DE3925694A1 - Hydrogen storage in cooled pressure vessels - using synthetic adsorbers produced by thermal treatment of ion exchange resins based on styrene-di:vinylbenzene copolymers - Google Patents

Hydrogen storage in cooled pressure vessels - using synthetic adsorbers produced by thermal treatment of ion exchange resins based on styrene-di:vinylbenzene copolymers

Info

Publication number
DE3925694A1
DE3925694A1 DE3925694A DE3925694A DE3925694A1 DE 3925694 A1 DE3925694 A1 DE 3925694A1 DE 3925694 A DE3925694 A DE 3925694A DE 3925694 A DE3925694 A DE 3925694A DE 3925694 A1 DE3925694 A1 DE 3925694A1
Authority
DE
Germany
Prior art keywords
thermal treatment
synthetic
styrene
adsorbers
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE3925694A
Other languages
German (de)
Inventor
Ernest De Dr Ruiter
Hasso Von Bluecher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE3925694A priority Critical patent/DE3925694A1/en
Publication of DE3925694A1 publication Critical patent/DE3925694A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0015Organic compounds; Solutions thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Synthetic absorbers (I), produced by thermal treatment of styrene/DVB-based ion exchange resins or precursors thereof (II), are useful for the storage of H2 in a cooled pressure vessel. (I) is subjected to thermal after-treatment at at least 1000, pref. at least 1200 deg.C; (I) can hold at least 10%, pref. at least 15%, of its wt. of H2 at 150K and 60 atmos. (I) are normally in the form of spherical particles of different size, obtd. e.g. by bead polymerisation followed by thermal treatment as above for 30 mins. in a N2 atmos. (which can contain up to 15% water vapour) in a channel or a fluid bed. ADVANTAGE - (I) are considerably better than active carbon for storage of H2. In an example pressure vessels were filled with (I), cooled to (a) 150 or (b) 180K and charged with H2 at 60 atmos. H2 capacity increased in (a) from 2.0 to 16.0 g H2/100g (I) as the temp. of thermal treatment of (I) increased from 800 to 1250 deg.C and in (b) from 2.0 to 12.0 g H2/100 g (I) as the activation temp. increased from 900 to 1250 deg.C; water vapour was only added at 900 deg.C, otherwise there was too much burn-off; activation at 900 deg.C gave a measurable increase in capacity, but loading the adsorber with Ni or Pd had no noticeable effect.

Description

Wasserstoff ist die materielle und energetische Grundlage des Uni­ versums, welches zu 99% aus Wasserstoff besteht und seine Ener­ gie aus Kernfusion des Wasserstoffs bezieht. Es ist durchaus denk­ bar, daß Wasserstoff zum Energielieferant der Zukunft wird. Seine Gewinnung aus Wasser durch Hydrolyse mit Strom aus Sonnenkollekto­ ren bedeutet, daß Wasserstoff uneingeschränkt zur Verfügung steht. Einer breiten Verwendung des Wasserstoffs als Energiespen­ der steht seine schwierige Speicherung im Wege: Mit einer kriti­ schen Temperatur von 33°K birgt die Speicherung in Flüssigform eine Reihe von Gefahren, die eine solche Verwendungsform im Stra­ ßenverkehr wohl kaum gestatten würden.Hydrogen is the material and energetic basis of the university versums, which consists of 99% hydrogen and its energies relies on nuclear fusion of hydrogen. It is quite thinkable bar that hydrogen will become the energy supplier of the future. His Extraction from water by hydrolysis with electricity from solar panels ren means that hydrogen is fully available stands. Wide use of hydrogen as an energy pen it stands in the way of its difficult storage: with a crit The temperature of 33 ° K is stored in liquid form a number of dangers that such a use in the Stra would hardly allow public transport.

Es wurde deshalb versucht, den Wasserstoff chemisch oder physika­ lisch zu binden, wobei die Speicherung als Metallhydride die be­ kannteste ist, aber bei weitem keine Ideallösung darstellt. Daim­ ler Benz testet seit längerer Zeit Kraftfahrzeuge mit Wasserstoff als Kraftstoff, jedoch verhindert der große Metallhydride-Tank eine breite Anwendung. Nimmt man Drücke und Temperaturen bis maxi­ mal 55 atü bzw. 150°K in Kauf, die wesentlich problemloser sind als die kritischen Bedingungen für flüssigen Wasserstoff, so läßt sich mit Hilfe von Adsorptionstechniken bei gleichem Speicherge­ wicht etwa 2½-mal soviel Wasserstoff binden als mittels Metall­ hydriden. Als Adsorbens wird Aktivkohle genannt. Die Temperatur von 150°K verlangt jedoch noch immer den Einsatz flüssigen Stick­ stoffs. Fernziel ist es, Adsorbentien zu finden, welche nur mehr Temperaturen, die mit der klassischen Gefriertechnik erreicht werden können, verlangen. Das Beladen der Kohle mit Metallsalzen bzw. die Einführung saurer Gruppen in die innere Oberfläche führte zwar zu einer um bis zu ¹/₃ höherer Speicherkapazität, aber die maximale Arbeitstemperatur lag kaum günstiger. It has therefore been attempted to chemically or physically hydrogen bind binding, the storage as metal hydrides the be is the best known, but is by no means an ideal solution. Daim ler Benz has been testing vehicles with hydrogen for a long time as fuel, but the large metal hydride tank prevents it a wide application. If you take pressures and temperatures up to maxi times 55 atü or 150 ° K in purchase, which are much easier than the critical conditions for liquid hydrogen, so lets with the help of adsorption techniques with the same storage ge bind about 2½ times as much hydrogen as metal hydrides. Activated carbon is mentioned as the adsorbent. The temperature of 150 ° K, however, still requires the use of a liquid stick fabric. The long-term goal is to find adsorbents that only more Temperatures reached with classic freezing technology can be demand. Loading the coal with metal salts or the introduction of acidic groups into the inner surface led to a storage capacity that was up to ¹ / ₃ higher, but the maximum working temperature was hardly more favorable.  

Es wurde nun überraschenderweise gefunden, daß sich Adsorbentien, die durch thermische Behandlung von Copolymeren aus Styrol und Di­ vinylbenzol gewonnen wurden, wesentlich besser für Wasserstoff­ speicher eignen als Aktivkohle. Es wurde festgestellt, daß mit zu­ nehmender Pyroloysetemperatur das Speichervermögen zunimmt und we­ niger gekühlt werden muß bzw. weniger Druck anzuwenden ist. Die thermische Behandlung konnte nicht über 1250°C hinaus durchge­ führt werden, jedoch war bis dorthin noch keine Umkehr des positi­ ven Trends feststellbar, so daß es möglich ist, daß eine weitere Temperatursteigerung zu einem noch höheren Speichervermögen führt.It has now surprisingly been found that adsorbents, by the thermal treatment of copolymers of styrene and di vinylbenzene were obtained, much better for hydrogen stores are suitable as activated carbon. It was found that with too increasing Pyroloys temperature the storage capacity increases and we must be cooled less or less pressure is to be applied. The thermal treatment could not go beyond 1250 ° C be led, but there was still no reversal of the positive trends can be identified, so that it is possible that another Temperature increase to an even higher storage capacity leads.

Die normale Form der Absorber sind Kügelchen, da sie durch eine Tröpfchenpolymerisation gewonnen werden. Ihre Größe hängt weitge­ hend von der Differenz in der Oberflächenspannung der 2 Phasen sowie der mechanischen Energie, die mit dem Rührer, dessen Form ebenfalls einen Einfluß hat, in das System eingepumpt wird. Die Kügelchen selbst bestehen aus Aglomeraten feinster, manchmal ku­ gelförmiger Teilchen, in denen sich die eigentlichen Adsorptions­ stellen befinden, während die Hohlräume zwischen den Teilchen deren Zugänglichkeit sicherstellen. Die Verwendung von Kügelchen verschiedener Größen gestattet eine optimale Nutzung des vorhande­ nen Behältervolumens.The normal form of the absorbers are beads, as they are separated by a Droplet polymerization can be obtained. Their size largely depends based on the difference in the surface tension of the 2 phases as well as the mechanical energy with the stirrer, its shape also has an impact on the system being pumped. The Beads themselves consist of the finest aglomerates, sometimes ku gel-like particles in which the actual adsorption places while the voids between the particles ensure their accessibility. The use of beads Different sizes allow an optimal use of the existing container volume.

Die thermische Behandlung (Dauer 30 min) wurde in Stickstoffatmos­ phäre, welche fallweise bis zu 15% Wasserdampf enthielt, in einer dem Fachmann als Rinne bekannten Anordnung durchgeführt, sollte aber auch in Wirbelschicht einwandfrei realisierbar sein. Dabei werden bei den angewandten Temperaturen hohe Ansprüche an das Material gestellt.The thermal treatment (duration 30 min) was in nitrogen atmosphere sphere, which occasionally contained up to 15% water vapor, in an arrangement known to the person skilled in the art as a gutter, but should also be feasible in a fluidized bed. High demands are made on the temperatures used put the material.

Beispielexample

In einem Druckgefäß wurden bei verschiedenen Temperatu­ ren behandelte Adsorber eingeführt, auf 150 bzw. 180°K gekühlt und unter 60 atü mit Wasserstoff beladen. Wegen des variierenden Schüttgewichts schwankte die Adsorbermenge von 116 bis 128 g und die Ergebnisse wurden auf 100 g zurückgerechnet: In a pressure vessel at different temperatures ren treated adsorber introduced, cooled to 150 or 180 ° K. and loaded with hydrogen under 60 atm. Because of the varying Apparent density fluctuated from 116 to 128 g and the results were calculated back to 100 g:  

Wasserstoffkapazität in g H₂/100 g Adsorber Hydrogen capacity in g H₂ / 100 g adsorber

Der Zusatz von Wasserdampf wurde nur bei 900°C praktiziert, weil sonst zu viel Abbrand auftrat. Die Aktivierung bei 900°C brachte eine Verbesserung der Kapazität, die im Rahmen der Meßgenauigkeit lag. Das Beladen der Absorber mit Nickel und Palladium, in der Art wie Hydrierungskatalysatoren hergestellt werden, führte zu keinen eindeutigen Ergebnissen.The addition of water vapor was only practiced at 900 ° C because otherwise too much burn-up occurred. Activation at 900 ° C brought an improvement in capacity within the measurement accuracy lay. Loading the absorbers with nickel and palladium in the The way hydrogenation catalysts are made has led to no clear results.

Claims (4)

1. Verwendung von synthetischen Absorbern, hergestellt durch thermische Behandlung von Ionenaustauschern oder deren Vorstu­ fen auf Basis von Styrol und Divinylbenzol, zur Speicherung von Wasserstoff in einem gekühlten Druckgefäß.1. Use of synthetic absorbers manufactured by thermal treatment of ion exchangers or their advance fen based on styrene and divinylbenzene, for storage of hydrogen in a cooled pressure vessel. 2. Verwendung von synthetischen Adsorbern nach Anspruch 1, da­ durch gekennzeichnet, daß die Adsorber einer thermischen Nach­ behandlung bei mindestens 1000°C, vorzugsweise mindestens 1200°C, unterworfen werden.2. Use of synthetic adsorbers according to claim 1, there characterized in that the adsorber a thermal after treatment at at least 1000 ° C, preferably at least 1200 ° C, are subjected. 3. Verwendung von synthetischen Adsorbern nach Anspruch 1 und/ oder 2, dadurch gekennzeichnet, daß die Adsorber bei 150°K und 60 atü mindestens 10%, vorzugsweise mindestens 15%, ihres Gewichts an Wasserstoff speichern können.3. Use of synthetic adsorbers according to claim 1 and / or 2, characterized in that the adsorbers at 150 ° K and 60 atm at least 10%, preferably at least 15%, can store their weight in hydrogen. 4. Druckgefäß zur Speicherung von Wasserstoff, dadurch gekenn­ zeichnet, daß es mit Adsorbern nach einem oder mehreren der vorhergehenden Ansprüche gefüllt ist.4. Pressure vessel for storing hydrogen, characterized thereby records that it with adsorbers according to one or more of the previous claims is filled.
DE3925694A 1989-08-03 1989-08-03 Hydrogen storage in cooled pressure vessels - using synthetic adsorbers produced by thermal treatment of ion exchange resins based on styrene-di:vinylbenzene copolymers Withdrawn DE3925694A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE3925694A DE3925694A1 (en) 1989-08-03 1989-08-03 Hydrogen storage in cooled pressure vessels - using synthetic adsorbers produced by thermal treatment of ion exchange resins based on styrene-di:vinylbenzene copolymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3925694A DE3925694A1 (en) 1989-08-03 1989-08-03 Hydrogen storage in cooled pressure vessels - using synthetic adsorbers produced by thermal treatment of ion exchange resins based on styrene-di:vinylbenzene copolymers

Publications (1)

Publication Number Publication Date
DE3925694A1 true DE3925694A1 (en) 1991-02-07

Family

ID=6386437

Family Applications (1)

Application Number Title Priority Date Filing Date
DE3925694A Withdrawn DE3925694A1 (en) 1989-08-03 1989-08-03 Hydrogen storage in cooled pressure vessels - using synthetic adsorbers produced by thermal treatment of ion exchange resins based on styrene-di:vinylbenzene copolymers

Country Status (1)

Country Link
DE (1) DE3925694A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0025919A1 (en) * 1979-09-04 1981-04-01 Rohm And Haas Company A process for preferentially removing more planar molecules from mixtures with less planar molecules
DE3234832A1 (en) * 1981-09-21 1983-03-31 MPD Technology Corp., 07481 Wyckoff, N.J. HYDROGEN STORAGE
EP0230384A2 (en) * 1986-01-17 1987-07-29 Syracuse University Method and apparatus for cold storage of hydrogen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0025919A1 (en) * 1979-09-04 1981-04-01 Rohm And Haas Company A process for preferentially removing more planar molecules from mixtures with less planar molecules
DE3234832A1 (en) * 1981-09-21 1983-03-31 MPD Technology Corp., 07481 Wyckoff, N.J. HYDROGEN STORAGE
EP0230384A2 (en) * 1986-01-17 1987-07-29 Syracuse University Method and apparatus for cold storage of hydrogen

Similar Documents

Publication Publication Date Title
DE3687256T2 (en) METHOD AND MEANS FOR GAS ADSORPTION.
DE2003749A1 (en) Hydrides with the formula ABnHm
DE1912532A1 (en) Process for removing traces of oxygen from gases containing oxygen
DE2309447C3 (en) Method for Separating and Concentrating Krypton 85
DE1567602A1 (en) Process for the production of hydrogen from gas mixtures
DE2855049A1 (en) METHOD AND DEVICE FOR THE REMOVAL OF OXYGEN AND WATER VAPOR FROM HYDROGEN GAS
DE2707097C3 (en) Use of a Ti-Zr-Cr-Mn alloy to store hydrogen
DE2749622A1 (en) METHOD OF STORAGE OF HYDROGEN
DE3925694A1 (en) Hydrogen storage in cooled pressure vessels - using synthetic adsorbers produced by thermal treatment of ion exchange resins based on styrene-di:vinylbenzene copolymers
DE872938C (en) Method and device for carrying out exothermic catalytic gas reactions
DE2531406B2 (en) USE OF MAGNESIUM ALLOYS FOR HYDROGEN ABSORPTION
DE1296723B (en) Process for the separation of water, propane and heavier hydrocarbons from a natural gas stream by means of adsorption
DE3017222A1 (en) METHOD FOR REMOVING GASEOUS COMPOUNDS FROM GAS BY EXTRACTION WITH A STATIONARY SOLVENT
DE597822C (en) Process for the preparation of the filling compound for cooker absorbers
DE2341854B2 (en) Catalyst and its use
DE102009040947A1 (en) Container and method for storing gas
DE924335C (en) Procedure for evacuating a vessel
DE2744191A1 (en) Zirconium alloys for storing hydrogen - suitable when using hydrogen for driving IC engines in motor cars
DE2923561A1 (en) Medium-pressure methane tanks for motor vehicles - contg. solid for adsorbing or forming adduct with methane
DE3306693A1 (en) CATALYST AND METHOD FOR THE PRODUCTION THEREOF
DE876885C (en) Process for the production of ethylene from fuel distillation, cracking, hydrogenation u. like gases
DE919734C (en) Process for removing sulfur compounds from combustible gases
DE547639C (en) Process for improving the absorption capacity of activated charcoal
DE4445656C1 (en) Storage of acetylene
DE535834C (en) Production of highly active gels

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8110 Request for examination paragraph 44
8139 Disposal/non-payment of the annual fee