DE3103499A1 - Wirkstoffhaltige gelmassen mit depotwirkung auf basis einer polyurethanmatrix und hoehermolekularen polyolen, sowie ein verfahren zu ihrer herstellung - Google Patents

Wirkstoffhaltige gelmassen mit depotwirkung auf basis einer polyurethanmatrix und hoehermolekularen polyolen, sowie ein verfahren zu ihrer herstellung

Info

Publication number
DE3103499A1
DE3103499A1 DE19813103499 DE3103499A DE3103499A1 DE 3103499 A1 DE3103499 A1 DE 3103499A1 DE 19813103499 DE19813103499 DE 19813103499 DE 3103499 A DE3103499 A DE 3103499A DE 3103499 A1 DE3103499 A1 DE 3103499A1
Authority
DE
Germany
Prior art keywords
active ingredients
weight
parts
molecular weight
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19813103499
Other languages
English (en)
Inventor
Dietmar Dr. 5000 Köln-Buchheim Schäpel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Priority to DE19813103499 priority Critical patent/DE3103499A1/de
Priority to AU79416/82A priority patent/AU558611B2/en
Priority to CA000394089A priority patent/CA1207486A/en
Priority to US06/342,035 priority patent/US4404296A/en
Priority to AT82100430T priority patent/ATE15216T1/de
Priority to EP82100430A priority patent/EP0057839B1/de
Priority to DE8282100430T priority patent/DE3265687D1/de
Priority to JP57013435A priority patent/JPS57155251A/ja
Priority to ES509248A priority patent/ES8302054A1/es
Publication of DE3103499A1 publication Critical patent/DE3103499A1/de
Priority to US06/502,850 priority patent/US4466936A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/042Gels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/70Fixation, conservation, or encapsulation of flavouring agents
    • A23L27/74Fixation, conservation, or encapsulation of flavouring agents with a synthetic polymer matrix or excipient, e.g. vinylic, acrylic polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/87Polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • A61L9/04Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating
    • A61L9/048Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating air treating gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0052Preparation of gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/003Colloidal solutions, e.g. gels; Thixotropic solutions or pastes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3726Polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/20Chemical, physico-chemical or functional or structural properties of the composition as a whole
    • A61K2800/30Characterized by the absence of a particular group of ingredients
    • A61K2800/31Anhydrous
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q15/00Anti-perspirants or body deodorants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/005Antimicrobial preparations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Epidemiology (AREA)
  • Wood Science & Technology (AREA)
  • Birds (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dentistry (AREA)
  • Toxicology (AREA)
  • Plant Pathology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Dermatology (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Anti-Oxidant Or Stabilizer Compositions (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Paper (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Detergent Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Cosmetics (AREA)

