DE2645555A1 - Sintered ceramic electrical insulators - made from inexpensive mixt. of natural olivine and alumina-silica clay and having magnesium-ferro-cordierite crystal phase - Google Patents

Sintered ceramic electrical insulators - made from inexpensive mixt. of natural olivine and alumina-silica clay and having magnesium-ferro-cordierite crystal phase

Info

Publication number
DE2645555A1
DE2645555A1 DE19762645555 DE2645555A DE2645555A1 DE 2645555 A1 DE2645555 A1 DE 2645555A1 DE 19762645555 DE19762645555 DE 19762645555 DE 2645555 A DE2645555 A DE 2645555A DE 2645555 A1 DE2645555 A1 DE 2645555A1
Authority
DE
Germany
Prior art keywords
sintered body
feo
olivine
ceramic sintered
mixt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19762645555
Other languages
German (de)
Other versions
DE2645555C3 (en
DE2645555B2 (en
Inventor
Christoph Von Hoesslin
Andreas Dipl Chem Dr Sarkany
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stettner and Co
Original Assignee
Stettner and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stettner and Co filed Critical Stettner and Co
Priority to DE19762645555 priority Critical patent/DE2645555C3/en
Publication of DE2645555A1 publication Critical patent/DE2645555A1/en
Publication of DE2645555B2 publication Critical patent/DE2645555B2/en
Application granted granted Critical
Publication of DE2645555C3 publication Critical patent/DE2645555C3/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/20Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Sintered ceramic mouldings, esp. insulators for the electric industry are based on olivine, and with compsn. by wt. after sintering:- 10-30% MgO+FeO, 15-40% Al2O3, 40-65% SiO2, 3-7% FeO; and the crystal phase obtd. is magnesium-ferro-cordierite. The FeO is pref. present at 5%, and the wt. ratio MgO:FeO pref. 90:10. The moulding may also contain =4% alkali oxides, esp. K2O. In the pref. mfr., a mixt. of olivine plus natural alumina-silica cpds., esp. clay or kaolin is moulded, dried and sintered at 1100-1280 degrees C. The mixt. may also contain feldspar, porcelain flour, mullite, sillimanite, chamotte and/or steatite. An abundant, naturally-occurring, and inexpensive material, viz. olivine, is used with natural clays to obtain insulators with good mechanical strength, high insulation resistance and high resistance to thermal shock.

Description

Keramischer Sinterkörper und Verfahren zum Herstellen Ceramic sintered body and method of manufacturing

Die Erfindung betrifft einen keramischen Sinterkörper, insbesondere einen keramischen Isolator für die Elektrotechnik, auf der Basis des Minerals Olivin. Die Erfindung betrifft weiterhin ein Verfahren zum Herstellen eines derartigen keramischen Sinterkörpers.The invention relates to a ceramic sintered body, in particular a ceramic insulator for electrical engineering, based on the mineral olivine. The invention further relates to a method for producing such a ceramic Sintered body.

Es ist bereits bekannt (M.E. Tyrrell, G.V. Gibbs und H.R. Shell, Bulletin 594, Bureau of Mines, 1961), dass aus der Schmelzphase kristallisierter synthetischer Cordierit (2 MgO . 2 Al 203 5 5 SiO2) zusammen mit 10 % Ton zu keramischen Isolatoren verarbeitet werden kann, die gute dielektrische Werte, sehr gute Temperatunwechselbeständigkeit sowie eine Biegefestigkeit aufweisen, die zwischen der des Porzellans und der des Steatits liegt. Die Herstellung von synthetischem Cordierit aus der Schmelzphase ist jedoch verhältnismässig aufwendig, so dass derartige Isolatoren keine wirtschaftliche Bedeutung erlangen konnten.It is already known (M.E. Tyrrell, G.V. Gibbs and H.R. Shell, Bulletin 594, Bureau of Mines, 1961) that synthetic crystallized from the melt phase Cordierite (2 MgO. 2 Al 203 5 5 SiO2) together with 10% clay to make ceramic insulators can be processed, the good dielectric values, very good temperature change resistance and have a flexural strength between that of the Porcelain and that of steatite. The production of synthetic cordierite from the However, the melting phase is relatively expensive, so that such insulators could not attain any economic importance.

Der Erfindung liegt nun die Aufgabe zugrunde, einen keramischen Sinterkörper zu schaffen, der eine gute mechanische Festigkeit, Temperaturwechsel beständigkeit sowie einen hohen Isolationswiderstand aufweist und aus reichlich vorkommenden und daher preiswerten natürlichen Rohstoffen in einfacher Weise hergestellt werden kann.The invention is now based on the object of a ceramic sintered body to create good mechanical strength, thermal shock resistance and has a high insulation resistance and is made up of abundant and therefore inexpensive natural raw materials can be produced in a simple manner.

Gelöst wird diese Aufgabe durch einen keramischen Sinterkörper, insbesondere keramischen Isolator für die Elektrotechnik, auf der Basis des Minerals Olivin, der erfindungsgemäss dadurch gekennzeichnet ist, dass er im gesinterten Zustand die folgende Zusammensetzung in Gewichtsprozent aufweist: MgO + FeO = 10-30% Al203 = 15-40% SiO2 = 40-65 % wobei der FeO-Gehalt 3-7 Gew.% beträgt, und der infolge der Sinterung Magnesio-Ferro-Co rdierit als wesentliche K ristallphase enthält.This problem is solved by a ceramic sintered body, in particular ceramic insulator for electrical engineering, based on the mineral olivine, which is characterized according to the invention in that it is in the sintered state has the following composition in percent by weight: MgO + FeO = 10-30% Al 2 O 3 = 15-40% SiO2 = 40-65% where the FeO content is 3-7% by weight, and as a result the sintering contains Magnesio-Ferro-Co rdierite as an essential crystal phase.

Der keramische Sinterkörper nach der Erfindung zeichnet sich durch geringe Wärmedehnung und gute Temperaturwechselbeständigkeit aus und ist lichtbogenfest. Er besitzt einen hohen Isolationswiderstand sowie gute mechanische Festigkeit und kann daher vorteilhaft als Isolator in der Elektrotechnik eingesetzt werden. Zur Herstellung der keramischen Sinterkörper nach der Erfindung wird als Ausgangsrohstoff das reichlich in der Natur vorkommende Mineral Olivin verwendet.The ceramic sintered body according to the invention is characterized by low thermal expansion and good thermal shock resistance and is arc-proof. It has a high insulation resistance as well as good mechanical strength and can therefore be used advantageously as an insulator in electrical engineering. To the Production of the ceramic sintered body according to the invention is used as the starting raw material uses the abundant naturally occurring mineral olivine.

Zur Erzielung der gewünschten Zusammensetzung werden dem Olivin zusätzlich in der Natur vorkommende Tonerde-Kieselsäure-Verbindungen, insbesondere Aluminiumsilikat, zugesetzt. Die im Sinterkörper nach der Erfindung vorhandenen Magnesio-Ferro-Cordierit-Mischkristalle stellen die eigenschaftsbestimmenden Hauptbestandteile des Sinterkörpers dar. Begrenzt man das Eisenoxyd, das das Magnesiumoxyd im Cordieritkristall zu ersetzen vermag, auf 5 % des Gesamtgewichtes oder auf 25 % der zweifach positiv geladenen Ionen, dann weist der Sinterkörper besonders vorteilhafte mechanische und elektrische Festigkeitseigenschaften auf. Vorzugsweise beträgt das Gewichtsverhältnis von MgO zu FeO etwa 90 : 10.To achieve the desired composition, the olivine is added naturally occurring alumina-silica compounds, especially aluminum silicate, added. The magnesio-ferro-cordierite mixed crystals present in the sintered body according to the invention represent the main properties-determining components of the sintered body. Limited the iron oxide, which can replace the magnesium oxide in the cordierite crystal, to 5% of the total weight or to 25% of the doubly positively charged ions, then the sintered body has particularly advantageous mechanical and electrical strength properties on. Preferably the weight ratio of MgO to FeO is about 90:10.

Der Sinterkörper nach der Erfindung kann gegebenenfalls auch noch bis zu 4 Gew.% Alkalioxyde enthalten, beispielsweise K20, falls bei der Herstellung entsprechende Flussmittel zur Förderung der Sinterung zugesetzt werden.The sintered body according to the invention can optionally also Contain up to 4% by weight of alkali oxides, for example K20, if during manufacture Appropriate flux can be added to promote sintering.

Beim Verfahren zum Herstellen eines keramischen Sinterkörpers nach der Erfindung wird eine sinterfähige Rohmischung bereitet, die als Hauptbestandteil das Mineral Olivin enthält und der mindestens ein zusätzlicher Bestandteil von in der Natur vorkommenden Tonerde-Kieselsäure-Verbindungen in einer zur Erzielung der gewünschten Zusammensetzung des Sinterkörpers erforderlichen Menge zugesetzt wird. Aus der Rohmischung wird dann ein Formkörper geformt, der nach dem Trocken zu einem Sinterkörper gebrannt wird. Die Sintertemperatur beträgt dabei 1100 bis 1280°C. Aufgrund dieses verhältnismässig breiten Sinterbereiches bereitet die Sinterung keinerlei Schwierigkeiten. Vorzugsweise verwendet man als Rohmischung Olivin und Ton und/oder Kaolin. Der Rohmischung kann gegebenenfalls eine geringe Menge von die Sinterung fördernden Zuschlagstoffen (Flussmitteln) zugesetzt werden. Als Zuschlagstoffe eignen sich Feldspat und/oder Porzellanmehl.In the method for producing a ceramic sintered body according to According to the invention, a sinterable raw mixture is prepared, which is the main component the mineral contains olivine and the at least one additional component of in naturally occurring alumina-silica compounds in one to achieve the desired composition of the sintered body required amount is added. A shaped body is then formed from the raw mixture which, after drying, becomes a Sintered body is fired. The sintering temperature is 1100 to 1280 ° C. Because of this relatively wide sintering area, the sintering is ready no difficulties whatsoever. The raw mixture used is preferably olivine and Clay and / or kaolin. The raw mixture can optionally contain a small amount of aggregates promoting sintering (Fluxes) added will. Feldspar and / or porcelain flour are suitable as additives.

Gegebenenfalls kann ein Teil des erforderlichen Aluminiumsilikats in Form von Mullit, Sillimanit oder Schamotte zugeführt werden. Der Rohmischung kann gegebenenfalls auch zusätzlich noch Speckstein zugesetzt werden.If necessary, some of the aluminum silicate required in the form of mullite, sillimanite or chamotte. The raw mix If necessary, soapstone can also be added.

In den nachstehenden Tabellen sind die Zusammensetzung sowie technische Daten von Sinterkörpern gemäss Ausführungsbeispielen der Erfindung angeführt. Die Sinterkörper wurden folgendermassen hergestellt: Fein vermahlenem Olivin wurde die zur Erzielung der gewünschten Zusammensetzung des Sinterkörpers erforderliche Menge Aluminiumsilikat in Form von Ton oder Kaolin zugesetzt. Das Gemisch wurde dann homogenisiert, durch Zusatz von Wasser plastifiziert und zu Formkörpern verformt. Die Formkörper wurden getrocknet und anschliessend bei einer Temperatur im Bereich von 1100 bis 12800C gesintert. Aus den Tabellen ist ersichtlich, dass die mit Hilfe eines unkomplizierten Sinterverfahrens aus leicht zugänglichen Rohstoffen hergestellten Sinterkörper nach der Erfindung hervorragende mechanische und elektrische Eigenschaften aufweisen und daher vorteilhaft als el ektrokeramische Isolatoren eingesetzt werden können.In the tables below are the composition as well as technical Data of sintered bodies according to exemplary embodiments of the invention are given. the Sintered bodies were produced as follows: Finely ground olivine was the amount required to achieve the desired composition of the sintered body Aluminum silicate added in the form of clay or kaolin. The mixture was then homogenized, Plasticized by the addition of water and shaped into molded bodies. The moldings were dried and then at a temperature in the range from 1100 to 12800C sintered. From the tables it can be seen that with the help of an uncomplicated Sintered bodies produced from easily accessible raw materials of the invention have excellent mechanical and electrical properties and can therefore be used advantageously as electroceramic insulators.

TABELLE I Beispiel SiO2 (Gew.%) Al203 FeO MgO 1 59 % 25,1 % 3,2 % 12,7 % 2 59 % 23,1 % 3,2 % 14,7 % 3 56,8 % 22,9 % 3,78 % 16,5 % 4 60 % 25,8 % 2,9 % 11,3 % 5 60 % 28 % 2 % 10% 6 46 % 27,6 % 4,6 % 21,8 % 7 59,5 % 21,4 % 4,8 % 14,3 % 8 48,5 % 30 % 2,2 % 19,3 % TABELLE II Beispiel 1 2 3 4 5 6 7 8 Porosität in 1-3 2-5 1-1,5 0,1-0,5 0,5-1 5-10 1-2 0,5-1 Biegefestig- 2 70- 70- 70- 100- 100- 70- 80- 100-keit in N/mm 80 90 90 120 160 80 90 110 Längenausdehnungskoeffizient 1,8- 1,8- 1,5- 2,1- 2,2- 2,2- 2,3- 2-x10-6 be8i 3 3,2 2,8 3,4 3,8 3 3,1 2,9 +20°..+600°C in grad-1 Temp.-Wech- 400°- 380°- 400°- 250°- 380° 360°- 400° sel beständig- 5000 4000 4500 3000 3000 4500 430° 4200 keit in °C Spez . Durchgengswiderstand bei 800° 106- 106- 106- 106- 106- 106- 106- 106-C und Wech- 107 107 107 107 107 107 107 107 selstrom #cm TABLE I Example SiO2 (wt.%) Al203 FeO MgO 1 59% 25.1% 3.2% 12.7% 2 59% 23.1% 3.2% 14.7% 3 56.8% 22.9% 3.78% 16.5% 4 60% 25.8% 2.9 % 11.3% 5 60% 28% 2% 10% 6 46% 27.6% 4.6% 21.8% 7 59.5% 21.4% 4.8% 14.3 % 8 48.5% 30% 2.2% 19.3% TABLE II Example 1 2 3 4 5 6 7 8 Porosity in 1-3 2-5 1-1.5 0.1-0.5 0.5-1 5-10 1-2 0.5-1 Flexural strength- 2 70- 70- 70- 100- 100- 70- 80- 100-speed in N / mm 80 90 90 120 160 80 90 110 coefficient of linear expansion 1.8- 1.8- 1.5- 2.1- 2.2- 2.2- 2.3- 2-x10-6 be8i 3 3.2 2.8 3.4 3.8 3 3.1 2.9 + 20 ° .. + 600 ° C in degree-1 temp. change 400 ° - 380 ° - 400 ° - 250 ° - 380 ° 360 ° - 400 ° sel resistant- 5000 4000 4500 3000 3000 4500 430 ° 4200 speed in ° C Spec. Sag resistance at 800 ° 106- 106- 106- 106- 106- 106- 106- 106-C and Wech- 107 107 107 107 107 107 107 107 selstrom #cm

Claims (12)

PATENTANSPRÜCHE 1. Keramischer Sinterkörper, insbesondere keramischer Isolator für die Elektrotechnik, auf der Basis des Minerals Olivin, dadurch gekennzeichnet, dass er im gesinterten Zustand die folgende Zusammensetzu ng in Gewichtsprozent aufweist: MgO + FeO = 10-30 % Al2O3 = 15-40 % SiO2 = 40-65 % wobei der FeO-Gehalt 3-7 % beträgt, und dass er Magnesio-Ferro-Cordierit als wesentliche, aus der Sinterung resultierende Kristallphase enthält. PATENT CLAIMS 1. Ceramic sintered body, especially ceramic Insulator for electrical engineering, based on the mineral olivine, characterized in that it has the following composition in percent by weight in the sintered state has: MgO + FeO = 10-30% Al2O3 = 15-40% SiO2 = 40-65% where the FeO content 3-7%, and that he is Magnesio-Ferro-Cordierite as essential, from sintering resulting crystal phase contains. 2. Keramischer Sinterkörper nach Anspruch 1, gekennzeichnet durch einen FeO-Gehalt von höchstens 5 Gew.%.2. Ceramic sintered body according to claim 1, characterized by an FeO content of at most 5% by weight. 3. Keramischer Sinterkörper nach Anspruch 1, dadurch gekennzeichnet, dass das Gewichtsverhältnis von MgO zu FeO etwa 90 : 10 beträgt.3. Ceramic sintered body according to claim 1, characterized in that that the weight ratio of MgO to FeO is about 90:10. 4. Keramischer Sinterkörper nach einem der Ansprüche 1-3, dadurch gekennzeichnet, dass er gegebenenfalls bis zu 4 Gew. % Alkalioxyde enthält.4. Ceramic sintered body according to one of claims 1-3, characterized characterized in that it optionally contains up to 4% by weight of alkali oxides. 5. Keramischer Sinterkörper nach Anspruch 4, dadurch gekennzeichnet, dass die Alkalioxyde in Form von K20 vorhanden sind.5. Ceramic sintered body according to claim 4, characterized in that that the alkali oxides are present in the form of K20. 6. Verfahren zum Herstellen eines keramischen Sinterkörpers nach einem der Ansprüche 1-3, dadurch gekennzeichnet, dass eine sinterfähige Rohmischung bereitet wird, die als Hauptbestandteil das Mineral Olivin enthält und der mindestens ein zusätzlicher Bestandteil in Form von in der Natur vorkommenden Tonerde-Kieselsäure-Verbindungen in einer zur Erzielung der gewünschten Zusammensetzung des Sinterkörpers erforderlichen Menge zugesetzt wird, die Rohmischung zu einem Formkörper verformt, der Formkörper getrocknet und dann gesintert wird.6. A method for producing a ceramic sintered body according to a of claims 1-3, characterized in that a sinterable raw mixture is prepared which contains the mineral olivine as its main component and which contains at least one additional component in the form of naturally occurring alumina-silica compounds in a required to achieve the desired composition of the sintered body Amount is added, the raw mixture is formed into a shaped body, the shaped body dried and then sintered. 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der getrocknete Formkörper bei einer Temperatur von 1100 bis 12800C gE-sintert wird.7. The method according to claim 6, characterized in that the dried Molded body is gE-sintered at a temperature of 1100 to 12800C. 8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass in der Rohmischung neben Olivin als zusätzlicher Bestandteil Ton und/oder Kaolin vorgesehen wird.8. The method according to claim 6 or 7, characterized in that in the raw mixture, in addition to olivine, clay and / or kaolin are an additional component is provided. 9. Verfahren nach einem der Ansprüche 6-8, dadurch gekennzeichnet, dass der Rohmischung geringe Mengen von das Zusammensintern fördernden Zuschlagstoffen zugesetzt werden.9. The method according to any one of claims 6-8, characterized in, that the raw mix contains small amounts of aggregates that promote sintering can be added. 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass als Zuschlagstoffe Feldspat und/oder Porzellanmehl verwendet werden.10. The method according to claim 9, characterized in that as aggregates Feldspar and / or porcelain flour can be used. 11. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass ein Teil des zusätzlichen Bestandteils der Rohmischung in Form von Mullit, Sillimanit oder Schamotte zugeführt wird.11. The method according to claim 8, characterized in that a part the additional component of the raw mix in the form of mullite, sillimanite or Chamotte is fed. 12 Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der Rohmischung gegebenenfalls zusätzlich Speckstein zugesetzt wird.12 The method according to claim 6, characterized in that the raw mixture if necessary, soapstone is also added.
DE19762645555 1976-10-08 1976-10-08 Ceramic sintered body and method of manufacturing Expired DE2645555C3 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19762645555 DE2645555C3 (en) 1976-10-08 1976-10-08 Ceramic sintered body and method of manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19762645555 DE2645555C3 (en) 1976-10-08 1976-10-08 Ceramic sintered body and method of manufacturing

Publications (3)

Publication Number Publication Date
DE2645555A1 true DE2645555A1 (en) 1978-04-13
DE2645555B2 DE2645555B2 (en) 1979-07-12
DE2645555C3 DE2645555C3 (en) 1980-03-20

Family

ID=5990048

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19762645555 Expired DE2645555C3 (en) 1976-10-08 1976-10-08 Ceramic sintered body and method of manufacturing

Country Status (1)

Country Link
DE (1) DE2645555C3 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4234380A (en) * 1977-07-08 1980-11-18 Advanced Mineral Research Ab Polymeric silicate material and a method of manufacturing the same
EP0037868A1 (en) * 1980-04-02 1981-10-21 Ngk Insulators, Ltd. Method of producing low-expansion ceramic materials
CN112441824A (en) * 2020-12-11 2021-03-05 湖南兴诚电瓷电器有限公司 Low-temperature-resistant high-voltage power transmission porcelain insulator and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4234380A (en) * 1977-07-08 1980-11-18 Advanced Mineral Research Ab Polymeric silicate material and a method of manufacturing the same
EP0037868A1 (en) * 1980-04-02 1981-10-21 Ngk Insulators, Ltd. Method of producing low-expansion ceramic materials
CN112441824A (en) * 2020-12-11 2021-03-05 湖南兴诚电瓷电器有限公司 Low-temperature-resistant high-voltage power transmission porcelain insulator and preparation method thereof
CN112441824B (en) * 2020-12-11 2021-06-29 湖南兴诚电瓷电器有限公司 Low-temperature-resistant high-voltage power transmission porcelain insulator and preparation method thereof

Also Published As

Publication number Publication date
DE2645555C3 (en) 1980-03-20
DE2645555B2 (en) 1979-07-12

Similar Documents

Publication Publication Date Title
DE1471161B2 (en) METHOD FOR MANUFACTURING A CERAMIC MATERIAL
DE4021288A1 (en) METHOD FOR PRODUCING A SILICALLY BONDED MATERIAL
DE2932914C2 (en) High-strength alumina porcelain for electrical insulators
DE3431951C2 (en)
DE2645555A1 (en) Sintered ceramic electrical insulators - made from inexpensive mixt. of natural olivine and alumina-silica clay and having magnesium-ferro-cordierite crystal phase
EP0600378B1 (en) Porcelain, its composition and process for its manufacture
DE2363790A1 (en) METHOD FOR PRODUCING AN ELECTRICALLY INSULATING EMBODIMENT
DE716928C (en) Ceramic insulating bodies mainly containing soapstone or talc
DE3341524A1 (en) FIRE-RESISTANT MOLDED BODY FROM PARTLY STABILIZED ZIRCONIUM DIOXIDE
DE2554969A1 (en) GLAZED, NON-POROUS CERAMIC SINTER BODY HIGH MECHANICAL STRENGTH WITH STEATITANALOG ELECTRICAL INSULATION PROPERTIES
DE2646430C2 (en) Process for the manufacture of fired refractory magnesia bricks
DE3347250C2 (en) Basic, refractory bricks or masses based on mixtures of olivine-magnesia and / or magnesium-aluminum-spinel, their manufacture and use
DE890922C (en) Process for the production of non-porous ceramic objects, in particular spark plug insulators
DE2601446C2 (en) Process for the production of fired refractory moldings
DE880110C (en) Porous ceramic insulating body, especially for high-frequency technology
DE3633816A1 (en) Refractory composition
DE4206800A1 (en) HEAT INSULATION MATERIAL
DE749563C (en) Low-loss porous ceramic insulating body with a low dielectric constant
DE1646770C3 (en) Porcelain for electrical insulators
DE2453486A1 (en) LEAD-FREE ENAMEL GLAZING
DE1471161C (en) Process for the production of a ceramic material
DE1156011B (en) Mixture for the production of heat-resistant insulating bodies
DE1471261C (en) Process for producing crystalline sintered glass ceramic bodies from a mixture of aluminum silicate powder and crystalline inorganic compounds
AT266679B (en) Process for the production of porous, ceramic, heat-insulating molded parts with good electrical insulating properties
DE740401C (en) Ceramic mass from Serizit

Legal Events

Date Code Title Description
OAP Request for examination filed
OD Request for examination
C3 Grant after two publication steps (3rd publication)
8339 Ceased/non-payment of the annual fee