DE3010340A1 - Vacuum deposition system for thin film transistors - uses flash vaporisation by discharging tablets of coating material into heated cylinder - Google Patents

Vacuum deposition system for thin film transistors - uses flash vaporisation by discharging tablets of coating material into heated cylinder

Info

Publication number
DE3010340A1
DE3010340A1 DE19803010340 DE3010340A DE3010340A1 DE 3010340 A1 DE3010340 A1 DE 3010340A1 DE 19803010340 DE19803010340 DE 19803010340 DE 3010340 A DE3010340 A DE 3010340A DE 3010340 A1 DE3010340 A1 DE 3010340A1
Authority
DE
Germany
Prior art keywords
tablets
vapor deposition
thin film
film transistors
sio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19803010340
Other languages
German (de)
Inventor
Albrecht G. Prof. Dr. 4600 Dortmund Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fischer albrecht G profdr
Original Assignee
Fischer albrecht G profdr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fischer albrecht G profdr filed Critical Fischer albrecht G profdr
Priority to DE19803010340 priority Critical patent/DE3010340A1/en
Publication of DE3010340A1 publication Critical patent/DE3010340A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/246Replenishment of source material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02142Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides
    • H01L21/02145Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides the material containing aluminium, e.g. AlSiOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The vacuum deposition system for coating thin film transistors, uses a flash evaporation method. A reservoir formed by a rotating disc with pockets, dispenses small tablets of the coating material. Each travels in turn down a sloping chute to fall into a heated cylindrical tile, to be converted instantly into a vapour. This is discharged upwards inside the vacuum chamber for deposition on the substrate above, which carries a perforated mask. The inside surface of the vaporising tile can be of sintered corundum or of borium nitride. The tablets can be made of two different materials, delivered alternatively. The two materials are of respectively SiO2 rich and SiO2 poor mixtures of Al2O3 and SiO2.

Description

Beschreibung:Description:

Die Herstellung von Dünnfilmtransistoren (TFTs) war bisher mitsovielen unbekannten Störeinflüssen behaftet, daß sich diese an und für sich verlockenden Bauelemente noch nicht allgemein einfünren konnten. Selten glichen die Ergebnisse von 2 sukzessiven Runs einander, selbst wenn die gleiche Apparatur, die gleichen Materialien vom gleichen Techniker benutzt wurden.The manufacture of thin film transistors (TFTs) has been so much so far unknown disturbances afflicted that these in and of themselves tempting Could not yet introduce components in general. The results were seldom the same of 2 successive runs of each other, even if the same apparatus, the same Materials used by the same technician.

Es war daher das Hauptziel unserer sich in vielen Veröffentlichungen und Erfindungen niederschlagenden Aktivität, einen robusten, reproduzierbaren TFT-Produktionsprozeß zu entwickeln. Erst dann, wenn dieser Punkt geklärt ist, eröffnen sich für diese Schaltelemente die praktisch unbegrenzten Möglichkeiten, voi denen so oft gesprochen worden ist.It was therefore the main goal of our becoming in many publications and inventions precipitating activity, a robust, reproducible TFT production process to develop. Only when this point has been clarified do they open up for this Switching elements the practically unlimited possibilities voi so often spoken of has been.

Die vorliegende Erfindung stellt einen weiteren Schritt in diese Richtung dar, die bereits in unseren vorangegangenen Patentanmeldungen, wie "Optimale Materialkombination für Dünnfilmtransistoren", und '[Vakuumaufgedampfte Isolatorschichten für Dünnfilmtransistoren" begonnen worden ist.The present invention represents a further step in this direction that was already mentioned in our previous patent applications, such as "Optimal combination of materials for thin-film transistors ", and '[vacuum deposited insulator layers for thin-film transistors" has been started.

Ausgangspunkt der vorliegenden Erfindung ist unser Befund, daß unser neues Material für aufdampfbare Isolierschichten, nämlich die Mischung von Al203 und SiO (Mullit), welche eine extrem hohe Durchschlagsfestigkeif besitzt, bei nåedrigerer Temperatur schmilzt und verdampft, nämlich 1500 C bzw.The starting point of the present invention is our finding that our new material for vapor-deposited insulating layers, namely the mixture of Al203 and SiO (mullite), which has an extremely high dielectric strength, at nåedrigerer Temperature melts and evaporates, namely 1500 C resp.

