DE3006702A1 - Up-draft power plant using flexible tubular tower - supported by balloon or buoyancy chambers and having guide vanes at base to deflect entering air into turbine - Google Patents

Up-draft power plant using flexible tubular tower - supported by balloon or buoyancy chambers and having guide vanes at base to deflect entering air into turbine

Info

Publication number
DE3006702A1
DE3006702A1 DE19803006702 DE3006702A DE3006702A1 DE 3006702 A1 DE3006702 A1 DE 3006702A1 DE 19803006702 DE19803006702 DE 19803006702 DE 3006702 A DE3006702 A DE 3006702A DE 3006702 A1 DE3006702 A1 DE 3006702A1
Authority
DE
Germany
Prior art keywords
tower
power plant
turbine
wind
guide vanes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19803006702
Other languages
German (de)
Inventor
Christian Dr.-Ing. 1000 Berlin Boes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE19803006702 priority Critical patent/DE3006702A1/en
Publication of DE3006702A1 publication Critical patent/DE3006702A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • F05B2240/131Stators to collect or cause flow towards or away from turbines by means of vertical structures, i.e. chimneys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/92Mounting on supporting structures or systems on an airbourne structure
    • F05B2240/922Mounting on supporting structures or systems on an airbourne structure kept aloft due to buoyancy effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Abstract

The updraft power plant is constructed from a flexible tube forming the tower, and as this tube is of light construction, its weight can be supported at the top by a captive balloon or by buoyancy gas chambers built into the tower walls. The captive balloon is so arranged that the upper end of the tower forms a wind scoop and turns constantly into the lee of the wind. The low pressure field behind the upper tube end therefore induces an updraft in the tower, and this energy is used by a turbine located at the foot of the tower. The airstream enters the tower first via a shallow roof structure close to the ground containing guide vanes, which rotate the entering air and prevent it from streaming across the entrance to the turbine and being wasted. The higher the tower, the more efficient the plant, and as the cost of the tower itself in relation to the cost of the entrance structure, is low, it thus pays to build the tower as high as possible.

Description

Beschreibung mit 5 PatentansprüchenDescription with 5 claims

Aufwindkraftwerk mit Schlauchturm, Fesselballon und Leitschaufeln am schwebenden Vordach Aufwindkraftwerke sind schon seit etlichen Jahren bekannt. In der Übersicht über mehrere Aufwindanlagen im Solar Energy Digest, Vol. 6, No. 5, May 1976, wird das generelle Prinzip des Aufwindkraftwerkes beschrieben. Unter einem Glas- oder Folien-Vordach (siehe Skizze 1.1 oder 1.2 ) wird Luft erwärmt und strömt einem Turm zu, an dessen unterem Ende eine Turbine installiert ist. Die warme Luft strömt im Turm nach oben. Je höher der Turm ist, desto besser wird der Wirkungsgrad der Anlage, da die Energie der aufgewärmten Luft bei einem niedrigen Turm nur teilweise ausgenutzt werden kann. Die Kosten des Turmes sind im Verhältnis zum Vordach gering, so daß , sicF) in jedem Falle lohnt, den Turm so hoch wie möglich zu bauen. Dies ist bei Türmen, deren Gewicht nach unten auf den Erdboden abgetragen wird, nur bedingt möglich.Updraft power plant with hose tower, tethered balloon and guide vanes On the floating canopy, updraft power plants have been known for a number of years. In the overview of several updraft systems in Solar Energy Digest, Vol. 6, No. 5, May 1976, the general principle of the updraft power plant is described. Under a glass or foil canopy (see sketch 1.1 or 1.2) air is heated and flows towards a tower, at the lower end of which a turbine is installed. The heat Air flows up in the tower. The higher the tower, the better the efficiency of the system, since the energy of the heated air is only partially available in the case of a low tower can be exploited. The cost of the tower is low compared to the canopy, so that it is definitely worth building the tower as high as possible. this is only conditional in towers whose weight is carried down to the ground possible.

Denn je höher der Turm wird, desto stärkere Druckspannungen müssen die Wandungen am unteren Ende des Turmes aufnehmen.Because the higher the tower, the stronger the compressive stresses take up the walls at the lower end of the tower.