Description

  • Wirkstoffhaltige Geimassen mit Depotwirkung auf Basis
  • einer Polyurethanmatrix und höhermolekularen Polyolen, sowie ein Verfahren zu ihrer Herstellung Die Erfindung betrifft wirkstoffhaltige, wasserfreie Gelmassen mit Depotwirkung, bestehend aus einer Polyurethanmatrix und höhermolekularen Polyolen als Dispersionsmittel und Wirkstoffen, sowie ein Verfahren zur Herstellung der Gelmassen in Anwesenheit der Wirkstoffe. Als Wirkstoffe können Biozide, Pharmazeutika, etherische Öle, Duftstoffe, Farben, Reinigungsmittel, Alterungsschutzmittel, Gleit- und Antistatikmittel und andere eingesetzt werden.
  • Wirkstoffe enthaltende Gelmassen mit Depotwirkung, bei denen die Wirkstoffe über einen Zeitraum von Wochen bis Monaten an das umgebende Medium abgegeben werden, sind beispielsweise aus den US-Patentschriften 3 822 238 und 3 975 350 bekannt. Weiterhin ist es aus der DE-OS 25 21 265 bekannt, wasser- und/oder alkoholhaltige Polyurethan-Polyharnstoffgele in Gegenwart von Duftstoffen herzustellen. Hierbei werden Trägermaterialien auf Basis Wasser enthaltender Gele beschrieben, die die vielfältigsten Agentien enthalten können, z.B. Pharmazeutika, Biozide oder Duftstoffe.
  • Derartige Wassergele haben jedoch den Nachteil, daß viele Agentien, z.B. Biozide, durch die Anwesenheit des Wassers relativ schnell zersetzt werden können und somit die Zeit der Wirksamkeit dieser Gele, d.h. der Depoteffekt, stark verkürzt wird. Weiterhin ist bekannt, Wirkstoffe massiven und/oder geschäumten hochmolekularen Polyurethanen zu inkorporieren (CH-PS 289 915).
  • Derartige hochmolekulare Polyurethane haben jedoch den Nachteil, daß ein hoher Anteil der inkorporierten flüssigen Agentien in Folge des durchgängig hochmolekularen Aufbaus und/oder zu hohem Hartsegmentanteil im Polyurethan verbleibt und damit für die Depotwirkung verloren ist. Feste aktive Agentien können nur sehr begrenzt eingesetzt werden; nicht-flüchtige Festsubstanzen wandern nicht heraus und leichtflüchtige feste Agentien können nur für sehr kurze Zeit und in sehr geringer Menge herausdiffundieren.
  • Es wurde nun überraschend gefunden, daß man Gelmassen mit verbesserter Depotwirkung, qleichmäßiger Wirkstoffabgabe, hoher Wirkstoffkonzentration, guter Stabilität der Wirkstoff zusätze und guter Migrationsfähigkeit der Wirkstoffe erhält, wenn man Wirkstoffe in höhermolekularen Polyolen löst bzw. dispergiert und Di- und/oder Polyisocyanate, sowie Katalysatoren und gegebenenfalls übliche Zusatzstoffe zumischt, wobei die noch zu nennenden Voraussetzungen einzuhalten sind.
  • Die Vorteile der neuartigen Gelmassen liegen darin, daß in der nur teilweise vernetzten Polyurethanmatrix ein hoher Anteil an höhermolekularen Polyolen vorliegt, welcher die Migration und Abgabe der Wirkstoffe nach außen ermöglicht und steuert.
  • Die wirkstoffhaltigen Gele werden erhalten, indem man ein oder mehrere höherfunktionelle, höhermolekulare Polyole in Gegenwart der Wirkstoffe und gegebenenfalls in Gegenwart von Katalysatoren und üblichen Füll-und Zusatzstoffen für Polyurethane, mit einer solchen Menge an organischen Di- und/oder Polyisocyanaten umsetzt, daß eine Isocyanatkennzahl von etwa 15 bis 60 resultiert. Unter "Isocyanatkennzahl" soll im folgenden das Äquivalenzverhältnis (NCO/OH) x 100 verstanden werden.
  • Wie gefunden wurde, entstehen nur dann erfindungsgemäße, elastische und hinreichend dimensionsstabile Gele, die aus einer kovalent vernetzten Polyurethanmatrix und einem oder mehreren darin fest (d.h. ohne die Gefahr eines störenden Ausschwitzens) gebundenen Polyolen aufgebaut sind, wenn die miteinander reagierenden Isocyanat- bzw. Polyolkomponenten eine gewisse Mindestfunktionalität aufweisen und wenn die Polyole im wesentlichen frei von Anteilen mit einem Molekulargewicht unterhalb von 800, vorzugsweise unterhalb von 1000 sind.
  • Gegenstand der vorliegenden Erfindung sind somit wirkstoffhaltige Gele, bestehend aus (1) 15 - 62 Gew.-%, bevorzugt 20 - 57 Gew.-%, besonders bevorzugt 25 - 47 Gew.-%, bezogen auf die Summe aus (1) und (2) einer hochmolekularen Matrix und (2) 85 bis 38 Gew.-%, bevorzugt 80 - 43 Gew.-%, besonders bevorzugt 75 - 53 Gew.-%, bezogen auf die Summe aus (1) und (2), eines in der Matrix durch Nebenvalenzkräfte gebundenen flüssigen Dispersionsmittels, (3) Wirkstoffen, sowie gegebenenfalls (4) 0 bis 100 Gew.-%, bezogen auf die Summe aus (1) und (2) an Füll- und/oder Zusatzstoffen, welche dadurch gekennzeichnet sind, daß a) die hochmolekulare Matrix ein kovalent vernetztes Polyurethan ist, b) das flüssige Dispersionsmittel aus einer oder mehreren Polyhydroxylverbindungen mit einem Molekulargewicht zwischen 1000 und 12 000, vorzugsweise zwischen 1700 und 6000, und einer OH-Zahl zwischen 20 und 112, vorzugsweise zwischen 28 und 84, besonders bevorzugt zwischen 30 und 56 besteht, wo- bei das Dispersionsmittel im wesentlichen keine Hydroxylverbindungen mit einem Molekulargewicht unter 800, vorzugsweise unter 1000 enthält, und c) 0,1 - 50 Gew.-%, vorzugsweise 0,5 - 35 Gew.-%, besonders bevorzugt 0,75 - 25 Gew.-%, an Wirkstoff in der wirkstoffhaltigen Gelmasse enthalten sind.
  • Die erfindungsgemäßen Gele können, wie schon erwähnt, in überraschend einfacher Weise durch direkte Umsetzung von Polyisocyanaten mit den genannten höhermolekularen Polyhydroxylverbindungen in Gegenwart der Wirkstoffe in einem Isocyanatkennzahlbereich von ca. 15 bis 60, vorzugsweise 20 bis 45, besonders bevorzugt 25 bis 40, hergestellt werden, sofern die polyurethanbildenden Komponenten (Polyisocyanate und Polyhydroxylverbindungen) zusammen polyfunktionell sind, d.h.
  • sofern das Produkt aus Isocyanat-Funktionalität und (wie unten auf Seite 6 beschrieben zu berechnende) Polyol-Funktionalität größer als 4 ist, d.h. daß z.B.
  • eine oder mehrere, mehr als bifunktionelle Komponenten in die Polyurethanbildungsreaktion eingesetzt werden.
  • Andernfalls entstehen keine Gele aus kovalent vernetzter Polyurethanmatrix und nicht umgesetzten Polyolen, sondern die aus der Polyurethanchemie an sich bekannten, flüssigen OH-Präpolymere.
  • Im allgemeinen müssen die polyurethanbildenden Komponenten umso höherfunktionell sein, je niedriger die Isocyanatkennzahl liegt, wobei das eingesetzte Polyol primäre'und/oder sekundäre OH-Gruppen aufweisen kann.
  • Im Falle der Verwendung von Gemischen von Polyolen mit primären und sekundären OH-Gruppen ist zu beachten, daß die primären Hydroxylverbindungen bevorzugt mit der Isocyanatkomponente reagieren, so daß unter "Funktionalität der Polyolkomponente" dann-im wesentlichen die OH- Funktionalität des primären Polyols zu verstehen ist. Zur Berechnung der Isocyanatkennzahl soll im Sinne der vorliegenden Erfindung jedoch jeweils die Gesamtmenge der Polyolkomponente herangezogen werden.
  • Bei der Herstellung der Polyurethanmatrix soll das Produkt aus Isocyanat-Funktionalität und, wie oben beschrieben, zu berechnender Polyol-Funktionalität mindestens 5,2, vorzugsweise mindestens 6,2, insbesondere mindestens 8, besonders bevorzugt sogar mindestens 10, betragen.
  • Ein Funktionalitätsprodukt von 5,2 wird beispielsweise bei einem Kennzahlbereich von ca. 60 erreicht, wenn man eine Polyolkomponente mit der Funktionalität von 2,6 und ein Diisocyanat einsetzt.
  • Im Falle einer Isocyanatkennzahl von 50 und rein primärer und sekundärer Polyolkomponente sollte das Produkt der Funktionalitäten mindestens 6,2, vorzugsweise 8 be- tragen; im Falle einer Isocyanatkennzahl von 30 und rein primärer oder sekundärer Polyolkomponente, mindestens 9, vorzugsweise mindestens 10.. Näheres ist in dieser Hinsicht den Ausführungsbeispielen zu entnehmen.
  • Gegenstand der Erfindung ist somit auch ein Verfahren zur Herstellung von wirkstoffhaltigen, wasserfreien Gelmassen mit Depotwirkung auf der Basis von Polyurethangelen, welches dadurch gekennzeichnet ist, daß man a) ein oder mehrere Di- und/oder Polyisocyanate mit b) einer oder mehreren Polyhydroxylverbindungen mit einem Molekulargewicht zwischen 1000 und 12 000, vorzugsweise zwischen 1700 und 6000, und einer OH-Zahl zwischen 20 und 112, vorzugsweise zwischen 28 und 84, besonders bevorzugt zwischen 30 und 56, c) 0,1 bis 50 Gew.-%, bevorzugt 0,5 bis 35 Gew.-% und besonders bevorzugt 0,75 bis 25 Gew.-% an Wirkstoffen, bezogen auf die Summe a-e, gegebenenfalls d) Katalysatoren für die Reaktion zwischen Isocyanat-und Hydroxylgruppen, sowie gegebenenfalls e) aus der Polyurethanchemie an sich bekannten Füll-und Zusatzstoffen, mischt, wobei die Isocyanatkennzahl zwischen 15 und 60 liegt, das Produkt der Funktionalitäten der polyurethanbildenden Komponenten mindestens 5,2, vorzugsweise 6,2, insbesondere 8, besonders bevorzugt 10 beträgt und die Polyhydroxylverbindungen im wesentlichen frei sind an Hydroxylverbindungen mit einem Molekulargewicht unter 800, vorzugsweise unter 1000.
  • Die Konsistenz der erfindungsgemäßen Gele kann zwischen einem gelee- oder gallertartigen und einem mehr oder minder hochelastischen Zustand liegen. Dieser breite Bereich wird, wie in den Ausführungsbeispielen erläutert ist, bei Variation der Isocyanatkennzahl und der Funktionalität der Ausgangskomponenten überstrichen.
  • Es ist besonders überraschend, daß die erfindungsgemäßen Gele außerordentlich stabil sind. Auch nach längerer Lagerung tritt keine wesentliche Phasentrennung ein. Das Dispersionsmittel Polyol ist also sehr fest im Gel festgehalten. Durch geeignete Auswahl der Mischungspartner können Gele erhalten werden, bei denen eine Abgabe des Dispersionsmittels auch bei Temperaturen von 50 bis 1000C nicht erfolgt. Infolge der Unlöslichkeit in Dimethylformamid kann man davon ausgehen, daß die Polymerketten in den erfindungsgemäßen Gelen mindestens teilweise kovalent vernetzt sind, während der restliche Teil der Polymerketten bzw. der freien Polyole über Nebenvalenzkräfte oder mechanische Verschlaufungen gebunden sind. Es erscheint sehr überraschend, daß offenbar ein Großteil der Polyole auch nach der Reaktion mit Polyisocyanaten noch ohne Polyurethanbildung in der Polyurethanmatrix vorliegt, da er als solcher z.B. extrahiert werden kann.
  • Das bzw. die Polyole erfüllen, wie erläutert, neben ihrer Funktion als Aufbaukomponente für die Polyurethanmatrix zusätzlich noch die Rolle des Dispersionsmittels, das auch für die Löslichkeit, Migration und Abgabe der Wirkstoffe aus dem Gel eine wesentliche Rolle spielt.
  • Bei den erfindungsgemäß zu verwendenden höhermolekularen Polyolen handelt es sich vorzugsweise um die in der Polyurethanchemie an sich bekannten, bei Raumtemperatur oder wenig oberhalb flüssigen Polyhydroxypolyester, -polyether, -polythioether, -polyacetale, -polycarbonate oder -polyesteramide des oben angegebenen Molekulargewichtsbereichs, OH-Zahlbereichs und OH-Funktionalität.
  • Die in Frage kommenden Hydroxylgruppen aufweisenden Polyester sind z.B. Umsetzungsprodukte von mehrwertigen, vorzugsweise zweiwertigen und gegebenenfalls zusätzlich drei- und vierwertigen Alkoholen mit mehrwertigen, vorzugsweise zweiwertigen Carbonsäuren. Anstelle der freien Polycarbonsäuren können auch die entspre- chenden Polycarbonsäureanhydride oder entsprechende Polycarbonsäureester von niedrigen Alkoholen oder deren Gemische zur Herstellung der Polyester verwendet werden. Die Polycarbonsäuren können aliphatischer, cycloaliphatischer, aromatischer und/oder heterocyclischer Natur sein und gegebenenfalls, z.B. durch Halogenatome, substituiert und/oder ungesättigt sein.
  • Als Beispiele für solche Polycarbonsäuren und deren Derivate seien genannt: Adipinsäure, Sebacinsäure, Phthalsäure, Phthalsäureanhydrid, Tetrahydro- oder Hexahydrophthalsäureanhydrid, Isophthalsäure, Trimellitsäure, Maleinsäureanhydrid, di- und trimerisierte ungesättigte Fettsäuren, Terephthalsäuredimethylester und Terephthalsäure-bis-glykolester.
  • Als mehrwertige Alkohole kommen z.B. Ethylenglykol, Propylenglykol, Butandiol-1,4 und/oder -2,3, Hexandiol-1,6, Neopentylglykol, 1,4-Bis-hydroxymethylcyclohexan, 2-Methyl-1,3-propandiol, Glycerin, Trimethylolpropan, Hexantriol-1,2,6, Pentaerythrit, Chinit, Mannit, und Sorbit, Formit, Methylglykosit, ferner Di-, Tri-, Tetra- und höhere Poly-ethylen-, Poly-propylen-, sowie Poly-butylen-Glykole in Frage.
  • Die Polyester können anteilig endständige Carboxylgruppen aufweisen. Auch Polyester aus Lactonen, z.B. g -Caprolacton oder Hydroxycarbonsäuren, z.B. # -Hydr oxyc i-Hydroxycapronsäure sind einsetzbar.
  • Auch die erfindungsgemäß in Frage kommenden, mindestens 2, in der Regel 2 bis 8, vorzugsweise 2 bis 3, Hydroxylgruppen aufweisenden Polyether sind solche der an sich bekannten Art und werden z.B. durch Polymerisation von Epoxiden wie Ethylenoxid, Propylenoxid, Butylenoxid, Tetrahydrofuran, Styroloxid oder Epichlorhydrin mit sich selbst, z.B. in Gegenwart von Lewis-Katalysatoren, oder durch Anlagerung dieser Epoxide, vorzugsweise Ethylenoxid und Propylenoxid, gegebenenfalls im Gemisch oder nacheinander, an Startkomponenten mit reaktionsfähigen Wasserstoffatomen wie Wasser, Alkohole, Ammoniak oder Amine, z.B. Ethylenglykol, Propylenglykol, Diethylenglykol, Dimethylolpropan, Glycerin, Sorbit, Succrose, Formit oder Formose, sowie 4,4'-Dihydroxy-diphenylpropan, Anilin, Ethylendiamin oder Ethanolamin hergestellt.
  • Auch OH-Gruppen aufweisende Polythioether, Polybutadiene, Polyacetale, Polycarbonate oder Polyesteramide sind einsetzbare Ausgangsprodukte. Auch bereits Urethan- und/oder Harnstoffgruppen enthaltende Polyhydroxylverbindungen, sowie gegebenenfalls modifizierte natürliche Polyole' wie Ricinusöl, sind geeignet.
  • Erfindungsgemäß können gegebenenfalls auch Polyhydroxylverbindungen eingesetzt werden, in welchen hochmolekukulare Polyaddukte bzw. Polykondensate oder Polymerisate in feindisperser oder gelöster Form enthalten sind.
  • Derartige Polyhydroxylverbindungen werden z.B. erhalten, wenn man Polyadditionsreaktionen (z.B. Umsetzungen zwi- schen Polyisocyanaten und aminofunktionellen Verbindungen) bzw. Polykondensationsreaktionen (z.B. zwischen Formaldehyd und Phenolen und/oder Aminen) in situ in den obengenannten, Hydroxylgruppen aufweisenden Verbindungen ablaufen läßt.
  • Auch die Vinylpolymerisate modifizierte Polyhydroxylverbindungen, wie sie z.B. die Polymerisation von Styrol und/oder Acrylnitril in Gegenwart von Polyethern oder Polycarbonatpolyolen erhalten werden, sind für das erfindungsgemäße Verfahren geeignet.
  • Vertreter der genannten erfindungsgemäß zu verwendenden höhermolekularen Polyhydroxylverbindungen sind z.B. in High Polymers, Vol. XVI, "Polyurethanes, Chemistry and Technology", verfaßt von Saunders - Frisch, Interscience Publishers, New York, London, Band I, 1962, Seiten 32 42 und Seiten 44 - 54 und Band II, 1964, Seiten 5 - 6 und 198 - 199, ferner im Kunststoff-Handbuch Band VII, Vieweg-Höchtlen, Carl-Hanser-Verlag, München, 1966, z.B. auf den Seiten 45 bis 71, sowie in der DE-OS 29 20 501, Seite 17 bis Seite 24 aufgeführt. Selbstverständlich können Mischungen der obengenannten Verbindungen, z.B. Mischungen von Polyethern und Polyestern, eingesetzt werden.
  • Bevorzugt werden erfindungsgemäß die in der Polyurethanchemie an sich bekannten Polyhydroxy-polyether der genannten Art mit 2 bis 6, besonders bevorzugt mit etwa 2 bis 3 Hydroxylgr.uppen vom Molekül und einem statistisch oder segmentiert eingebauten Ethylenoxidgehalt von mindestens 10 Gew.-%, vorzugsweise mehr als 15, besonders bevorzugt mit mindestens 20 Gew.-%, als höhermolekulare Polyole eingesetzt. Ganz besonders bevorzugt werden Polypropylenetherpolyole mit mindestens 20 Gew.-% Ethylenoxid, bei denen mindestens 15 Gew.-% der OH-Endgruppen primäre Hydroxylgruppen sind.
  • Der Gehalt an Polyolen in der erfindungsgemäß zu verwendenden, gelbildenden Mischung beträgt etwa 80 - 99 Gew.-%, vorzugsweise etwa 85 bis 98 Gew.-%, bezogen auf das Gesamtgewicht der gelbildenden Mischung aus Polyurethanausgangskomponenten.
  • Bei den in den erfindungsgemäßen Gelen zu verwendenden organischen Di- und/oder Polyisocyanaten handelt es sich um die in der Polyurethan-Chemie an sich bekannten aliphatischen, cycloaliphatischen, araliphatischen, aromatischen und heterocyclischen Di- bzw. Polyisocyanate' wie sie z.B. von W. Siefken in Justus Liebigs Annalen der Chemie, 562, Seiten 75 bis 136 beschrieben werden, wobei die Diisocyanate als Monomere oder in modifizierter Art, z.B. biuretisiert, allophanatisiert, carbodiimidisiert, trimerisiert oder polyolmodifiziert, Verwendung finden können.
  • Beispielhaft seien genannt: 1,6-Hexamethylendiisocyanat, 1,12-Dodecandiisocyanat, ferner Cyclobutan-1t3- diisocyanat, Cyclohexan-1,3- und -1,4-diisocyanat, sowie beliebige Gemische dieser Stellungs- und/oder Stereoisomeren, 1-Isocyanato-3,3,5-tri-methyl-5-isocyanatomethyl-cyclohexan, 2,4- und/oder 2,6-Hexahydrotoluylendiisocyanat, Hexahydro-1,3- und/oder -1,4-phenylen-diisocyanat, Perhydro-2,4'- und/oder -4,4'-diphenylmethan-diisocyanat, sowie beliebige Gemische dieser Stellungs- und/oder Stereoisomeren, ferner 1,3-und 1,4-Phenylendiisocyanat, 2,4- und 2,6-Toluylendiisocyanat, Diphenylmethan-2,4'- und/oder -4,4'-diisocyanat, sowie beliebige Gemische ihrer Isomeren, und Naphthylen-1,5-diisocyanat.
  • Ferner kommen beispielsweise in Frage: Triphenylmethan-4,4' ,4"-triisocyanat, Polyphenyl-polymethylenpolyisocyanate, wie sie durch Anilin-Formaldehyd-Kondensation und anschließende Phosgenierung erhalten werden, m-und p-Isocyanatophenylsulfonyl-isocyanate, perchlorierte Arylpolyisocyanate, Carbodiimidgruppen aufweisende Polysocyanate, Norbornandiisocyanate, Allophanatgruppen aufweisende Polyisocyanate, Isocyanuratgruppen aufweisende Polyisocyanate, Urethangruppen aufweisende Polyisocyanate, acylierte Harnstoffgruppen aufweisende Polyisocyanate, Biuretgruppen aufweisende Polyisocyanate, durch Telomerisationsreaktionen hergestellte Polyisocyanate, Estergruppen aufweisende Polyisocyanate, Umsetzungsprodukte der o.g. Isocyanate mit Acetalen und polymere Fettsäureester enthaltende Polyisocyanate in Betracht. Diese für die Umsetzung geeigneten Polyisocyanate werden eingehend in der DE-OS 29 20 501, Seite 13, Zeilen 13 bis Seite 16, Zeile 2 beschrieben. Bevorzugte aromatische Di- und Triisocyanate sind 2,4- und/oder 2,6-Toluylendiisocyanate und 4,4'- und/oder 2,4'-Diphenylmethandiisocyanat und ihre modifizierten Typen, sowie ihre mit tri- und tetrafunktionellen Polyolen hergestellten mehrfunktionellen Derivate oder Trimerisierungsprodukte. Bevorzugte Polyisocyanate sind z.B. 1,6-Hexamethylendiisocyanat, Isophorondiisocyanat, Methylcyclohexan-2,4- und/oder -2,6-diisocyanat, Dicyclohexylmethan-2,4'- und/oder -4,4'-diisocyanate und ihre biuretisierten oder trimerisierten polyfunktionellen Derivate.
  • Alle obengenannten Di- und/oder Polyisocyanate können auch in beliebigen Gemischen eingesetzt werden.
  • Der Gehalt an Di- und/oder Polyisocyanaten in den gelbildenden Mischungen aus Polyolen und Polyisocyanaten beträgt ca. 1 bis 20 Gew.-%, vorzugsweise 2 bis 15 Gew.-%, bezogen auf das Gesamtgewicht der Mischung.
  • Bei den zur Gelbildung zu verwendenden Katalysatoren für die Reaktion zwischen Hydroxyl- und Isocyanatgruppen handelt es sich vorzugsweise um solche der in der Polyurethanchemie an sich bekannten Art, z.B.
  • tertiäre Amine, wie Triethylamin, n-Tetramethylethylendiamin, 1,4-Diaza-bicyclo-(2,2,2)-octan, N,N-Dimethylbenzylamin, N-Methyl-N' -dimethylaminoethylpiperazin, Pentamethyldiethylentriamin, oder auch als Katalysatoren bekannte Mannichbasen aus sekundären Aminen, wie Dimethylamin und Aldehyden (Formaldehyd) oder Ketonen (Aceton) und Phenolen in Frage, ferner Silaamine mit Kohlenstoff-Silicium-Bindungen, z.B. 2,2,4-Trimethyl-2-silamorpholin und 1,3-Diethylamino-methyl-tetramethyl-disiloxan. Erfindungsgemäß kommen auch organische Metallverbindungen, insbesondere organische Zinnverbindungen, als Katalysatoren verwendet werden, z.B. Zinn-(II)-acetat, Zinn- (11-)-ethylhexoat und die Zinn-(IV)-Verbindungen, z.B.
  • Dibutylzinndichlorid, Dibutylzinndilaurat, Dibutylzinnmaleat in Betracht. Weitere geeignete Katalysatoren sind in der DE-OS 29 20 501 auf den Seiten 29, Zeile 5 bis Seite 31, Zeile 25 beschrieben.
  • Die Katalysatoren werden vorzugsweise in einer Menge zwischen 0,05 und 10 Gew.-%, bezogen auf das Gesamtgewicht des Gels, eingesetzt. Selbstverständlich können alle Katalysatoren als Gemische eingesetzt werden.
  • Als Wirkstoffe können erfindungsgemäß beispielsweise folgende Substanzgruppen bzw. Substanzen eingesetzt werden: 1. Biozide, wie z.B. Bakterizide, Fungizide, Algizide, Herbizide, Viruszide, Larvizide, Nematizide, Ektoparasitizide wie Tickizide oder Insektizide.
  • 2. Pharmazeutika und/oder hautpflegende und -schützende Mittel, wie z.B. Antimykotika, Antiallergika, Antirheumatika, Antiseptika, Lokalanästhetika, durchblutungsfördernde Mittel, Venenmittel, Wundbehandlungsmittel, Juckreiz-stillende Mittel und Dermatika; weiterhin Feuchtigkeit enthaltende Agentien, W-Strahlen absorbierende Substanzen, Bakteriostatika, Kosmetika sowie desodorisierende Substanzen wie Halogenphenole oder Salicylsäurederivate oder desinfizierende Substanzen.
  • 3. Naturwirkstoffe, wie etherische Öle, z.B. Eukalyptusöl, Mentholöle, Lockstoffe (Pheromone), Vitamine oder Enzyme.
  • 4. Duftstoffe natürlicher oder synthetischer Art, worunter etherische Öle, Parfums oder Riechstoffe aus bekannten duftenden Einzelkomponenten oder Kompositionen zu verstehen sind, z.B. Anisöl, Bergamotteöl, Kampferöl, Nelkenöl, Lemongrasöl, Lavendelöl, Pfefferminzöl, Rosenöl oder Zimtöl; weitere geeignete Komponenten sind in der DE-OS 25 21 265 angeführt.
  • 5. Stempel- und Blockfarben, bzw. Tinte und Malstifte auslöschende Substanzen.
  • 6. Reinigungs- und Pflegemittel für Leder und Kunststoffe, z.B. gegebenenfalls gefärbte Wachse, Fleckentfernungsmittel.
  • 7. Alterungsschutzmittel, z.B. Antioxidantien wie Dodecylgallat oder tert.-Butyl-substituierte Phenole, UV-Absorber, Lichtschutzmittel, Antistatika wie ethoxylierte Alkylphenole und Konservierungstoffe.
  • 8. Pflanzennährstoffe wie anorganische Salzgemische, ferner Frischhaltemittel für Blumen und Wachstumsregulatoren.
  • 9. Antifoulingmittel und Holzschutzmittel: z.B. Pulver von Kupfer-, Quecksilber- oder- Zinn-Verbindungen, sowie Pentachlorphenole nd Dinitrophenole.
  • 10. Detergentien und Waschhilfsmittel, wie Alkylarylsulfonate, Fettalkoholsulfate, Fettalkohol-Ethylenoxid-Addukte, Weichspülmittel, Formspülmittel, Schaumdämpfer und Aufheller.
  • 11. Fotohärtbare Gemische.
  • Der Gehalt an Wirkstoffen in den erfindungsgemäßen Gelmassen beträgt 0,1 bis 50 Gew.-%, vorzugsweise 0,5 bis 35 Gew.-% und besonders 0,75 bis 25 Gew.-%, bezogen auf das Gesamtgewicht der Gelmasse (Komponenten 1-4). Es kann jedoch bei sehr aktiven Zusatzstoffen, z.B. Pheromonen, auch niedriger (z.B.<),01 t) sein.
  • Eine mögliche Begrenzung der Art der einzusetzenden Wirkstoffe ergibt sich bei solchen Wirkstoffen, welche so reaktive chemische Gruppen enthalten, daß sie unter den Bedingungen der gelbildenden Polyurethanreaktion weitgehend oder vollständig fixiert werden und bleiben und die Wirkstoffe nicht mehr zu entweichen in der Lage sind.
  • Als in den erfindungsgemäßen Gelen gegebenenfalls zusätzlich enthaltene Füll- und Zusatzstoffe sind die in der Polyurethanchemie an sich bekannten Stoffe zu verstehen, wie z.B. Füllstoffe, Pigmente und Kurzfasern auf anorganischer und organischer Basis, Metallpulver, färbende Agentien wie Farbstoffe und Farbpigmente, wasserbindende Mittel, oberflächenaktive Substanzen wie Silikone, ferner Flammschutzmittel oder flüssige Streckmittel mit einem Siedepunkt über 1500C. Als organische Füllstoffe seien beispielsweise Schwerspalt, Kreide, Gips, Soda, Titandioxid, Zeolithe, Quarzsand, Kaolin, Ruß und Mikroglaskugeln genannt.
  • Von den organischen Füllstoffen können z.B. Pulver auf Basis von Polystyrol, Polyvinylchlorid, Harnstoff-Formaldehyd und Polyhydrazodicarbonamid eingesetzt werden. Als Kurzfasern kommen z.B. Glasfasern von 0,01 bis 1 mm Länge oder Fasern organischer Herkunft, z.B. Polyester-, Polyamid-, Aramid- oder Kohlenstoff-Fasern in Frage. Metallpulver, wie z.B.
  • Eisen- oder Kupferpulver, können ebenfalls mitverwendet werden. Zur Einfärbung der Gele können nichtmigrierende Farbstoffe und Farbpigmente auf organischer oder anorganischer Basis verwendet werden.
  • Als oberflächenaktive Substanzen seien z.B. Zellulosepulver, Aktivkohle und Kieselsäurepräparate genannt. Als Flammschutzmittel können z.B. Natriumpolymethaphosphate zugesetzt werden. Als flüssige Streckmittel bzw. Weichmacher können die üblichen Verbindungen mitverwendet werden, z.B. Alkyl-, Alkoxy-oder Halogen-substituierte aromatische Verbindungen, wie Dodecylbenzol, ortho-Dichlorbenzol, chloriertes Paraffin oder Dodecylsulfonsäureester. Weiterhin können als flüssige Streckmittel auch höhermolekulare Polyole eingesetzt werden, deren Hydroxylgruppen verethert, verestert oder urethanisiert sind. Der Gehalt an diesen Streck- und Füllstoffen beträgt bis zu 50 %, vorzugsweise unter 25 %, bezogen auf die Summe aus 1 + 2.
  • Für die Formulierungen der dem jeweiligen Anwendungszweck angepaBten erfindungsgemäßen Gelmassen können weiterhin die unterschiedlichsten Hilfsmittel mit verwendet werden. Sollen z.B. Pharmazeutika den erfindungsemäßen Gelen inkorporiert werden, so können Resorptionshilfsmittel wie Phosphorlipide, Löslichkeitsverbesserer wie Polyethylenglykole oder Polypropylenglykole, Emulgatoren wie Glycerinfettsäureester, Spreitmittel wie Silikonöle, Fettsäureester oder Triglyceride, sowie hautpflegende Substanzen wie 2-Octyl-dodecanol bei der Gelbildung mit zugesetzt werden.
  • Bei Biocid-haltigen Formulierungen, die feste Wirkstoffe enthalten sollen, ist es vorteilhaft, gegebenenfalls Spreitmittel und insbesondere Weichmacher, wie Dibutylphthalat, bei der Gelbildung zuzusetzen.
  • Als Spreitmittel kommen folgende Substanzen in Betracht: Silikonöle verschiedener Viskosität, Fettsäureester wie Laurinsäurehexylester, Dipropylenglykolpelargonat, Ester verzweigter Fettsäuren mittlerer Kettenlänge mit gesättigten C16-C18-Fettalkoholen' wie Isopropylmyristat, Isopropylpalmitat, Capryl-/Caprinsäureester von gesättigten Fettalkoholen der Kettenlänge C12 bis C18' Isopropylstearat, ÖIsäuredecylester, wachsartige Fettsäureester wie Adipinsäurediisopropylester Triglyceride, wie Capryl-/Caprinsäuretrig-lycerid, Triglyceridgemische mit Pflanzenfettsäuren der Kettenlänge C8 bis C2 oder anderen speziell ausgewählten natürlichen Fettsäuren, Partialglyceridgemische oder Monoglyceride, ferner Fettalkohole, wie Isotridecyl-Alkohol, 2-Octyl-dodecanol oder Oleylalkohol, oder Fettsäuren wie Ölsäure oder Stearinsäure. Besonders gut spreitende Öle sind Isopropylmyristat, Isopropylstearat, Isopropylpalmitat, Laurinsäurehexylester, Ölsäuredecylester, Dibutylstearat, Dibutylsebacat, Paraffinöl, Ethylhexyl-palmitat/-stearat, bzw. Iso-tridecyl-stearat.
  • Die Herstellung der erfindungsgemäßen, wirkstoffhaltigen Gelmassen kann kontinuierlich oder diskontinuierlich vorgenommen werden. Die Arbeitsweise hängt u.a. von der Form ab, die man den erfindungsgemäßen Gelen im Hinblick auf ihre Anwendung geben möchte.
  • Man kann nach dem One-shot- oder dem Prepolymer-Verfahren arbeiten. Beim One-shot-Verfahren werden alle Komponenten, d.h. Polyole, Di- und/oder Polyisocyanate, Wirkstoffe, Katalysatoren und gegebenen- falls Füll- und Zusatzstoffe auf einmal zusammengegeben und intensiv miteinander vermischt, wobei die Wirkstoffe vorzugsweise in den Polyolkomponenten gelöst oder dispergiert werden.
  • Beim Prepolymerverfahren sind zwei Arbeitsweisen möglich. Entweder stellt man zunächst ein Isocyanat-Prepolymer her, indem man einen entsprechenden Anteil der Polyolmenge (+ Wirkstoff) der gesamten, für die Gelbildung vorgesehenen Isocyanatmenge umsetzt, und fügt dann dem erhaltenen Prepolymer die restliche Menge an Polyol (gegebenenfalls weitere Wirkstoffe), sowie gegebenenfalls weitere Füll- und Zusatzstoffe zu und mischt intensiv, oder man setzt die gesamte, für die Gelbildung vorgesehene Menge an Polyol (+ Wirkstoff) mit einem Teil der Polyisocyanatmenge zu einem OH-Prepolymer um und mischt anschließend die restliche Menge an Polyisocyanat zu.
  • Eine erfindungsgemäß besonders vorteilhafte Arbeitsweise ist eine Variante aus dem One-shot-Verfahren und dem OH-Prepolymer-Verfahren. Hierbei werden das Polyol bzw. Polyolgemisch, die Wirkstoffe, gegebenenfalls die Füll- und Zusatzstoffe, der Katalysator und zwei verschiedene Diisocyanate in einem SchuB zusammengegeben und intensiv vermischt, wobei ein Di- oder Polyisocyanat aromatischer und ein Di- und/oder Polyisocyanat aliphatischer Natur ist. Man kann davon ausgehen, daß durch die stark unterschiedliche Reaktivität der beiden Polyisocyanate zunächst ein Hydroxyl-Prepolymer entsteht, das sodann innerhalb von Minuten mit dem anderen Polyisocyanat unter Gelbildung reagiert. Es werden hierdurch Gele mit besonders hoher Zähigkeit erhalten.
  • Bei diesen Verfahrensweisen kann die Förderung, Dosierung und Mischung der Einzelkomponenten oder Komponentengemische mit den für den Fachmann in der Polyurethan-Chemie an sich bekannten Vorrichtungen erfolgen.
  • Für den Fachmann besonders überraschend ist es, daß auch bei relativ niedrigen Isocyanatkennzahlen (z.B.
  • 30) und einer Polyolkomponente mit einheitlich reaktiven OH-Gruppen (so daß keine selektive Reaktion eines Teils der Polyolkomponente mit dem Polyisocyanat zu erwarten ist) Gele mit einer hochmolekularen, vernetzten, in Dimethylformamid unlöslichen Matrix und nicht bloß durch Urethangruppen modifizierte flüssige Polyole (OH-Prepolymere) erhalten werden.
  • Es ist dabei zur Erzielung einer guten Matrixstruktur vorteilhaft, die Umsetzung zwischen den Polyolen und den Polyisocyanaten bei relativ niedrigen Temperaturen, z.B. unter 50°C, vorzugsweise bei Raumtemperatur,durchzuführen.
  • Will man für die Anwendung z.B. Formteile herstellen, so ist die diskontinuierliche Arbeitsweise anzuraten.
  • Soll das erfindungsgemäße Polyurethangel jedoch in Stücken geeigneter Abmessungen hergestellt werden, dann ist eine kontinuierliche Verfahrensweise oft günstiger. In diesem Fall produziert man zunächst eine endlose Folie oder Platte, die man anschließend in einzelne Stücke zerteilen kann.
  • Bei der kontinuierlichen Herstellung kann das Wirkstoff enthaltende gelfähige Gemisch auch, bevor es durch die Gelbildung erstarrt, gesprüht, gegossen oder gerakelt werden. Hierbei kann das gelfähige, wirkstoffhaltige Gemisch auf die verschiedenartigsten Materialien auf Basis von natürlichen oder synthetischen Rohstoffen aufgebracht werden, z.B. auf Matten, Vliese, Gewirke, Gestricke, Schaumfolien, Kunststoff-Folien bzw. -platten, oder in gewünschte Formen eingegossen werden.
  • Die Bedingungen während der Gelbildung lassen sich auch in der Weise variieren, daß man entweder kompakte oder geschäumte Gele erhält. Wird z.B. Luft in das gelfähige Gemisch eingeschlagen, so erhält man Schaumgele.
  • Die Anwendung der erfindungsgemäßen, wirkstoffhaltigen Gelmassen kann in den verschiedensten Formen, wie z.B. als Granulat, Folie, Platte, Block, Stab oder Formteil, erfolgen. Die Wahl hängt vom jeweiligen Anwendungszweck und der gewünschten Abgabekonzentration der Wirkstoffe ab. Hierbei können die Wirkstoffe über Wochen und Monate aus den erfindungsgemäßen Gelen herausdiffundieren und in Abhängigkeit von ihrer Flüchtigkeit an die Gasphase und/oder bei Kontakt der erfindungsgemäßen Gelmassen mit festen oder flüssigen Materialien bzw. Substanzen (z.B. die Tierhaut oder Wasser) an die kontaktierten Materialien abgegeben werden.
  • Die erfindungsgemäßen wirkstoffhaltigen Gele eignen sich zur längerfristigen Abgabe der inkorporierten Wirkstoffe zu den unterschiedlichsten Anwendungszwecken, wie z.B. als dermatologische Substanzen enthaltende Pflaster zur Befestigung auf der Haut, als insektizidhaltige Bänder und Platten zur Bekämpfung von Fliegen und Ungeziefer, z.B. zur Beseitigung von Zecken und Flöhen an Tieren, als duftstoffhaltige Platten und Formteile zur Beduftung von Räumen, als desodorisierende Masse zur Übertragung auf die Haut, als Druck- oder Stempelplatten geringer Trocknungstendenz, als Schuhputzmittel zum Auftragen von Farbe und Wachsen, als insektizidhaltiger Baumring gegen Insekteneinwirkung, als Gleitmittel mit Antistatikwirkung und anderes mehr.
  • Ein wesentlicher Vorteil der erfindungsgemäßen wirkstoffhaltigen Gele gegenüber den wasserhaltigen Wirkstoffgelen ist eine höhere Stabilität von hydrolyseanfälligen aktiven Reagentien, wie z.B. Insektiziden, Pflanzenschutzmitteln, Duftstoffen oder Pharmazeutika während der Lagerung und des Wirkungszeitraumes der Gele.
  • Ein weiterer wesentlicher Vorteil der neuen Gelmassen ist, daß auch inkorporierte feste bzw. schwerflüchtige Wirkstoffe herauswandern und damit über einen längeren Zeitraum wirksam sein können, wenn sie eine gewisse Löslichkeit in den Polyolen als Dispergiermittel aufweisen. In dieser Hinsicht stellen die erfindungsgemäßen Gele eine wertvolle Verbesserung gegenüber solchen massiven und geschäumten Polyurethanen dar, bei deren Herstellung die reaktiven Komponenten in Mengen, die einer Isocyanatkennzahl von 70 bis 200 entsprechen, eingesetzt werden, und bei welchen keine wesentlichen Mengen an freien Polyolen den erfindungsgemäßen Effekt bewirken können, sondern im Gegenteil die hohe Vernetzungsdichte das Auswan(lern von festen Wirkstoffen behindert.
  • Versuchsteil Die folgenden Beispiele er.läutern die vorliegende Erfindung. Mengenangaben sind als Gewichtsprozente bzw.
  • Gewichtsteile zu verstehen, sofern nichts anderes angegeben ist.
  • In den Beispielen wurden die folgenden Polyisocyanate bzw. Polyole eingesetzt: Polyisocyanat 1: 1,6-Hexamethylendiisocyanat Polyisocyanat 2: Handelsübliches biuretisiertes 1,6-Hexamethylendiisocyanat mit einer mittleren NCO-Funktionalität von 3,6, einem NCO-Gehalt von 21 % und einem mittleren Molekulargewicht (Zahlenmittel) von ca. 700 (Desmodur N der Bayer AG).
  • Polyisocyanat 3: Isomerengemisch aus 80 % 2,4- und 20 % 2,6-Toluylendiisocyanat.
  • Polyisocyanat 4: Durch Präpolymerisierung mit Tripropylenglykol verflüssigtes 4,4'-Diisocyanato-diphenylmethan; mittlere NCO-Funktionalität 2,05, NCO-Gehalt 23%.
  • Polyisocyanat 5: Präpolymer aus 159 Teilen Polyisocyanat 3 und 1200 Teilen eines Polyethers der OH-Zahl 28, hergestellt durch Anlagerung von 60 Teilen Ethylenoxid und 40 Teilen Propylenoxid an Glycerin.
  • Die in den Beispielen verwendeten Polyether-Polyole -sind in der nachfolgenden Tabelle zusammengestellt. TMP steht in der Tabelle für Trimethylolpropan; PG für 1,2-Propylenglykol; Gly für Glycerin und PE für Pentaerythrit.
  • Polyol Nr. Propylencxid Ethylenoxid Starter- OH- OH-molekül Zahl Funktionalität 1 80 20 TMP 36 3 2 100 - PG 56 2 3 45 55 TMP 56 3 4 100 - TMP 56 3 5 90 10 TMP 56 3 6 85 15 TMP 56 3 7 83 17 TMP 34 3 8 100 - Sorbit 46 6 9 40 60 Gly 28 3 10 100 - TMP/PG 46 2,75 (84:16) 11 100 - PE 45 4 12 50 50 PG 56 2 13 80 20 PG 28 2 14 82 18 TMP 35 3 15 63 37 Sorbit 30 6 Polyol 16 ist ein teilverzweigter Polyester aus Adipinsäure, Diethylenglykol und TMP. Mittleres Molekulargewicht: ca. 2000; mittlere OH-Funktionalität: 2,3.
  • Beispiel 1 80 Teile des Polyethers (1), 15 Teile Methylbutyrat als Duftstoff, 1,2 Teile Dibutylzinndilaurat und 4 Teile Polyisocyanat (2) werden innerhalb 1 Minute intensiv vermischt. Nach 15 Minuten bildet sich ein elastisches Gel. In Form eines Formkörpers wie z.B. eines Kegels, einer Platte oder einer Rosennachbildung, kann dieses Gel zur längerfristigen Beduftung von Schränken, Räumen, Automobilen oder Müllbehältern verwendet werden.
  • Beispiel 2 10 Teile Polyether 1, 40 Teile Polyether 2 und 8 Teile eines Parfumöls (aus 60 Gew.-% Isobornylacetat und 40 Gew.-% des Anlagerungsproduktes von 10 Mol Ethylenoxid an 1 Mol Nonylphenol, 50 Teile Polyether (3) und 0,15 Teile K-Sorbinat, 1,5 Teile Dibutylzinndilaurat und 6 Teile Polyisocyanat (2) werden innerhalb 1 Minute intensiv vermischt. Nach 15 Minuten bildet sich ein klares, elastisches Gel, dessen Oberfläche klebfrei ist und das als Duftstoff spender zur Luftverbesserung in Räumen benutzt werden kann. Das Duftstoffgel behält seine Struktur und Wirksamkeit über Monate bei.
  • Beispiel 3 Analog zu Beispiel 2 wird ein Gel hergestellt aus 10 Teilen Polyether 4, 50 Teilen Polyether 5, der 4 Teile des Parfumöls von Beispiel 2 enthält, 40 Teilen Polyether (6), der 0,18 Teile Natriumbenzoat als Bakterizid enthält, 1,5 Teilen Dibutylzinndilaurat, und 6 Teile Polyisocyanat (2).
  • Beispiel 4 100 Teile Polyether (3), 5 Teile Triethylenglykoldimethylether, 8 Teile Duftöl 83/117 (Duftrichtung Zitrone; Produkt der Fa. Colgate Palmolive Peet Inc., USA), 2,5 Teile Dibutylzinndilaurat und 8 Teile Polyisocyanat (2) werden intensiv vermischt und in eine offene Form bis zu einer Höhe von 3 mm gegossen. Man erhält eine 3 mm starke Gelfolie, die in 1,5x10 cm große Streifen zerschnitten wird. Ein derartiger Streifen kann am Innenteil des Deckels einer Verpackung befestigt werden, die 4 bis 5 kg Waschmittelpulver enthält. Auf diese Weise erzielt man eine Beduftung des Waschmittels, ohne das die Gefahr einer Zerstörung des Duftstoffes durch die Bestandteile des Waschmittels (Oxydationsmittel) besteht.
  • Beispiel 5 3500 Teile Polyether (3), der 350 Teile Pentachlorphenol enthält, 700 Teile Polyether 7, der 14 Teile K-Sorbinat enthält, 2800 Teile Polyether 2, dem 50 Teile eines hochmolekularen Polyethylenoxids zugemischt sind, und 35 Teile Dibutyl-zinn-dilaurat werden in einem Rührkessel bei 22"C homogen gemischt.
  • Die Mischung wird mittels einer Zahnradpumpe einem statischen Mischer zugeführt. Aus einem getrennten Vorratsbehälter werden diesem Mischer mittels einer weiteren Zahnradpumpe gleichzeitig4 73 Teile Polyisocyanat (2) so zugeführt, daß zu jeder Zeit das Mischungsverhältnis der Komponenten gleich ist und dem Verhältnis der Gesamtmengen entspricht. Die aus dem statischen Mischer ausfließende weißlich-trübe Lösung wird in eine quadratische Umhüllung gegossen. Nachdem die Gelbildungsreaktion abgeschlossen ist, wird ein weiches, formbeständiges, unter Druck deformierbares Gel erhalten, das als desodorisierender Gelstift zur Verhinderung von SchweiSgeruch durch bakterielle Zersetzung benutzt werden kann.
  • Beispiel 6 75 Teile Polyether (1), 20 Teile o,o-Dimethyl-o-(2,2-dichlorvinyl)-phosphorsäureester (DDVP, Insektizid), 1,2 Teile Dibutyl-zinn-dilaurat und 3,8 Teile Polyisocyanat 2 werden innerhalb von 1 Minute intensiv vermischt. Nach ca. 10 Minuten bildet sich ein elastisches Gel, das in Form eines Streifens, der in einen perforierten Kunststoffbehälter gesteckt ist, als insektizides Gel zur längerfristigen Begasung der Atmosphäre, z.B. zur Bekämpfung von Ungeziefer oder von Kakerlaken in Küchen, benutzt werden kann.
  • Beispiel 7 1000 Teile Polyether 8, der 100 Teile des Insektizids DDVP (s. Beispiel 6) enthält, 45 Teile Polyisocyanat (3) und 30 Teile Dibutylzinndilaurat werden mit Hilfe eines Laborrührers mit einer Rührscheibe bei Raumtemperatur innerhalb von 1 Minute intensiv vermischt. Man erhält ein weiches, elastisches, formstabiles Gel, das sich unter dem Einfluß einer darauf wirkenden Kraft leicht deformieren läßt.
  • Beispiel 8 100 Teile Polyether 9, 4,0 Teile Hexachlorophen und 0,48 Teile p-Hydroxybenzoesäure-ethylester enthaltend, werden mit 5,0 Teilen Polyisocyanat 4 und 2,8 Teilen Dibutyl-zinn-dilaurat zu einem weichen, elastischen, formstabilen Gel umgesetzt. Das Gel eignet sich zum Bestreichen von Haut zur Verhinderung von bakteriellen Schweiß zersetzungen.
  • Beispiel 9 100 Teile Polyether (1) mit einer Temperatur von 70au, 30 Teile 2-Isopropoxyphenyl-N-methyl-carbamat (ein Insektizid), 60 Teile Isopropylmyristat, 5 Teile PermethrinsäureFentafluorbenzylester (ein Insektizid), 2 Teile Dibutyl-zinn-dilaurat, 0,3 Teile Eisenoxid-Pigment und 5,5 Teile Polyisocyanat (2) werden intensiv vermischt. Das Reaktionsgemisch wird in eine offene Form, die mit Synthetikleder ausgelegt ist, bis zu einer Schichtdicke von 5 mm gegossen. Nach der Erhärtung zum Gel werden 15 mm breite Streifen geschnitten, die aus einer Lederdekorschicht und einer wirkstoffhaltigen Gelschicht bestehen. Diese Streifen werden mit einer Schnalle versehen und lassen sich dann als Halsbänder gegen Flöhe und Zecken bei Haustieren wie Katzen oder Hunden verwenden.
  • Beispiel 10 Analog zu Beispiel 1 werden unter Variation der OH-bzw. NCO-Funktionalität der Ausgangskomponenten Gele hergestellt, wobei die Isocyanat-Kennzahl jeweils 50 betrug. Die Eigenschaften der so erhaltenen Gele sind in der nachfolgenden Tabelle zusammengestellt; "flüssig" bedeutet, daß infolge zu niedriger Funktionalität noch keine Gelstruktur ausgebildet wurde (nicht erfindungsgemäß). Als Isocyanatkomponente werden Polyisocyanat (1), Polyisocyanat (2) bzw. Gemische daraus mit der angegebenen mittleren NCO-Funktionalität verwendet; die Polyolkomponenten bestanden aus den Polyolen 10 bzw. 11 bzw. 1:1-Gemischen von 2 und 10 bzw.
  • Lv 10 und 11, im Polyol werden jeweils 5 Gew.-8 Xatendelöl als Duftstoff eingesetzt.
    Funktionalität; 2 2,3 2,75 3,75 4
    NCO OH #
    #
    2 flüssig sehr weich *
    2,1 # sehr weich * weich **
    2,2 flüssig weich ** hart **
    2,3 sehr weich * weich **
    2,4 # sehr weich *
    2,6 flüssig weich **
    2,8 sehr weich *
    3,1 # weich **
    3,6 flüssig hart **
    *) erfindungsgemäß **) erfindungsgemäß bevorzugt Es werden Duftträgergale erhalten.
  • Beispiel 11 Analog zu Beispiel 10 wurde die Abhängigkeit der Gelkonsistenz von der Funktionalität für die Isocyanat-Kennzahl 30 untersucht. Als Hydroxylkomponenten wurden die Polyole 10, 11, 8 bzw. ein 1:1-Gemisch aus 11 und 8 verwendet, wobei die Polyole jeweils 4 Gew.-% Lavendelöl enthalten.
    Funktionalität: 2,75 4 4,8 6
    NCO / OH ~b
    I
    2 , t\ , \ t flüssig
    2,1 | sehr weich
    **
    2,15 flüssig weich
    * **
    2,2 sehr weich weich-hart
    * **
    2,3 1 sehr weich hart
    ** **
    2,4 flüssig weich hart
    * ** *
    2,8 flüssig sehr weich weich hart
    * **
    3,6 sehr weich weich
    erfindungsgemaß erfindungsgemäß bevorzugt Es werden.Duftträgergele erhalten, welche eine langdauernde Riechstoffabgabe zeigen.
  • Beispiel 12 In Analogie zu Beispiel 10 wurde die Abhängigkeit der Gelkonsistenz von Isocyanatkennzahl und NCO-Funktionalität untersucht. Als Polyolkomponente wird ein 1:1-Gemisch der Polyole 2 und 12 eingesetzt, welche 10 Gew.-% Lavendelöl als Duftstoff enthalten. Als Isocyanatkomponenten dienen Gemische der Polyisocyanate 1 und 2 in der angegebenen mittleren NCO-Funktionalität.
    Funktionalität;NCO/- 2,6 2,8 3,0 3,2
    Kennzahl
    V
    t Versleich
    52,5 flüssig
    **
    50 erfindungs- 1 sehrsehr weich weich * ** **
    erfindungs- * *k **
    47,5 ) gemäß (flüssig ) sehr weich weich hart
    erfindungsgemäß erfindungsgemäß bevorzugt Beispiel 13 Abhängigkeit der Gelkonsistenz von der NCO-Funktionalität bei konstanter Isocyanatkennzahl (50) und OH-Funktionalität (3).
  • Versuch 1: Polyolkontponente: Polyol 6 Iso.,yanaikomponente: Verschiedene Gemische aus Polyisocyanaten 1 und 2.
  • Versuch 2: Polyolkomponente: Polyol 4/Polyol 6 (1:1), (8 Gew.- Buttersäuremethylester als Duftstoff enthalten); Isocyanatkomponente: wie Versuch 1.
  • NCO-Funktionalität Versuch 1 Versuch 2 2 flüssig flüssig 2,1 flüssig sehr weich-weich * ** 2,2 sehr weich weich ** ** 2,3 weich weich-hart ** ** 2,4 weich-hart hart ** * 2,6 hart hart ** * 2,8 hart sehr hart *,**: Bedeutung sh. Beispiel 12 Beispiel 14 Abhängigkeit der Gelkonsistenz vom Mischungsverhältnis Polyether mit primären Hydroxylgruppen/Polyether mit sekundären Hydroxylgruppen. Die Polyole enthielten 10 Gew.-% Methylbutyrat.
  • Isocyanatkennzahl: 35 Isocyanatkomponente: Polyisocyanat 2 Die Gele wurden analog zu Beispiel 1 hergestellt.
  • Versuch Polyol 6 (%) Polyol 4 (%) Gelkonsistenz 1 0 100 sehr weich 2 5 95 weich 3 15 85 weich bis hart 4 25 75 hart 5 35 65 sehr hart 6 45 55 hart 7 75 25 hart 8 100 0 weich bis hart Beispiel 15 Für Versuch von Beispiel 14 wurde untersucht, wieviel des (praktisch nicht mitreagierenden) Polyols 4 bei sonst gleicher Rezeptur (10 Gew.-% Methylbutyrat im Polyolgemisch) dem Reaktionsansatz zugesetzt werden kann, so daß noch ein Gel erhalten wird. Wie die nachfolgende Tabelle zeigt, liegt die Grenze der Gelbildung für die gewählten Ausgangskomponenten bei einer Zusammensetzung, die (theoretisch berechnet) 28 Gew.-% Polyurethanmatrix und 72 Gew.- freiem Polyol entspricht. Extraktionsversuche des Polyols zeigen praktisch Ergebnisse wie theoretisch berechnet.
  • Rezeptur (Teile) Polyol 6 35 35 35 35 35 Polyol 4 65 100 105 120 150 Polyisocyanat 2 7 7 7 7 7 Dibutylzinndilaurat 3 3 3 4 5 % Polyurethanmatrix 38 29 28 25 21 Konsistenz sehr * sehr * sehr ** Gel- flüssig hartes weiches weiches teil-Gel Gel Gel chen in Flüssig-*) und **) Bedeutung wie in Beispiel 12 keit Beispiel 16 Beispiel 15 wurde für Versuch 7 aus Beispiel 14 wiederholt. Die Grenze der Gelbildung lag hier bei 27 % Polyurethanmatrix.
  • Rezeptur (Teile) Polyol 6 75 75 75 75 75 Polyol 4 25 65 75 90 100 Polyisocyanat 2 7 7 7 7 7 Dibutylzinndilaurat 3 4,5 4,5 5 5 % Polyurethanmatrix 38 28 26 24 22 * Konsistenz hartes sehr * sehr Gel- flüssig Gel weiches weiches teil-Gel Gel, chen teil- in *) erfindungsgemäß weise Flüssigflüssig keit Beispiel 17 Für die Polyisocyanate 2, 3 und 4 wurde untersucht, welche Isocyanatkennzahl mindestens eingehalten werden muß, um bei der Reaktion mit verschiedenen Polyolen (unter Zusatz von 3 Gew.-% Methylbutyrat-Riechstoff) nach der Arbeitsweise von Beispiel 1 ein Gel zu erhalten: Die gefundenen Grenzwerte der Isocyanatkennzahl sind in der nachfolgenden Tabelle zusammengestellt.
    Polyisocyanat Nr./ » 2 4 3
    Polyol Nr.
    8 20 30
    15 18 35 37
    11 30 45 47
    3 25 55 60
    9 25 55 65
    10 32 65 70
    12 40 - -
    13 50 50 52
    16 20 50 52
    Beispiel 18 100 Teile Polyether 1 mit einer Temperatur von 700C, 25 Teile 2-Isopropoxyphenyl-N-methyl-carbamat (Insektizid), 10 Teile 3-Phenoxy-4-fluor- i,-cyanobenzyl-2,2-dimethyl-3- t!-(4-chlorphenyl)-2-chlorvinyl7-cyclopropancarboxylat (Insektizid), 2,5 Teile Dibutylzinndilaurat und 5,5 Teile Polyisocyanat 2 werden intensiv vermischt. Das erhaltene Gel kann in Form von Platten, Streifen oder Formkörpern an Nutztieren, wie Rindern, in geeigneter Weise am Schwanz, Hals, an den Hörnern oder Ohren (Ohrmarken) befestigt werden. Auf diese Weise sind die Tiere wochenlang gegen zahlreiche schädliche tierische Parasiten (Ektoparasiten) geschützt.
  • Beispiel 19 100 Teile Polyether 1, 15 Teile Diphenyl-acetylenylimidazolyl-methan (Algizid), 2 Teile Dibutylzinndilaurat und 5 Teile Polyisocyanat 2 werden intensiv vermischt. Nach 15 Minuten erhält man ein elastisches Gel. Ein derartiges Gel ist zur Beschichtung von z.B.
  • Schiffen, Seetonnen oder Kaimauern im Unterwasserbereich geeignet, um den Bewuchs von Algen, Seepocken, Miesmuscheln und anderen Meereslebewesen zu verhindern.
  • Beispiel 20 100 Teile Polyether 3, 5 Teile Menthol, 2,5 Teile Dibutylzinndilaurat und 8 Teile Polyisocyanat 2 werden intensiv vermischt. Die erhaltene Reaktionsmischung wird auf ein engmaschiges steifes Kunststoffgitter aus Polyethylen aufgegossen und erstarrt innerhalb von 30 Minuten zu einer elastischen Gelmasse.
  • Ein derartiger Menthol-haltiger Strip kann für medizinische Zwecke (Inhalation von Menthol) verwendet werden.
  • Beispiel 21 100 Teile Polyether 1, 5 Teile Nonylphenol, 5 Teile Dodecylbenzyldimethylammonium-chlorid, 1,5 Teile Dibutylzinndilaurat und 5 Teile Polyisocyanat 2 werden intensiv vermischt. Das Reaktionsgemisch wird in eine offene Form mit den Abmessungen 1x2x10 cm gegossen. Der erhaltene Gelstab wird in eine 2x2x10 cm große Schale gelegt, die im Toilettenbecken in geeigneter Form derart befestigt wird, daß das Gel beim Wasserspülen jeweils stark gewässert wird. Auf diese Weise läßt sich eine längerfristige Desinfektion des Toilettenbeckens erzielen.
  • Beispiel 22 100 Teile Polyether 3, 30 Teile Kaliumdichromat/Pentachlorphenl (1:1), 3 Teile Dibutylzinndilaurat und 8 Teile Polyisocyanat 2 werden intensiv vermischt.
  • Das erhaltene Reaktionsgemisch wird auf ein Polyestergewebe in 5 mm Stärke aufgetragen, auf welchem das Gemisch zu einem Gel erhärtet. Derartig beschichtete Polyestergewebe können in Form von Bandagen zum Umkleiden von Holzmasten im Übergangsbereich Erde/Luft verwendet werden, um das Holz gegen Fäulnis zu schützen.
  • Beispiel 23 100 Teile Polyether 3, 15 Teile Natrium-dodecylbenzolsulfonat, 2,5 Teile Dibutylzinndilaurat und 8 Teile Polyisocyanat 2 werden intensiv vermischt und auf eine 10 mm starke offenzellige Folie aus Polyurethanschaum (Polyesterbasis) gesprüht. Eine derartig imprägnierte Folie, aufgeklebt auf einem Schwamm aus Polyether-Weichschaum, kann zu Reinigungszwecken verwendet werden.
  • Beispiel 24 100 Teile Polyether 3 mit einer Temperatur von 400C, 15 Teile 1-Methyl-1 -alkylamidoethyl-2-alkyl-imidazolinium-methosulfat (kationische quartäre Imidazolinverbindung der Fa. Ashland Chemical, Co., USA; Wäscheweichmacher), 0,2 Teile Heliofast-Yellow C.I. No.
  • 11680, 2 Teile Dibutylzinndilaurat und 8 Teile Polyisocyanat 2 werden intensiv vermischt. Das erhaltene Reaktionsgemisch wird in 3 mm starker Schicht auf ein Polypropylenvlies gegossen. Nach ca. 10 Minuten erhält man eine elastische Gelschicht. Das gelbeschichtete Vlies ist zum Weichmachen von Wäsche in Trommeltrocknern geeignet.

Claims (6)

  1. Patentansprüche 1) Wirkstoffhaltige, wasserfreie Gele, bestehend aus 15 bis 62 Gew.-%, bezogen auf die Summe aus (1) und (2), einer hochmolekularen Matrix; 85 bis 38 Gew.-%, bezogen auf die Summe von aus (1) und (2) eines in der Matrix durch Nebenvalenzkräfte gebundenen flüssigen Dispersionsmittels; Wirkstoffen, sowie gegebenenfalls 0 bis 100 Gew.-%, bezogen auf die Summe aus (1) und (2), an Füll- und/oder Zusatzstoffen, dadurch gekennzeichnet, daß a) die hochmolekulare Matrix ein kovalenz vernetztes Polyurethan ist, b) das flüssige Dispersionsmittel aus einer oder mehreren Polyhydroxylverbindungen mit einem Molekulargewicht zwischen 1000 und 12 000 und einer OH-Zahl zwischen 20 und 112 besteht, wobei das Dispersionsmittel im wesentlichen keine Hydroxylverbindungen mit einem Molekulargewicht unter 800 enthält, und c) 0,1 bis 50 Gew.-% an Wirkstoffen in der wirkstoffhaltigen Gelmasse enthalten sind.
  2. 2) Verfahren zur Herstellung von wirkstoffhaltigen wasserfreien Gelmassen mit Depotwirkung auf der Basis von Polyurethangelen, dadurch gekennzeichnet, daß man a) ein oder mehrere Di- und/oder Polyisocyanate mit b) einer oder mehreren Polyhydroxylverbindungen mit einem Molekulargewicht zwischen 1000 und 12 000 und einer OH-Zahl zwischen 20 und 112, c) 0,1 bis 50 Gew.-% an Wirkstoffen, gegebenenfalls d) Katalysatoren für die Reaktion zwischen Isocyanat- und Hydroxylgruppen, sowie gegebenenfalls e) aus der Polyurethanchemie an sich bekannten Füll- und Zusatzstoffen umsetzt, wobei die Isocyanatkennzahl zwischen 15 und 50 liegt, das Produkt der Funktionalitäten der Polyurethanbildenden Komponenten mindestens 5,2 beträgt und die Polyhydroxylverbindungen im wesentlichen frei sind an Hydroxylverbindungen mit einem Molekulargewicht unter 800.
  3. 3) Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Polyhydroxylverbindungen ein Molekulargewicht zwischen 1700 und 6000 aufweisen und das Produkt der Funktionalitäten der Polyurethan- bildenden Komponenten mindestens 6,2 beträgt.
  4. 4) Verfahren nach Ansprüchen 2 und 3, dadurch gekennzeichnet, daß 0,5 bis 35 Gew.-% an Wirkstoffen in Polyolverbindungen gelöst oder dispergiert verwendet werden.
  5. 5) Verfahren nach Ansprüchen 2 bis 4, dadurch gekennzeichnet, daß Wirkstoffe aus der Gruppe der Biozide, Pharmazeutika, Naturstoffe wie etherische Öle, Duftstoffe, Farben, Detergentien und Waschhilfsmittel, Stempel- und Druckfarben, Alterungsschutzmittel, Gleitmittel und Antistatika, Reinigungs- und Pflegemittel, Antifoulingmittel und Holz schutzmittel, sowie Pflanzennährstoffe, Frischhaltemittel und Wachstumsregulatoren sind.
  6. 6) Verfahren nach Ansprüchen 2 bis 5, dadurch gekennzeichnet, daß die Wirkstoffe frei von reaktiven Gruppen sind welche unter den Bedingungen der Gelbildung weitgehend oder vollständig unter Fixierung reagieren.
DE19813103499 1981-02-03 1981-02-03 Wirkstoffhaltige gelmassen mit depotwirkung auf basis einer polyurethanmatrix und hoehermolekularen polyolen, sowie ein verfahren zu ihrer herstellung Withdrawn DE3103499A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE19813103499 DE3103499A1 (de) 1981-02-03 1981-02-03 Wirkstoffhaltige gelmassen mit depotwirkung auf basis einer polyurethanmatrix und hoehermolekularen polyolen, sowie ein verfahren zu ihrer herstellung
AU79416/82A AU558611B2 (en) 1981-02-03 1982-01-11 Polyurethane gel
CA000394089A CA1207486A (en) 1981-02-03 1982-01-13 Polyurethane gels serviceable as controlled release agents
EP82100430A EP0057839B1 (de) 1981-02-03 1982-01-22 Gegebenenfalls wirkstoffhaltige Gelmassen auf Basis einer Polyurethanmatrix und höhermolekularen Polyolen, ein Verfahren zu ihrer Herstellung, sowie ihre Verwendung
AT82100430T ATE15216T1 (de) 1981-02-03 1982-01-22 Gegebenenfalls wirkstoffhaltige gelmassen auf basis einer polyurethanmatrix und hoehermolekularen polyolen, ein verfahren zu ihrer herstellung, sowie ihre verwendung.
US06/342,035 US4404296A (en) 1981-02-03 1982-01-22 Gel compositions with depot action based on a polyurethane matrix and relatively high molecular weight polyols and containing active ingredients, and a process for their preparation
DE8282100430T DE3265687D1 (en) 1981-02-03 1982-01-22 Gel compounds containing, where appropriate, active ingredients based on polyurethane matrices and high molecular weight polyols, process for their manufacture as well as their use
JP57013435A JPS57155251A (en) 1981-02-03 1982-02-01 Polyurethane matrix and gel composition based on considerably high molecular polyol and containing active component spontaneously, their manufacture and use
ES509248A ES8302054A1 (es) 1981-02-03 1982-02-02 Procedimiento para la obtencion de masas de gel anhidro.
US06/502,850 US4466936A (en) 1981-02-03 1983-06-09 Production of molds using gel compositions with depot action based on a polyurethane matrix and relatively high molecular weight polyols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19813103499 DE3103499A1 (de) 1981-02-03 1981-02-03 Wirkstoffhaltige gelmassen mit depotwirkung auf basis einer polyurethanmatrix und hoehermolekularen polyolen, sowie ein verfahren zu ihrer herstellung

Publications (1)

Publication Number Publication Date
DE3103499A1 true DE3103499A1 (de) 1982-08-26

Family

ID=6123877

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19813103499 Withdrawn DE3103499A1 (de) 1981-02-03 1981-02-03 Wirkstoffhaltige gelmassen mit depotwirkung auf basis einer polyurethanmatrix und hoehermolekularen polyolen, sowie ein verfahren zu ihrer herstellung

Country Status (2)

Country Link
JP (1) JPS57155251A (de)
DE (1) DE3103499A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19704158A1 (de) * 1997-02-04 1998-08-06 Fischer Artur Werke Gmbh Polyurethanzusammensetzung mit verbesserter langzeitresistenz gegen Mikroorganismenbefall
DE29816349U1 (de) * 1998-09-11 2000-01-20 Bock Orthopaed Ind Mehrschichtmaterial
US7115792B2 (en) 2002-03-22 2006-10-03 Beiersdorf Ag Scar-reducing plaster
WO2008069684A3 (en) * 2006-12-04 2008-07-31 George William Mason John Brod Modification of wood with hydrophilic prepolymers
DE102009005143A1 (de) 2009-01-15 2010-07-22 Beiersdorf Ag Narbenabdeckung mit UV-Schutz
US8147857B2 (en) 2004-12-21 2012-04-03 Bayer Innovation Gmbh Infection-resistant polyurethane foams, method for producing the same and use thereof in antiseptic wound dressings
WO2014026859A1 (en) * 2012-08-13 2014-02-20 Henkel Ag & Co. Kgaa Thickened liquid textile or hard surface treatment agent
EP3431143B1 (de) * 2017-07-21 2024-02-28 Procter & Gamble International Operations SA. Gele mit einem hydrophoben material
WO2024102594A1 (en) * 2022-11-10 2024-05-16 The Procter & Gamble Company Solid article for sustained delivery of volatile materials in interior space

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1311574C (en) * 1986-07-28 1992-12-15 Robert L. Probst Visible light cured impression material
CA2076574A1 (en) * 1991-10-01 1993-04-02 John Lenneis Haynes Extended-life drug filled patch
JP2001122711A (ja) * 1999-10-20 2001-05-08 Dai Ichi Kogyo Seiyaku Co Ltd 揮散制御収納体入りゲル状樹脂成形体
DE10037157A1 (de) * 2000-07-31 2002-02-14 Bayer Ag Mehrschichtige Beschichtungssysteme aus einer dickschichtigen, gelartigen Grundschicht und einer Deckschicht aus Polyurethan-Lack, deren Herstellung und Verwendung
JP4667726B2 (ja) * 2003-04-25 2011-04-13 倉敷紡績株式会社 抗菌性軟質ウレタンフォーム及びそれを用いた枕
JP6558898B2 (ja) * 2011-09-26 2019-08-14 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ポリウレタンゲル含有単層軟質フォーム
JP6892253B2 (ja) * 2016-11-30 2021-06-23 三井化学株式会社 ポリウレタンゲルおよびその製造方法
EP4159283A3 (de) * 2017-07-21 2023-05-24 Procter & Gamble International Operations SA Gele mit einem hydrophoben material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423040B2 (de) * 1971-10-18 1979-08-10
IT1035789B (it) * 1974-06-21 1979-10-20 Mccord Corp Schiuma uretanica che assorbe energia d urto in particolare per paraurti di autoveicoli

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19704158A1 (de) * 1997-02-04 1998-08-06 Fischer Artur Werke Gmbh Polyurethanzusammensetzung mit verbesserter langzeitresistenz gegen Mikroorganismenbefall
DE29816349U1 (de) * 1998-09-11 2000-01-20 Bock Orthopaed Ind Mehrschichtmaterial
US7115792B2 (en) 2002-03-22 2006-10-03 Beiersdorf Ag Scar-reducing plaster
US8147857B2 (en) 2004-12-21 2012-04-03 Bayer Innovation Gmbh Infection-resistant polyurethane foams, method for producing the same and use thereof in antiseptic wound dressings
WO2008069684A3 (en) * 2006-12-04 2008-07-31 George William Mason John Brod Modification of wood with hydrophilic prepolymers
AU2007328546B2 (en) * 2006-12-04 2011-04-21 Zelam Limited Modification of wood with hydrophilic prepolymers
US8252426B2 (en) 2006-12-04 2012-08-28 Zelam Limited Modification of wood with hydrophilic prepolymers
DE102009005143A1 (de) 2009-01-15 2010-07-22 Beiersdorf Ag Narbenabdeckung mit UV-Schutz
EP2210619A2 (de) 2009-01-15 2010-07-28 Beiersdorf AG Narbenabdeckung mit UV-Schutz
WO2014026859A1 (en) * 2012-08-13 2014-02-20 Henkel Ag & Co. Kgaa Thickened liquid textile or hard surface treatment agent
EP3431143B1 (de) * 2017-07-21 2024-02-28 Procter & Gamble International Operations SA. Gele mit einem hydrophoben material
WO2024102594A1 (en) * 2022-11-10 2024-05-16 The Procter & Gamble Company Solid article for sustained delivery of volatile materials in interior space

Also Published As

Publication number Publication date
JPS57155251A (en) 1982-09-25
JPH0332579B2 (de) 1991-05-13

Similar Documents

Publication Publication Date Title
EP0057839B1 (de) Gegebenenfalls wirkstoffhaltige Gelmassen auf Basis einer Polyurethanmatrix und höhermolekularen Polyolen, ein Verfahren zu ihrer Herstellung, sowie ihre Verwendung
US4466936A (en) Production of molds using gel compositions with depot action based on a polyurethane matrix and relatively high molecular weight polyols
DE3103499A1 (de) Wirkstoffhaltige gelmassen mit depotwirkung auf basis einer polyurethanmatrix und hoehermolekularen polyolen, sowie ein verfahren zu ihrer herstellung
EP0050784B1 (de) Ektoparasitizidhaltige Polyurethane
EP0050782B1 (de) Ektoparasitizidhaltige Halsbänder für Haustiere
US4189467A (en) Polyurethanes having ectoparasiticidal activity
EP0511570B1 (de) Gelmassen, sowie deren Herstellung und Verwendung
EP0379867B1 (de) Flüssige und feste Wirkstoffe enthaltende Trägergranulate
DE4216535A1 (de) Formkoerper zur bekaempfung von schaedlingen
DE2537894A1 (de) Elastomere mit insektizider depotgas-wirkung
DE69907538T2 (de) Gewebeschutzmittel gegen Schädlinge
EP1608220B1 (de) Pestizidformulierungen
DE69124369T2 (de) Imprägnierte poröse granulate für gesteuerte abgabe von fliessfähigem material und verfahren zu ihrer herstellung
US11470843B2 (en) Tissue bonding insect repellent
DE10010072A1 (de) Biozid-Batche auf Basis vernetzter Öle, Verfahren zu ihrer Gerstellung und ihre Verwendung in thermoplastischen Formmassen
EP1142959A1 (de) Gelförmige gussharzzusammensetzung, verpackte flüchtige gelförmige chemikalie und deren herstellung
DE3615035A1 (de) Neue zubereitungen und verfahren zur bekaempfung von kuechenschaben
AU657612B2 (en) Shaped articles for combating ectoparasites on animals
EP0379868B1 (de) Flüssige Wirkstoffe enthaltende Trägergranulate
CH638406A5 (de) Verfahren zur herstellung von biologisch wirksamen pellets oder granulaten.
DE19621304A1 (de) Siliconelastomere mit insektizider Wirkung
DE2715595A1 (de) Insektizid wirksame beschichtungsmassen fuer tierhalsbaender
DE19622513A1 (de) Insektizid auf biologischer Basis
DE19709699A1 (de) Wildverbißmittel
DE2238912A1 (de) Durch wasser abbaubare polymere und verfahren zu ihrer herstellung

Legal Events

Date Code Title Description
8130 Withdrawal