1800 C, als das vorher verwendete reine Al 03. Beim vorher allein für die Isolierschichten benutzten Al 03 waren wir gezwungen gewesen, Elektronenstrahl-Aufdampfung zu benutzeg, denn dieses Material läßt sich nur schlecht aus stromgeheizten Metall schiffchen (wie z.B. Wolfram) verdampfen, wegen Bildung von WO , welches die Schichten sch#iächt und häufigen Ersatz des W-Schiffchens erfordert.1800 C, than the pure Al 03 used previously. When used alone before Al 03 used for the insulating layers we were forced to use electron beam vapor deposition to be used, because this material is difficult to make from electrically heated metal Ships (such as tungsten) evaporate due to the formation of WO, which the layers weak and requires frequent replacement of the W-boat.

Elektronenstrahlheizung des Aufdampfmaterials hat aber für die großtechnische Produktionsanwendung viele Nachteile. Abgesehen vom hohen Anschaffungspreis und der hohen Störanfälligkeit der Anlage ist es ein wesentlicher Mangel bei Drehtiegelplatten-Anlagen, daß die Drehdurchführung der wassergekühiten Kupfertiegelplatte eine ständige Quelle von Wasserlecks in dem Vakuumrezipienten ist. Bei jeder Tiegel drehung tritt ein Schwall von Wasserdampf ein und bildet monomolekulare Bedeckungsschichten, die besonders auf der CdSe:In-Halbleiterschicht störend sind, Diesen Mangel haben wir zwar mit unserer Erfindung "Gãl lium-Metall-gekühite Tiegel platte bei einer Elektronenstrahlaufdampfanlage" Uberwunden, aber es bleiben weitere Nachteile. Ein solcher ist die einseitige Verzerrung der Keule des Aufdampstrahls durch den seitlich einfallenden Elektronenstrahl ("Elektronenind"). Statt einer Dickenverteilung der Aufdampfschicht, wobei diese im Zentrum über der Quelle am dicksten ist und radial nach außen in konzentrischen Linien gleicher Dicke abnimmt, erhält man eine birnenförmige Schichtdickenverteilung. Dies wirkt sich bei großflächigen Aufdampfschichten unangenehm aus. Man kann dies zwar durch-Vergrößerung des Abstands zwischen Quelle und Substrat vermindern, aber damit steigt der Materialverbrauch, und damit die Aufdamplzeit, quadratisch an Ein weiterer Nachteil der Elektronenstrahl-Aufdanipfung ist die Aufladung der Isolatorschichten durch Sprühelektronen, durch Sekundärelektronenemission, und durch geladen-ankommende Dampfteilchen. Dies erzeugt bei DUnnfilmtransistoren, welche ja Feldeffekt-Baueletnente sind, schwer zu kontrollierende Störeffekte.Electron beam heating of the vapor deposition material has, however, for the large-scale Production application many disadvantages. Apart from the high purchase price and the high susceptibility of the system to failure, it is a major deficiency in rotary pan plate systems, that the rotary feedthrough of the water-cooled copper crucible plate is a constant source of water leaks in the vacuum recipient. Occurs with every rotation of the crucible Gush of water vapor and forms monomolecular covering layers, which are particularly on the CdSe: In-semiconductor layer are disturbing, we have this deficiency with our invention "Gãl lium-metal-cooled crucible plate in an electron beam evaporation system" Overcome, but other disadvantages remain. One such is one-sided distortion the lobe of the vapor deposition beam through the laterally incident electron beam ("Elektronind"). Instead of a thickness distribution of the vapor deposition layer, this being in the center above the Source is thickest and radially outward in concentric lines of equal thickness decreases, a pear-shaped layer thickness distribution is obtained. This affects unpleasant in the case of large evaporation layers. You can do this through magnification reduce the distance between source and substrate, but this increases material consumption, and thus the deposition time, quadratic to Another disadvantage of electron beam deposition is the charging of the insulator layers by spray electrons, by secondary electron emission, and by charged-arriving vapor particles. In the case of thin film transistors, this produces which are field-effect components, disruptive effects that are difficult to control.

Ein sehr schwerwiegender Nachteil der Elektronenstrahlaufdampfung ist die damit verknüpfte Notwendigkeit, zur Kontrolle der erzielten Schichtdicke und der Aufdampfraten einen Regler zu benutzen der als Sensor einen Schwingquarzkristall benutzt. Wir fanden, daß dies eine ständige Quelle von Störungen, Fehlern und Versagen ist, weil der Schwingquarz entweder zu dick bedampft ist, oder verrutscht, oder schlechten Kontakt macht, etc.A very serious disadvantage of electron beam evaporation is the associated need to control the layer thickness achieved and the evaporation rate to use a controller that uses a quartz crystal as a sensor used. We found this to be a constant source of glitches, errors and failures is because the quartz crystal has either been vaporized too thickly or has slipped, or makes bad contact, etc.

Vermeidung dieser Störungen erfordert die Verwendung von hochwertigem Personal, was in der Praxis nicht gegeben ist. Unser Ziel ist ja, die Anlage von einem Ungelernten bedienen zu lassen. Daher #rSrif'en wir begierig die sich durch unseren neuen Al 0 .SiO -Isolator bietende Gelegenheit; von der Elektronenstrahlaufdampfung bbzgehen.Avoidance of these disturbances requires the use of high quality Personnel, which is not the case in practice. Our goal is yes, the plant of to let an unskilled person operate it. Therefore we # rSrif'en eager to get through our new Al 0 .SiO -Isolator offering an opportunity; from electron beam evaporation bbzgo.

Unsere neuartige Anlage ist in Abbildung 1 illustriert.Our new system is illustrated in Figure 1.

Es bedeuten: 1 Aufdampfmaterial-Tablette 1 Aufdampfstrahl 2 Drehtisch -Reservoir für viele Tabletten, genügend für einen Run 3 Lochplatte (mindestens 24 Löcher) 4 Tabletten-Rutsche, bestehend z.B. aus NiCr 5 heißer Tiegel (Al203 oder BN) 6 Keramik-Formstücke 7 Strahlungsreflektor 8 gekühlter äußerer Mantel 9 Thermoelement (Pt - Pt/Rh, oder W - Re) 10 Wärmeisolierung (z.B. Korund-Stücke) 11 Substratplatte (Glas) 12 Lochmaske (siehe unsere Patentanmeldung hierfür) 13 Maskenwechsler (nur schematisch angedeutet) 14 Wand des Vakuumgefäßes 15 Bodenplatte des Vakuumgefäßes, z.B. gekühlte Aluminiumplatte.The figures mean: 1 vapor deposition material tablet 1 vapor deposition jet 2 rotary table -Reservoir for many tablets, enough for a Run 3 perforated plate (at least 24 holes) 4 tablet chute, consisting e.g. of NiCr 5 hot crucible (Al203 or BN) 6 ceramic fittings 7 radiation reflector 8 cooled outer jacket 9 thermocouple (Pt - Pt / Rh, or W - Re) 10 thermal insulation (e.g. pieces of corundum) 11 substrate plate (Glass) 12 perforated mask (see our patent application for this) 13 mask changer (only schematically indicated) 14 wall of the vacuum vessel 15 bottom plate of the vacuum vessel, e.g. cooled aluminum plate.

Zur Erklärung der Abb. 1 ist auszuführen, daß wir zum Aufdampfen der drei benötigten Stoffe Metall. (Ni), Halbleiter (CdSe:In) und Isolator (Mullit) 2 (siehe unsere diesbezügliche Patentanmeldung) nur einen einzigen, durch 1 R-Stromwärme indirekt geheizten Keramiktiegel 5 (auswechselbar) benötigen.To explain Fig. 1 it should be stated that we have to vaporize the three substances required metal. (Ni), semiconductor (CdSe: In) and insulator (mullite) 2 (see our relevant patent application) only a single one, through 1 R-Stromwärme indirectly heated ceramic crucible 5 (replaceable) need.

Das Aufdampfmaterial ist zu qleichgroßen Pillen oder Tabletten 1 gepreßt3 und diese Pillen liegen, in der Reihenfolge ihrer Aufdampfung, in einem Reservoir 2. Aus diesem hier als kreisförmiger Drehtisch konstruiertem Reservoir werden die Pillen, in Obereinstimmung mit der für das jeweilige Material am Substrat 12 benötigten Lochmaske 13, nacheinander in den Tiegel 5 fallen gelassen, wo sie restlos verdampfen. Durch Wahl sehr kleiner Pillen erhält man so den günstigen Effekt der ~flach evaporation", welche besonders bei aufzudampfenden Verbindungen mit Zersetzungstendenz zu bevorzugen ist. (Dies ist bei unseren Stoffen der Fall). Dadurch werden Schichten homogener Zusammensetzung erhalten.The vapor deposition material is compressed into pills or tablets 1 of the same size3 and these pills are in a reservoir in the order in which they are vaporized 2. From this reservoir, constructed here as a circular turntable, the Pills, in accordance with that required for the particular material on substrate 12 Perforated mask 13, dropped one after the other into the crucible 5, where they evaporate completely. By choosing very small pills you get the favorable effect of ~ shallow evaporation ", which are particularly preferable for compounds with a tendency to decompose to be vaporized is. (This is the case with our fabrics). This makes layers more homogeneous Preserved composition.

Man kann die Tabletten der verschiedenen Materialien verschiedengroß machen aber bei Verwendung gleichgroßer Tabletten können sie alle mit derselben Tablettenpresse hergestellt werden. Die Metallstücke werden nicht als Pillen, sondern als gleichlange Drahtabschnitte zugegeben. So verwendet man z.B. für eine aufzudampfenden Dünnfilmtransistor-Matrix folgende Aufeinanderfolge: 1. 3 Mullit-Pillen nacheinander für die "Abdeckschicht unter allem", welche auf das Glas-Substrat geåampft wird, um eine alkalifreie, unberührte Oberfläche zu schaffen.The tablets of different materials can be of different sizes but if you use tablets of the same size you can do all of them with the same Tablet press are manufactured. The pieces of metal are not called pills but rather added as wire sections of equal length. So one uses e.g. for a to be vaporized Thin film transistor matrix in the following order: 1. 3 mullite pills one after the other for the "covering layer under everything", which is steamed onto the glass substrate, to create an alkali-free, pristine surface.

2. 1 Drahtabschnitt, für das erste Gate und die Verbindungsleitungen.2. 1 wire section, for the first gate and the connecting lines.

3. 5 Mullit-Pillen nacheinander, für die 1. Gateisolatoren Oberkreuz-Isolatoren und Kondensator-Diel ektri ka. 1 4. 1 CdSe:In-Pille für den Halbleiter 5. 1 Drahtabschnitt für Source- und Drain-Elektroden und Verbindungen.3. 5 mullite pills in a row, for the 1st gate insulators top cross insulators and capacitor-Diel ektri ka. 1 4. 1 CdSe: in-pill for the semiconductor 5. 1 wire section for source and drain electrodes and connections.

6. 5 Mullit-Pillen nacheinander, für 2.Gate-Isolator, Oberkreuz-Isolator und Kondensator-Di el ektri ka.6. 5 mullite pills one after the other, for 2nd gate insulator, upper cross insulator and capacitor di el ektri ka.

7. 1 Drahtabschnitt, für das obere Gate und Metall verbindungen.7. 1 wire section, for the top gate and metal connections.

8. 4 Mullit-Pillen nacheinander, für die "Schutzschicht über alles".8. 4 mullite pills one after the other, for the "protective layer over everything".

Damit das Reservoir 2 genügend Chargen aufnehmen kann, ist es als Drehscheibe mit 24 Löchern am Umfang ausgebildet. Durch einen von außen durch Magnetkraft auszulösenden simplen Mechanismus (nicht gezeigt), des ähnlich wie eine Unruhe bei einer Gewichtsuhr funktioniert, dreht sich die Scheibe jeweils um eine Stellung weiter, so daß die jeweilige Pille durch die Lochplatte 3 über die Rutsche 4 in den Tiegel 5 fällt und in Dampf 1' übergeht.So that the reservoir 2 can hold enough batches, it is as Turntable with 24 holes on the circumference. By one from the outside by magnetic force simple mechanism to be triggered (not shown), similar to a restlessness a weight clock works, the disc rotates one position at a time further, so that the respective pill through the perforated plate 3 via the chute 4 in the crucible 5 falls and passes into steam 1 '.

Das Zusammenpassen der Reservoir-Schritte mit dem Uffnen und Schließen der Aufdampf-Blende (nicht gezeigt) und dem Auswechseln der jeweiligen Loch-Maske (nicht gezeigt), sowie das Regeln der jeweiligen Tiegel-Temperatur und Oberwachung aller sonstigen Parameter (maximal zulässiger Druck) wird, wie bereits von uns veröffentlicht, vollautomatisch durch Mikroprozessoren gesteuert (siehe z.B. A. Fischer, Nachrichtentechnische Zeitschrift 33, Februar 1980, Seite 87, Bild 16, 18.), damit keine menschlichen Bedienungsfehler auftreten können.Matching the reservoir steps with opening and closing the vapor deposition screen (not shown) and the replacement of the respective hole mask (not shown), as well as the regulation of the respective crucible temperature and monitoring all other parameters (maximum allowable pressure) will, as already published by us, fully automatically controlled by microprocessors (see e.g. A. Fischer, Nachrichtenentechnische Journal 33, February 1980, page 87, image 16, 18.) so that no human Operating errors can occur.

Diese neue Eintiegel-Flash-Evaporation-Methode mit vollständiger, sukzessiver Verdampfung von vielen kleinen, kalibrierten Chargen, wodurch Schichtdicken automatisch kontrolliert werden, basiert also auf dem Vorhandensein von Tiegelmaterialien, welche vom Isolatormaterial, das die größte Agressivität-der 3 benötigten Stoffe hat, nicht angegriffen werden. Für alle vorher bekannten guten Isolatoren gab es kein solches Tiegelmaterial.This new single-pot flash evaporation method with complete, successive evaporation of many small, calibrated batches, resulting in layer thicknesses are automatically controlled, i.e. based on the presence of crucible materials, which of the insulating material, which is the greatest aggressiveness - of the 3 required substances has not to be attacked. For all previously known good insulators there was no such crucible material.

Unser neuer Mullit-Aufdampfisolator kann, so fanden wir, aus Sinterkorund-Tiegeln 5 aufgedampft werden, z.B. die Degussit-Tiegel der Firma Friedrichsfeld. Es ist wichtig, daX bei unserer Methode kein Pest des Aufdampfmaterials im Tiegel bleibt, sonst würden die Tiegel beim Abkühlen zerspringen.We found that our new mullite vapor-deposition insulator can be made from sintered corundum crucibles 5, e.g. the Degussit crucible from Friedrichsfeld. It is important that with our method no plague of the vapor deposition material remains in the crucible, otherwise the crucibles would break when they cool down.

Dennoch müssen die Tiegel ab und zu erneuert werden, aber sie sind billig.Still, the crucibles need to be replaced every now and then, but they are cheap.

Das mit-abdampfende Tiegelmaterial ist Al203, ist also kein Fren6dstoff, und wird in die Schicht mit eingebaut. Solche Tiegel sind bis 1800 C brauchbar.The crucible material that also evaporates is Al203, so it is not a foreign substance, and is built into the layer. Such crucibles can be used up to 1800 C.

Für höhere Temperaturen und damit größere Aufdampfratet, lassen sich erfindungsgemäß Tiegel aus Bornitrid BN benutzen, vorzugsweise die von der Firma Union Carbide gelieferten, welche niedrig an B O -Bindemitteln sind, oder die pyrolytisch-hergestellten, welche überhaupt pein oxidisches Bindemittel enthalten. Diese sind teurer als die Al2O3-Tiegel , halten aber länger.For higher temperatures and thus higher evaporation rates, use crucibles made of boron nitride BN according to the invention, preferably those from the company Union Carbide supplied which are low in B O binders, or the pyrolytically produced, which even contain painful oxidic binders. These are more expensive than that Al2O3 crucibles, but last longer.

Als externe Heizung dieser Tiegel bis ca. 1750 0C kann man poröse Sinterkorundrohre 7 mit gewindeähnlichen Augenriefen für die Drahtbewicklung verwenden (Morganite oder Carborundum (o) wobei sich Molybdändraht der Firma Thyssen-Edelstahlwerke bestens eignet.As an external heating of this crucible up to approx. 1750 0C one can use porous Use sintered corundum tubes 7 with thread-like grooves for the wire wrapping (Morganite or Carborundum (o) being molybdenum wire from Thyssen-Edelstahlwerke ideally suited.

Bei höheren Temperaturen tritt jedoch zeistörend eine chemische Raktion zwischen dem Metall des Heizdrj;resound der .'Xorund-Keramik ein. Insbesondere für die BN-Tiegel, welche bis 2100 C brauchbar sind, benötigt man deshalb als Heizer Graphitzylinder (Schunck & Ebe, Giessen), entweder erwärmt durch Wirbelströme, die durch Induktion von einer Hochfrequenzgenerator-Spule (Generator 5 KW von Hüttinger, Freiburg) erzeugt werden, oder durch Hochampere-Ströme (80 A) in Zick-Zack-förmig gestalteten Graphitwendeln (Schunck & Ebe, Giessen) mit massiven, gekühlten Kupferzuleitungen von einem Step-Dow-Transformator.At higher temperatures, however, a disruptive chemical reaction occurs between the metal of the Heizdrj; resound the .'Xorund ceramic. Especially for The BN crucibles, which can be used up to 2100 C, are therefore needed as heaters Graphite cylinder (Schunck & Ebe, Giessen), either heated by eddy currents, generated by induction from a high-frequency generator coil (generator 5 KW from Hüttinger, Freiburg), or by high-ampere currents (80 A) in a zigzag shape designed graphite coils (Schunck & Ebe, Giessen) with massive, cooled Copper leads from a step-dow transformer.

Damit die Wärmeabstrahlung nicht andere Teile des Vakuumsystems ungebührlich aufheizt, sollte noch ein gekühlter Metallmantel 9, hier aus Aluminium, verwendet werden.So that the heat radiation does not unduly affect other parts of the vacuum system heats up, a cooled metal jacket 9, here made of aluminum, should be used will.

Für unsere "geschichteten" Isolatorschichten eignet sich erfindungsgemäß diese Aufdampfmethode ebenfalls. Hierzu werden die Isoliermaterial-Pillen, welche nacheinander jeweils fast bis zur Neige aufgedampft werden und die Aufdampfschicht aufbauen, alternierend aus SiO -armem und aus Si02-reichem Al O +SiO -Gemisch gepreßt. Durch Oberlappung #er Verdampfung der vorigen mit äer neuen Pille werden graduierte Obergangsschichten möglich, welche Spannungen verhindern.According to the invention, this is suitable for our "layered" insulator layers this vapor deposition method as well. For this purpose, the insulating material pills, which successively in each case almost to the point of being vaporized and the vapor-deposition layer build up, alternately pressed from low-SiO and from SiO2-rich Al O + SiO mixture. By overlapping the evaporation of the previous pill with the new pill, graduations are achieved Transition layers possible, which prevent tension.

MIt dem hier beschriebenen Verfahren lassen sich also in produktionsfreundlicher Weise bessere Dünnfilmtransistoren auf billigere Weise gleichmäßiger und reproduzierbarer herstellen, als je zuvor möglich.With the method described here, it is possible to make a more production-friendly Ways better thin film transistors in a cheaper way, more uniform and reproducible than ever possible before.

Claims (4)

Patentansprüche: Produktionsverfahren für vakuumaufgedampfte DUnnfilmtransistor-Schaltkreise, dadurch gekennzeichnet, daß kalibrierte Tabletten der verschiedenen Aufdampfmaterialien von einem Tablettenreservoir nacheinander, im Zusammenwirken mit auswechselbaren Lochmasken am Substrat, in einen einzigen strombeheizten Tiegel geliefert werden, dort restlos verdampfen urtii somit auf dem Substrat verschiedene überlagerte Aufdampfschichten der gewünschten Dicke ergeben.Claims: Production process for vacuum-deposited thin-film transistor circuits, characterized in that calibrated tablets of the various vapor deposition materials from a tablet reservoir one after the other, in cooperation with interchangeable Shadow masks on the substrate, delivered in a single electrically heated crucible, there, urtii completely evaporate various superimposed vapor deposition layers on the substrate of the desired thickness. 2) Produktionsverfahren für vakuumaufgedampfte Dünnfilmtransistor-Schaltkreise nach Anspruch 1, dadurch #ckennzeichnet, daß als Material für besonders durchschlagsfeste Isolierschichten abwechselnd Tabletten einer SiO2-reichen Al 0 +SiO -~lischung und Tabletten einer SiO -armen Al 0 + SiO -Mischung aufgedampft werden, wobei die Gesamtscilich; des Isolators also aus vielen ca. 10 - 50 mm dicken, stetig ineinander übergehenden Lagen aufgebaut ist.2) Manufacturing process for vacuum deposited thin film transistor circuits according to claim 1, characterized in that as a material for particularly puncture-resistant Insulating layers alternate with tablets of a SiO2-rich Al 0 + SiO - ~ mixture and Tablets of a low-SiO Al 0 + SiO mixture are vapor-deposited, with the total amount; of the isolator consists of many approx. 10 - 50 mm thick, continuously merging into one another Layers is built up. 3) Produktionsverfahren nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, daß die Innenwandung des Aufdampftiegels aus Sinterkorund besteht.3) Production method according to claim 1 and / or 2, characterized in that that the inner wall of the vapor deposition crucible consists of sintered corundum. 4) Produktionsverfahren nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, daß die Innenwandung des Aufdampftiegels aus Bornitrid besteht.4) Production method according to claim 1 and / or 2, characterized in that that the inner wall of the vapor deposition crucible consists of boron nitride.
DE19803010340 1980-03-18 1980-03-18 Vacuum deposition system for thin film transistors - uses flash vaporisation by discharging tablets of coating material into heated cylinder Withdrawn DE3010340A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19803010340 DE3010340A1 (en) 1980-03-18 1980-03-18 Vacuum deposition system for thin film transistors - uses flash vaporisation by discharging tablets of coating material into heated cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19803010340 DE3010340A1 (en) 1980-03-18 1980-03-18 Vacuum deposition system for thin film transistors - uses flash vaporisation by discharging tablets of coating material into heated cylinder

Publications (1)

Publication Number Publication Date
DE3010340A1 true DE3010340A1 (en) 1981-09-24

Family

ID=6097543

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19803010340 Withdrawn DE3010340A1 (en) 1980-03-18 1980-03-18 Vacuum deposition system for thin film transistors - uses flash vaporisation by discharging tablets of coating material into heated cylinder

Country Status (1)

Country Link
DE (1) DE3010340A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004009864A1 (en) * 2002-07-22 2004-01-29 Cambridge Display Technology Limited Pellet feeder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004009864A1 (en) * 2002-07-22 2004-01-29 Cambridge Display Technology Limited Pellet feeder
GB2406562A (en) * 2002-07-22 2005-04-06 Cambridge Display Tech Ltd Pellet feeder
GB2406562B (en) * 2002-07-22 2005-12-28 Cambridge Display Tech Ltd Pellet feeder

Similar Documents

Publication Publication Date Title
DE69009918T2 (en) Planar heater with a variety of areas and operation.
DE3786237T2 (en) DEVICE FOR VACUUM EVAPORATION.
DE3004546C2 (en) Penning atomization source
DE102007035166B4 (en) High-temperature evaporator cell with heating zones connected in parallel, process for their operation and their use in coating plants
DE2513034C2 (en) Device for the production of doped thin semiconductor layers
DE2824564A1 (en) METHOD OF MANUFACTURING ELECTRONIC DEVICES
DE1564544A1 (en) Photoelectric device and method for producing a photo layer therefor
DE4422697C1 (en) Vapour coating device for prodn. of thin filmed solar cells
DE1515301A1 (en) Process for the application of high-quality thin layers by means of cathode sputtering and device for carrying out the process
DE3010340A1 (en) Vacuum deposition system for thin film transistors - uses flash vaporisation by discharging tablets of coating material into heated cylinder
DE4120941C2 (en)
DE2253411B2 (en) PROCESS FOR MANUFACTURING DIRECT HEATABLE HOLLOW BODIES FOR DIFFUSION PURPOSES, CONSISTING OF SEMICONDUCTOR MATERIAL
DE102004028714A1 (en) Thermal treatment device
DE2503109A1 (en) PROCESS FOR PREPOSITING A MATERIAL FROM THE VAPOR PHASE
DE2019091A1 (en) Process for the production of stable thin film resistors
DE2203735A1 (en) Storage disk
DE1521175B2 (en) DEVICE FOR EVAPORATION OF MATERIALS IN VACUUM
DE896407C (en) Process for coating glass bodies with layers of high-melting metal
EP0312146B1 (en) Process for the production of shaped articles from pyrolitic graphite
DE10341914B4 (en) Device for producing thin layers and method for operating the device
DE1621295B2 (en) Method and device for covering substrates by vapor deposition
WO2000046418A1 (en) Device for coating substrates with a vaporized material under low pressure or in a vacuum using a vaporized material source
DE617071C (en) Process and device for the production of selenium cells
DE639908C (en) Electric discharge vessel with glow cathode and gas or vapor filling
DE3441471C2 (en)

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee