DE4127328A1 - Polycrystalline oxidic high temp.-superconducting prodn. - from precursor powder by heating without melting undermicro gravitational conditions - Google Patents

Polycrystalline oxidic high temp.-superconducting prodn. - from precursor powder by heating without melting undermicro gravitational conditions

Info

Publication number
DE4127328A1
DE4127328A1 DE4127328A DE4127328A DE4127328A1 DE 4127328 A1 DE4127328 A1 DE 4127328A1 DE 4127328 A DE4127328 A DE 4127328A DE 4127328 A DE4127328 A DE 4127328A DE 4127328 A1 DE4127328 A1 DE 4127328A1
Authority
DE
Germany
Prior art keywords
heating
temp
melting
polycrystalline
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE4127328A
Other languages
German (de)
Inventor
Gernot Prof Dr Krabbes
Erich Prof Dr Sc Nat Wolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of DE4127328A1 publication Critical patent/DE4127328A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Prodn. of polycrystalline oxidic high temp.-superconductive materials (I) is carried out by thermal or chemical prepn . of a powdered precursor (II); then heating up to or briefly above the temp. lf partial incongruent melting of (II) in (an atmos. contg.) O2, without forming a homogeneous melt; holding at this temp.; and finally cooling until it solidifies completely. The novelty is that heat-up, dwell at temp. and solidification are carried out under microgravitational conditions. USE/ADVANTAGE - (I) are useful in the electrical industry and electronics, e.g. as superconductor. Partial melting is avoided. In an example, YBa2Cu3O(7-x) powder was prepd. from an intimate mixt. of 7.89 g BaCO3, 9.54 g CuO and 4.52 g Y2O3 by heating 24 h at 900 deg.C, crushing, re-mixing and repeating heating. This powder was crushed to an average particle size of 2 microns and moulded to a ring. The moulding was sealed in a quartz glass tube in the presence of 200 kPaO2. The tube was placed in a protective steel case. Under microgravitational conditions of 10 power(-2) go (go = the average acceleration of gravity at the surface of the earth), the moulding was heated 2 h at 980 deg.C, with heat-up to 900 deg.C at 0.1 K/min and cooling to 350 deg.C at 20 K/min, then treated at 350 deg.C for 20 h before cooling. The ring was superconductive below 90 K and had a critical current density of 10 power(5) A/cm2 at 77 K.

Description

Die Erfindung bezieht sich auf das Gebiet der Elektrotechnik/Elektronik und betrifft ein Verfahren zur Herstellung polykristalliner oxidischer hochtemperatur-supraleitender Werkstoffe, die z. B. als Supraleiter zur Anwendung kommen. Aus einer Pulvermischung aus den Ausgangsstoffen oder aus vorreagierten Zwischenprodukten wird ein Formkörper hergestellt. Dieser Formkörper wird einer Wärmebehandlung unterzogen, die hinsichtlich Zeit und Temperatur von der jeweils gewünschten chemischen Zusammensetzung abhängt. Die Temperaturen bewegen sich dabei in einem Intervall von 860 bis 960°C. Die Sinterzeiten betragen meist mehrere Stunden bis Tage. Während dieser Wärmebehandlung bildet sich die hochtemperatur-supraleitende Verbindung und wird gleichzeitig versintert (z. B. Chen. et al., Rev. Sci. Instruments 58 (1987) 1565; Tarascon et al. Phys. Rev. B 38 (1988) 8885.The invention relates to the field of Electrical engineering / electronics and relates to a method of manufacture polycrystalline high temperature superconducting oxide Materials such. B. are used as superconductors. From a powder mixture of the raw materials or from pre-reacted A molded article is produced for intermediate products. This molded body is subjected to a heat treatment, with regard to Time and temperature of the desired chemical Composition depends. The temperatures are moving thereby in an interval of 860 to 960 ° C. The sintering times are usually several hours to days. During this heat treatment the high-temperature superconducting connection is formed and is sintered at the same time (e.g. Chen. et al., Rev. Sci. Instruments 58 (1987) 1565; Tarascon et al. Phys. Rev. B 38 (1988) 8885.

Bei Hochtemperatur-Supraleitern spezieller Zusammensetzung wird vorteilhafterweise eine Nachbehandlung in Sauerstoff bei Temperaturen von 250 bis 380°C durchgeführt (DD 2 75 787).In the case of high-temperature superconductors with a special composition advantageously an aftertreatment in oxygen at temperatures from 250 to 380 ° C (DD 2 75 787).

Der Nachteil dieses Verfahrens besteht darin, daß eine unzureichende Versinterung und/oder die Ausbildung von Bereichen gestörter Zusammensetzung an den Korngrenzen erfolgt.The disadvantage of this method is that it is inadequate Sintering and / or the formation of areas disturbed Composition occurs at the grain boundaries.

Der Erfindung liegt das Problem zugrunde, die Seigerung von partiellen Schmelzen während der Herstellung von hochtemperatur- supraleitenden Werkstoffen zu verhindern. The invention is based on the problem of the segregation of partial Melting during the manufacture of high temperature to prevent superconducting materials.  

Dies wird erreicht, indem ein pulverförmiges Vorprodukt, das auf thermischem oder chemischem Wege hergestellt worden ist, verformt wird. Danach wird dieser Formkörper unter Mikrogravitationsbedingungen bis auf oder kurz über die Temperatur des partiellen, inkongruenten Schmelzens der Ausgangsstoffe in Sauerstoff oder sauerstoffhaltiger Atmosphäre aufgeheizt. Die Temperatur wird jedoch nicht soweit erhöht, daß eine homogene Schmelze erreicht wird. Die gewählte Temperatur in diesem Temperaturintervall wird gehalten und anschließend wird der Formkörper bis zum völligen Erstarren abgekühlt. Die Verfahrensschritte nach dem Erstarren, wie Abkühlen oder Ausheilen können ebenfalls unter Mikrogravitationsbedingungen durchgeführt werden.This is achieved by adding a powdery precursor to it has been produced thermally or chemically becomes. Then this molded body is under microgravity conditions up to or just above the temperature of the partial, incongruent melting of the starting materials in oxygen or heated oxygen-containing atmosphere. The temperature will however not increased enough to achieve a homogeneous melt becomes. The selected temperature in this temperature interval is held and then the molded body is completely Solidified cooled. The process steps after solidification, such as cooling or healing can also be done under microgravity conditions be performed.

Im weiteren soll die Erfindung an mehreren Ausführungsbeispielen beschrieben werden.Furthermore, the invention is intended to be based on several exemplary embodiments to be discribed.

  • 1. Aus einem innigen Gemisch von 7,89 g BaCO₃, 9,54 g CuO und 4,52 g Y₂O₃ wird durch 24stündiges Erhitzen auf 900°C, welches nach Zerkleinern und Durchmischen wiederholt wird, ein Pulver von YBa₂Cu₃O7-x hergestellt. Dieses Pulver wird auf eine mittlere Korngröße von 2 µm zerkleinert und in einer Form zu einem Ring gepreßt. Der Formkörper wird in einem Reaktionsrohr aus Quarzglas in Gegenwart von 200 kPa Sauerstoff luftdicht eingeschmolzen, wobei der Formkörper gegen Verschieben gesichert ist. Das Reaktionsrohr wird mit einer Schutzhülse aus Stahl versehen und in ein Laboratorium unter Mikrogravitationsbedingungen überführt. Unter Bedingungen der Mikrogravitation von 10-2 go (go ist die mittlere Erdbeschleunigung auf der Erdoberfläche) wird der Formkörper in einem Ofen für 2 h auf 980°C erhitzt, mit 0,1 K/min auf 900°C und mit 20 K/min bis auf 350°C abgekühlt. Es folgt eine 20stündige Nachbehandlung bei 350°C. Nach dem Abkühlen liegt ein Supraleiterring vor, in dem ein Strom unterhalb 90 K widerstandslos fließt. Es werden kritische Stromdichten von 10⁵ A/cm² bei 77 K erreicht.1. From an intimate mixture of 7.89 g BaCO₃, 9.54 g CuO and 4.52 g Y₂O₃ is made by heating to 900 ° C for 24 hours, which is repeated after crushing and mixing, a powder of YBa₂Cu₃O 7-x . This powder is crushed to an average grain size of 2 microns and pressed in a mold to form a ring. The molded body is melted in an airtight manner in a quartz glass reaction tube in the presence of 200 kPa oxygen, the molded body being secured against displacement. The reaction tube is provided with a protective sleeve made of steel and transferred to a laboratory under microgravity conditions. Under microgravity conditions of 10 -2 g o (g o is the mean gravitational acceleration on the surface of the earth), the molded body is heated in an oven for 2 h to 980 ° C, at 0.1 K / min to 900 ° C and at 20 K / min cooled down to 350 ° C. This is followed by a 20-hour aftertreatment at 350 ° C. After cooling, there is a superconductor ring in which a current below 90 K flows without resistance. Critical current densities of 10⁵ A / cm² at 77 K are achieved.
  • 2. Ein Formkörper von YBa₂Cu₃O7-x wird wie in Beispiel 1 hergestellt und in einem Reaktionsrohr aus Quarzglas unter 200 kPa O₂ luftdicht eingeschmolzen. Das Reaktionsrohr wird auf 920°C in einem Ofen, der zur Ausrüstung der Nutzlast eines ballistischen Laboratoriums gehört, erwärmt. Dieses Laboratorium wird auf eine ballistische Bahn befördert, wobei gleichzeitig die Temperatur des Formkörpers bei Erreichen des Mikrogravitationszustandes auf 1020°C mit 80 K/min erhöht wird. Nach 2minütigem Halten dieser Temperatur erfolgt die Abkühlung mit 50 K/min. Der Formkörper wird nach Rückführung des ballistischen Laboratoriums je 24 h bei 920°C und bei 350°C nachbehandelt. Es wird eine kritische Temperatur von 92 K und eine kritische Stromdichte von 3 · 10⁵ A/cm² bei 77 K erreicht.2. A molded body of YBa₂Cu₃O 7-x is produced as in Example 1 and melted airtight in a reaction tube made of quartz glass under 200 kPa O₂. The reaction tube is heated to 920 ° C in an oven that is part of the equipment of the payload of a ballistic laboratory. This laboratory is transported on a ballistic path, the temperature of the molded body being increased to 1020 ° C. at 80 K / min when the microgravity state is reached. After maintaining this temperature for 2 minutes, cooling takes place at 50 K / min. After returning the ballistic laboratory, the molded body is after-treated at 920 ° C. and at 350 ° C. for 24 hours. A critical temperature of 92 K and a critical current density of 3 · 10⁵ A / cm² at 77 K is achieved.
  • 3. Aus einem innigen Gemisch von 6,50 g SrCO₃, 3,60 g CaCO₃, 4,66 g Bi₂O₃ und 4,77 g CuO wird ein Pulver der Zusammensetzung Bi₂Ca1,8Sr2,2Cu₃Oy durch langsames Erhitzen auf 820°C und 24stündiges Halten bei dieser Temperatur hergestellt. Aus diesem Pulver wird ein Formkörper hergestellt, der wie im Beispiel 1 behandelt wird, mit dem Unterschied, daß die Dauer der Temperaturbehandlung unter Mikrogravitationsbedingungen 24 h und die Temperatur dabei 890°C beträgt, anschließend mit 0,1 K/min auf 820°C und dann mit 20 K/min bis zur Raumtemperatur abgekühlt wird. Der erhaltene Supraleiter hat eine kritische Temperatur von 105 K und eine kritische Stromdichte bei 77 K von 5 · 10⁵ A/cm².3. From an intimate mixture of 6.50 g SrCO₃, 3.60 g CaCO₃, 4.66 g Bi₂O₃ and 4.77 g CuO, a powder of the composition Bi₂Ca 1.8 Sr 2.2 Cu₃O y is slowly heated to 820 ° C and maintained at this temperature for 24 hours. A molded body is produced from this powder, which is treated as in Example 1, with the difference that the duration of the heat treatment under microgravity conditions is 24 h and the temperature is 890 ° C., then at 0.1 K / min to 820 ° C. and then cooled to room temperature at 20 K / min. The superconductor obtained has a critical temperature of 105 K and a critical current density at 77 K of 5 · 10⁵ A / cm².

Claims (1)

Verfahren zur Herstellung polykristalliner oxidischer hochtemperatur- supraleitender Werkstoffe, bei dem auf thermischem oder auf chemischem Wege ein pulverförmiges Vorprodukt hergestellt und verformt wird, anschließend bis auf oder kurz über die Temperatur des partiellen, inkongruenten Schmelzens der Ausgangsstoffe in Sauerstoff oder in sauerstoffhaltiger Atmosphäre aufgeheizt. Jedoch ohne eine homogene Schmelze zu erreichen, bei dieser Temperatur gehalten und anschließend bis zum völligen Erstarren abgekühlt wird, dadurch gekennzeichnet, daß das Aufheizen, Halten der Temperatur und Erstarren unter Mikrogravitationsbedingungen durchgeführt wird.Process for the production of polycrystalline oxidic high-temperature superconducting materials, in which a powdery intermediate product is produced and shaped by thermal or chemical means, then heated up to or just above the temperature of the partial, incongruent melting of the starting materials in oxygen or in an oxygen-containing atmosphere. However, without achieving a homogeneous melt, it is kept at this temperature and then cooled to complete solidification, characterized in that the heating, the temperature and the solidification are carried out under microgravity conditions.
DE4127328A 1990-08-27 1991-08-19 Polycrystalline oxidic high temp.-superconducting prodn. - from precursor powder by heating without melting undermicro gravitational conditions Withdrawn DE4127328A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DD90343647A DD297389A5 (en) 1990-08-27 1990-08-27 PROCESS FOR PREPARING POLYCRYSTALLINE OXIDIC HIGH TEMPERATURE SUPERVELITUDE OF MATERIALS

Publications (1)

Publication Number Publication Date
DE4127328A1 true DE4127328A1 (en) 1992-03-05

Family

ID=5620321

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4127328A Withdrawn DE4127328A1 (en) 1990-08-27 1991-08-19 Polycrystalline oxidic high temp.-superconducting prodn. - from precursor powder by heating without melting undermicro gravitational conditions

Country Status (2)

Country Link
DD (1) DD297389A5 (en)
DE (1) DE4127328A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4234311A1 (en) * 1992-10-12 1994-04-14 Abb Research Ltd Prodn. of high temp. superconductor based on bismuth alkali-earth cuprate(s) - by partially melting powdered starting material, calcining, and cooling in inert gas atmosphere

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4234311A1 (en) * 1992-10-12 1994-04-14 Abb Research Ltd Prodn. of high temp. superconductor based on bismuth alkali-earth cuprate(s) - by partially melting powdered starting material, calcining, and cooling in inert gas atmosphere

Also Published As

Publication number Publication date
DD297389A5 (en) 1992-01-09

Similar Documents

Publication Publication Date Title
DE3830092C2 (en)
CA1332026C (en) Superconducting wire and method of manufacturing the same
US5306700A (en) Dense melt-based ceramic superconductors
ATE132122T1 (en) YTTRIUM-BARIUM-COPPER-OXYGEN SUPERCONDUCTORS WITH DIRECTED CRYSTALLITES AND HIGH CRITICAL CURRENT DENSITY AND METHOD FOR THE PRODUCTION THEREOF
EP0308892B1 (en) Flaky oxide superconductor and method of manufacturing the same
DE3851248T2 (en) Method of manufacturing a superconducting circuit.
EP0285169B1 (en) Superconductor and method of manufacturing the same
DE4127328A1 (en) Polycrystalline oxidic high temp.-superconducting prodn. - from precursor powder by heating without melting undermicro gravitational conditions
EP0426164B1 (en) Process for preparing oxide superconductor
KR100209580B1 (en) Manfacturing method of yttrium ultra conduct
US5151407A (en) Method of producing Bi-Sr-Ca-Cu-O superconducting materials in cast form
DE3855357T2 (en) Process for the production of superconducting ceramics
KR100186833B1 (en) High temperature superconductor and process for its production
EP0592797B1 (en) Method for manufacturing rotation symetrical high temperature superconductor workpieces
EP0482221B1 (en) Method of manufacturing of a Bi-Sr-Ca-Cu-O type high temperature superconductor
CA2131944A1 (en) Solid parts made of high-temperature superconductor material
JPH01160860A (en) Production of sintered material of oxide superconductor
EP0472876A3 (en) Process for the preparation of shaped bodies from high-temperature superconductor precursors
JP3159764B2 (en) Manufacturing method of rare earth superconductor
Sastry et al. Fabrication of (Hg, Re)-Ba-Ca-Cu-O (1223) single phase fibers for current leads
JPH01133908A (en) Production of superconducting material
KR960006240B1 (en) Process for the preparation of high critical-temperature superconductive coil
Yakinci Fabrication of (BiGaPb) 2Sr2Ca2Cu3O10+ y glass-ceramic superconductor rods
JP2685951B2 (en) Method for manufacturing bismuth-based superconductor
JPH01201060A (en) Production of superconductor

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee