DE212018000194U1 - Zustandsüberwachungsvorrichtung einer elektrischen Maschine - Google Patents

Zustandsüberwachungsvorrichtung einer elektrischen Maschine Download PDF

Info

Publication number
DE212018000194U1
DE212018000194U1 DE212018000194.4U DE212018000194U DE212018000194U1 DE 212018000194 U1 DE212018000194 U1 DE 212018000194U1 DE 212018000194 U DE212018000194 U DE 212018000194U DE 212018000194 U1 DE212018000194 U1 DE 212018000194U1
Authority
DE
Germany
Prior art keywords
monitoring device
condition monitoring
sensor
sensors
electrical machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE212018000194.4U
Other languages
English (en)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Schweiz AG
Original Assignee
ABB Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Schweiz AG filed Critical ABB Schweiz AG
Publication of DE212018000194U1 publication Critical patent/DE212018000194U1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0297Reconfiguration of monitoring system, e.g. use of virtual sensors; change monitoring method as a response to monitoring results
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C23/00Non-electrical signal transmission systems, e.g. optical systems
    • G08C23/02Non-electrical signal transmission systems, e.g. optical systems using infrasonic, sonic or ultrasonic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/86Performing a diagnostic of the sensing device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/88Providing power supply at the sub-station
    • H04Q2209/883Providing power supply at the sub-station where the sensing device enters an active or inactive mode

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Telephone Function (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

Zustandsüberwachungsvorrichtung einer elektrischen Maschine zum Kommunizieren eines Zustands der elektrischen Maschine mit einer tragbaren Vorrichtung, wobei die Zustandsüberwachungsvorrichtung an einem Körper der elektrischen Maschine angebracht ist und die tragbare Vorrichtung sich in der Nähe der elektrischen Maschine befindet, wobei die Zustandsüberwachungsvorrichtung umfasst:a. eine Vielzahl von Sensoren zum Messen elektrischer und mechanischer Parameter der elektrischen Maschine;b. einen oder mehrere Prozessoren, die dazu konfiguriert sind, Messungen von der Vielzahl von Sensoren zu empfangen und den Zustand der elektrischen Maschine basierend auf den empfangenen Messungen zu bestimmen; undc. eine Netzwerkschnittstelle zum Übermitteln des Zustands der elektrischen Maschine an die tragbare Vorrichtung; undwobeimindestens ein Sensor aus der Vielzahl von Sensoren dazu konfiguriert ist, unabhängig von einem Betriebszustand der Zustandsüberwachungsvorrichtung aktiv zu sein, und wobei der mindestens eine Sensor ferner dazu konfiguriert ist, einen mechanischen Parameter der tragbaren Vorrichtung zu messen; undder eine oder die mehreren Prozessoren dazu konfiguriert sind, Messungen des mechanischen Parameters von dem mindestens einen Sensor zu empfangen und basierend auf den empfangenen Messungen zu bewirken, dass ein oder mehrere andere Sensoren aus der Vielzahl von Sensoren aktiv werden, um den Betriebszustand der Zustandsüberwachungsvorrichtung zu ändern.

