DE601088C - Radiation-sensitive organ for radiation pyrometers - Google Patents

Radiation-sensitive organ for radiation pyrometers

Info

Publication number
DE601088C
DE601088C DEA63049D DEA0063049D DE601088C DE 601088 C DE601088 C DE 601088C DE A63049 D DEA63049 D DE A63049D DE A0063049 D DEA0063049 D DE A0063049D DE 601088 C DE601088 C DE 601088C
Authority
DE
Germany
Prior art keywords
radiation
pyrometers
sensitive organ
crystal
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DEA63049D
Other languages
German (de)
Inventor
Dr Emil Rupp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AEG AG
Original Assignee
AEG AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AEG AG filed Critical AEG AG
Priority to DEA63049D priority Critical patent/DE601088C/en
Application granted granted Critical
Publication of DE601088C publication Critical patent/DE601088C/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • G01J5/22Electrical features thereof
    • G01J5/24Use of specially adapted circuits, e.g. bridge circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/28Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using photoemissive or photovoltaic cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/479Application of electric currents or fields, e.g. for electroforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

Strahlungsempfindliches Organ für Strahlungspyrometer Zur Messung der Wärmestrahlung und der Lichtstrahlung ist die Verwendung von Strahlungspyrometern üblich, bei denen als strahlungsempfindliches Organ Thermoelemente und lichtelektrische Zellen dienen. Es ist bekannt, als lichtelektrische Zellen Kombinationen vielkristalliner Halbleiter mit Metall zu verwenden und das Metall auf Flächen des vielkristallinen Halbleiters z. B. durch Verdampfen, Kathodenzerstäubung oder auf elektrolytischem Wege in so dünner Schicht aufzubringen, daß die zu messende Strahlenart noch durchsichtig ist. Eine wesentliche Erhöhung der Empfindlichkeit solcher Zellen wird nun dadurch erreicht, daß als kristalliner Halbleiter ein Einkristall verwendet wird. Hierin besteht die Erfindung. Außer der höheren Empfindlichkeit zeigen solche unter Verwendung von halbleitenden Einkristallen hergestellten Zellen eine geringe Trägheit und Freiheit von elektrischen Nachwirkungen gegenüber solchen mit vielkristallinen Halbleitern. Sie eignen sich daher im besonderen Maß zur Verwendung von Strahlungspyrometern.Radiation-sensitive organ for radiation pyrometers For measurement heat radiation and light radiation is the use of radiation pyrometers It is common to use thermocouples and photoelectric elements as a radiation-sensitive organ Cells serve. It is known to be multi-crystalline combinations as photoelectric cells Semiconductors with metal to use and the metal on faces of the polycrystalline Semiconductor z. B. by evaporation, sputtering or electrolytic To apply paths in such a thin layer that the type of radiation to be measured is still transparent is. A substantial increase in the sensitivity of such cells is now thereby achieves that a single crystal is used as the crystalline semiconductor. Here in the invention exists. In addition to the higher sensitivity, those show using cells made from semiconducting single crystals have little inertia and freedom of electrical aftereffects compared to those with multicrystalline semiconductors. They are therefore particularly suitable for the use of radiation pyrometers.

Ein Ausführungsbeispiel sei ausführlich beschrieben. Auf eine gut gewachsene Würfelfläche eines Bleiglanzkristalles wird beispielsweise eine' dünne, durchsichtige aber zusammenhängende Goldschicht in bekannter Weise im Hochvakuum aufgebracht. Das Gold wird z. B. -in einem Wolframschiffchen verdampft und der Dampf auf der Bleiglanzfläche niedergeschlagen. Die zunehmende Dicke der Goldschicht kann während des Vorganges auf einem zur Kontrolle dienenden Glasplättchen beobachtet werden. Der Kristall mit der Goldschicht wird in ein Gehäuse gebracht, das ebenso wie bei den bekannten Vielkristallkombinationen getrennte Zuleitungen an den Kristall und an die Goldschicht enthält. Der Kontakt des Kristalls mit seiner Zuleitung kann dadurch verbessert werden, daß der Kristall an einer passenden Stelle mit einem geeigneten Metall in dicker Schicht umgeben wird.An exemplary embodiment will be described in detail. On a good grown cube surface of a lead gloss crystal becomes, for example, a 'thin, transparent but cohesive gold layer in a known manner in a high vacuum upset. The gold is z. B. evaporated in a tungsten boat and the steam down on the galena surface. The increasing thickness of the gold layer can observed during the process on a glass slide serving as a control will. The crystal with the gold layer is placed in a case, which also as with the known multi-crystal combinations, separate leads to the crystal and to the gold layer. The contact of the crystal with its lead can can be improved by having the crystal in a suitable location with a suitable metal is surrounded in a thick layer.

Die zu messende Strahlung fällt, wie bei derartigen Zellen üblich, auf die Goldschicht auf, durchdringt diese und ruft zwischen Kristall und Gold einen elektrischen Strom hervor.The radiation to be measured falls, as is usual with such cells, on the gold layer, penetrates it and creates one between crystal and gold electric current.

Der durch die Verwendung halbleitender Einkristalle erzielte Fortschritt wird durch folgende Zusammenstellung der Ergebnisse vergleichender Versuche besonders deutlich gemacht. Bei diesen Versuchen wurden verschiedene als Organe für Strahlungspyrometer vorgeschlagene Kombinationen mit einer ioo-Watt-Wolframlampe bestrahlt und die hierbei entstehende Belichtungsspannung V, der innere Widerstand W und die Stromstärke T in dem Kreis Pyrometer-Galvanometer gemessen. V in 10-4 Wst #T in 10-4 Volt A. i. Bleiglanz-Einkristall (m. Goldfolie) - 6o 3 20 z. Bleiglanz-Vielkristall...:......... -f- So 120 0,42 3. Selen-Neusilber ................ -f- 12 iooo 0,012 4. Kupferoxydul-Neusilber . . . . . . . . . . + iio io öoo o,oii 5. Tellur-Neusilber................. -j- 45 6o 0,75 6. Eisen-Neusilber . . . . . . . . . . . . . . . . + i,o 0,i io Der Vergleich der Beispiele zu i und 2 zeigt, daß die durch Belichtung entstehenden Spannungen, abgesehen vom Vorzeichen, einander nahe gleich sind, daß jedoch. infolge der verschiedenen innerenWiderstände die Stromstärke im Einkristall etwa 5omal größer ist als im Vielkristall.The progress achieved through the use of semiconducting single crystals is made particularly clear by the following summary of the results of comparative experiments. In these experiments, various combinations proposed as elements for radiation pyrometers were irradiated with a 100 watt tungsten lamp and the resulting exposure voltage V, the internal resistance W and the current intensity T were measured in the pyrometer-galvanometer circle. V in 10-4 Wst #T in 10-4 Volt A. i. Lead luster single crystal (with gold foil) - 6o 3 20 z. Lead luster polycrystalline ...: ......... -f- So 120 0.42 3. Selenium-German silver ................ -f- 12 iooo 0.012 4. Copper oxy-German silver. . . . . . . . . . + iio io öoo o, oii 5. Tellurium nickel silver ................. -j- 45 6o 0.75 6. Iron-German silver. . . . . . . . . . . . . . . . + i, o 0, i io The comparison of the examples to i and 2 shows that the voltages resulting from exposure, apart from the sign, are almost equal to one another, but that. Due to the different internal resistances, the current strength in the single crystal is about 50 times greater than in the polycrystal.

Die Beispiele 3 bis 5 zeigen, daß alle Kombinationen mit Halbleitervielkristallen infolge ihres größeren Widerstandes sehr viel geringere Stromstärken ergeben als der Bleiglanzeinkristall. Hingegen haben Kombinationen von Metallen und. Metallegierungen (Beispiel 6) infolge des geringen Widerstandes der Metalle Stromstärken von gleicher Größenordnung. Diese Metallkombinationen müssen aber mit außerordentlicher Sorgfalt hergestellt werden und sind im Betrieb besonders gegen mechanische Einflüsse sehr empfindlich.Examples 3 to 5 show that all combinations with semiconductor polycrystals, owing to their greater resistance, result in very much lower current intensities than the lead luster single crystal. However, combinations of metals and. Metal alloys (Example 6) due to the low resistance of the metals, currents of the same order of magnitude. However, these metal combinations must be produced with extraordinary care and are particularly sensitive to mechanical influences during operation.

An Stelle von Gold können auch andere Metalle, wie Kupfer, Silber, Nickel, Wolfram, Wismuth, Antimon, Tellur, und mit geringerer Empfindlichkeit z. B. Aluminium, Zink, Magnesium oder Thallium benutzt werden. An Stelle von Bleiglanz können andere Halbleitereinkristalle, wie Molybdänglanz- oder Silberglanzeinkristalle, treten und andere Kristallflächen als die Würfelfläche können zur Aufbringung des Metalles benutzt werden. Die Kombinationen mit Gold auf gut ausgebildeten Einkristallflächen bilden auch bei diesen Mineralien gute Beispiele.Instead of gold, other metals such as copper, silver, Nickel, tungsten, bismuth, antimony, tellurium, and with less sensitivity z. B. aluminum, zinc, magnesium or thallium can be used. Instead of galena can use other semiconductor single crystals, such as molybdenum or silver occur and crystal faces other than the cube face can be used to apply the Metal can be used. The combinations with gold on well-formed single crystal surfaces are good examples of these minerals as well.

