DE202014105983U1 - Optoelektronischer Sensor - Google Patents

Optoelektronischer Sensor Download PDF

Info

Publication number
DE202014105983U1
DE202014105983U1 DE202014105983.0U DE202014105983U DE202014105983U1 DE 202014105983 U1 DE202014105983 U1 DE 202014105983U1 DE 202014105983 U DE202014105983 U DE 202014105983U DE 202014105983 U1 DE202014105983 U1 DE 202014105983U1
Authority
DE
Germany
Prior art keywords
sensor
mounting plate
shaft
air
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE202014105983.0U
Other languages
English (en)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sick AG
Original Assignee
Sick AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sick AG filed Critical Sick AG
Priority to DE202014105983.0U priority Critical patent/DE202014105983U1/de
Publication of DE202014105983U1 publication Critical patent/DE202014105983U1/de
Expired - Lifetime legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning

Abstract

Optoelektronischer Sensor (S), insbesondere Laserscanner, zum Erfassen eines Objektes, mit zumindest einer Lichtsende-Einheit (1) zum Aussenden eines Lichtstrahls, zumindest einer Lichtempfänger-Einheit (2) zum Empfangen eines remittierten Lichtstrahls, und zumindest einer Auswerteeinheit (3), die den remittierten Lichtstrahl auswertet und mittels einer Befestigungsplatte (B) an einer Welle (W) des Sensors (S) und um die Welle (W) rotierbar angeordnet ist, wobei zumindest ein Luftleitelement (L1, L2) vorgesehen und derart geformt ist, dass bei einer Rotation der Welle (W) des Sensors (S) Luft innerhalb des Sensors (S) durch das zumindest eine Luftleitelement (L1, L2) entlang der Welle (W) des Sensors (S) direkt auf die zumindest eine Auswerteeinheit (3) leitbar ist.

Description

  • Die Erfindung betrifft einen optoelektronischen Sensor zum Erfassen eines Objektes.
  • Für Abstandsmessungen, die einen großen horizontalen Winkelbereich des Messsystems erforderlich machen, eignen sich optoelektronische Sensoren, insbesondere Laserscanner, besonders gut. In einem Laserscanner überstreicht ein von einer Lichtsende-Einheit, in Form eines Lasers, erzeugter Lichtstrahl periodisch einen Überwachungsbereich. Das Licht wird an Objekten in dem Überwachungsbereich remittiert und von einer Lichtempfänger-Einheit empfangen. Das empfangene Licht wird in dem Laserscanner mittels zumindest einer Auswerteeinheit ausgewertet.
  • Aus der Winkelstellung einer Drehwelle des Sensors, an die vorzugsweise die Lichtsende-Einheit, die Lichtempfänger-Einheit und die Auswerteeinheit angebracht sind, wird auf die Winkellage des Objektes und aus der Lichtlaufzeit unter Verwendung der Lichtgeschwindigkeit zusätzlich auf die Entfernung des Objektes von dem Laserscanner geschlossen.
  • Mit den Winkel- und Entfernungsangaben ist ein Objekt in dem Überwachungsbereich erfasst.
  • Durch die steigende Leistungsfähigkeit der Auswerteeinheit und kompakte Bauweise des Sensors ist eine hohe Wärmeentwicklung im Sensor gegeben, die durch passive Kühlung, wie z.B. Wärmepads, nicht zufriedenstellend lösbar ist, so dass eine Einhaltung der zulässigen Betriebstemperatur des Sensors schwierig ist. Die Kühlung des Sensors wird erschwert, wenn die Elektronik an sich im Sensor beweglich vorgesehen ist.
  • Es ist daher eine Aufgabe der Erfindung, einen optoelektronischen Sensor zur Verfügung zu stellen, der eine gezielte Kühlung der wärmeproduzierenden Teile des Sensors ermöglicht.
  • Diese Aufgabe wird erfindungsgemäß gelöst durch einen optoelektronischen Sensor, insbesondere einen Laserscanner, zum Erfassen eines Objektes, mit zumindest einer Lichtsende-Einheit zum Aussenden eines Lichtstrahls, zumindest einer Lichtempfänger-Einheit zum Empfangen eines remittierten Lichtstrahls, und zumindest einer Auswerteeinheit, die den remittierten Lichtstrahl auswertet und mittels einer Befestigungsplatte an einer Welle des Sensors und um die Welle rotierbar angeordnet ist, wobei zumindest ein Luftleitelement vorgesehen und derart geformt ist, dass bei einer Rotation der Welle des Sensors Luft innerhalb des Sensors durch das zumindest eine Luftleitelement entlang der Welle des Sensors direkt auf die zumindest eine Auswerteeinheit leitbar ist.
  • Gemäß einem bevorzugten Ausführungsbeispiel ist die Befestigungsplatte senkrecht zu der Welle des Sensors angeordnet und sind an der Befestigungsplatte die zumindest eine Auswerteeinheit und ein erstes Luftleitelement in Reihe angebracht, so dass Luft mittels des ersten Luftleitelements in Richtung der Befestigungsplatte leitbar ist. Hierdurch können durch die definierte Leitung der Kühlluft auf die besonders wärmeentwickelnden Teile und/oder wärmeempfindlichen Teile des Sensors vorteilhafterweise diese Teile gezielt gekühlt werden.
  • Gemäß einem weiteren bevorzugten Ausführungsbeispiel ist auf einer Seite der Befestigungsplatte die zumindest eine Auswerteeinheit angebracht und ist auf der anderen Seite der Befestigungseinheit zumindest ein zweites Luftleitelement über zumindest einem materialfreien Bereich der Befestigungsplatte vorgesehen, so dass Luft mittel des zweiten Luftleitelements durch den zumindest einen materialfreien Bereich der Befestigungsplatte in Richtung der Welle des Sensors auf die zumindest eine Auswerteeinheit umleitbar ist.
  • Weiterhin besteht gemäß einem bevorzugten Ausführungsbeispiel das erste Luftleitelement aus einem Propeller oder einem Impeller, der eine Mehrzahl von Flügeln aufweist. Vorteilhafterweise sind eine Anzahl von Flügelenden der Flügel um eine Achse, die senkrecht zu der Welle des Sensors ist, gebogen.
  • Gemäß einem weiteren bevorzugten Ausführungsbeispiel weist das zweite Luftleitelement eine dreidimensionale, auf einer Seite offene Rampenform auf, die in einer Drehrichtung der Welle des Sensors zunimmt.
  • Gemäß einem weiteren bevorzugten Ausführungsbeispiel ist der zumindest eine materialfreie Bereich der Befestigungsplatte als Durchbohrung in der Befestigungsplatte ausgebildet.
  • Gemäß einem weiteren bevorzugten Ausführungsbeispiel sind vier Lichtsende-Einheiten, vier Lichtempfänger-Einheiten und vier entsprechend zugeordnete Auswerteeinheiten vorgesehen, und wobei jeweils eine Lichtsende-Einheit, eine Lichtempfänger-Einheit und eine Auswerteeinheit als eine Optikeinheit vorgesehen sind und jede Optikeinheit in jeweils eine Richtung des Sensors ausgerichtet ist.
  • Gemäß einem weiteren bevorzugten Ausführungsbeispiel weist die Befestigungsplatte vier rampenförmige zweite Luftleitelemente auf, die über vier entsprechende materialfreie Bereiche der Befestigungsplatte angeordnet sind, so dass jeder Auswerteeinheit ein rampenförmiges zweites Luftleitelement zugeordnet ist.
  • Bevorzugte Ausgestaltungen und Weiterbildungen sowie weitere Vorteile der Erfindung sind den Unteransprüchen, der nachfolgenden Beschreibung und den Zeichnungen zu entnehmen.
  • Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnung im Einzelnen erläutert. In der Zeichnung zeigen:
  • 1 eine schematische 3D-Darstellung eines bevorzugten Ausführungsbeispiels eines erfindungsgemäßen Sensors;
  • 1a eine schematische 3D-Darstellung eines weiteren bevorzugten Ausführungsbeispiels des erfindungsgemäßen Sensors;
  • 2 eine schematische 3D-Darstellung der erfindungsgemäßen Luftleitelemente;
  • 3 eine schematische 3D-Darstellung eines erfindungsgemäßen ersten Luftleitelements; und
  • 3a eine schematische Seitenansicht des erfindungsgemäßen ersten Luftleitelements.
  • In der 1 ist eine schematische 3D-Darstellung eines bevorzugten Ausführungsbeispiels des erfindungsgemäßen Sensors S gezeigt.
  • Der erfindungsgemäße Sensor S weist einen Antrieb auf, der aus einem Motor M und eine Welle W besteht. An der Welle W ist eine Befestigungsplatte B vorgesehen, die an einem Ende der Welle W und senkrecht zu der Welle W angeordnet ist, so dass, wenn der Sensor S aktiv ist, der Motor M die Welle W antreibt, die die Befestigungsplatte B um eine Drehachse der Welle W rotiert.
  • Vorteilhafterweise ist die Befestigungsplatte B als Platine ausgebildet, so dass elektronische Bauteile an die Befestigungsplatte B angebracht werden können.
  • Zum besseren Verständnis ist in der 1 eine bestückte Platine dargestellt, die an der Befestigungsplatte B angebracht ist, so dass die bestückte Platine mit der Befestigungsplatte B um die Drehachse der Welle W mitrotiert, wobei die Anzahl der bestückten Platinen erfindungsgemäß nicht auf Eins beschränkt ist.
  • Auf der Platine sind eine Lichtsende-Einheit 1 und eine Lichtempfänger-Einheit 2 vorgesehen, so dass die Lichtsende-Einheit 1 und die Lichtempfänger-Einheit 2 ebenfalls um die Drehachse der Welle W rotieren.
  • Bei der Rotation der Welle W sendet die Lichtsende-Einheit 1 einen Lichtstrahl in den Überwachungsbereich und die Lichtempfänger-Einheit 2 empfängt einen an einem Objekt remittierten Lichtstrahl.
  • Eine auf der bestückten Platine vorgesehenen Auswerteeinheit 3 wertet die empfangenen Lichtstrahlen aus und erfasst das Objekt in dem Überwachungsbereich.
  • Hierbei stellt die Auswerteeinheit 3 mit ihrer Leistung eine signifikante Wärmequelle in dem Sensor S dar, die ohne geeignete Abkühlung die Betriebssicherheit des Sensors S gefährdet.
  • Erfindungsgemäß ist zumindest ein Luftleitelement L1 vorgesehen. Bei dem in der 1 dargestellten Ausführungsbeispiel des erfindungsgemäßen Sensors S ist das erste Luftleitelement L1 an dem der Befestigungsplatte B gegenüberliegenden befindlichen Ende der Welle W des Sensors S angeordnet, so dass sich die bestückte Platine mit der Lichtsende-Einheit 1, der Lichtempfänger-Einheit 2 und der Auswerteeinheit 3 zwischen der Befestigungsplatte B und dem ersten Luftleitelement L1 befindet. D.h. die Befestigungsplatte B, insbesondere die Auswerteeinheit 3 und das erste Luftleitelement L1 sind entlang der Welle W des Sensors S in einer Reihe angebracht.
  • Das erste Luftleitelement L1 ist derart geformt, dass bei einer Rotation der Welle W des Sensors S Luft innerhalb des Sensors (S) durch das erste Luftleitelement L1 entlang der Welle W des Sensors S direkt auf die Auswerteeinheit 3 leitbar ist. Hierbei wird die Luft in Richtung der Befestigungsplatte B geleitet, die durch zumindest einen materialfreien Bereich 4 in der Befestigungsplatte B entweicht.
  • Der materialfreie Bereich in der Befestigungsplatte B ist vorzugsweise als Durchbohrung in der Befestigungsplatte B ausgebildet.
  • Vorzugsweise besteht das erste Luftleitelement L1 aus einem Propeller oder Impeller, der eine Mehrzahl von Flügeln F1, F2, vorzugsweise acht, aufweist. Vorteilhafterweise sind eine Anzahl von Flügelenden der Flügel F1 um eine Achse gebogen, die senkrecht zu der Welle W des Sensors S ist. Dadurch wird die Luft gezielt in Richtung der Auswerteeinheit 3 gelenkt.
  • Gemäß einem weiteren bevorzugten, in der 1a dargestellten, Ausführungsbeispiel des erfindungsgemäßen Sensors S ist auf der der bestückten Platine abgewandten Seite der Befestigungsplatte B zumindest ein zweites Luftleitelement L2 vorgesehen, das über dem materialfreien Bereich 4 der Befestigungsplatte B angeordnet ist. Das zweite Luftleitelement L2 weist eine dreidimensionale, auf einer Seite offene Rampenform auf, die in einer Drehrichtung der Welle W des Sensors S zunimmt. D.h. das zweite Luftleitelement L2 hat eine Ähnlichkeit mit einer Pultdachform.
  • Durch die offene Seite des rampenförmigen zweiten Luftleitelements L2 ist die Luft innerhalb des Sensors S auf die bestückte Platine, vor allem aber auf die Auswerteeinheit 3, leitbar, so dass eine gezielte Kühlung der Auswerteeinheit 3 durchgeführt werden kann.
  • Wie in der 2 schematisch dargestellt, bewirkt die bevorzugte Anordnung der ersten und zweiten Luftleitelemente L1, L2 eine definierte und gerichtete Luftströmung der Luft entlang der Welle W des Sensors S während einer Drehung derselben. Hierbei ist die Auswerteeinheit 3 innerhalb dieser Luftströmung angeordnet.
  • Gemäß einer nicht dargestellten Anordnung des erfindungsgemäßen Sensors S sind vier Lichtsende-Einheiten 1, vier Lichtempfänger-Einheiten 2 und vier entsprechend zugeordnete Auswerteeinheiten 3 vorgesehen. Jeweils eine Lichtsende-Einheit 1, eine Lichtempfänger-Einheit 2 und eine Auswerteeinheit 3 bilden hierbei eine Optikeinheit OE des Sensors S, wobei jede Optikeinheit OE des Sensors S in jeweils eine Richtung des Sensors S ausgerichtet ist.
  • Jeweils eine Optikeinheit OE ist zwischen dem ersten und zweiten Luftleitelement L1, L2 an der Befestigungsplatte B angeordnet, so dass jede Optikeinheit OE einer jeweiligen Luftströmung ausgesetzt ist. Insbesondere weist die Befestigungsplatte B vier rampenförmige zweite Luftleitelemente L2 auf, die jeweils über vier entsprechende materialfreie Bereiche 4 der Befestigungsplatte B angeordnet sind, so dass jeder Optikeinheit OE bzw. jeder Auswerteeinheit 3 ein rampenförmiges zweites Luftleitelement L2 zugeordnet ist.
  • Die rampenförmigen zweiten Luftleitelemente L2 sind 90° Grad versetzt zu den Ausrichtungsrichtungen der Optikeinheiten OE des Sensors S auf der Befestigungsplatte B angeordnet, so dass sich die rampenförmigen zweiten Luftleitelemente L2 jeweils zwischen zwei Ausrichtungsrichtungen der Optikeinheiten OE des Sensors S befinden.
  • Ferner weist das erste Luftleitelement L1 acht Flügel F1, F2 auf, die derart angeordnet sind, dass vier Flügel F2 parallel zu den jeweiligen Optikeinheiten OE des Sensors S ausgerichtet sind und vier Flügeln F1 jeweilige rampenförmige zweite Luftleitelemente L2 gegenüberliegend angeordnet sind.
  • Hierbei weisen die parallel zu den Optikeinheiten OE des Sensors S angeordneten Flügel F2 eine stimmgabelähnliche Form auf, so dass die Luftströmung im Wesentlichen nicht beeinflusst wird. Die den rampenförmigen zweiten Luftleitelementen L2 gegenüberliegend angeordneten Flügel F1 weisen um eine Achse, die senkrecht zu der Welle W des Sensors S ist, gebogene Flügelenden auf, so dass die Luft in Richtung der rampenförmigen zweiten Luftleitelemente L2 und entlang der Welle W des Sensors S gelenkt werden kann.
  • D.h. die stimmgabel-förmigen Flügel F2 des ersten Luftleitelements L1 beeinflussen die Luftströmung unwesentlich, so dass die Lichtsende-Einheiten 1 und Lichtempfänger-Einheiten 2 nicht negativ beeinflusst werden. Die mit gebogenen Flügelenden versehenen Flügel F1 des ersten Luftleitelements L1 bewirken eine gerichtete Ablenkung der Luft in Richtung der Wärmequellen, d.h. die Auswerteeinheiten 3, des Sensors S, so dass eine gezielte Abkühlung der Wärmequelle des Sensors S ermöglicht ist.
  • Die 3 und 3a zeigen ein bevorzugtes Ausführungsbeispiel des erfindungsgemäßen ersten Luftleitelements L1 in Form eines Propellers.
  • Das propellerartige erste Luftleitelement L1 weist acht Flügel F1, F2 auf, wobei vier Flügel F1 gegenüber einer Hauptebene HE des ersten Luftleitelements L1 schräg gebogene Flügelenden aufweisen und vier Flügel F2 eine in der Hauptebene liegende stimmgabelähnliche Form aufweisen.
  • Die Flügel F1 mit gebogenen Flügelenden und die stimmgabelförmigen Flügel F2 sind abwechselnd an einem Kreiskörper K des ersten Luftleitelements L1 angeordnet, so dass bei einer Montage des ersten Luftleitelements L1 an die Welle W des Sensors S die stimmgabelförmigen Flügel F2 parallel zu den und unterhalb der Optikeinheiten OE des Sensors S justiert werden können, wobei die Flügel F1 mit gebogenen Flügelenden automatisch zwischen den Optikeinheiten OE des Sensors S angeordnet wären.
  • Die gebogenen Flügelenden der Flügel F1 sind breiter ausgebildet als die Schäfte der Flügel F1, über die die gebogenen Flügelenden an dem Kreiskörper K verbunden sind. Hierdurch ist gewährleistet, dass eine ausreichende Luftmenge in Richtung der Auswerteeinheiten 3 geleitet wird.
  • Durch die erfindungsgemäße Umleitung der Luft im Inneren des Sensors S entlang der Welle W des Sensors S zum Umfang des Sensors S ist neben einer gezielten Abkühlung der Auswerteeinheiten 3 auch eine gezielte Erwärmung des Außenbereichs des Sensors S zum Verhindern von z.B. Beschlag, Kondenswasser, Eisbildung oder dergleichen erzielbar.
  • Bezugszeichenliste
  • 1
    Lichtsende-Einheit
    2
    Lichtempfänger-Einheit
    3
    Auswerteeinheit
    4
    Materialfreier Bereich
    B
    Befestigungsplatte
    F1, F2
    Flügel
    HE
    Hauptebene
    K
    Kreiskörper
    L1
    Erstes Luftleitelement
    L2
    Zweites Luftleitelement
    M
    Motor
    OE
    Optikeinheit
    S
    Optoelektronischer Sensor
    W
    Welle

Claims (9)

  1. Optoelektronischer Sensor (S), insbesondere Laserscanner, zum Erfassen eines Objektes, mit zumindest einer Lichtsende-Einheit (1) zum Aussenden eines Lichtstrahls, zumindest einer Lichtempfänger-Einheit (2) zum Empfangen eines remittierten Lichtstrahls, und zumindest einer Auswerteeinheit (3), die den remittierten Lichtstrahl auswertet und mittels einer Befestigungsplatte (B) an einer Welle (W) des Sensors (S) und um die Welle (W) rotierbar angeordnet ist, wobei zumindest ein Luftleitelement (L1, L2) vorgesehen und derart geformt ist, dass bei einer Rotation der Welle (W) des Sensors (S) Luft innerhalb des Sensors (S) durch das zumindest eine Luftleitelement (L1, L2) entlang der Welle (W) des Sensors (S) direkt auf die zumindest eine Auswerteeinheit (3) leitbar ist.
  2. Optoelektronischer Sensor (S) nach Anspruch 1, wobei die Befestigungsplatte (B) senkrecht zu der Welle (W) des Sensors angeordnet ist und an der Befestigungsplatte (B) die zumindest eine Auswerteeinheit und ein erstes Luftleitelement (1) in Reihe angebracht sind, so dass Luft mittels des ersten Luftleitelements (1) in Richtung der Befestigungsplatte (B) leitbar ist.
  3. Optoelektronischer Sensor (S) nach Anspruch 1 oder 2, wobei auf einer Seite der Befestigungsplatte (B) die zumindest eine Auswerteeinheit (3) angebracht ist und auf der anderen Seite der Befestigungseinheit (B) zumindest ein zweites Luftleitelement (L2) über zumindest einem materialfreien Bereich (4) der Befestigungsplatte (B) vorgesehen ist, so dass Luft mittels des zweiten Luftleitelements (L2) durch den zumindest einen materialfreien Bereich (4) der Befestigungsplatte (B) in Richtung der Welle (W) des Sensors (S) auf die zumindest eine Auswerteeinheit (3) umleitbar ist.
  4. Optoelektronischer Sensor (S) nach zumindest einem der vorhergehenden Ansprüche 1 bis 4, wobei das erste Luftleitelement (L1) aus einem Propeller oder Impeller besteht, der eine Mehrzahl von Flügeln (F1, F2) aufweist.
  5. Optoelektronischer Sensor (S) nach Anspruch 5, wobei eine Anzahl von Flügelenden der Flügel (F) um eine Achse, die senkrecht zu der Welle (W) des Sensors (S) ist, gebogen sind.
  6. Optoelektronischer Sensor (S) nach zumindest einem der vorhergehenden Ansprüche 1 bis 5, wobei das zweite Luftleitelement (L2) eine dreidimensionale, auf eine Seite offene Rampenform aufweist, die in einer Drehrichtung der Welle (W) des Sensors (S) zunimmt.
  7. Optoelektronischer Sensor (S) nach zumindest einem der vorhergehenden Ansprüche 1 bis 6, wobei der zumindest eine materialfreie Bereich (4) der Befestigungsplatte (B) als Durchbohrung in der Befestigungsplatte (B) ausgebildet ist.
  8. Optoelektronischer Sensor (S) nach zumindest einem der vorhergehenden Ansprüche 1 bis 7, wobei vier Lichtsende-Einheiten (1), vier Lichtempfänger-Einheiten (2) und vier entsprechend zugeordnete Auswerteeinheiten (3) vorgesehen sind, und wobei jeweils eine Lichtsende-Einheit (1), eine Lichtempfänger-Einheit (2) und eine Auswerteeinheit (3) als eine Optikeinheit (OE) vorgesehen sind und jede Optikeinheit (OE) in jeweils eine Richtung des Sensors (S) ausgerichtet ist.
  9. Optoelektronischer Sensor (S) nach zumindest einem der vorhergehenden Ansprüche 1 bis 8, wobei die Befestigungsplatte (B) vier rampenförmige zweite Luftleitelemente (L2) aufweist, die über vier entsprechende materialfreie Bereiche (4) der Befestigungsplatte (B) angeordnet sind, so dass jeder Auswerteeinheit (3) ein rampenförmiges zweites Luftleitelement (L2) zugeordnet ist.
DE202014105983.0U 2014-12-11 2014-12-11 Optoelektronischer Sensor Expired - Lifetime DE202014105983U1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE202014105983.0U DE202014105983U1 (de) 2014-12-11 2014-12-11 Optoelektronischer Sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE202014105983.0U DE202014105983U1 (de) 2014-12-11 2014-12-11 Optoelektronischer Sensor

Publications (1)

Publication Number Publication Date
DE202014105983U1 true DE202014105983U1 (de) 2016-03-14

Family

ID=55638287

Family Applications (1)

Application Number Title Priority Date Filing Date
DE202014105983.0U Expired - Lifetime DE202014105983U1 (de) 2014-12-11 2014-12-11 Optoelektronischer Sensor

Country Status (1)

Country Link
DE (1) DE202014105983U1 (de)

Similar Documents

Publication Publication Date Title
WO2011022845A1 (de) Anordnung zur photoelektrischen ermittlung der schusslage bei einem schiessziel
DE102011083749B4 (de) Rotorblatt einer Windkraftanlage mit einer Vorrichtung zum Erfassen eines Abstandswertes und Verfahren zum Erfassen eines Abstandswertes
EP2591232B1 (de) Vorrichtung zur optischen messung der biegung eines rotorblatts einer windkraftanlage
DE4402642C2 (de) Optoelektronische Vorrichtung zum Orten von Hindernissen
WO2010089139A1 (de) Messvorrichtung zum messen von verformungen elastisch verformbarer objekte
DE2840963A1 (de) Optischer rotationskodierer
DE102016201057A1 (de) Lidar-vorrichtung, fahrzeug und verfahren zum erfassen eines objekts
EP2855930B1 (de) Verfahren zur installation von sensoren in rotorblättern und installationsvorrichtung
EP3032278B1 (de) Optoelektronischer Sensor
DE102016217690A1 (de) Vorrichtung und Verfahren zur Messung einer Rotationsbewegung, insbesondere einer Rotationsrichtung, sowie zur Erkennung eines Wellenbruchs
DE102008013392B4 (de) Verfahren zum Erfassen des Spurlaufes der Rotorblätter einer Windkraftanlage
DE202014105983U1 (de) Optoelektronischer Sensor
DE102018212044A1 (de) LIDAR-Sensor zur optischen Erfassung eines Sichtfeldes
DE102018119733A1 (de) Bestimmung des Torsionswinkels und Pitchwinkelbestimmung mittels mindestens zwei Beschleunigungssensoren
WO2012175302A1 (de) Gasturbine mit pyrometer
DE102016121604A1 (de) Messsystem und Verfahren zum Erkennen von Eisansatz an Windenergieanlagen-Rotorblättern
DE102016217687A1 (de) Vorrichtung und Verfahren zur Messung einer Rotationsbewegung eines drehbaren Bauteils, insbesondere einer Rotationsrichtung
EP2564242A1 (de) Gabellichtschranke, vorrichtung und verfahren zur positionsbestimmung mittels einer gabellichtschranke
DE102015118822A1 (de) Scanvorrichtung
DE102008014720A1 (de) Messeinrichtung und Anordnung zur Erfassung von Lageänderungen
DE102005058440A1 (de) Optoelektronische Vorrichtung zur Erfassung der Rotation eines Drehelements und Verfahren zur Auswertung der Signale einer solchen Vorrichtung
DE102018216258B4 (de) Bestimmen einer Winkelgeschwindigkeit eines Objekts
EP3596501B1 (de) Sensor-vorrichtung zur dreidimensionalen erfassung von zielobjekten
DE102016124854B4 (de) Regensensor und Verwendung eines derartigen Sensors
DE102016108954A1 (de) Rotor, Windenergieanlage sowie Verfahren zum Erfassen eines Drehwinkels

Legal Events

Date Code Title Description
R207 Utility model specification
R150 Utility model maintained after payment of first maintenance fee after three years
R157 Lapse of ip right after 6 years