Description

  • Technisches Gebiet
  • Der vorliegende Gegenstand bezieht sich im Allgemeinen auf einen Überwachungszustand elektrischer Maschinen, die in industriellen Systemen verwendet werden, und insbesondere auf das Ändern eines Betriebszustands einer Zustandsüberwachungsvorrichtung einer elektrischen Maschine.
  • Hintergrund
  • Ein industrielles System kann verwendet werden, um eine oder mehrere in einer Industrieanlage ausgeführte Aufgaben zu überwachen und zu steuern. Verschiedene Industrien, wie die Automobilindustrie, die metallurgische Industrie, die chemische Industrie, die petrochemische Industrie und die Energieerzeugungsindustrie, können industrielle Systeme verwenden, um die menschliche Überwachung zu reduzieren. Eine oder mehrere elektrische Maschinen können in den industriellen Systemen verwendet werden. Beispielsweise kann ein Elektromotor in einem industriellen System verwendet werden, um eine Pumpe zum Zuführen von Wasser zu einem Kessel in einem thermischen Kraftwerk zu betreiben.
  • In industriellen Systemen kann der Zustand der elektrischen Maschinen unter Verwendung von Zustandsüberwachungsvorrichtungen überwacht werden. Eine Zustandsüberwachungsvorrichtung weist einen oder mehrere Sensoren auf, die einen oder mehrere Parameter in Bezug auf die Funktion einer elektrischen Maschine messen. Diese Parameter können mit einer tragbaren Vorrichtung zur weiteren Verarbeitung geteilt werden. Um die verschiedenen Sensoren, Prozessoren und anderen elektronischen Bauteile der Zustandsüberwachungsvorrichtung zu betreiben, kann eine Batterie in der Zustandsüberwachungsvorrichtung als eine Stromquelle bereitgestellt sein.
  • Die Zustandsüberwachungsvorrichtung kann am Herstellungsort an der elektrischen Maschine angebracht werden. Um jedoch die Batterielebensdauer während des Transports zwischen dem Herstellungsort und dem Installationsort zu schonen, könnte die Schaltung innerhalb der Zustandsüberwachungsvorrichtung in den Schlafmodus versetzt werden. In diesem Modus nimmt die Schaltung etwa ein Drittel der Leistung im Vergleich zu einem aktiven Modus oder Einschaltmodus auf. Außerdem könnte der Transport vom Herstellungszum Installationsort einen Luftweg einschließen und behördliche Anforderungen können vorschreiben, dass die Zustandsüberwachungsvorrichtung auf Flügen nicht eingeschaltet sein darf. In einem solchen Szenario hilft der Schlafmodus, die Wahrscheinlichkeit zu reduzieren, dass die Zustandsüberwachungsvorrichtung das Kommunikations- und Navigationssystem des Flugzeugs stört. Ferner muss der Betriebszustand der Zustandsüberwachungsvorrichtung möglicherweise auch nach der Inbetriebnahme basierend auf den Betriebsbedingungen zwischen dem Schlafmodus und dem aktiven Modus umgeschaltet werden.
  • Üblicherweise ist zum Umschalten der Zustandsüberwachungsvorrichtung zwischen dem Schlafmodus und dem aktiven Modus ein physischer Schalter/Druckknopf an der Zustandsüberwachungsvorrichtung bereitgestellt. Durch Umlegen des Schalters wird die Zustandsüberwachungsvorrichtung aus dem Schlafmodus in den aktiven Modus geschaltet. Jedoch unterliegen solche Schalter und Knöpfe häufig einer Abnutzung und können manchmal nicht richtig funktionieren. Außerdem können solche Schalter und Knopf während des Betriebs der elektrischen Maschine versehentlich gedrückt werden und können eine Störung der Zustandsüberwachung hervorrufen. Ferner können solche Schalter und Knöpfe den Eindringschutz der Zustandsüberwachungsvorrichtung verringern, wenn sie nicht richtig konstruiert und zusammengebaut sind.
  • Figurenliste
  • Die Merkmale, Gesichtspunkte und Vorteile des vorliegenden Gegenstands werden mit Bezug auf die folgende Beschreibung und die beigefügten Figuren besser verständlich. Die Verwendung der gleichen Bezugsziffern in unterschiedlichen Figuren weist auf ähnliche oder identische Merkmale und Bestandteile hin.
    • 1 veranschaulicht ein industrielles System, das eine Zustandsüberwachungsvorrichtung zum Kommunizieren eines Zustands einer elektrischen Maschine mit einer tragbaren Vorrichtung gemäß Implementierungen des vorliegenden Gegenstands zeigt.
    • 2 veranschaulicht ein Blockdiagramm, das eine Zustandsüberwachungsvorrichtung gemäß Implementierungen des vorliegenden Gegenstands zeigt.
    • 3 veranschaulicht ein Verfahren zum Ändern eines Betriebszustandes einer Zustandsüberwachungsvorrichtung einer elektrischen Maschine gemäß Implementierungen des vorliegenden Gegenstands.
  • Ausführliche Beschreibung
  • Der vorliegende Gegenstand bezieht sich auf die Überwachung des Zustands einer elektrischen Maschine in einem industriellen System. Mit den Systemen und Verfahren des vorliegenden Gegenstands kann ein Betriebszustand einer Zustandsüberwachungsvorrichtung einer elektrischen Maschine basierend auf Daten, die drahtlos durch die Zustandsüberwachungsvorrichtung gemessen werden, geändert werden. Dadurch entfällt die Notwendigkeit eines physischen Druckknopfs. Außerdem trägt es dazu bei, die Sicherheit der Zustandsüberwachungsvorrichtung zu erhöhen, wenn sie sich während des Transports der elektrischen Maschine im Schlafmodus befindet.
  • In einer Implementierung des vorliegenden Gegenstands wird eine Zustandsüberwachungsvorrichtung einer elektrischen Maschine bereitgestellt, um einen Zustand der elektrischen Maschine mit einer tragbaren Vorrichtung zu kommunizieren. Die Zustandsüberwachungsvorrichtung ist an einem Körper der elektrischen Maschine angebracht. Die Zustandsüberwachungsvorrichtung weist eine Vielzahl von Sensoren zum Messen elektrischer und mechanischer Parameter der elektrischen Maschine und einen oder mehrere Prozessoren zum Empfangen von Messungen von der Vielzahl von Sensoren und Bestimmen des Zustands der elektrischen Maschine basierend auf den empfangenen Messungen auf. Die Zustandsüberwachungsvorrichtung weist außerdem eine Netzwerkschnittstelle zum Übermitteln des Zustands der elektrischen Maschine an die tragbare Vorrichtung auf.
  • Ferner ist mindestens ein Sensor aus der Vielzahl von Sensoren so konfiguriert, dass er unabhängig von einem Betriebszustand der Zustandsüberwachungsvorrichtung aktiv ist. Der mindestens eine Sensor ist ferner dazu konfiguriert, einen mechanischen Parameter der tragbaren Vorrichtung zu messen, und der eine oder die mehreren Prozessoren sind dazu konfiguriert, Messungen des mechanischen Parameters von dem mindestens einen Sensor zu empfangen und basierend auf den empfangenen Messungen zu bewirken, dass ein oder mehrere andere Sensoren aus der Vielzahl von Sensoren aktiv werden. Somit kann der Betriebszustand der Zustandsüberwachungsvorrichtung basierend auf der Messung eines mechanischen Parameters der tragbaren Vorrichtung anstelle der Verwendung eines physischen Druckknopfs oder eines anderen derartigen Mechanismus sicher geändert werden.
  • Die vorstehenden und andere Merkmale, Gesichtspunkte und Vorteile des Gegenstands werden mit Bezug auf die folgende Beschreibung, die beiliegenden Ansprüche und die beigefügten Figuren besser erläutert.
  • 1 veranschaulicht ein industrielles System 100, das eine Zustandsüberwachungsvorrichtung 102 zum Kommunizieren eines Zustands einer elektrischen Maschine 106 mit einer tragbaren Vorrichtung 104 gemäß einer Implementierung des vorliegenden Gegenstands zeigt.
  • Die Zustandsüberwachungsvorrichtung 102 kann als eine Rechenvorrichtung implementiert sein, die eine Vielzahl von Sensoren, einen oder mehrere Prozessoren, Speicher, Netzwerkschnittstellen und dergleichen umfasst. Die tragbare Vorrichtung 104 kann beispielsweise ein Smartphone, ein persönlicher digitaler Assistent (PDA), ein Laptop, ein Tablet-Computer oder dergleichen sein. Die elektrische Maschine 106 kann beispielsweise ein Motor, ein Generator und dergleichen sein.
  • In einer Implementierung ist die Zustandsüberwachungsvorrichtung 102 an einem Körper der elektrischen Maschine 106 angebracht, um einen Zustand der elektrischen Maschine 106 mit der tragbaren Vorrichtung 104 zu kommunizieren. Solch eine Kommunikation kann durchgeführt werden, wenn sich die tragbare Vorrichtung 104 in der Nähe der elektrischen Maschine 106 befindet. Der Zustand der elektrischen Maschine 106 kann Werte verschiedener Parameter aufweisen, die überwacht und zur Steuerung von Vorgängen der elektrischen Maschine verwendet werden, wie unter anderem Strom, Spannung, Leistung, Magnetfeld, Vibration, Temperatur und akustische Geräusche um die elektrische Maschine herum.
  • Anfänglich kann sich die Zustandsüberwachungsvorrichtung 102 in einem ersten Betriebszustand befinden und muss möglicherweise in einen zweiten Betriebszustand geschaltet werden. Beispielsweise kann vor Inbetriebnahme der elektrischen Maschine 106 der Betriebszustand der Zustandsüberwachungsvorrichtung 102 auf einen Zustand niedriger Leistung eingestellt werden, der auch als Schlafmodus bezeichnet wird. Das Versetzen der Zustandsüberwachungsvorrichtung 102 in den Schlafmodus hilft beim Reduzieren des Batterieverbrauchs während des Transports und hilft, die behördlichen Anforderungen während des Flugverkehrs zu erfüllen. Um den Betriebszustand der Zustandsüberwachungsvorrichtung 102 zu ändern, kann ein mechanischer oder elektrischer Parameter durch die Zustandsüberwachungsvorrichtung 102 gemessen werden. In einem Beispiel kann sich zum Messen des mechanischen oder elektrischen Parameters mindestens ein Sensor der Zustandsüberwachungsvorrichtung 102 in einem Dauereinschaltmodus befinden, d. h., er kann unabhängig von dem Betriebszustand der Zustandsüberwachungsvorrichtung 102 aktiv sein.
  • Der mechanische Parameter kann beispielsweise ein Vibrationssignal oder ein akustisches Signal sein, das von der tragbaren Vorrichtung 104 erzeugt wird, wenn sie sich in der Nähe der Zustandsüberwachungsvorrichtung 102 befindet. In einem Beispiel kann die tragbare Vorrichtung 104 ein Vibrationssignal oder ein akustisches Signal erzeugen, das unter Verwendung der Signalamplitude und -frequenz auf Bits abgebildet werden kann. Beispielsweise kann ein Smartphone eine Abfolge von schwachen und starken Vibrationen erzeugen, die dann auf Bits, Morsecode oder andere Codierschemata abgebildet werden können, um ein Muster zu erzeugen, das dann durch den mindestens einen Sensor gemessen wird. Informationen können unter Verwendung einer Vielzahl bekannter Schemata in den mechanischen Parameter codiert werden. Dies wird nachstehend anhand mehrerer Beispiele näher veranschaulicht.
  • In einem Beispiel wird ein Amplitudenumtastungsschema von der tragbaren Vorrichtung 104 zum Codieren von Informationen in den mechanischen Parameter verwendet. Beispielsweise verwendet das Mobiltelefon Vibrationen mit kleiner Amplitude bei einer gegebenen Frequenz, um 0 zu codieren, und Vibrationen mit großer Amplitude, um 1 zu codieren. In ähnlicher Weise kann in einem anderen Beispiel ein Frequenzumtastungsschema von der tragbaren Vorrichtung 104 zum Codieren von Informationen in den mechanischen Parameter verwendet werden. Beispielsweise kann eine bestimmte Frequenz auf 0 abgebildet werden und eine andere vorher festgelegte Frequenz kann auf 1 abgebildet werden. Der Fachmann kann feststellen, dass, obwohl zwei solcher Codierschemata veranschaulicht wurden, andere auf dem Fachgebiet wohl bekannte Techniken ebenfalls verwendet werden können.
  • Somit können Techniken in bestehenden Kommunikationsprotokollen wie die Verwendung spezifischer Strukturen für die Nachrichten (z. B. Präambel, Nutzinformationen und zyklische Redundanzüberprüfung) und Verschlüsselung der Nutzinformationen zur Übertragung der Daten von der tragbaren Vorrichtung 104 an die Zustandsüberwachungsvorrichtung 102 verwendet werden.
  • In einem Beispiel kann die Messung mechanischer Parameter auch eingebettete Daten aufweisen, die von der Zustandsüberwachungsvorrichtung 102 verwendet werden können, um zu bestimmen, dass ihr Betriebszustand zu ändern ist, und dementsprechend kann der Betriebszustand in einen oder mehrere aktive Betriebsmodi geändert werden. Die eingebetteten Daten bei der Messung mechanischer Parameter können auch Daten für erhöhte Sicherheit, wie Daten zur Authentifizierung der tragbaren Vorrichtung 104, Authentifizierung der Zustandsüberwachungsvorrichtung 102, Authentifizierung des Orts der tragbaren Vorrichtung 104, Authentifizierung des Bedieners und dergleichen, aufweisen.
  • Implementierungen zum Ändern eines Betriebszustands der Zustandsüberwachungsvorrichtung werden unter Bezugnahme auf 2, die ein Beispielblockdiagramm einer Zustandsüberwachungsvorrichtung veranschaulicht, weiter beschrieben. Obwohl Beispiele in Bezug auf eine Änderung des Betriebszustands von einem Schlafmodus in einen aktiven Modus beschrieben wurden, wird verständlich sein, dass der vorliegende Gegenstand verwendet werden kann, um den Betriebszustand zwischen einem beliebigen ersten Zustand und einem beliebigen zweiten Zustand zu ändern.
  • Wie in 2 gezeigt, weist eine Beispiel-Zustandsüberwachungsvorrichtung 102 eine Energiequelle 202, eine Vielzahl von Sensoren 204-1, 204-2, 204-3 ... 204-n, die zusammen als Sensoren 204 bezeichnet werden, einen oder mehrere Prozessoren 206 und eine Netzwerkschnittstelle 208 auf.
  • In einem Beispiel kann die Energiequelle 202 Batterien aufweisen. In einem anderen Beispiel kann die Zustandsüberwachungsvorrichtung 102 auch durch eine externe Stromversorgung mit Strom versorgt werden. Die Sensoren 204 können verwendet werden, um verschiedene Parameter, einschließlich elektrischer und mechanischer Parameter, der elektrischen Maschine 106 zu messen. Beispielsweise können die Sensoren 204 einen oder mehrere von einem Magnetfeldsensor, einem Vibrationssensor, einem akustischen Sensor und einem Temperatursensor aufweisen. Der Magnetfeldsensor kann ein Magnetfeld messen. In ähnlicher Weise kann der Vibrationssensor Vibrationsmuster messen; der akustische Sensor kann akustische Signale messen; und der Temperatursensor kann eine Temperatur in seiner Umgebung messen. Die gemessenen Parameter können diejenigen der elektrischen Maschine 106 und/oder der tragbaren Vorrichtung 104 sein.
  • Der eine oder die mehreren Prozessoren 206, nachstehend als Prozessoren 206 bezeichnet, sind dazu konfiguriert, eine oder mehrere Messungen der Parameter der elektrischen Maschine 106 von den Sensoren 204 zu empfangen. Basierend auf den empfangenen Messungen können die Prozessoren 206 den Zustand der elektrischen Maschine 106 bestimmen. Ferner ist die Netzwerkschnittstelle 208 dazu konfiguriert, den Zustand der elektrischen Maschine 106 an die tragbare Vorrichtung 104 zu übermitteln.
  • Anfänglich kann sich die Zustandsüberwachungsvorrichtung 102 in einem ersten Betriebszustand befinden. In einem Beispiel kann der erste Betriebszustand ein Modus mit niedriger Leistung, wie ein Schlafmodus, sein. Um ein Umschalten der Zustandsüberwachungsvorrichtung 102 in einen zweiten Betriebszustand zu ermöglichen, kann ein erster Sensor der Sensoren 204, wie Sensor 204-1, ein Sensor mit niedriger Leistung sein, der unabhängig von dem Betriebszustand der Zustandsüberwachungsvorrichtung 102 immer eingeschaltet und aktiv sein kann.
  • Der Sensor 204-1 kann beispielsweise ein Vibrationssensor oder ein akustischer Sensor sein, und dementsprechend kann der mechanische Parameter, der durch den Sensor 204-1 gemessen wird, ein Vibrationsmuster oder ein akustisches Muster sein. Beispielsweise kann der Vibrationssensor ein Beschleunigungsmesser sein, der eingeschaltet bleibt und kontinuierlich Vibrationsmuster um die Zustandsüberwachungsvorrichtung 102 herum überwacht. Bei Messung eines Vibrationswerts über einem vorher festgelegten Schwellenwert ist der Beschleunigungsmesser dazu konfiguriert, ein Signal, das Vibrationsmustermessungen umfasst, an einen Prozessor der Prozessoren 206 zu senden. Der Prozessor kann das Signal verarbeiten, um zu bestimmen, ob die eingebetteten Daten in dem Signal einem Signal entsprechen, um den Betriebszustand der Zustandsüberwachungsvorrichtung 102 umzuschalten, und kann den Betriebszustand der Zustandsüberwachungsvorrichtung 102 basierend auf der Verarbeitung ändern. Es versteht sich, dass das Signal, das dem hierin erwähnten mechanischen Parameter entspricht, von der tragbaren Vorrichtung 104 erzeugt werden kann, indem eine oder mehrere der Amplitude, Frequenz und Dauer des mechanischen Parameters variiert werden.
  • In einem Beispiel kann, um sicherzustellen, dass der Betriebszustand nicht aufgrund von Geräuschen oder anderen unbeabsichtigten Signalen geändert wird, der Sensor 204-1 dazu konfiguriert sein, das Signal an den Prozessor zu senden, wenn der gemessene mechanische Parameter innerhalb eines spezifizierten Wertebereichs, wie eines von niedrigem g zu hohem g reichenden Bereichs (wobei g die Erdbeschleunigung ist), liegt oder einem bestimmten Muster folgt. Somit wird die Zustandsüberwachungsvorrichtung 102 nicht durch irgendeinen Fall oder unbeabsichtigten Sturz während des Transports aktiviert.
  • In einem Beispiel kann, um ferner sicherzustellen, dass die Zustandsüberwachungsvorrichtung 102 nicht unbeabsichtigt aus dem Schlafmodus aktiviert wird, der Sensor 204-1 dazu konfiguriert sein, den mechanischen Parameter zu messen, wenn sich die Zustandsüberwachungsvorrichtung 102 in einer vordefinierten Ausrichtung, wie einer horizontalen Ausrichtung, befindet. Die Wahrscheinlichkeit, dass sich die Zustandsüberwachungsvorrichtung 102 in vertikaler Ausrichtung befindet, ist während des Transports und Betriebs hoch. Jedoch kann sie vor der Installation zu ihrer Aktivierung in einer horizontalen Ausrichtung platziert werden. Die Ausrichtung kann durch einen zweiten Sensor der Sensoren 204 erfasst werden.
  • Somit werden zufällige Vibrationen oder akustische Signale den Sensor 204-1 beispielsweise während des Transports nicht auslösen. Außerdem trägt das Messen des mechanischen Parameters, wenn sich die Zustandsüberwachungsvorrichtung 102 in einer vordefinierten Ausrichtung befindet, zur weiteren Energieeinsparung bei, da weniger Energie zum Überprüfen der Ausrichtung eines Sensors benötigt wird als zum Messen eines Vibrationsmusters.
  • In einem Beispiel kann, wenn der erste Sensor 204-1 ein Beschleunigungsmesser ist, der erste Sensor 204-1 auch als der zweite Sensor zur Erfassung der Ausrichtung der Zustandsüberwachungsvorrichtung 102 fungieren und kann mit der Messung des mechanischen Parameters beginnen, wenn die Ausrichtung horizontal ist. In einem anderen Beispiel kann, wenn der erste Sensor 204-1 ein akustischer Sensor ist, ein zweiter Sensor 204-2, wie ein Beschleunigungsmesser, kontinuierlich die Ausrichtung der Zustandsüberwachungsvorrichtung 102 überwachen und kann bewirken, dass der erste Sensor 204-1 bei der Platzierung der Zustandsüberwachungsvorrichtung 102 in einer horizontalen Ausrichtung akustische Signale misst.
  • Zum Ändern des Betriebszustands wird die tragbare Vorrichtung 104 in die Nähe oder in Kontakt mit der Zustandsüberwachungsvorrichtung 102 gebracht und wird dazu gebracht, den mechanischen Parameter in einem bestimmten Muster zu erzeugen. Das bestimmte Muster fungiert als eingebettete Daten, um zu verifizieren, ob der Betriebszustand der Zustandsüberwachungsvorrichtung 102 zu ändern ist.
  • Beim Erfassen, dass der mechanische Parameterwert über einem vorher festgelegten Schwellenwert liegt, misst der erste Sensor 204-1 den mechanischen Parameter beispielsweise für einen vorher festgelegten Zeitraum und überträgt den gemessenen mechanischen Parameter an den Prozessor 206. Der Prozessor 206 verifiziert das bestimmte Muster in dem gemessenen mechanischen Parameter und weckt basierend auf dem Verifizierungsergebnis einen oder mehrere andere Prozessoren und Sensoren, wodurch andere Betriebsfunktionen aktiviert werden.
  • In einem Beispiel wird die Messung mechanischer Parameter auch verwendet, um zusätzliche Authentifizierungsschritte durchzuführen, wie Benutzerauthentifizierung oder Ortsverifizierung, bevor andere Betriebsfunktionen der Zustandsüberwachungsvorrichtung 102 aktiviert werden. Dementsprechend sind die Prozessoren 206 dazu konfiguriert, die von der Zustandsüberwachungsvorrichtung 102 aufgenommene Leistung basierend auf der Authentifizierung schrittweise zu erhöhen, um den Betriebszustand der Zustandsüberwachungsvorrichtung in unterschiedliche aktive Modi zu ändern.
  • Beispielsweise kann der Betriebszustand der Zustandsüberwachungsvorrichtung 102 von dem Schlafmodus in einen ersten aktiven Modus geändert werden, wenn gemessen wird, dass der mechanische Parameter über dem Schwellenwert liegt. Nach Durchführung eines ersten Authentifizierungsschritts kann der Betriebszustand in einen zweiten aktiven Modus geändert werden, in dem zusätzliche Daten authentifiziert werden. Die unterschiedlichen aktiven Modi können unterschiedlichen Abtastfrequenzen entsprechen, mit denen der mechanische Parameter gemessen wird. Somit kann mit der Durchführung jedes Authentifizierungsschritts eine höhere Abtastfrequenz zum Aktivieren weiterer Sensoren und Betriebsfunktionen der Zustandsüberwachungsvorrichtung 102 verwendet werden, wodurch die Leistungsaufnahme schrittweise ansteigt.
  • Zum Extrahieren von Authentifizierungsdaten kann das mechanische Parametersignal zuerst an der Zustandsüberwachungsvorrichtung 102 in eine Bit-Folge umgewandelt werden. Ein Bit-Muster, das den Daten entspricht, kann dann in der Bit-Folge identifiziert werden. Der Start des Bit-Musters kann unter Verwendung einer vordefinierten Bit-Folge angezeigt werden, die als Präambel bezeichnet wird. Diese Präambel umfasst eine bestimmte Sequenz von Bits, die in der Bit-Folge gefunden werden kann.
  • In einem Beispiel kann die Präambel als eine bestimmte Bit-Folge identifiziert werden, wie beispielsweise „001 001 001“, die in der Zustandsüberwachungsvorrichtung 102 gespeichert ist. Nach dem Identifizieren der Präambel kann die Zustandsüberwachungsvorrichtung 102 eine vorher festgelegte Anzahl von Bits messen. Die vorher festgelegte Anzahl kann auch in der Zustandsüberwachungsvorrichtung 102 gespeichert werden. Beispielsweise kann die vorher festgelegte Anzahl 1000 Bits betragen. Somit identifiziert bei der Messung des mechanischen Parameters die Zustandsüberwachungsvorrichtung 102 die Präambei „00 001 001“ in der Bit-Folge des gemessenen mechanischen Parameters, um den Start des Bit-Musters zu identifizieren. Danach erfasst die Zustandsüberwachungsvorrichtung 102 die Anzahl von Bits in der Bit-Folge nach der Präambel, um das Ende des Bit-Musters zu identifizieren, und decodiert die Daten entsprechend.
  • In einer Implementierung wird anstelle der Anzahl von Bits das Ende des Bit-Musters basierend auf einem in der Zustandsüberwachungsvorrichtung 102 eingeschlossenen Timer identifiziert. Somit kann die Zustandsüberwachungsvorrichtung 102 den Start des Bit-Musters identifizieren und fortfahren, das Bit-Muster für einen vorher festgelegte Zeitraum oder eine bestimmte Anzahl von Impulsen aufzuzeichnen.
  • Die so durch die Messung mechanischer Parameter empfangenen Daten können verwendet werden, um Authentifizierungsschritte durchzuführen, bevor der Betriebszustand der Zustandsüberwachungsvorrichtung 102 geändert wird. In einem Beispiel können Authentifizierungsdaten auf dem mindestens einen Sensor gespeichert werden, die später mit den durch die Messung mechanischer Parameter empfangenen Daten verglichen werden.
  • Außerdem können Zertifikat, Verschlüsselungsschlüssel und sicherheitsrelevante Informationen anderer Art in den Speicher der Zustandsüberwachungsvorrichtung 102 geladen werden, um zusätzliche Sicherheitsmaßnahmen zu ermöglichen, bevor der Betriebszustand der Zustandsüberwachungsvorrichtung 102 geändert wird.
  • In einem Beispiel kann ein Authentifizierungsschritt Authentifizierungsdaten entsprechen, die in dem mechanischen Parametersignal codiert sind, wobei die Daten aus einem auf der Zustandsüberwachungsvorrichtung 102 installierten QR-Code stammen. In dem Beispiel wird der QR-Code von der tragbaren Vorrichtung 104 abgetastet. In einem anderen Beispiel wird das durch die tragbare Vorrichtung 104 erzeugte mechanische Parametersignal mit Authentifizierungsinformationen codiert, die wiederum der tragbaren Vorrichtung 104 von einem entfernten Server bereitgestellt werden können, der bei dem Hersteller der Zustandsüberwachungsvorrichtung 102 verfügbar ist.
  • In einem Beispiel kann ein Authentifizierungsschritt das Authentifizieren des endgültigen Zielorts der Zustandsüberwachungsvorrichtung 102 basierend auf im Speicher der Zustandsüberwachungsvorrichtung 102 gespeicherten Daten vor dem Versand aufweisen. Während der Inbetriebnahme der Zustandsüberwachungsvorrichtung 102 können die GPS-Koordinaten der tragbaren Vorrichtung 104 in das mechanische Parametersignal eingebettet oder codiert werden. Dementsprechend vergleicht dann die Zustandsüberwachungsvorrichtung 102 diese GPS-Koordinaten mit den Koordinaten des endgültigen Zielorts, die in ihrem Speicher gespeichert sind, um den Ort zu authentifizieren. Dies kann dazu beitragen, zu verhindern, dass die Zustandsüberwachungsvorrichtung 102 während des Transports an einem anderen Ort aktiviert wird.
  • In einem Beispiel kann die tragbare Vorrichtung 104 ein Mobiltelefon sein, das durch den Passcode oder Fingerabdruck des Bedieners entsperrt werden kann. Die Passcodeinformationen werden dann in das mechanische Parametersignal codiert und an die Zustandsüberwachungsvorrichtung 102 übertragen. Dementsprechend nutzt die Zustandsüberwachungsvorrichtung 102 diese Informationen, um zu bestimmen, ob der Bediener autorisiert ist, die Zustandsüberwachungsvorrichtung 102 aus dem Zustand niedriger Leistung zur Inbetriebnahme zu wecken.
  • Somit kann sich die Zustandsüberwachungsvorrichtung 102 in unterschiedlichen Betriebszuständen befinden: einem energiesparenden Schlafmodus niedriger Leistung mit einer langsamen Abtastfrequenz und einem oder mehreren aktiven Modi mit höheren Abtastfrequenzen. Die Zustandsüberwachungsvorrichtung 102 schaltet den Zustand in Abhängigkeit von Zuständen des gemessenen mechanischen Parameters um. Beispielsweise kann für eine Zustandsüberwachungsvorrichtung, die mit einem Beschleunigungsmesser ausgestattet ist, die Ausrichtung der Vorrichtung verwendet werden, um in einen ersten aktiven Zustand zum Messen des mechanischen Parameters mit einer niedrigen Abtastfrequenz umzuschalten. Der Schlafmodus kann somit verwendet werden, um mechanische Parametersignale für eine Zustandsänderung mit minimaler Leistungsaufnahme zu erfassen. Sobald die mechanischen Parametersignale für eine Zustandsänderung unter Verwendung der niedrigen Abtastfrequenz empfangen wurde, ändert die Zustandsüberwachungsvorrichtung 102 ihren internen Zustand und die Frequenz wird erhöht, um mehr Daten zu empfangen, z. B. Daten zum Ändern des Satzes aktivierter Funktionen auf der Zustandsüberwachungsvorrichtung 102 oder neue Parameter zur Aktivierung bestimmter Funktionen, die möglicherweise eine höhere Leistung aufnehmen.
  • In einem Beispiel kehrt bei irgendeinem Schritt, wenn die Authentifizierungsinformationen aus dem gemessenen mechanischen Parameter nicht verfügbar sind oder nicht mit den vorher festgelegten Authentifizierungsinformationen abgeglichen werden, die auf der Zustandsüberwachungsvorrichtung 102 gespeichert sind, die Zustandsüberwachungsvorrichtung 102 in den Schlafmodus oder in einen vorherigen Betriebszustand zurück.
  • 3 veranschaulicht ein beispielhaftes Verfahren zum Ändern eines Betriebszustands einer Zustandsüberwachungsvorrichtung einer elektrischen Maschine, wie einer Zustandsüberwachungsvorrichtung 102 einer elektrischen Maschine 106.
  • Die Reihenfolge, in der das Verfahren 300 beschrieben wird, soll nicht als Einschränkung aufgefasst werden, und eine beliebige Anzahl der beschriebenen Verfahrensblöcke kann in einer beliebigen Reihenfolge kombiniert werden, um das Verfahren 300 oder ein alternatives Verfahren zu implementieren. Außerdem können bestimmte Schritte des Verfahrens 300, wie Schritt 302, weggelassen werden, ohne vom Schutzumfang des vorliegenden Gegenstands abzuweichen. Darüber hinaus kann das Verfahren 300 durch Prozessor(en) oder Rechenvorrichtung(en) durch eine beliebige geeignete Hardware, nicht transitorische maschinenlesbare Anweisungen oder eine Kombination davon implementiert werden. Es versteht sich, dass Schritte des Verfahrens 300 von programmierten Rechenvorrichtungen ausgeführt werden können und basierend auf Anweisungen ausgeführt werden können, die in einem nicht transitorischen computerlesbaren Medium gespeichert sind. Wenngleich das Verfahren 300 in einer Vielzahl von Systemen implementiert sein kann, wird das Verfahren 300 zur Vereinfachung der Erklärung in Bezug auf das industrielle System 100 beschrieben.
  • Wie in Schritt 302 dargestellt, wird eine Ausrichtung der Zustandsüberwachungsvorrichtung bestimmt. Beispielsweise kann ein Beschleunigungsmesser der Zustandsüberwachungsvorrichtung 102 die Ausrichtung der Zustandsüberwachungsvorrichtung 102 bestimmen. Der Beschleunigungsmesser kann unabhängig von einem Betriebszustand der Zustandsüberwachungsvorrichtung 102 aktiv sein und kann somit verwendet werden, um die Zustandsüberwachungsvorrichtung 102 aus einem Schlafmodus oder einem Niedrigleistungszustand zu aktivieren.
  • In Schritt 304 wird basierend auf der Ausrichtung ein mechanischer Parameter der Zustandsüberwachungsvorrichtung gemessen. Beispielsweise wird nur dann, wenn die Ausrichtung horizontal ist, der mechanische Parameter der Zustandsüberwachungsvorrichtung 102 gemessen. Der mechanische Parameter kann zum Beispiel ein Vibrationssignal oder ein akustisches Signal sein und kann zum Beispiel von dem Beschleunigungsmesser oder einem anderen Sensor gemessen werden.
  • In Schritt 306 werden ein oder mehrere der tragbaren Vorrichtung, eines Ortes der tragbaren Vorrichtung und eines Bedieners der tragbaren Vorrichtung basierend auf Authentifizierungsdaten authentifiziert, die in Messungen von mechanischen Parametern eingebettet sind, bevor der Betriebszustand der Zustandsüberwachungsvorrichtung geändert wird. Zum Beispiel kann die Zustandsüberwachungsvorrichtung 102 eingebettete Daten in dem gemessenen mechanischen Parameter identifizieren und die Daten mit vorgespeicherten Daten vergleichen, die in ihrem Speicher gespeichert sind, um eine solche Authentifizierung durchzuführen.
  • In Schritt 308 werden ein oder mehrere Betriebsmerkmale der Zustandsüberwachungsvorrichtung aktiviert, um den Betriebszustand der Zustandsüberwachungsvorrichtung zu ändern. In einem Beispiel kann basierend auf den durchgeführten Authentifizierungsschritten der Betriebszustand der Zustandsüberwachungsvorrichtung progressiv von einem Schlafmodus in einen oder mehrere aktive Modi geändert werden. In einem Beispiel können ein oder mehrere Sensoren aktiviert werden, um die erforderlichen Betriebsmerkmale in dem einen oder den mehreren aktiven Modi zu aktivieren. Der eine oder die mehreren aktiven Modi entsprechen unterschiedlichen Abtastfrequenzen, bei denen der mechanische Parameter gemessen wird, und entsprechen somit auch unterschiedlichen Mengen von verbrauchter Leistung.
  • Somit ermöglicht der vorliegende Gegenstand die Übertragung von Daten an eine Zustandsüberwachungsvorrichtung zur Änderung des Betriebszustands ohne einen physischen Port/Knopf auf sichere Weise. Da es im Vergleich zu Daten, die über drahtlose Kommunikationsprotokolle übertragen werden, schwieriger ist, Daten abzufangen, die als ein mechanischer Parameter gesendet werden, wie Vibrationen, wird die Sicherheit weiter erhöht. Dies ist besonders nützlich während des Sendens von Daten wie Verschlüsselungsschlüsseln oder Inbetriebnahmeinformationen. Außerdem wird die Sicherheit der Zustandsüberwachungsvorrichtung 102 weiter erhöht, indem mehr Authentifizierungsschritte durch sicheren Datenaustausch unter Verwendung von Daten ermöglicht werden, die durch den mechanischen Parameter übertragen werden. Darüber hinaus wird die Leistungsaufnahme auch während der Änderung des Betriebszustands und der Authentifizierung gesteuert, indem die Abtastfrequenz basierend auf den durchgeführten Authentifizierungsschritten schrittweise erhöht wird.
  • Obwohl der vorliegende Gegenstand unter Bezugnahme auf spezifische Ausführungsformen beschrieben wurde, soll diese Beschreibung nicht in einem einschränkenden Sinne aufgefasst werden. Verschiedene Modifikationen der offenbarten Ausführungsformen sowie alternative Ausführungsformen des Gegenstands werden für Fachleute bei Bezugnahme auf die Beschreibung des Gegenstands offensichtlich.

Claims (5)

  1. Zustandsüberwachungsvorrichtung einer elektrischen Maschine zum Kommunizieren eines Zustands der elektrischen Maschine mit einer tragbaren Vorrichtung, wobei die Zustandsüberwachungsvorrichtung an einem Körper der elektrischen Maschine angebracht ist und die tragbare Vorrichtung sich in der Nähe der elektrischen Maschine befindet, wobei die Zustandsüberwachungsvorrichtung umfasst: a. eine Vielzahl von Sensoren zum Messen elektrischer und mechanischer Parameter der elektrischen Maschine; b. einen oder mehrere Prozessoren, die dazu konfiguriert sind, Messungen von der Vielzahl von Sensoren zu empfangen und den Zustand der elektrischen Maschine basierend auf den empfangenen Messungen zu bestimmen; und c. eine Netzwerkschnittstelle zum Übermitteln des Zustands der elektrischen Maschine an die tragbare Vorrichtung; und wobei mindestens ein Sensor aus der Vielzahl von Sensoren dazu konfiguriert ist, unabhängig von einem Betriebszustand der Zustandsüberwachungsvorrichtung aktiv zu sein, und wobei der mindestens eine Sensor ferner dazu konfiguriert ist, einen mechanischen Parameter der tragbaren Vorrichtung zu messen; und der eine oder die mehreren Prozessoren dazu konfiguriert sind, Messungen des mechanischen Parameters von dem mindestens einen Sensor zu empfangen und basierend auf den empfangenen Messungen zu bewirken, dass ein oder mehrere andere Sensoren aus der Vielzahl von Sensoren aktiv werden, um den Betriebszustand der Zustandsüberwachungsvorrichtung zu ändern.
  2. Zustandsüberwachungsvorrichtung nach Anspruch 1, wobei der Betriebszustand der Zustandsüberwachungsvorrichtung einer von einem Schlafmodus und einem oder mehreren aktiven Modi ist, wobei der eine oder die mehreren aktiven Modi unterschiedlichen Abtastfrequenzen entsprechen, mit denen der mechanische Parameter gemessen wird.
  3. Zustandsüberwachungsvorrichtung nach Anspruch 1, wobei der mindestens eine Sensor dazu konfiguriert ist, die Messungen des mechanischen Parameters dem einen oder den mehreren Prozessoren bereitzustellen, wenn die Messungen innerhalb eines vordefinierten Bereichs liegen.
  4. Zustandsüberwachungsvorrichtung nach Anspruch 1, wobei ein zweiter Sensor konfiguriert dazu konfiguriert ist, eine Ausrichtung der Zustandsüberwachungsvorrichtung zu bestimmen, und der mindestens eine Sensor dazu konfiguriert ist, den mechanischen Parameter zu messen, wenn die Ausrichtung einer vordefinierten Ausrichtung entspricht.
  5. Zustandsüberwachungsvorrichtung nach Anspruch 1, wobei der eine oder die mehreren Prozessoren ferner dazu konfiguriert sind, einen oder mehrere der tragbaren Vorrichtung, eines Ortes der tragbaren Vorrichtung und eines Bedieners der tragbaren Vorrichtung basierend auf Authentifizierungsdaten zu authentifizieren, die in Messungen von mechanischen Parametern eingebettet sind, bevor der Betriebszustand der Zustandsüberwachungsvorrichtung geändert wird.
DE212018000194.4U 2017-04-10 2018-03-22 Zustandsüberwachungsvorrichtung einer elektrischen Maschine Active DE212018000194U1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
IN201741012746 2017-04-10
IN201741012746 2017-04-10
IN201741045586 2017-12-19
IN201741045586 2017-12-19
PCT/IB2018/051915 WO2018189602A1 (en) 2017-04-10 2018-03-22 Method for changing an operational state of a condition monitoring device of an electrical machine

Publications (1)

Publication Number Publication Date
DE212018000194U1 true DE212018000194U1 (de) 2019-11-14

Family

ID=61911645

Family Applications (1)

Application Number Title Priority Date Filing Date
DE212018000194.4U Active DE212018000194U1 (de) 2017-04-10 2018-03-22 Zustandsüberwachungsvorrichtung einer elektrischen Maschine

Country Status (3)

Country Link
CN (1) CN211178931U (de)
DE (1) DE212018000194U1 (de)
WO (1) WO2018189602A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021053570A1 (en) * 2019-09-18 2021-03-25 Abb Schweiz Ag A condition monitoring device for monitoring a rotating equipment in an industrial plant
WO2021118908A1 (en) * 2019-12-10 2021-06-17 Barnes Group Inc. Wireless sensor with beacon technology
EP3995843A1 (de) * 2020-11-06 2022-05-11 ABB Schweiz AG Effiziente überwachung des zustands und der arbeitszeiten von intermittierend genutzten anlagen
EP4283428A1 (de) * 2022-05-25 2023-11-29 Abb Schweiz Ag System und verfahren zur überwachung eines produktionsverfahrens

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001013077A1 (de) * 1999-08-13 2001-02-22 Siemens Aktiengesellschaft Verfahren und vorrichtung zur messung von schwingungen eines spannungsführenden bauteils
DE102008014633B4 (de) * 2008-03-17 2010-10-14 Siemens Aktiengesellschaft Verfahren zum Betreiben eines drahtlosen Sensornetzwerks und Sensorknoten
US9921136B2 (en) * 2014-08-05 2018-03-20 01dB-Metravib, Societe Par Actions Simplifee Wireless collection and analysis of machine data
WO2016085623A1 (en) * 2014-11-26 2016-06-02 Aktiebolaget Skf Sensory head with storage and power
DE102015217826A1 (de) * 2015-09-17 2017-03-23 Robert Bosch Gmbh Kommunikationseinrichtung für eine elektrische Werkzeugmaschine, Elektrowerkzeugsystem und Verfahren

Also Published As

Publication number Publication date
CN211178931U (zh) 2020-08-04
WO2018189602A1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
DE212018000194U1 (de) Zustandsüberwachungsvorrichtung einer elektrischen Maschine
DE102017201087B4 (de) Vorrichtung, Schlüsselgegenstelle und Verfahren zum Steuern von Betriebszuständen eines Schlüsselmoduls
CN102561826B (zh) 一种无线云智能锁及其工作方法
WO2010083914A1 (de) Verfahren zum aktivieren eines netzwerkknotens aus einem schlafbetriebsmodus durch verifizierung eines empfangenen geheimen aufweck-tokens
DE102017204903A1 (de) Basisstation zum Maskieren von Schlüsselanhänger-Abfrageanforderungen
JP6486484B2 (ja) 車載制御装置、および車載制御装置の情報更新システム
DE202014011597U1 (de) System zum Erhalten von Fahrzeugtelematikdaten
EP2662840A2 (de) Elektronisches Schlüsselregistrierungssystem
EP2668607A1 (de) Verfahren zur überwachung eines tamperschutzes sowie überwachungssystem für ein feldgerät mit tamperschutz
DE102016207997A1 (de) Sicherer Zugang zu einem Fahrzeug
DE112018004053T5 (de) Steuervorrichtung, Steuerverfahren und Computerprogramm
JP2019071560A (ja) カーシェアリングシステム
EP4014470A1 (de) Sensoreinrichtung zur übertragung einer sensorparametrierung
JP2017179873A (ja) キー位置検出システム
CN113595888A (zh) 信息处理装置以及信息处理方法
JP2019061726A (ja) 情報処理装置及び情報処理方法
DE102017214099A1 (de) Mobiler Identifikationsgeber
DE102020133908A1 (de) Kommunikationsvorrichtung und System
DE102007001030A1 (de) Drahtloses Fahrzeugsteuergerät
CN108886489B (zh) 信息处理装置以及信息处理方法
DE102015221619A1 (de) Verfahren zum Betreiben eines Ladegeräts und Ladegerät
DE102016121432B4 (de) Fahrzeugseitige Vorrichtung, Fahrzeugsperr-/-entsperrsystem, und Verfahren eines Steuerns einer fahrzeugseitigen Vorrichtung
JP2012193571A (ja) 電子キーシステム
DE202019100063U1 (de) Zustandsüberwachungsvorrichtung einer elektrischen Maschine
JP6220176B2 (ja) 車載用通信端末

Legal Events

Date Code Title Description
R207 Utility model specification
R150 Utility model maintained after payment of first maintenance fee after three years
R151 Utility model maintained after payment of second maintenance fee after six years