Claims (2)

PATENTANSPRÜCHE: i. Strahlungsempfindliches Organ für Strahlungspyrometer, bestehend aus einem kristallinen Halbleiter, wie Blei- oder Silberglanz, und einer durchsichtigen, auf dem Halbleiter z. B. durch Verdampfen oder Kathodenzerstäubung aufgebrachten Metallschicht, dadurch gekennzeichnet, daß der kristalline Halbleiter ein Einkristall ist. PATENT CLAIMS: i. Radiation-sensitive organ for radiation pyrometers, consisting of a crystalline semiconductor, such as lead or silver luster, and a transparent, on the semiconductor z. B. by evaporation or sputtering applied metal layer, characterized in that the crystalline semiconductor is a single crystal. 2. Strahlungsempfindliches Organ für Strahlungspyrometer nach Anspruch i, dadurch gekennzeichnet, daß die Metallschicht auf einer Würfelfläche -eines Bleiglanzeinkristalles angebracht ist.2. Radiation-sensitive organ for radiation pyrometers according to Claim i, characterized in that the metal layer is on a cube surface -a lead luster single crystal is attached.
DEA63049D 1931-08-14 1931-08-14 Radiation-sensitive organ for radiation pyrometers Expired DE601088C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DEA63049D DE601088C (en) 1931-08-14 1931-08-14 Radiation-sensitive organ for radiation pyrometers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEA63049D DE601088C (en) 1931-08-14 1931-08-14 Radiation-sensitive organ for radiation pyrometers

Publications (1)

Publication Number Publication Date
DE601088C true DE601088C (en) 1934-08-07

Family

ID=6943082

Family Applications (1)

Application Number Title Priority Date Filing Date
DEA63049D Expired DE601088C (en) 1931-08-14 1931-08-14 Radiation-sensitive organ for radiation pyrometers

Country Status (1)

Country Link
DE (1) DE601088C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE961366C (en) * 1952-06-22 1957-04-04 Licentia Gmbh Support body for single crystal photoresistors
DE1200016B (en) * 1961-07-13 1965-09-02 Barnes Eng Co Resistance bolometer with selective sensitivity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE961366C (en) * 1952-06-22 1957-04-04 Licentia Gmbh Support body for single crystal photoresistors
DE1200016B (en) * 1961-07-13 1965-09-02 Barnes Eng Co Resistance bolometer with selective sensitivity

Similar Documents

Publication Publication Date Title
DE3023623C2 (en) Gold connecting wire for semiconductor elements and its use for connection points of a silicon chip electrode in semiconductor elements
DE1806835A1 (en) Semiconductor device
DE2000101A1 (en) Immersion bolometer
DE601088C (en) Radiation-sensitive organ for radiation pyrometers
DE3141241A1 (en) PHOTOELECTRIC CELL
DE2000088C3 (en) Anisotropic thermocouple
DE1608200A1 (en) Photosensitive plate
DE562535C (en) Photosensitive cell
DE1415661A1 (en) semiconductor
Bergman et al. Structure and properties of dental casting gold alloys
DE102013000057B4 (en) ALLOY WIRE AND METHOD FOR THE PRODUCTION THEREOF
DE891431C (en) Radiation-sensitive organ for temperature detection or monitoring devices
DE891303C (en) Lead sulphide photocell for temperature detection or monitoring devices
DE3836819A1 (en) GAS DETECTOR WITH PHTALOCYANIN
DE891304C (en) Radiation-sensitive organ for temperature detection or monitoring devices
DE747964C (en) Production of electrode grids for lead collectors with improved module breaking load / unit elongation
DE861450C (en) Photoelectric resistance cell
DE60305049T2 (en) Process for the preparation of electrodes on an II-VI compound semiconductor material
DE60215691T2 (en) METHOD FOR HOLDING AN ILLUSTRATION DEVICE
DE715038C (en) Braunsche tube with post-acceleration
DE683330C (en) Process for the production of metal compounds used as photoelectrically sensitive organ in barrier cells
DE689062C (en) Alkaline photocell
DE1514206A1 (en) Composition and subject matter
DE1266510B (en) A semiconductor device having a semiconductor body with at least one contact and a method of manufacturing
DE685857C (en) Welding electrodes for electrical spot welding machines