Deshalb wird hier ein Turm vorgeschlagen, dadurch gekennzeichnet , daß sein Gewicht von einem Fesselballon oder durch Auftriebs-Gaskammern, die in den Turmmantel eingearbeitet sind, nach oben getragen wird. Dadurch entfällt eine sonst notwendige starre Konstruktion und der Turm kann als preiswerter flexibler Schlauch (Skizzen 2.1 bis 2.4) mit großer Höhe ausgebildet werden0 Da im Turm des Aufwindkraftwerkes stets ein Unterdruck gegenüber dler Atmosphäre herrscht, muß der Schlauch als sogenannter "Saugschlauch" ausgebildet werden. Hierzu sind verschiedene Varianten möglich.Therefore a tower is proposed here, characterized in that that its weight is carried by a tethered balloon or by buoyancy gas chambers, which are in the tower jacket are incorporated, is carried upwards. This eliminates one otherwise necessary rigid construction and the tower can be more flexible than cheaper Hose (sketches 2.1 to 2.4) with a great height 0 Since in the tower of the There must always be a negative pressure in relation to the atmosphere in the updraft power plant the hose can be designed as a so-called "suction hose". There are various options for this Variants possible.

h Skizze 2.1 werden einzelne zylindrische Ringe (Torus ) übereinander angeordnet und miteinander zu dem Turmschlauch verbunden. Das Ringinnere wird mit Gas ( Helium ) gefüllt und damit der Ring selbst zum Auf triebskörperO Entsprechend Skizze 2.2 werden die Ringe durch zwei Turmschläuche mit Zwischenstegen ersetzt. Entsprechend Skizze 2.3 lassen sich auch einzelne Hohlwülste auf die Schlauchfolie des Turmes aufschweißen oder aufkleben. Hier können die Wülste mit Gas gefüllt werden, wobei die Dichte des Gases im Mittel auch wieder leichter als die Luft der Atmosphäre sein muß. Wählt man die Versteifung des Turmschlauches in Form von Ringen oder einer Schraubenfeder wie bei "Feuerwehr-Saugschläuchen" (Skizze 2.4 , so muß der gesamte Auftrieb für den Turm von dem ringförmigen Fesselballon entsprechend Skizze 1.1 oder einem üblichen Fesselballon entsprechend Skizze 1.2 aufgebracht werden.h sketch 2.1, individual cylindrical rings (torus) are placed on top of each other arranged and connected to one another to form the tower hose. The inside of the ring is with Gas (helium) filled and thus the ring itself becomes the buoyant body In sketch 2.2 the rings are replaced by two tower hoses with intermediate bars. According to sketch 2.3, individual hollow beads can also be placed on the tubular film of the tower weld or glue on. Here the beads can with Gas are filled, the density of the gas on average also being lighter than must be the air of the atmosphere. If you choose the stiffening of the tower hose in In the form of rings or a helical spring as in "fire brigade suction hoses" (sketch 2.4, all of the buoyancy for the tower must come from the ring-shaped tethered balloon according to sketch 1.1 or a conventional tethered balloon according to sketch 1.2 be applied.

Damit das Aufwindkraftwerk nicht nur von der Sonne nenergie aufgewärmte Luft verarbeiten kann, sondern auch Windenergie, ist der Fesselballon so angeordnet, daß er das obere Schlauchende des Turmes wie eine Windhutze ausformt und stets in die Lee-Richtung zum Wind dreht (Skizze 1.1. und 1 2 )o Das Unterdruckfeld hinter dem oberen Schlauchende induziert einen Aufwind im Turm, dessen Energie von der Turbine verarbeitet wird.So that the updraft power plant was not only warmed up by the sun's energy Can process air, but also wind energy, the tethered balloon is arranged so that it forms the upper end of the tube of the tower like a scoop and is always in the leeward direction to the wind turns (sketch 1.1. and 1 2) o The negative pressure field behind the upper end of the hose induces an updraft in the tower, the energy of which is derived from the Turbine is processed.

Entsprechend der Stärke des Windes kann die Höhe des Turmes auch reduziert werden, so daß der Turm nicht für Orkane dimensioniert werden muß. Gerade bei sehr hohen Türmen spielt dieser Punkt eine große Rolle, da bei 500 bis 1000 m hohen Türmen die Gefahr einer Zerstörung bei zu starkem Wind recht groß ist. Außerdem muß während eines Sturmes auch bei festen Türmen die Turbine abgeschaltet werden, da sie sonst überlastet wird. Eine Reduzierung der Betriebsdauer ergibt sich deshalb bei den Schlauchtürmen gegenüber festen Türmen nicht.Depending on the strength of the wind, the height of the tower can also be reduced so that the tower does not have to be dimensioned for hurricanes. Especially with very high towers, this point plays an important role, as with 500 to 1000 m high towers the risk of destruction if the wind is too strong is quite high. Also must during In the event of a storm, the turbine must be switched off even in the case of fixed towers, otherwise it would is overloaded. A reduction in the operating time therefore results in the No hose towers compared to fixed towers.

Am äußeren Rand des Vordaches, dort wo die Luft unter das Vordach strömt, sollen Leitvorrichtungen angeordnet werden, die den einströmenden Wind in Drehung versetzen ( Skizze 3 ) und damit verhindern, daß der Wind quer durch das Vordach weht und die aufgewärmte Luft nutzlos vergeudet wird. Dem einströmenden drallbehafteten Wind kann in der Turbine Energie entnommen werden. Er verstärkt den Aufwind im Turm.At the outer edge of the canopy, where the air is under the canopy flows, guiding devices should be arranged to keep the incoming wind in Shift the rotation (sketch 3) and thus prevent the wind from crossing the The canopy blows and the heated air is uselessly wasted. The incoming Swirling wind can extract energy from the turbine. He strengthens the updraft in the tower.

Nach dem gleichen Prinzip soll auch das Vordach des Aufwindkraftwerkes durch gasgefüllte Folienschläuche (Skizze 4.1 und 4.2 ) oder durch eine gasgefüllte Doppelfolie (Skizze 4.3 ) getragen werden. Damit entfallen die aufwendigen Stützkonstruktionen, da die Halteseile nur Zugkräfte aufzunehmen brauchen können sie sehr geringe Querschnitte erhalten, Die Momente aus der horizontalen Belastung wie Druckdifferenzen, Schnee und Regen nehmen die Schläuche auf, so daß hier überhaupt keine zusätzliche Versteifung notwendig ist. Da aufgrund der Strömungsverhältnisse unter dem Vordach ein geringerer Druck als in der Atmoshäre herrscht, müssen die Schläuche nicht nur das Gewicht des Vordaches tragen, sondern auch noch den verminderten Auftrieb ausgleichen. Dies bereitet jedoch keine Schwierigkeiten. Dieses Prinzip eignet sich auch für selbstttragende Hallen, Gewächshäuser, Montage-,Messe-, Reit-, Tennis-und andere Sporthallen.The canopy of the updraft power plant should also follow the same principle by gas-filled foil tubes (sketch 4.1 and 4.2) or by a gas-filled one Double foil (sketch 4.3) can be worn. This eliminates the need for complex support structures, since the holding ropes only need to absorb tensile forces, they can have very small cross-sections get the Moments from the horizontal load such as pressure differences, Snow and rain take on the hoses, so no additional ones at all Stiffening is necessary. Because of the flow conditions under the canopy The hoses don't just have to have a lower pressure than the atmosphere carry the weight of the canopy, but also compensate for the reduced lift. However, this does not cause any difficulties. This principle is also suitable for self-supporting halls, greenhouses, assembly, exhibition, equestrian, tennis and others Sports halls.

Der Gasverlust durch Diffusion durch die Folie muß beim Turm und Vordach ständig ausgeglichen werden. Er ist jedoch gering. Derartige Leichtbauwerke lassen sich leicht montieren und demontieren. Sollen sie längere Zeit nicht genutzt werden, so kann man das Gas ablassen. Das Bauwerk legt sich dann auf den Boden. Zur Wiederverwendung ist es lediglich erneut aufzublasen.The gas loss by diffusion through the foil must be in the case of the tower and canopy be constantly balanced. However, it is minor. Let such lightweight structures easy to assemble and disassemble. Should they not be used for a long time, so you can let off the gas. The structure then lies on the ground. For reuse it is simply inflated again.

Claims (5)

Patentansprüche: C 4u)Dvindkraftwerk dadurch gekennzeichnet, daß der Turm durch Schlauchfolie gebildet wird, die durch feste oder aufblasbare ringartige Kammern zum "Saugschlauch" versteift wird. Claims: C 4u) Dvind power plant, characterized in that the tower is formed by tubular film, which is by fixed or inflatable ring-like Chambers to the "suction hose" is stiffened. 2. 2. Aufwindkraftwerk und Anspruch 1 dadurch gekennzeichnet, daß die ringförmigen Kammern auch als Auftriebskörper in die Turmschlauchfolie eingearbeitet sind oder daß der Auftriebkörper als separater Fesselballon am oberen Ende des Turmes schwebt. Wind power plant and claim 1, characterized in that the ring-shaped Chambers are also incorporated into the tubular tower film as floats or that the buoyancy body floats as a separate tethered balloon at the top of the tower. 3. 3. Aufwindkraftwerk nach Anspruch 1 und 2 dadurch gekenneS2ichnet, daß die Fesselung des Turmes an den Erdboden so erfolgt, daß sich das obere Ende des Turmes nach de m P rinzip der Windhutze stets so verformt und in die Windrichtung einstellt, daß am oberen Turmende durch den vorbeistreichenden Wind ein Unterdruckfeld hervorgerufen wird. Upwind power plant according to Claims 1 and 2, characterized in that the pegging of the tower to the ground takes place in such a way that the upper end of the Tower according to the principle of the scoop always deformed and in the direction of the wind sets that at the upper end of the tower by the passing wind a negative pressure field is caused. 4.4th Aufwindkraftwerk nach Anspruch 1 bis 3 dadurch gekennzeichnet, daß am Eintritt der Luft unter das Vordach Leitschaufeln angeordnet werden, die der einströmenden Luft einen Drall aufzwingen.Chimney power plant according to Claims 1 to 3, characterized in that at the inlet of the air under the canopy guide vanes are arranged, which the force a swirl on the incoming air. 5.5. Aufwindkraftwerk nach Anspruch 1 bis 4 dadurch gekennzeichnet, daß für das Vordach eine schwebende gasgefüllte Schlauch- oder Doppelfolienkonstruktion verwendet wird, die mit Halteseilen am Boden befestigt ist. Diese Vordachkonstruktion kann auch für andere Hallenkonstruktionen Verwendung finden.Chimney power plant according to Claims 1 to 4, characterized in that for the canopy a floating gas-filled tube or double film construction is used, which is attached to the floor with tethers. This canopy construction can also be used for other hall constructions.
DE19803006702 1980-02-20 1980-02-20 Up-draft power plant using flexible tubular tower - supported by balloon or buoyancy chambers and having guide vanes at base to deflect entering air into turbine Withdrawn DE3006702A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19803006702 DE3006702A1 (en) 1980-02-20 1980-02-20 Up-draft power plant using flexible tubular tower - supported by balloon or buoyancy chambers and having guide vanes at base to deflect entering air into turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19803006702 DE3006702A1 (en) 1980-02-20 1980-02-20 Up-draft power plant using flexible tubular tower - supported by balloon or buoyancy chambers and having guide vanes at base to deflect entering air into turbine

Publications (1)

Publication Number Publication Date
DE3006702A1 true DE3006702A1 (en) 1981-09-10

Family

ID=6095334

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19803006702 Withdrawn DE3006702A1 (en) 1980-02-20 1980-02-20 Up-draft power plant using flexible tubular tower - supported by balloon or buoyancy chambers and having guide vanes at base to deflect entering air into turbine

Country Status (1)

Country Link
DE (1) DE3006702A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4129762A1 (en) * 1991-09-04 1993-03-18 Juergen Schatz Fluid or gas pump - uses wind or solar energy to form structured spiral streams to lift the water and gas
NL9301310A (en) * 1993-07-26 1995-02-16 Frank Hoos Arrangement for generating energy
DE29600325U1 (en) * 1996-01-10 1996-02-29 Wietrzichowski Arnold Prof Dip Wind power station
DE29715254U1 (en) * 1997-08-25 1997-10-23 Wietrzichowski Arnold Dipl Ing Wind power station
WO2004085846A1 (en) * 2003-03-27 2004-10-07 Christos Papageorgiou Floating solar chimney
ITPO20080013A1 (en) * 2008-10-16 2010-04-17 Giuseppe Guanci SYSTEM FOR THE PRODUCTION OF ENERGY FROM RENEWABLE SOURCES
CN113463782A (en) * 2020-03-30 2021-10-01 江苏金风科技有限公司 Turbulent flow block and vortex-induced vibration suppression device
RU2809809C1 (en) * 2023-06-26 2023-12-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет" ФГБОУ ВО "СибГИУ" Mounted motorized chimney

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4129762A1 (en) * 1991-09-04 1993-03-18 Juergen Schatz Fluid or gas pump - uses wind or solar energy to form structured spiral streams to lift the water and gas
NL9301310A (en) * 1993-07-26 1995-02-16 Frank Hoos Arrangement for generating energy
DE29600325U1 (en) * 1996-01-10 1996-02-29 Wietrzichowski Arnold Prof Dip Wind power station
DE29715254U1 (en) * 1997-08-25 1997-10-23 Wietrzichowski Arnold Dipl Ing Wind power station
WO2004085846A1 (en) * 2003-03-27 2004-10-07 Christos Papageorgiou Floating solar chimney
CN100374717C (en) * 2003-03-27 2008-03-12 赫里斯托斯·帕帕耶奥尔尤 Floating solar chimney
US7735483B2 (en) 2003-03-27 2010-06-15 Christos Papageorgiou Floating solar chimney
ITPO20080013A1 (en) * 2008-10-16 2010-04-17 Giuseppe Guanci SYSTEM FOR THE PRODUCTION OF ENERGY FROM RENEWABLE SOURCES
CN113463782A (en) * 2020-03-30 2021-10-01 江苏金风科技有限公司 Turbulent flow block and vortex-induced vibration suppression device
CN113463782B (en) * 2020-03-30 2022-07-12 江苏金风科技有限公司 Turbulent flow block and vortex-induced vibration suppression device
RU2809809C1 (en) * 2023-06-26 2023-12-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет" ФГБОУ ВО "СибГИУ" Mounted motorized chimney

Similar Documents

Publication Publication Date Title
DE202010016013U1 (en) Wind direction-independent wind turbine with vertical rotor, multi-row inlet design and droplet-shaped profiled rotor blades
DE19831492C2 (en) Wind power station
DE3006702A1 (en) Up-draft power plant using flexible tubular tower - supported by balloon or buoyancy chambers and having guide vanes at base to deflect entering air into turbine
US4010580A (en) Tubular structure
DE102006048965A1 (en) Parabolic reflector for use in solar-thermal power plant, has portion of balloon with metallized material on its inner side and formed in exertion condition as parabolic-shape, and another portion of balloon permeable to sunlight
US4326363A (en) Waisted envelope for tubular building structures
DE3409977A1 (en) Solar seawater desalting plant
DE19621514A1 (en) Vertical chimney tube in cased tapering shape
DE102010052947B4 (en) Wind direction-independent wind turbine with vertical rotor, multi-row inlet surface construction and drop-shaped profiled rotor blades
DE10156184A1 (en) Buoyant solar cell system has anchor plane and cell modules provided above water and pontoon arms with propellers, which turn solar cell system with sun
DE3918764A1 (en) Updraught tower with inflatable sections of conical surface - is supported by wind and hot air allowed to escape through vents in top of structure
DE3049791A1 (en) Funnel fit assembly to above wind turbine - allows turbine to be driVen by horizontal wind current
DE19919142C2 (en) umbrella
DE3920186A1 (en) Solar radiation collector mirror is inflated balloon - with one half transparent, for light, cheap easily transported structure
DE112017004377T5 (en) Wind turbine installation
DE3425852A1 (en) Floating, wind-powered system for sea-air humidification
DE102022101578B3 (en) air treatment system
DE2711261A1 (en) High rise building of modular design - has solar energy collectors supplying heat to operate generating plant
DE2154967C2 (en) Cooling tower reinforcement structure - of lightweight construction
DE3922846A1 (en) Self-stabilising chimney structure - is made from open-ended hollow cylinders joined end to end and supported by tubular balloons
DE2748645A1 (en) Floating mirror construction for concentrating sunlight - uses enclosing surface of body filled with buoyant gas
DE19611475A1 (en) Heat-insulating foil with air bubbles
DE102007053439A1 (en) Power producing device e.g. wind or hydroelectric power plant, for use in e.g. roof of multistory building, has conversion mechanism for conversion and transformation of power, which is in form, of turbulence into another form of power
DE3637831A1 (en) Wind power station
DD146480A1 (en) COMBINED WIND POWER PLANT

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee