Isis Innovation Limited Apparatus and method for analyzing polynucleotide sequences and method of generating oligonucleotide arrays
US5424186A (en) * 1989-06-07 1995-06-13 Affymax Technologies N.V. Very large scale immobilized polymer synthesis
US5744101A (en) * 1989-06-07 1998-04-28 Affymax Technologies N.V. Photolabile nucleoside protecting groups
US5143854A (en) * 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5252743A (en) * 1989-11-13 1993-10-12 Affymax Technologies N.V. Spatially-addressable immobilization of anti-ligands on surfaces
US6150584A (en) * 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6075181A (en) * 1990-01-12 2000-06-13 Abgenix, Inc. Human antibodies derived from immunized xenomice
US5264618A (en) * 1990-04-19 1993-11-23 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
US5877397A (en) * 1990-08-29 1999-03-02 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5837458A (en) * 1994-02-17 1998-11-17 Maxygen, Inc. Methods and compositions for cellular and metabolic engineering
US5908635A (en) * 1994-08-05 1999-06-01 The United States Of America As Represented By The Department Of Health And Human Services Method for the liposomal delivery of nucleic acids
US5556752A (en) * 1994-10-24 1996-09-17 Affymetrix, Inc. Surface-bound, unimolecular, double-stranded DNA
US5948767A (en) * 1994-12-09 1999-09-07 Genzyme Corporation Cationic amphiphile/DNA complexes
US6465210B1 (en) * 1996-03-27 2002-10-15 Sugen, Inc. Nucleic acid molecules encoding CASPR/p190
WO1999053051A2 (en) * 1998-04-09 1999-10-21 Genset 5' ests and encoded human proteins

Also Published As

Publication number Publication date
AU5311701A (en) 2001-08-20
AU2001253117B2 (en) 2006-04-06
CA2398483A1 (en) 2001-08-16
EP1250435B1 (de) 2006-04-12
AU2001253117B8 (en) 2006-08-03
EP1250435A2 (de) 2002-10-23
US20020077464A1 (en) 2002-06-20
ATE323162T1 (de) 2006-04-15
US20050096462A1 (en) 2005-05-05
WO2001058938A3 (en) 2002-02-28
AU2006202907A1 (en) 2006-07-27
DE60118703D1 (de) 2006-05-24
WO2001058938A2 (en) 2001-08-16
JP2004500084A (ja) 2004-01-08

Similar Documents

Publication Publication Date Title
US20050267297A1 (en) Novel human proteases and polynucleotides encoding the same
DE60225064T2 (de) Neue menschliche hydroxylasen und diese codierende polynukleotide
AU779387B2 (en) Human uncoupling proteins and polynucleotides encoding the same
DE60023928T2 (de) Humane carboxypeptidasen und diese kodierende polynukleotide
DE60118703T2 (de) Menschliche neurexin-ähnliche proteine und dafür kodierende polynukleotide
DE60126962T2 (de) Menschliche phospholipasen und diese kodierende polynukleotide
US20060014277A1 (en) Novel human kielin-like proteins and polynucleotides encoding the same
DE60119757T2 (de) Menschliche ionenaustauschproteine und dafür kodierende polynukleotiden
DE60122389T2 (de) Polynukleotide die für humane meltrin beta (adam19) metalloendopeptidasen kodieren
DE60129204T2 (de) Menschliche enzyme und dafür kodierende polynukleotide
AU784106B2 (en) Human GABA receptor proteins and polynucleotides encoding the same
US6767736B2 (en) Human ion channel protein and polynucleotides encoding the same
US20050136456A1 (en) Novel human EGF-family proteins and polynucleotides encoding the same
US6864079B2 (en) Human kinase and polynucleotides encoding the same
US20020193585A1 (en) Novel human transporter proteins and polynucleotides encoding the same
US7001763B1 (en) Human semaphorin proteins and polynucleotides encoding the same
US20050164251A1 (en) Novel human transporter proteins and polynucleotides encoding the same
US20050054049A1 (en) Novel human transporter proteins and polynucleotides encoding the same
AU2001293019A1 (en) Human ion-exchanger proteins and polynucleotides encoding the same
US20030064490A1 (en) Novel human ion channel proteins and polynucleotides encoding the same
US20080102520A1 (en) Novel human membrane proteins and polynucleotides encoding the same
US20050277767A1 (en) Novel human nuclear transporters and polynucleotides encoding the same
US20050118626A1 (en) Novel human collagen proteins and polynucleotides encoding the same
US20080213878A1 (en) Novel human membrane proteins and polynucleotides encoding the same
US20050079522A1 (en) Novel human protocadherin proteins and polynucleotides encoding the same

Legal Events

Date Code Title Description
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee