DE19846244A1 - Formkörper für den Garten- und Tierhaltungsbereich - Google Patents
Formkörper für den Garten- und TierhaltungsbereichInfo
- Publication number
- DE19846244A1 DE19846244A1 DE19846244A DE19846244A DE19846244A1 DE 19846244 A1 DE19846244 A1 DE 19846244A1 DE 19846244 A DE19846244 A DE 19846244A DE 19846244 A DE19846244 A DE 19846244A DE 19846244 A1 DE19846244 A1 DE 19846244A1
- Authority
- DE
- Germany
- Prior art keywords
- component
- weight
- garden
- phase
- graft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/16—Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/02—Homopolymers or copolymers of hydrocarbons
- C08L25/04—Homopolymers or copolymers of styrene
- C08L25/08—Copolymers of styrene
- C08L25/12—Copolymers of styrene with unsaturated nitriles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/02—Homopolymers or copolymers of acids; Metal or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Verwendung eine von ABS verschiedenen thermoplastischen Formmasse, enthaltend, bezogen auf die Summe der Mengen der Komponenten A, B und C und gegebenenfalls D, die insgesamt 100 Gew.-% ergibt, DOLLAR A a: 1-48 Gew.-% mindestens eines ein- oder mehrphasigen teilchenförmigen Emulsionspolymerisats mit einer Glasübergangstemperatur unterhalb von 0 DEG C mindestens einer Phase und einer mittleren Teilchengröße von 50-1000 nm, vorzugsweise 50-800 nm, als Komponente A, DOLLAR A b: 1-48 Gew.-% mindestens eines amorphen oder teilkristallinen Polymerisats als Komponente B, DOLLAR A c: 51-98 Gew.-% Polycarbonate als Komponente C, und DOLLAR A d: 0-47 Gew.-% übliche Additive und/oder faser- oder teilchenförmige Füllstoffe oder deren Gemische als Komponente D DOLLAR A zur Herstellung von Formkörpern und Halbzeugen für den Garten- und Tierhaltungsbereich.
Description
Die Erfindung betrifft Formkörper für den Garten- und Tierhaltungsbereich.
Insbesondere betrifft die Erfindung derartige Formkörper mit gleichzeitig guter
Maßhaltigkeit, großer Stabilität, guter Chemikalienbeständigkeit und guter
Vergilbungsbeständigkeit. Bisher eingesetzte Werkstoffe weisen eine Reihe von
Nachteilen auf. Holz hat eine mangelnde Stabilität gegen Witterungseinflüsse und ist
anfällig gegen Schimmel, Fäulnis, Kleintierverbiß und Insektenfraß. Es ist ein hoher
Pflegeaufwand nötig.
Stahlblech weist eine hohe Dichte und damit ein hohes Gewicht auf, ist
korrosionsanfällig und nur aufwendig zu bearbeiten.
ABS (Acrylnitril/Butadien/Styrol)-Polymerisate zeigen eine nicht immer
ausreichende Kratzfestigkeit und eine schnelle Versprödung bei Außenanwendungen
durch Nachvernetzung der Butadiendoppelbindungen. Damit ist eine
Verschlechterung der mechanischen Eigenschaften, insbesondere der Zähigkeit,
verbunden. Die Formkörper zeigen Verfärbungen und Ausbleichen. Das
Quellungsverhalten gegenüber Alkoholen und Reinigungsmitteln ist unzureichend,
zudem kommt es bei Kontakt mit Benzin zu Verfärbungen.
ASA (Acrylnitril/Styrol/Acrylat)-Formmassen zeigen ein gutes Spannungsriß
verhalten, aber die Kratzfestigkeit, Farbtiefe und das Zähigkeits/Steifigkeits-
Verhältnis sind nicht für alle Anwendungen ausreichend. Auch das Zufügen geringer
Mengen an Polycarbonat zur Herstellung eines Blends führt zu keiner ausreichenden
Verbesserung.
Aufgabe der vorliegenden Erfindung ist es daher, Formkörper für den Garten- und
Tierhaltungsbereich bereitzustellen, die stabil und chemikalienbeständig sind und
nicht vergilben. Zudem sollen sie kratzfest sein und eine gute Maßhaltigkeit
aufweisen. Die UV- und Wärmealterungsbeständigkeit soll hoch sein, so daß auch
der Oberflächenglanz erhalten bleibt. Weitere Anforderungen sind eine gute Recy
clingfähigkeit und ein schlechtes Brandverhalten sowie eine gute Maßhaltigkeit bei
thermischer Belastung bei der Herstellung und Anwendung.
Erfindungsgemäß werden diese Aufgaben gelöst durch Verwendung einer von ABS
verschiedenen thermoplastischen Formmasse, enthaltend, bezogen auf die Summe
der Mengen der Komponenten A, B, C und gegebenenfalls D, die insgesamt 100
Gew.-% ergibt,
- a) 1-48 Gew.-% mindestens eines ein- oder mehrphasigen teilchenförmigen Emulsionspolymerisats mit einer Glasüber gangstemperatur unterhalb von 0°C in mindestens einer Phase und einer mittleren Teilchengröße von 50-1000 nm als Komponente A,
- b) 1-48 Gew.-% mindestens eines amorphen oder teilkristallinen Polymerisats als Komponente B,
- c) 51-98 Gew.-% Polycarbonate als Komponente C, und
- d) 0-47 Gew.-% übliche Additive und/oder faser- oder teilchenförmige Zusatzstoffe oder deren Gemische als Komponente D zur Herstellung von Formkörpern und Halbzeugen für den Garten- und Tierhaltungsbereich.
Die beschriebenen Formkörper für den Garten- und Tierhaltungsbereich sind
kratzfest, stabil und chemikalienbeständig. Sie weisen zudem eine sehr gute
Vergilbungsbeständigkeit und Farbtiefe auf.
Die Komponenten der zur Herstellung der erfindungsgemäßen Formkörper für den
Garten- und Tierhaltungsbereich erfindungsgemäß verwendeten thermoplastischen
Formmassen sind an sich bekannt. Beispielsweise sind in DE-A-12 60 135,
DE-C-19 11 882, DE-A-28 26 925, DE-A-31 49 358, DE-A-32 27 555 und DE-A-40 11
162 erfindungsgemäß verwendbare Komponenten und Formmassen beschrieben.
Die zur Herstellung der erfindungsgemäßen Formkörper für den Garten- und
Tierhaltungsbereich erfindungsgemäß verwendeten von ABS verschiedenen
Formmassen enthalten gemäß einer Ausführungsform die nachstehend aufgeführten
Komponenten A und B und C und gegebenenfalls D, wie noch nachstehend defi
niert. Sie enthalten, bezogen auf die Summe der Mengen der Komponenten A, B, C
und gegebenenfalls D, die insgesamt 100 Gew.-% ergibt,
- a) 1-48 Gew.-%, vorzugsweise 3-35 Gew.-%, insbesondere 5-30 Gew.-%, eines teilchenförmigen Emulsionspolymerisats mit einer Glas übergangstemperatur unterhalb von 0°C und einer mittleren Teilchengröße von 50-1000 nm, vorzugsweise 50-800 nm, als Komponente A,
- b) 1-48 Gew.-%, vorzugsweise 5-40 Gew.-%, insbesondere 5-35 Gew.-%, mindestens eines amorphen oder teilkristallinen Polymerisats als Komponente B,
- c) 51-98 Gew.-%, vorzugsweise 55-90 Gew.-%, insbesondere 60-85 Gew.-% Polycarbonate als Komponente C, und
- d) 0-47 Gew.-%, vorzugsweise 0-37 Gew.-%, insbesondere 0-30 Gew.-% Additive oder deren Gemische als Komponente D.
Im folgenden wird die Erfindung näher erläutert.
Zunächst werden die zur Herstellung der erfindungsgemäßen Formkörper für den
Garten- und Tierhaltungsbereich verwendeten Formmassen beschrieben und die
Komponenten, aus denen diese aufgebaut sind.
Komponente A ist mindestens ein ein- oder mehrphasiges teilchenförmiges
Emulsionspolymerisat mit einer Glasübergangstemperatur unterhalb von 0°C in
mindestens einer Phase und einer mittleren Teilchengröße von 50-1000 nm.
Vorzugsweise handelt es sich bei Komponente A um ein mehrphasiges Polymerisat
aus
- a1) 1-99 Gew.-%, vorzugsweise 15-80 Gew.-%, insbesondere 40-65 Gew.-%, einer teilchenförmigen ersten Phase A1 mit einer Glasüber gangstemperatur unterhalb von 0°C,
- a2) 1-99 Gew.-%, vorzugsweise 20-85 Gew.-%, insbesondere 35-60 Gew.-%, einer zweiten Phase A2 aus den Monomeren, bezogen auf A2,
- a21) 40-100 Gew.-%, vorzugsweise 65-85 Gew.-%, Einheiten eines vinylaromatischen Monomeren, vorzugsweise des Styrols, eines substitu ierten. Styrols oder eines (Meth)acrylsäureesters oder deren Gemische, insbesondere des Styrols und/oder α-Methylstyrols als Komponente A21 und
- a22) bis 60 Gew.-%, vorzugsweise 15-35 Gew.-%, Einheiten eines ethylenisch ungesättigten Monomeren, vorzugsweise des Acrylnitrils oder Methacrylnitrils, insbesondere des Acrylnitrils als Komponente A22.
- a3) 0 bis 50 Gew.-% einer dritten Phase mit einer Glasübergangstemperatur von mehr als 0°C als Komponente A3, wobei die Gesamtmenge der Komponenten A1, A2 und A3 100 Gew.-% ergibt.
Dabei können die Phasen nach Art einer Pfropfcopolymerisation miteinander
verbunden werden. Hierbei kann beispielsweise die erste Phase A1 die
Pfropfgrundlage bilden und die zweite Phase A2 eine Pfopfauflage. Es können
mehrere Phasen vorgesehen werden, entsprechend einem Pfropfcopolymer mit einer
Pfropfgrundlage und mehreren Pfropfauflagen. Die Pfropfauflage muß dabei jedoch
nicht notwendigerweise in Form einer Hülle um den Pfropfkern vorliegen. Es sind
unterschiedliche Geometrien möglich, beispielsweise kann ein Teil der ersten Phase
A1 mit der zweiten Phase A2 bedeckt sein, es können sich interpenetrierende
Netzwerke bilden usw. Die erste Phase A1 besitzt besonders bevorzugt eine
Glasübergangstemperatur unterhalb von -10°C, insbesondere unterhalb von -15°C.
Die dritte Phase weist vorzugsweise eine Glasübergangstemperatur von mehr als
60°C auf. Diese dritte Phase kann beispielsweise zu 1-50 Gew.-%, insbesondere
5-40 Gew.-%, bezogen auf die Komponente A, vorliegen.
Im folgenden kann anstelle von "erster Phase" auch "Pfropfgrundlage" verstanden
werden, entsprechend "Pfropfauflage" anstelle von "zweiter Phase".
Die dritte Phase kann vorzugsweise aus mehr als 50 Gew.-% Styrol, insbesondere
aus mehr als 80 Gew.-% Styrol, bezogen auf die Gesamtzahl der Monomere der
dritten Phase, aufgebaut sein.
Gemäß einer Ausführungsform der Erfindung besteht Komponente A1 aus den
Monomeren
- 1. 80-99,99 Gew.-%, vorzugsweise 95-99,9 Gew.-%, eines C1-8- Alkylesters der Acrylsäure, vorzugsweise n-Butylacrylat und/oder Ethylhexylacrylat als Komponente A11,
- 2. 0,01-20 Gew.-%, vorzugsweise 0,1-5,0 Gew.-%, mindestens eines polyfunktionellen vernetzenden Monomeren als Komponente A12.
Gemäß einer Ausführungsform der Erfindung beträgt die mittlere Teilchengröße der
Komponente A 50-1000 nm, vorzugsweise 50-800 nm.
Gemäß einer weiteren erfindungsgemäßen Ausführungsform ist die Teilchen
größenverteilung der Komponente A bimodal, wobei 1-99, vorzugsweise 20-95,
insbesondere 45-90 Gew.-% eine mittlere Teilchengröße von 50-200 nm und 1
bis 99, vorzugsweise 5-80, insbesondere 10-55 Gew.-% eine mittlere
Teilchengröße von 200-1000 nm aufweisen, bezogen auf das Gesamtgewicht der
Komponente A.
Als mittlere Teilchengröße bzw. Teilchengrößenverteilung werden die aus der
integralen Massenverteilung bestimmten Größen angegeben. Bei den erfindungs
gemäßen mittleren Teilchengrößen handelt es sich in allen Fällen um die
Gewichtsmittel der Teilchengrößen, wie sie mittels einer analytischen
Ultrazentrifuge entsprechend der Methode von W. Scholtan und H. Lange, Kolloid-
Z. und Z.-Polymere 250 (1972), Seiten 782-796, bestimmt wurden. Die
Ultrazentrifugenmessung liefert die integrale Massenverteilung des
Teilchendurchmessers einer Probe. Hieraus läßt sich entnehmen, wieviel Ge
wichtsprozent der Teilchen einen Durchmesser gleich oder kleiner einer bestimmten
Größe haben. Der mittlere Teilchendurchmesser, der auch als d50-Wert der integralen
Massenverteilung bezeichnet wird, ist dabei als der Teilchendurchmesser definiert,
bei dem 50 Gew.-% der Teilchen einen kleineren Durchmesser haben als der
Durchmesser, der dem d50-Wert entspricht. Ebenso haben dann 50 Gew.-% der
Teilchen einen größeren Durchmesser als der d50-Wert. Zur Charakterisierung der
Breite der Teilchengrößenverteilung der Kautschukteilchen werden neben dem d50-
Wert (mittlerer Teilchendurchmesser) die sich aus der integralen Massenverteilung
ergebenden d10- und d90-Werte herangezogen. Der d10- bzw. d90-Wert der integralen
Massenverteilung ist dabei entsprechend dem d50-Wert definiert mit dem Un
terschied, daß sie auf 10 bzw. 90 Gew.-% der Teilchen bezogen sind. Der Quotient
stellt ein Maß für die Verteilungsbreite der Teilchengröße dar.
Die Glasübergangstemperatur des Emulsionspolymerisats A wie auch der anderen
erfindungsgemäß verwendeten Komponenten wird mittels DSC (Differential
Scanning Calorimetry) nach ASTM 3418 (mid point temperature) bestimmt.
Als Emulsionspolymerisat A können einschlägig übliche Kautschuke Verwendung
finden. Gemäß einer Ausführungsform der Erfindung werden Epichlorhydrin-Kau
tschuke, Ethylen-Vinylacetat-Kautschuke, Polyethylenchlorsulfonkautschuke,
Siliconkautschuke, Polyetherkautschuke, hydrierte Dienkautschuke,
Polyalkenamerkautschuke, Acrylatkautschuke, Ethylen-Propylen-Kautschuke,
Ethylen-Propylen-Dien-Kautschuke, Butylkautschuke und Fluorkautschuke
eingesetzt. Bevorzugt werden Acrylatkautschuk, Ethylen-Propylen(EP)-Kautschuk,
Ethylen-Propylen-Dien(EPDM)-Kautschuk, insbesondere Acrylatkautschuk, einge
setzt.
Reine Butadienkautschuke, wie sie in ABS Verwendung finden, können nicht als
ausschließliche Komponente A verwendet werden. Vorzugsweise sind die
Formmassen frei von Butadienkautschuken.
Gemäß einer Ausführungsform wird der Dien-Grundbaustein-Anteil im Emulsions
polymerisat A so gering gehalten, daß möglichst wenig nicht umgesetzte
Doppelbindungen im Polymerisat verbleiben. Gemäß einer Ausführungsform liegen
keine Dien-Grundbausteine im Emulsionspolymerisat A vor.
Bei den Acrylatkautschuken handelt es sich vorzugsweise um Alkylacrylat-
Kautschuke aus einem oder mehreren C1-8-Alkylacrylaten, vorzugsweise C4-8-
Alkylacrylaten, wobei bevorzugt mindestens teilweise Butyl-, Hexyl-, Octyl- oder 2-
Ethylhexylacrylat, insbesondere n-Butyl- und 2-Ethylhexylacrylat, verwendet wird.
Diese Alkylacrylat-Kautschuke können bis zu 30 Gew.-% copolymerisierbare
Monomere, wie Vinylacetat, (Meth)acrylnitril, Styrol, substituiertes Styrol, Methyl
methacrylat oder Vinylether, einpolymerisiert enthalten.
Die Acrylatkautschuke enthalten gemäß einer Ausführungsform der Erfindung
weiterhin 0,01-20 Gew.-%, vorzugsweise 0,1-5 Gew.-%, an vernetzend
wirkenden, polyfunktionellen Monomeren (Vernetzungsmonomere). Beispiele
hierfür sind Monomere, die 2 oder mehr zur Copolymerisation befähigte
Doppelbindungen enthalten, die vorzugsweise nicht in den 1,3-Stellungen konjugiert
sind.
Geeignete Vernetzungsmonomere sind beispielsweise Ethylenglycoldiacrylat oder
Methacrylat, Butandiol-, Hexandioldiacrylat oder -Methacrylat Divinylbenzol, Di
allylmaleat, Diallylfumarat, Diallylphthalat, Diethylphthalat, Triallylcyanurat,
Triallylisocyanurat, Tricyclodecenylacrylat, Dihydrodicyclopentadienylacrylat,
Triallylphosphat, Allylacrylat, Allylmethacrylat oder Dicyclopentadienylacrylat
(DCPA) (vgl. DE-C-12 60 135).
Geeignete Siliconkautschuke können z. B. vernetzte Siliconkautschuke aus Einheiten
der allgemeinen Formeln R2SiO, RSiO3/2, R3SiO1/2 und SiO2/4 sein, wobei der Rest
R einen einwertigen Rest darstellt. Die Menge der einzelnen Siloxaneinheiten sind
dabei so bemessen, daß auf 100 Einheiten der Formel R2SiO 0 bis 10 Mol-Einheiten
der Formel RSiO3/2, 0 bis 1,5 Mol-Einheiten R3SiO1/2 und 0 bis 3 Mol-Einheiten
SiO2/4 vorhanden sind. R kann dabei entweder ein einwertiger gesättigter
Kohlenwasserstoffrest mit 1 bis 18 C-Atomen, der Phenylrest oder der Alkoxyrest
oder eine radikalisch leicht angreifbare Gruppe wie der Vinyl- oder der
Mercaptopropylrest sein. Bevorzugt ist, daß mindestens 80% aller Reste R
Methylreste sind; insbesondere bevorzugt sind Kombinationen aus Methyl- und
Ethyl- oder Phenylresten.
Bevorzugte Siliconkautschuke enthalten eingebaute Einheiten radikalisch an
greifbarer Gruppen, insbesondere Vinyl-, Allyl-, Halogen-, Mercaptogruppen,
vorzugsweise in Mengen von 2-10 mol%, bezogen auf alle Reste R. Sie können
beispielsweise hergestellt werden wie in EP-A-0 260 558 beschrieben.
In manchen Fällen kann es zweckmäßig sein, ein Emulsionspolymerisat A aus
unvernetztem Polymer zu verwenden. Als Monomere zur Herstellung dieser
Polymere können alle voranstehend genannten Monomere dienen. Bevorzugte un
vernetzte Emulsionspolymerisate A sind z. B. Homo- und Copolymere von
Acrylsäureestern, inbesondere des n-Butyl- und des Ethylhexylacrylats, sowie
Homo- und Copolymere des Ethylens, Propylens, Butylens, Isobutylens, als auch
Poly(organosiloxane), alle mit der Maßgabe, daß sie linear oder auch verzweigt sein
dürfen.
Bei dem Emulsionspolymerisat A kann es sich auch um ein mehrstufig aufgebautes
Polymerisat handeln (sog. "Kern/Schale-Aufbau", "core-shell morphology").
Beispielsweise kann ein kautschukelastischer Kern (Tg <0°C) von einer "harten"
Schale (Polymere mit Tg <0°C) umhüllt sein, oder umgekehrt.
In einer besonders bevorzugten Ausgestaltung der Erfindung handelt es sich bei der
Komponente A um ein Pfropfcopolymerisat. Die Pfropfcopolymerisate A der erfin
dungsgemäßen Formmassen haben dabei eine mittlere Teilchengröße d50 von
50-1000 nm, bevorzugt von 50-800 nm.
Das Pfropfcopolymerisat A ist im allgemeinen ein- oder mehrstufig, d. h. ein aus
einem Kern und einer oder mehreren Hüllen aufgebautes Polymerisat. Das
Polymerisat besteht aus einer Grundstufe (Pfropfkern) A1 und einer oder mehreren
darauf gepfropften Stufen A2 (Pfropfauflage), den sogenannten Pfropfstufen oder
Pfropfhüllen.
Durch einfache Pfropfung oder mehrfache schrittweise Pfropfung können eine oder
mehrere Pfropfhüllen auf die Kautschukteilchen aufgebracht werden, wobei jede
Pfropfhülle eine andere Zusammensetzung haben kann. Zusätzlich zu den
pfropfenden Monomeren können polyfunktionelle vernetzende oder reaktive
Gruppen enthaltende Monomere mit aufgepfropft werden (s. z. B. EP-A-0 230 282,
DE-A-36 01 419, EP-A-0 269 861).
In einer bevorzugten Ausführungsform besteht Komponente A aus einem mehrstufig
aufgebauten Pfropfcopolymerisat, wobei die Pfropfstufen im allgemeinen aus
harzbildenden Monomeren hergestellt sind und eine Glastemperatur Tg oberhalb von
30°C, vorzugsweise oberhalb von 50°C haben. Die äußere Pfropfhülle dient u. a.
dazu, eine (Teil-)Verträglichkeit der Kautschukteilchen A mit dem Thermoplasten B
zu erzielen.
Pfropfcopolymerisate A werden beispielsweise hergestellt durch Pfropfung von
mindestens einem der im folgenden aufgeführten Monomeren A2 auf mindestens
eine der vorstehend aufgeführten Pfropfgrundlagen bzw. Pfroptkernmaterialien A1.
Als Pfropfgrundlagen A1 der erfindungsgemäßen Formmassen sind alle
Polymerisate geeignet, die oben unter den Emulsionspolymerisaten A beschrieben
sind.
Gemäß einer Ausführungsform der Erfindung ist die Pfropfgrundlage A1 aus
15-99,9 Gew.-% Acrylatkautschuk, 0,1-5 Gew.-% Vernetzer und 0-49,9 Gew.-%
eines der angegebenen weiteren Monomere oder Kautschuke zusammengesetzt.
Geeignete Monomere zur Bildung der Pfropfauflage A2 können beispielsweise aus
den im folgenden aufgeführten Monomeren und deren Gemischen ausgewählt sein:
Vinylaromatische Monomeren, wie Styrol und seine substituierten Derivate, wie α-
Methylstyrol, p-Methylstyrol, 3,4-Dimethylstyrol, p-tert.-Butylstyrol, p-Methyl-α-
methylstyrol oder C1-C8-Alkyl(meth)acrylate wie Methylmethacrylat,
Ethylmethacrylat, Methylacrylat, Ethylacrylat, n-Butylacrylat, i-Butylacrylat;
bevorzugt sind Styrol, α-Methylstyrol, Methylmethacrylat, insbesondere Styrol
und/oder α-Methylstyrol, und ethylenisch ungesättigte Monomere, wie Acryl- und
Methacrylverbindungen, wie Acrylnitril, Methacrylnitril, Acryl- und
Methacrylsäure, Methylacrylat, Ethylacrylat, n- und Isopropylacrylat, n- und
Isobutylacrylat, tert.-Butylacrylat, 2-Ethylhexylacrylat, Methylmethacrylat,
Ethylmethacrylat, n- und Isopropylmethacrylat, n- und Isobutylmethacrylat, tert.-
Butylmethacrylat, Cyclohexylmethacrylat, Isobornylmethacrylat,
Maleinsäureanhydrid und dessen Derivate, wie Maleinsäureester, Maleinsäurediester
und Maleinimide, z. B. Alkyl- und Arylmaleinimide, wie Methyl-, Cyclohexyl- oder
Phenylmaleinimid. Bevorzugt sind Methacrylate, Acrylnitril und Methacrylnitril,
insbesondere Acrylnitril.
Weiterhin können als (Co-) Monomere Styrol-, Vinyl-, Acryl- oder Meth
acrylverbindungen (z. B. Styrol, wahlweise substituiert mit C1-12-Alkylresten,
Halogenatomen, Halogenmethylenresten; Vinylnaphthalin, Vinylcarbazol;
Vinylether mit C1-12-Etherresten; Vinylimidazol, 3-(4-)Vinylpyridin, Dimethyl
aminoethyl(meth)acrylat, p-Dimethylaminostyrol, Acrylnitril, Methacrylnitril,
Acrylsäure, Methacrylsäure, Acrylsäurebutylester, Acrylsäureethylhexylester und
Methylmethacrylat sowie Fumarsäure, Maleinsäure, Itaconsäure oder deren
Anhydride, Amide, Nitrile oder Ester mit 1 bis 22 C-Atome, vorzugsweise 1 bis 10
C-Atome enthaltenden Alkoholen) verwendet werden.
Gemäß einer Ausführungsform der Erfindung umfaßt Komponente A 50 bis 100
Gew.-%, vorzugsweise 50-90 Gew.-% der vorstehend beschriebenen ersten Phase
(Pfropfgrundlage) A1 und 0 bis 50 Gew.-%, vorzugsweise 10-50 Gew.-% der
vorstehend beschriebenen zweiten Phase (Pfropfauflage) A2, bezogen auf das
Gesamtgewicht der Komponente A. Als dritte Phase kommen insbesondere Styrol-
Copolymere, in Betracht.
Gemäß einer Ausführungsform der Erfindung dienen als Pfropfgrundlage A1
vernetzte Acrylsäureester-Polymerisate mit einer Glasübergangstemperatur unter
0°C. Die vernetzten Acrylsäureester-Polymerisate sollen vorzugsweise eine
Glasübergangstemperatur unter -20°C, insbesondere unter -30°C, besitzen.
In einer bevorzugten Ausführungsform besteht die Pfropfauflage A2 aus mindestens
einer oder mehreren Pfropfhüllen, deren äußerste Pfropfhülle eine
Glasübergangstemperatur von mehr als 30°C hat, wobei ein aus den Monomeren der
Pfropfauflage A2 gebildetes Polymer eine Glasübergangstemperatur von mehr als
80°C aufweisen würde.
Bezüglich der Messung der Glasübergangstemperatur und der mittleren Teil
chengröße sowie der Q-Werte gilt für die Pfropfcopolymerisate A das für die
Emulsionspolymerisate A Gesagte.
Die Pfropfcopolymerisate A können auch durch Pfropfung von vorgebildeten
Polymeren auf geeignete Pfropfhomopolymerisate hergestellt werden. Beispiele
dafür sind die Umsetzungsprodukte von Maleinsäureanhydrid- oder Säuregruppen
enthaltenden Copolymeren mit basenhaltigen Kautschuken.
Geeignete Herstellverfahren für Pfropfcopolymerisate A sind die Emulsions-,
Lösungs-, Masse- oder Suspensionspolymerisation. Bevorzugt werden die
Pfropfcopolymerisate A durch radikalische Emulsionspolymerisation hergestellt,
insbesondere in Gegenwart von Latices der Komponente A1 bei Temperaturen von
20°C-90°C unter Verwendung wasserlöslicher oder öllöslicher Initiatoren wie
Peroxodisulfat oder Benzoylperoxid, oder mit Hilfe von Redoxinitiatoren.
Redoxinitiatoren eignen sich auch zur Polymerisation unterhalb von 20°C.
Geeignete Emulsionspolymerisationsverfahren sind beschrieben in den DE-A-28 26
925, 31 49 358 und in der DE-C-12 60 135.
Der Aufbau der Pfropfhüllen erfolgt vorzugsweise im Emulsionspolymeri
sationsverfahren, wie es beschrieben ist in DE-A-32 27 555, 31 49 357, 31 49 358,
34 14 118. Das definierte Einstellen der erfindungsgemäßen Teilchengrößen von
50-1000 nm erfolgt bevorzugt nach den Verfahren, die beschrieben sind in der
DE-C-12 60 135 und DE-A-28 26 925, bzw. Applied Polymer Science, Band 9 (1965),
Seite 2929. Das Verwenden von Polymerisaten mit unterschiedlichen
Teilchengrößen ist beispielsweise aus DE-A-28 26 925 und US 5,196,480 bekannt.
Gemäß dem in der DE-C-12 60 135 beschriebenen Verfahren wird zunächst die
Pfropfgrundlage A1 hergestellt, indem der oder die gemäß einer Ausführungsform
der Erfindung verwendeten Acrylsäureester und das mehrfunktionelle, die
Vernetzung bewirkende Monomere, ggf zusammen mit den weiteren
Comonomeren, in wäßriger Emulsion in an sich bekannter Weise bei Temperaturen
zwischen 20 und 100°C, vorzugsweise zwischen 50 und 80°C, polymerisiert
werden. Es können die üblichen Emulgatoren, wie Alkalisalze von Alkyl- oder
Alkylarylsulfonsäuren, Alkylsulfate, Fettalkoholsulfonate, Salze höherer Fettsäuren
mit 10 bis 30 Kohlenstoffatomen oder Harzseifen verwendet werden. Vorzugsweise
verwendet man die Natriumsalze von Alkylsulfonaten oder Fettsäuren mit 10 bis 18
Kohlenstoffatomen. Gemäß einer Ausführungsform werden die Emulgatoren in
Mengen von 0,5-5 Gew.-%, insbesondere von 1-2 Gew.-%, bezogen auf die bei
der Herstellung der Pfropfgrundlage A1 eingesetzten Monomeren, eingesetzt. Im
allgemeinen wird bei einem Gewichtsverhältnis von Wasser zu Monomeren von 2 : 1
bis 0,7 : 1 gearbeitet. Als Polymerisationsinitiatoren dienen insbesondere die
gebräuchlichen Persulfate, wie beispielsweise Kaliumpersulfat. Es können jedoch
auch Redoxsysteme zum Einsatz gelangen. Die Initiatoren werden im allgemeinen
in Mengen von 0,1-1 Gew.-%, bezogen auf die bei der Herstellung der
Pfropfgrundlage A1 eingesetzten Monomeren, eingesetzt. Als weitere
Polymerisationshilfsstoffe können die üblichen Puffersubstanzen, durch welche pH-
Werte von vorzugsweise 6-9 eingestellt werden, wie Natriumbicarbonat und
Natriumpyrophosphat, sowie 0-3 Gew.-% eines Molekulargewichtsreglers, wie
Mercaptane, Terpinole oder dimeres α-Methylstyrol, bei der Polymerisation
verwendet werden.
Zur Herstellung des Pfropfpolymerisats A wird sodann in einem nächsten Schritt in
Gegenwart des so erhaltenen Latex des vernetzten Acrylsäureester-Polymerisats
gemäß einer Ausführungsform der Erfindung ein Monomerengemisch aus Styrol
und Acrylnitril polymerisiert, wobei das Gewichtsverhältnis von Styrol zu
Acrylnitril in dem Monomerengemisch gemäß einer Ausführungsform der
Erfindung im Bereich von 100 : 0 bis 40 : 60, vorzugsweise im Bereich von 65 : 35
bis 85 : 15, liegen soll. Es ist vorteilhaft, diese Pfropfcopolymerisation von Styrol
und Acrylnitril auf das als Pfropfgrundlage dienende vernetzte
Polyacrylsäureesterpolymerisat wieder in wäßriger Emulsion unter den üblichen,
vorstehend beschriebenen Bedingungen durchzuführen. Die Pfropfcopolymerisation
kann zweckmäßig im gleichen System erfolgen wie die Emulsionspolymerisation
zur Herstellung der Pfropfgrundlage A1, wobei, falls notwendig, weiterer Emulgator
und Initiator zugegeben werden kann. Das gemäß einer Ausführungsform der
Erfindung aufzupfropfende Monomerengemisch aus Styrol und Acrylnitril kann
dem Reaktionsgemisch auf einmal, absatzweise in mehreren Stufen oder vorzugs
weise kontinuierlich während der Polymerisation zugegeben werden. Die
Pfropfcopolymerisation des Gemisches von Styrol und Acrylnitril in Gegenwart des
vernetzenden Acrylsäureesterpolymerisats wird so geführt, daß ein Pfropfgrad von
1-99 Gew.-%, vorzugsweise 20-85 Gew.-%, insbesondere 35-60 Gew.-%, bezogen
auf das Gesamtgewicht der Komponente A, im Pfropfcopolymerisat A resultiert. Da
die Pfropfausbeute bei der Pfropfcopolymerisation nicht 100% beträgt, muß eine
etwas größere Menge des Monomerengemisches aus Styrol und Acrylnitril bei der
Pfropfcopolymerisation eingesetzt werden, als es dem gewünschten Pfropfgrad
entspricht. Die Steuerung der Pfropfausbeute bei der Pfropfcopolymerisation und
somit des Pfropfgrades des fertigen Pfropfcopolymerisats A ist dem Fachmann
geläufig und kann beispielsweise u. a. durch die Dosiergeschwindigkeit der Mono
meren oder durch Reglerzugabe erfolgen (Chauvel, Daniel, ACS Polymer Preprints
15 (1974), Seite 329 ff.). Bei der Emulsions-Pfropfcopolymerisation entstehen im
allgemeinen einige Gew.-%, bezogen auf das Pfropfcopolymerisat, an freiem,
ungepfropftem Styrol/Acrylnitril-Copolymerisat. Der Anteil des
Pfropfcopolymerisats A in dem bei der Pfropfcopolymerisation erhaltenen
Polymerisationsprodukt wird nach der oben angegebenen Methode ermittelt.
Bei der Herstellung der Pfropfcopolymerisate A nach dem Emulsionsverfahren sind
neben den gegebenen verfahrenstechnischen Vorteilen auch reproduzierbare
Teilchengrößenveränderungen möglich, beispielsweise durch zumindest teilweise
Agglomeration der Teilchen zu größeren Teilchen. Dies bedeutet, daß in den
Pfropfcopolymerisaten A auch Polymere mit unterschiedlichen Teilchengrößen
vorliegen können.
In einer besonderen Ausführungsform haben sich bimodale
Teilchengrößenverteilungen der Komponente A als besonders vorteilhaft erwiesen.
Diese lassen sich erzeugen durch Mischen von getrennt hergestellten Teilchen
unterschiedlicher Größe, die zudem noch unterschiedlich in ihrer Zusammensetzung
und in ihrem Schalenaufbau sein können (Kern/Schale, Kern/Schale/Schale etc.),
oder aber man erzeugt eine bimodale Teilchengrößenverteilung durch partielle
Agglomerisation vor, während oder nach der Pfropfung.
Vor allem die Komponente A aus Pfropfgrundlage und Pfropfhülle(n) kann für den
jeweiligen Verwendungszweck optimal angepaßt werden, insbesondere in bezug auf
die Teilchengröße.
Die Pfropfcopolymerisate A enthalten im allgemeinen 1-99 Gew.-%, bevorzugt
15-80 und besonders bevorzugt 40-65 Gew.-% erste Phase (Pfropfgrundlage) A1 und
1-99 Gew.-%, bevorzugt 20-85, besonders bevorzugt 35-60 Gew.-% der zweiten
Phase (Pfropfauflage) A2, jeweils bezogen auf das gesamte Pfropfcopolymerisat.
Komponente B ist ein amorphes oder teilkristallines Polymerisat.
Vorzugsweise handelt es sich bei Komponente B um ein Copolymerisat aus
- 1. 40-100 Gew.-%, vorzugsweise 60-85 Gew.-%, Einheiten eines vinylaromati schen Monomeren, vorzugsweise des Styrols, eines substituierten Styrols oder eines (Meth)acrylsäureesters oder deren Gemische, insbesondere des Styrols und/oder α-Methylstyrols als Komponente B1,
- 2. bis 60 Gew.-%, vorzugsweise 15-40 Gew.-%, Einheiten eines ethylenisch ungesättigten Monomers, vorzugsweise des Acrylnitrils oder Methacrylnitrils, insbesondere des Acrylnitrils als Komponente B2.
- 3. bis 60 Gew.-% eines weiteren ethylenisch ungesättigten copolymerisierbaren Monomeren
Gemäß einer bevorzugten Ausführungsform der Erfindung beträgt die Visko
sitätszahl der Komponente B 50-120, vorzugsweise 55-100.
Die amorphen oder teilkristallinen Polymerisate der Komponente B der zur
Herstellung der erfindungsgemäßen Formkörper für den Garten- und Tierhal
tungsbereich erfindungsgemäß verwendeten Formmasse, sind aus mindestens einem
Polymeren aus teilkristallinen Polyamiden, teilaromatischen Copolyamiden,
Polyolefinen, Ionomeren, Polyestern, Polyetherketonen, Polyoxyalkylenen, Polyary
lensulfiden und vorzugsweise Polymeren aus vinylaromatischen Monomeren
und/oder ethylenisch ungesättigten Monomeren ausgewählt. Es können auch
Polymerisatgemische verwendet werden.
Als Komponente B der zur Herstellung der erfindungsgemäßen Formkörper für den
Garten- und Tierhaltungsbereich erfindungsgemäß verwendeten Formmasse sind
auch teilkristalline, bevorzugt lineare Polyamide wie Polyamid-6, Polyamid-6,6,
Polyamid-4,6, Polyamid-6,12 und teilkristalline Copolyamide auf Basis dieser Kom
ponenten geeignet. Des weiteren können teilkristalline Polyamide eingesetzt werden,
deren Säurekomponente ganz oder teilweise aus Adipinsäure und/oder Terephthal
säure und/oder Isophthalsäure und/oder Korksäure und/oder Sebacinsäure und/oder
Acelainsäure und/oder Dodecandicarbonsäure und/oder einer Cyclohexandicar
bonsäure besteht, und deren Diaminkomponente ganz oder teilweise insbesondere
aus m- und/oder p-Xylylendiamin und/oder Hexamethylendiamin und/oder 2,2,4-
und/oder 2,4,4-Trimethylhexamethylendiamin und/oder Isophorondiamin besteht,
und deren Zusammensetzungen im Prinzip aus dem Stand der Technik bekannt sind
(vgl. Encyclopedia of Polymers, Vol. 11, S. 315 ff.).
Beispiele für als Komponente B der zur Herstellung der erfindungsgemäßen
Formkörper für den Garten- und Tierhaltungsbereich erfindungsgemäß verwendeten
Formmassen weiterhin geeignete Polymerisate sind teilkristalline Polyolefine,
vorzugsweise Homo- und Copolymerisate von Olefinen wie Ethylen, Propylen,
Buten-1, Penten-1, Hexen-1, Hepten-1, 3-Methylbuten-1, 4-Methylbuten-1, 4-
Methylpenten-1 und Octen-1. Geeignete Polyolefine sind Polyethylen, Polypropy
len, Polybuten-1 oder Poly-4-methylpenten-1. Allgemein unterscheidet man bei
Polyethylen (PE) High-Density-PE (HDPE), Low-Density-PE (LDPE) und linear
low-density-PE (LLDPE).
Bei einer anderen Ausführungsform der Erfindung handelt es sich bei der
Komponente B um Ionomere. Diese sind im allgemeinen Polyolefine, wie sie oben
beschrieben wurden, insbesondere Polyethylen, die Monomere mit Säuregruppen
copolymerisiert enthalten, z. B. Acrylsäure, Methacrylsäure und ggf. weitere
copolymerisierbare Monomere. Die Säuregruppen werden im allgemeinen mit Hilfe
von Metallionen wie Na+, Ca2+, Mg2+ und Al3+ in ionische, ggf. ionisch vernetzte
Polyolefine umgewandelt, die sich jedoch noch thermoplastisch verarbeiten lassen
(siehe z. B. US 3,264,272; 3,404,134; 3,355,319; 4,321,337). Es ist jedoch nicht
unbedingt erforderlich, die Säuregruppen enthaltenden Polyolefine mittels
Metallionen umzuwandeln. Auch freie Säuregruppen enthaltende Polyolefine, die
dann im allgemeinen einen kautschukartigen Charakter besitzen und teilweise noch
weitere copolymerisierbare Monomere enthalten, z. B. (Meth)acrylate, sind als
erfindungsgemäße Komponente B geeignet.
Daneben können als Komponente B auch Polyester, vorzugsweise aromatisch-
aliphatische Polyester eingesetzt werden. Beispiele sind Polyalkylenterephthalate,
z. B. auf Basis von Ethylenglykol, Propandiol-1,3, Butandiol-1,4, Hexandiol-1,6 und
1,4-Bis-hydroxymethyl-cyclohexan, sowie Polyalkylennaphthalate.
Als Komponente B können weiterhin aromatische Polyetherketone eingesetzt
werden, wie sie z. B. beschrieben sind in den Druckschriften GB 1 078 234,
US 4,010,147, EP-A-0 135 938, EP-A-0 292 211, EP-A-0 275 035, EP-A-0 270 998,
EP-A-0 165 406, und in der Publikation von C. K. Sham et. al., Polymer 29/6,
1016-1020 (1988).
Weiterhin können als Komponente B der zur Herstellung der erfindungsgemäßen
Formkörper für den Garten- und Tierhaltungsbereich erfindungsgemäß verwendeten
Formmassen Polyoxyalkylene, z. B. Polyoxymethylen, und Oxymethylenpolymeri
sate eingesetzt werden.
Weiterhin geeignete Komponenten B sind die Polyarylensulfide, insbesondere das
Polyphenylensulfid.
Vorzugsweise wird als Komponente B ein amorphes Copolymerisat von Styrol und/
oder α-Methylstyrol mit Acrylnitril verwendet. Der Acrylnitrilgehalt in diesen
Copolymerisaten der Komponente B beträgt dabei 0-60 Gew.-%, vorzugsweise
15-40 Gew.-%, bezogen auf das Gesamtgewicht der Komponente B. Zur Komponente
B zählen auch die bei der Pfropfcopolymerisation zur Herstellung der Komponente
A entstehenden freien, nicht gepfropften Styrol/Acrylnitril-Copolymerisate. Je nach
den bei der Pfropfcopolymerisation für die Herstellung des Pfropfcopolymerisats A
gewählten Bedingungen kann es möglich sein, daß bei der Pfropfcopolymerisation
schon ein hinreichender Anteil an Komponente B gebildet worden ist. Im
allgemeinen wird es jedoch erforderlich sein, die bei der Pfropfcopolymerisation
erhaltenen Produkte mit zusätzlicher, separat hergestellter Komponente B
abzumischen.
Bei dieser zusätzlichen, separat hergestellten Komponente B kann es sich
vorzugsweise um ein Styrol/Acrylnitril-Copolymerisat, ein α-Methylstyrol/
Acrylnitril-Copolymerisat oder ein α-Methylstyrol/Styrol/Acrylnitril-Terpolymerisat
handeln. Diese Copolymerisate können einzeln oder auch als Gemisch für die
Komponente B eingesetzt werden, so daß es sich bei der zusätzlichen, separat
hergestellten Komponente B der erfindungsgemäß verwendeten Formmassen
beispielsweise um ein Gemisch aus einem Styrol/Acrylnitril-Copolymerisat und
einem α-Methylstyrol/Acrylnitril-Copolymerisat handeln kann. In dem Fall, in dem
die Komponente B der erfindungsgemäß verwendeten Formmassen aus einem
Gemisch aus einem Styrol/Acrylnitril-Copolymerisat und einem
α-Methylstyrol/Acrylnitril-Copolymerisat besteht, sollte vorzugsweise der
Acrylnitrilgehalt der beiden Copolymerisate um nicht mehr als 10 Gew.-%,
vorzugsweise nicht mehr als 5 Gew.-%, bezogen auf das Gesamtgewicht des
Copolymerisats, voneinander abweichen. Die Komponente B der erfindungsgemäß
verwendeten Formmassen kann jedoch auch nur aus einem einzigen Styrol/-
Acrylnitril-Copolymerisat bestehen, wenn bei den Pfropfcopolymerisationen zur
Herstellung der Komponente A als auch bei der Herstellung der zusätzlichen,
separat hergestellten Komponente B von dem gleichen Monomergemisch aus Styrol
und Acrylnitril ausgegangen wird.
Die zusätzliche, separat hergestellte Komponente B kann nach den herkömmlichen
Verfahren erhalten werden. So kann gemäß einer Ausführungsform der Erfindung
die Copolymerisation des Styrols und/oder α-Methylstyrols mit dem Acrylnitril in
Masse, Lösung, Suspension oder wäßriger Emulsion durchgeführt werden. Die
Komponente B hat vorzugsweise eine Viskositätszahl von 40 bis 120, bevorzugt 50
bis 120, insbesondere 55 bis 100. Die Bestimmung des Viskositätszahl erfolgt dabei
nach DIN 53 726, dabei werden 0,5 g Material in 100 ml Dimethylformamid gelöst.
Das Mischen der Komponenten A und B kann nach jeder beliebigen Weise nach
allen bekannten Methoden erfolgen. Wenn die Komponenten A und B
beispielsweise durch Emulsionspolymerisation hergestellt worden sind, ist es
möglich, die erhaltenen Polymerdispersionen miteinander zu vermischen, darauf die
Polymerisate gemeinsam auszufällen und das Polymerisatgemisch aufzuarbeiten.
Vorzugsweise erfolgt jedoch das Abmischen der Komponenten A und B durch
gemeinsames Extrudieren, Kneten oder Verwalzen der Komponenten, wobei die
Komponenten, sofern erforderlich, zuvor aus der bei der Polymerisation erhaltenen
Lösung oder wäßrigen Dispersion isoliert worden sind. Die in wäßriger Dispersion
erhaltenen Produkte der Pfropfcopolymerisation (Komponente A) können auch nur
teilweise entwässert werden und als feuchte Krümel mit der Komponente B
vermischt werden, wobei dann während des Vermischens die vollständige
Trocknung der Pfropfcopolymerisate erfolgt.
Geeignete Polycarbonate C sind an sich bekannt. Sie haben vorzugsweise ein
Molekulargewicht (Gewichtsmittelwert MW, bestimmt mittels Gelpermeations
chromatographie in Tetrahydrofuran gegen Polystyrolstandards) im Bereich von
10 000 bis 60 000 g/mol. Sie sind z. B. entsprechend den Verfahren der
DE-B-13 00 266 durch Grenzflächenpolykondensation oder gemäß dem Verfahren der DE-A-14 95 730
durch Umsetzung von Diphenylcarbonat mit Bisphenolen erhältlich.
Bervorzugtes Bisphenol ist 2,2-Di(4-hydroxyphenyl)propan, im allgemeinen - wie
auch im folgenden - als Bisphenol A bezeichnet.
Anstelle von Bisphenol A können auch andere aromatische Dihydroxyverbindungen
verwendet werden, insbesondere 2,2-Di(4-hydroxyphenyl)pentan, 2,6-
Dihydroxynaphthalin, 4,4'-Dihydroxydiphenylsulfan, 4,4'-Dihydroxydiphenylether,
4,4'-Dihydroxydiphenylsulfit, 4,4'-Dihydroxydiphenylmethan, 1,1-Di-(4-
hydroxyphenyl)ethan, 4,4-Dihydroxydiphenyl oder Dihydroxydiphenylcycloalkane,
bevorzugt Dihydroxydiphenylcyclohexane oder Dihydroxylcyclopentane,
insbesondere 1,1-Bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan sowie Mi
schungen der vorgenannten Dihydroxyverbindungen.
Besonders bevorzugte Polycarbonate sind solche auf der Basis von Bisphenol A
oder Bisphenol A zusammen mit bis zu 80 Mol-% der vorstehend genannten
aromatischen Dihydroxyverbindungen.
Es können auch Copolycarbonate gemäß der US 3,737,409 verwendet werden; von
besonderem Interesse sind dabei Copolycarbonate auf der Basis von Bisphenol A
und Di-(3,5-dimethyl-dihydroxyphenyl)sulfon, die sich durch eine hohe
Wärmeformbeständigkeit auszeichnen. Ferner ist es möglich, Mischungen
unterschiedlicher Polycarbonate einzusetzen.
Die mittleren Molekulargewichte (Gewichtsmittelwert MW, bestimmt mittels
Gelpermeationschromatographie in Tetrahydrofuran gegen Polystyrolstandards) der
Polycarbonate C liegen erfindungsgemäß im Bereich von 10 000 bis
64 000 g/mol. Bevorzugt liegen sie im Bereich von 15 000 bis 63 000, insbesondere
im Bereich von 15 000 bis 60 000 g/mol. Dies bedeutet, daß die Polycarbonate C
relative Lösungsviskositäten im Bereich von 1,1 bis 1,3, gemessen in
0,5 gew.-%iger Lösung in Dichlormethan bei 25°C, bevorzugt von 1,15 bis 1,33, haben.
Vorzugsweise unterscheiden sich die relativen Lösungsviskositäten der eingesetzten
Polycarbonate um nicht mehr als 0,05, insbesondere nicht mehr als 0,04.
Die Polycarbonate C können sowohl als Mahlgut als auch in granulierter Form
eingesetzt werden. Sie liegen als Komponente C in Mengen von 51-98 Gew.-%,
bevorzugt von 55-90 Gew.-%, insbesondere 60-85 Gew.-% jeweils bezogen auf
die gesamte Formmasse, vor.
Der Zusatz von Polycarbonaten führt gemäß einer Ausführungsform der Erfindung
unter anderem zu höherer Thermostabilität und verbesserter Rißbeständigkeit der
zur Herstellung der erfindungsgemäßen Formkörper für den Garten- und
Tierhaltungsbereich erfindungsgemäß verwendeten Formmassen.
Als Komponente D enthalten die zur Herstellung der erfindungsgemäßen
Formkörper für den Garten- und Tierhaltungsbereich erfindungsgemäß verwendeten
bevorzugten thermoplastischen Formmassen 0-50 Gew.-%, vorzugsweise 0-37 Gew.-%,
insbesondere 0-30 Gew.-% faser- oder teilchenförmige Füllstoffe und
sonstige Additive oder deren Mischungen, jeweils bezogen auf die gesamte
Formmasse. Dabei handelt es sich vorzugsweise um kommerziell erhältliche
Produkte.
Verstärkungsmittel wie Kohlenstoffasern und Glasfasern werden üblicherweise in
Mengen von 5-50 Gew.-% verwendet, bezogen auf die gesamte Formmasse.
Die verwendeten Glasfasern können aus E-, A- oder C-Glas sein und sind vorzugs
weise mit einer Schlichte und einem Haftvermittler ausgerüstet. Ihr Durchmesser
liegt im allgemeinen zwischen 6 und 20 µm. Es können sowohl Endlosfasern
(rovings) als auch handelsübliche Schnittglasfasern (staple) eingesetzt werden.
Weiterhin können Füll- oder Verstärkungsstoffe, wie Glaskugeln, Mineralfasern,
Whisker, Aluminiumoxidfasern, Glimmer, Quarzmehl und Wollastonit zugesetzt
werden.
Außerdem können Metallflocken (z. B. Aluminiumflocken der Fa. Transmet Corp.),
Metallpulver, Metallfasern, metallbeschichtete Füllstoffe, z. B. nickelbeschichtete
Glasfasern sowie andere Zuschlagstoffe, die elektromagnetische Wellen abschirmen,
den zur Herstellung der erfindungsgemäßen Formkörper erfindungsgemäß
verwendeten Formmassen beigemischt werden. Insbesondere kommen Alumini
umflocken (K 102 der Fa. Transmet) für EMI-Zwecke (electro-magnetic
interference) in Betracht. Ferner können die Massen mit zusätzlichen
Kohlenstoffasern, Ruß, insbesondere Leitfähigkeitsruß, oder nickelbeschichteten
C-Fasern vermischt werden.
Die zur Herstellung der erfindungsgemäßen Formkörper für den Garten- und
Tierhaltungsbereich erfindungsgemäß verwendeten Formmassen können ferner
weitere Zusatzstoffe D enthalten, die für Polycarbonate, SAN-Polymerisate und
Pfropfcopolymerisate oder deren Mischungen typisch und gebräuchlich sind. Als
solche Zusatzstoffe seien beispielsweise genannt: Farbstoffe, Pigmente, Färbemittel,
Antistatika, Antioxidantien, Stabilisatoren zur Verbesserung der Thermostabilität,
zur Erhöhung der Lichtstabilität, zum Anheben der Hydrolysebeständigkeit und der
Chemikalienbeständigkeit, Puffersubstanzen, Flammschutzmittel,
Abtropfinhibitoren, Umesterungsinhibitoren, Mittel gegen die Wärmezersetzung
und insbesondere die Schmier-/Gleitmittel und Wachse die für die Herstellung von
Formkörpern bzw. Formteilen zweckmäßig sind. Das Eindosieren dieser weiteren
Zusatzstoffe kann in jedem Stadium des Herstellungsprozesses erfolgen, vorzugs
weise jedoch zu einem frühen Zeitpunkt, um frühzeitig die Stabilisierungseffekte
(oder anderen speziellen Effekte) des Zusatzstoffes auszunutzen. Wärmestabi
lisatoren bzw. Oxidationsverzögerer sind üblicherweise Metallhalogenide (Chloride,
Bromide, Iodide), die sich von Metallen der Gruppe I des Periodensystems der
Elemente ableiten (wie Li, Na, K, Cu).
Weitere geeignete Stabilisatoren sind die üblichen gehinderten Phenole, aber auch
Vitamin E bzw. analog aufgebaute Verbindungen. Auch HALS-Stabilisatoren
(Hindered Amine Light Stabilizers), Benzophenone, Resorcine, Salicylate,
Benzotriazole und andere Verbindungen sind geeignet (beispielsweise Irganox®,
Tinuvin®, wie Tinuvin® 770 (HALS-Absorber, Bis (2,2,6,6-tetramethyl-4-
piperidyl)sebazat) oder Tinuvin®P (UV Absorber-(2H-Benzotriazol-2-yl)-4-me
thylphenol), Topanol®). Diese werden üblicherweise in Mengen bis zu 2 Gew.-%
(bezogen auf das Gesamtgemisch) verwendet.
Geeignete Gleit- und Entformungsmittel sind Stearinsäuren, Stearylalkohol,
Stearinsäureester bzw. allgemein höhere Fettsäuren, deren Derivate und ent
sprechende Fettsäuregemische mit 12-30 Kohlenstoffatomen. Die Mengen dieser
Zusätze liegen im Bereich von 0,05-1 Gew.-%.
Auch Siliconöle, oligomeres Isobutylen oder ähnliche Stoffe kommen als
Zusatzstoffe in Frage, die üblichen Mengen betragen 0,05-5 Gew.-%. Pigmente,
Farbstoffe, Farbaufheller, wie Ultramarinblau, Phthalocyanine, Titandioxid,
Cadmiumsulfide, Derivate der Perylentetracarbonsäure sind ebenfalls verwendbar.
Ferner können handelsübliche halogenfreie oder halogenhaltige Flammschutzmittel
in üblichen Mengen, beispielsweise bis 20 Gew.-% eingesetzt werden. Beispiele für
halogenfreie Flammschutzmittel sind in EP-A-01 49 813 beschrieben. Ansonsten sei
auf DE-A-34 36 815 verwiesen, wobei besonders Poly(tetrabrombisphenol-A-
(glycidil-/ether) mit einem Molekulargewicht von 40000 bevorzugt wird.
Verarbeitungshilfsmittel und Stabilisatoren wie UV Stabilisatoren, Schmiermittel
und Antistatika werden üblicherweise in Mengen von 0,01-5 Gew.-% verwendet,
bezogen auf die gesamte Formmasse.
Die Herstellung der zur Herstellung der erfindungsgemäßen Formkörper für den
Garten- und Tierhaltungsbereich erfindungsgemäß verwendeten thermoplastischen
Formmassen kann nach an sich bekannten Verfahren durch Mischen der Komponen
ten erfolgen. Es kann vorteilhaft sein, einzelne Komponenten vorzumischen. Auch
das Mischen der Komponenten in Lösung und Entfernen der Lösungsmittel ist
möglich.
Geeignete organische Lösungsmittel sind beispielsweise Chlorbenzol, Gemische aus
Chlorbenzol und Methylenchlorid oder Gemische aus Chlorbenzol oder aromati
schen Kohlenwasserstoffen, z. B. Toluol.
Das Eindampfen der Lösungsmittelgemische kann beispielsweise in Eindampfextru
dern erfolgen.
Das Mischen der z. B. trockenen Komponenten kann nach allen bekannten Metho
den erfolgen. Vorzugsweise geschieht jedoch das Mischen durch gemeinsames
Extrudieren, Kneten oder Verwalzen der Komponenten, bevorzugt bei Temperaturen
von 180-400°C, wobei die Komponenten notwendigenfalls zuvor aus der bei der
Polymerisation erhaltenen Lösung oder aus der wäßrigen Dispersion isoliert worden
sind.
Dabei können die Komponenten gemeinsam oder getrennt/nacheinander eindosiert
werden.
Die erfindungsgemäßen Formkörper für den Garten- und Tierhaltungsbereich
können gemäß einer Ausführungsform der Erfindung nach den bekannten Verfahren
der Thermoplastverarbeitung aus den erfindungsgemäß verwendeten thermoplasti
schen Formmassen hergestellt werden. Insbesondere kann die Herstellung durch
Thermoformen, Extrudieren, Spritzgießen, Kalandrieren, Hohlkörperblasen,
Pressen, Preßsintern, Tiefziehen oder Sintern, vorzugsweise durch Spritzgießen,
erfolgen. Speziell beim Kalandrieren und Tiefziehen werden als Zwischenstufe
Platten und Folien erzeugt bzw. eingesetzt.
Bei den Formkörpern für den Garten- und Tierhaltungsbereich kann es sich um
Gartengebäude, Gartengeräte, Gartenmöbel und Gartenausstattungen handeln.
Gartengebäude sind beispielsweise Gartenhäuser, Geräteschuppen, Carports,
Gewächshäuser, Spalierelemente, Pergolen. Beispiel für Gartengeräte bzw. Gehäuse
davon sind Rasenmäher, Schnellkomposter, Schredder, Regenwasserauffanganlagen
und Wetterstationen. Beispiele für Gartenausstattungsgeräte sind Gartenlampen,
Kandelaber, Beleuchtungsanlagen, Partyleuchten, Zierelemente, Ziergitter,
Blumenkästen und Pflanzkübel, Schlauchwagen und Bewässerungsanlagen, wie
auch Gartenfiguren, beispielsweise Gartenzwerge, Nistkästen usw. Für Gartenmöbel
kommen beispielsweise Bänke, Tische, Stühle, Liegen, Sonnenschirme usw. in
Betracht. Formkörper aus dem Tierhaltungsbereich sind beispielsweise Weidezäune,
etwa für Pferdekoppeln, Kleintierkäfige und Kleintiertransportbehälter, Spielgeräte
für Kleintiere, beispielsweise Katzenbäume, Hühnerhäuser, Kaninchenställe und
andere Bauten, die zur Tierhaltung geeignet sind.
Alle vorgenannten Einsatzgebiete haben gemeinsam, daß sie der Witterung, d. h.
Regen, Kälte, Hitze, Sonneneinstrahlung usw. ausgesetzt sind. Sie sind zudem
"freistehend", d. h. sie weisen eine gewisse Eigenstabilität und Steifheit auf.
Die Erfindung betrifft auch Halbzeuge aus den Formmassen und zur Herstellung der
Formkörper für Garten- und Tierhaltungsbereich bestimmte Platten, Profile, Folien
usw.
Zur Erhöhung der Steifheit und zur Verbesserung der Wärmeisolierung können
beispielsweise für Gartengebäude geeignete Hohlprofile noch durch geeignete
Schaumsysteme (beispielsweise PUR) ausgeschäumt werden, indem ein
verschäumendes System nachträglich oder bereits bei der Profilextrusion in den
Hohlraum des Bauteils eingebracht wird und dort verschäumt. Derartige
Profil/Platten-Systeme eignen sich beispielsweise für die vorstehend genannten
Gartenhäuser, Zäune, Carports, Spalierelemente und Gartenmöbel. Derartige Profile
könne beispielsweise auch in den gebildeten Freiflächen durch Mineralglas,
Acrylglas, PC-Platten und andere teil- oder volltransparente Werkstoffe verschlossen
werden. Die erfindungsgemäßen Formmassen können aufgrund der Steifigkeit,
Kratzfestigkeit, Witterungsbeständigkeit, Resistenz gegen Schimmel und
Bakterienbefall und Verbißfestigkeit auch für Transport- und Haltekäfige für
Kleintiere eingesetzt werden. Sie sind leicht zu reinigen, da tierische Exkremente
schlecht haften und Reinigungsmittel im allgemeinen nicht zu Korrosion führen.
Aufgrund der hohen Wärmeformbeständigkeit und Maßhaltigkeit sind die
erfindungsgemäßen Formmassen auch für Teile von Solaranlagen, beispielsweise im
Bereich der Photovoltaik und der Warmwasserbereitung einsetzbar.
Zudem sind die erfindungsgemäßen Formkörper für den Garten- und Tierhal
tungsbereich bzw. deren Gehäuse vergilbungsbeständig und sehr stabil. Sie weisen
ein ausgewogenes Verhältnis von Zähigkeit und Biegesteifigkeit auf.
Durch den hohen Gehalt an Polycarbonaten in den Formmassen sind die
Formkörper für den Garten- und Tierhaltungsbereich sehr wärmeformbeständig und
widerstandsfähig gegen anhaltende Wärme. Durch Zusatz des Polycarbonats als
Komponente C werden dabei die Wärmeformbeständigkeit und Schlagzähigkeit der
Formkörper für den Garten- und Tierhaltungsbereich weiter verbessert. Diese
Formkörper für den Garten- und Tierhaltungsbereich weisen zudem eine gute
Dimensionsstabilität sowie eine hervorragende Widerstandsfähigkeit gegen
Wärmealterung und eine hohe Vergilbungsbeständigkeit bei thermischer Belastung
und Einwirkung von UV Strahlung auf.
Die Formkörper für den Garten- und Tierhaltungsbereich weisen hervorragende
Oberflächenbeschaffenheiten auf, die auch ohne weitere Oberflächenbehandlung
erhalten werden. Durch geeignete Modifizierung der Kautschukmorphologie kann
das Erscheinungsbild der fertigen Oberflächen der Formkörper für den Garten- und
Tierhaltungsbereich modifiziert werden, beispielsweise um glänzende oder matte
Oberflächengestaltungen zu erreichen. Die Formkörper für den Garten- und
Tierhaltungsbereich zeigen bei Einwirkung von Witterung und UV Bestrahlung
einen sehr geringen Vergrauungs- bzw. Vergilbungseffekt, so daß die Ober
flächeneigenschaften erhalten bleiben. Weitere vorteilhafte Eigenschafen der
Formkörper für den Garten- und Tierhaltungsbereich sind die hohe Witte
rungsstabilität, gute thermische Beständigkeit, hohe Vergilbungsbeständigkeit bei
UV Bestrahlung und thermischer Belastung, gute Spannungsrißbeständigkeit, ins
besondere bei Einwirkung von Chemikalien, und ein gutes antielektrostatisches
Verhalten. Zudem weisen sie eine hohe Farbstabilität auf, beispielsweise auch
infolge der hervorragenden Beständigkeit gegen Vergilben und Verspröden. Die
erfindungsgemäßen Formkörper für den Garten- und Tierhaltungsbereich aus den
erfindungsgemäß verwendeten thermoplastischen Formmassen zeigen sowohl bei
tiefen Temperaturen wie auch nach längerer Wärmeeinwirkung keinen signifikanten
Verlust an Zähigkeit bzw. Schlagzähigkeit, die auch bei der Belastung durch UV-
Strahlen erhalten bleibt. Auch die Zugfestigkeit bleibt erhalten. Weiterhin zeigen die
erfindungsgemäßen Formmassen bzw. Formkörper für den Garten- und
Tierhaltungsbereich daraus hohe Beständigkeit gegen Zerkratzen, eine hohe
Beständigkeit gegen Quellung sowie eine geringe Permeabilität gegenüber
Flüssigkeiten und Gasen, wie auch eine gute Brandwidrigkeit.
Es ist möglich, zur Herstellung der erfindungsgemäßen Formkörper für den Garten-
und Tierhaltungsbereich gemäß der vorliegenden Erfindung bereits verwendete
thermoplastische Formmassen wiederzuverwerten. Aufgrund der hohen Farb
stabilität, Witterungsbeständigkeit und Alterungsbeständigkeit sind die
erfindungsgemäß verwendeten Formmassen sehr gut geeignet für die
Wiederverwendung. Dabei kann der Anteil an wiederverwendeter (recyclierter)
Formmasse hoch sein. Bei Verwendung von beispielsweise 30 Gew.-% bereits ver
wendeter Formmasse, die in gemahlener Form den erfindungsgemäß verwendeten
Formmassen beigemischt wurde, änderten sich die relevanten Materialeigeschaften
wie Fließfähigkeit, Vicat-Erweichungstemperatur und Schlagzähigkeit der
Formmassen und der daraus hergestellten erfindungsgemäßen Formkörper für den
Garten- und Tierhaltungsbereich nicht signifikant. Ähnliche Ergebnisse wurden bei
der Untersuchung der Witterungsbeständigkeit erhalten. Die Schlagzähigkeit war
auch bei Verwendung von wiederverwerteten thermoplastischen Formmassen über
lange Zeit konstant, siehe Lindenschmidt, Ruppmich, Hoven-Nievelstein, Inter
national Body Engineering Conference, 21.-23. September 1993, Detroit, Michi
gan, USA, Interior and Exterior Systems, Seiten 61 bis 64. Auch die Vergil
bungsbeständigkeit blieb erhalten.
Die Erfindung wird anhand der nachfolgenden Beispiele näher erläutert.
- 1. 16 Teile Butylacrylat und 0,4 Teile Tricyclodecenylacrylat wurden in 150 Teilen Wasser unter Zusatz von einem Teil des Natriumsalzes einer C12- bis C18-Paraffinsulfonsäure, 0,3 Teilen Kaliumpersulfat, 0,3 Teilen Natriumhydrogencarbonat und 0,15 Teilen Natriumpyrophosphat unter Rühren auf 60°C erwärmt. 10 Minuten nach dem Anspringen der Polyme risationsreaktion wurde innerhalb von 3 Stunden eine Mischung aus 82 Teilen Butylacrylat und 1,6 Teilen Tricyclodecenylacrylat zugegeben. Nach Beendigung der Monomerzugabe wurde noch eine Stunde nachreagieren gelassen. Der erhaltene Latex des vernetzten Butylacrylat- Polymerisats hatte einen Feststoffgehalt von 40 Gew.-%. Die mittlere Teilchengröße (Gewichtsmittel) wurde zu 76 nm ermittelt. Die Teilchengrößenverteilung war eng (Quotient Q = 0,29).
- 2. 150 Teile des nach (a1) erhaltenen Polybutylacrylat-Latex wurden mit 40 Teilen einer Mischung aus Styrol und Acrylnitril (Gewichtsverhältnis 75 : 25) und 60 Teilen Wasser gemischt und unter Rühren nach Zusatz von weiteren 0,03 Teilen Kaliumpersulfat und 0,05 Teilen Lauroylperoxid 4 Stunden auf 65°C erhitzt. Nach Beendigung der Pfropf mischpolymerisation wurde das Polymerisationsprodukt mittels Calciumchloridlösung bei 95°C aus der Dispersion gefällt, mit Wasser gewaschen und im warmen Luftstrom getrocknet. Der Pfropfgrad des Pfropfmischpolymerisats betrug 35%.
- 1. Zu einer Vorlage aus 2,5 Teilen des in der Stufe (a1) aus Beispiel 1 hergestell ten Latex wurden nach Zugabe von 50 Teilen Wasser und 0,1 Teil Kaliumpersulfat im Verlauf von 3 Stunden einerseits eine Mischung aus 49 Teilen Butylacrylat und 1 Teil Tricyclodecenylacrylat und andererseits eine Lösung von 0,5 Teilen des Natriumsalzes einer C12- bis C18- Paraffinsulfonsäure in 25 Teilen Wasser bei 60°C zulaufen gelassen. Nach Zulaufende wurde 2 Stunden nachpolymerisiert. Der erhaltene Latex des vernetzten Butylacrylat-Polymerisats hatte einen Feststoffgehalt von 40%. Die mittlere Teilchengröße (Gewichtsmittel des Latex) wurde zu 288 nm ermittelt. Die Teilchengrößenverteilung war eng (Q = 0,1).
- 2. 150 Teile dieses Latex wurden mit 40 Teilen einer Mischung aus Styrol und Acrylnitril (Verhältnis 75 : 25) und 110 Teilen Wasser gemischt und unter Rühren nach Zusatz von weiteren 0,03 Teilen Kaliumpersulfat und 0,05 Teilen Lauroylperoxid 4 Stunden auf 65°C erhitzt. Das bei der Pfropfmischpolymerisation erhaltene Polymerisationsprodukt wurde dann mittels einer Calciumchloridlösung bei 95°C aus der Dispersion ausgefällt, abgetrennt, mit Wasser gewaschen und im warmen Luftstrom getrocknet. Der Pfropfgrad des Pfropfinischpolymerisats wurde zu 27% ermittelt.
- 1. 16 Teile Butylacrylat und 0,4 Teile Tricyclodecenylacrylat wurden in 150 Teilen Wasser unter Zusatz von 0,5 Teilen des Natriumsalzes einer C12- bis C18-Paraffinsulfonsäure, 0,3 Teilen Kaliumpersulfat, 0,3 Teilen Natriumhydrogencarbonat und 0,15 Teilen Natriumpyrophosphat unter Rühren auf 60°C erwärmt. 10 Minuten nach dem Anspringen der Polymerisationsreaktion wurden innerhalb von 3 Stunden eine Mischung aus 82 Teilen Butylacrylat und 1,6 Teilen Tricyclodecenylacrylat zugegeben. Nach Beendigung der Monomerzugabe wurde noch eine Stunde nachreagieren gelassen. Der erhaltene Latex des vernetzten Butylacrylat-Polymerisats hatte einen Feststoffgehalt von 40 Gew.-%. Die mittlere Teilchengröße (Gewichtsmittel) wurde zu 216 nm ermittelt. Die Teilchengrößenverteilung war eng (Q = 0,29).
- 2. 50 Teile des nach (a1) erhaltenen Polybutylacrylat-Latex wurden mit 20 Teilen Styrol und 60 Teilen Wasser gemischt und unter Rühren nach Zusatz von weiteren 0,03 Teilen Kaliumpersulfat und 0,05 Teilen Lauroylperoxid 3 Stunden auf 65°C erhitzt. Nach Beendigung der ersten Stufe der Pfropfmischpolymerisation hatte das Pfropfmischpolymerisat einen Pfropfgrad von 17%. Diese Pfropfmischpolymerisatdispersion wurde ohne weitere Zusatzstoffe mit 20 Teilen einer Mischung aus Styrol und Acrylnitril (Verhältnis 75 : 25) weitere 3 Stunden polymerisiert. Nach Beendigung der Pfropfmischpolymerisation wurde das Produkt mittels Calciumchloridlösung bei 95°C aus der Dispersion gefällt, mit Wasser gewaschen und im warmen Luftstrom getrocknet. Der Pfropfgrad des Pfropfmischpolymerisats betrug 35%, die mittlere Teilchengröße der Latexteilchen wurde zu 238 nm ermittelt.
- 1. Zu einer Vorlage aus 2,5 Teilen des in Beispiel 3 (Komponente A) hergestellten Latex wurden nach Zugabe von 50 Teilen Wasser und 0,1 Teil Kaliumpersulfat im Verlauf von 3 Stunden einerseits eine Mischung aus 49 Teilen Butylacrylat und 1 Teil Tricyclodecenylacrylat und andererseits eine Lösung von 0,5 Teilen des Natriumsalzes einer C12- bis C18- Paraffinsulfonsäure in 25 Teilen Wasser bei 60°C zulaufen gelassen. Nach Zulaufende wurde 2 Stunden nachpolymerisiert. Der erhaltene Latex des vernetzten Butylacrylat-Polymerisats hatte einen Feststoffgehalt von 40%. Die mittlere Teilchengröße (Gewichtsmittel) des Latex wurde zu 410 nm ermittelt. Die Teilchengrößenverteilung war eng (Q = 0,1).
- 2. 150 Teile des nach (a1) erhaltenen Polybutylacrylat-Latex wurden mit 20 Teilen Styrol und 60 Teilen Wasser gemischt und unter Rühren nach Zusatz von weiteren 0,03 Teilen Kaliumpersulfat und 0,05 Teilen Lauroylperoxid 3 Stunden auf 65°C erhitzt. Die bei dieser Pfropfmischpolymerisation erhaltene Dispersion wurde dann mit 20 Teilen eines Gemisches aus Styrol und Acrylnitril im Verhältnis 75 : 25 weitere 4 Stunden polymerisiert. Das Reaktionsprodukt wurde dann mittels einer Calciumchloridlösung bei 95°C aus der Dispersion ausgefällt, abgetrennt, mit Wasser gewaschen und im warmen Luftstrom getrocknet. Der Pfropfgrad des Pfropfmischpolymerisats wurde zu 35% ermittelt, die mittlere Teilchengröße der Latexteilchen betrug 490 nm.
- 1. 98 Teile Acrylsäurebutylester und 2 Teile Tricyclodecenylacrylat wurden in 154
Teilen Wasser unter Zusatz von 2 Teilen Dioctylsulfosuccinatnatrium
(70%ig) als Emulgator und 0,5 Teilen Kaliumpersulfat unter Rühren 3
Stunden bei 65°C polymerisiert. Man erhielt eine etwa 40%ige
Dispersion. Die mittlere Teilchengröße des Latex war etwa 100 nm.
Zu einer Vorlage aus 2,5 Teilen dieses Latex, 400 Teilen Wasser sowie 0,5 Teilen Kaliumpersulfat wurde bei 65°C eine Mischung von 49 Teilen Acrylsäurebutylester, 1 Teil Tricyclodecenylacrylat und 0,38 Teilen des Emulgators innerhalb von 1 Stunde zugegeben. Im Verlauf einer weiteren Stunde fügte man eine Mischung von 49 Teilen Acrylsäurebutylester, 1 Teil Tricyclodecenylacrylat und 0,76 Teilen Emulgator zu. Nach Zugabe von 1 Teil Kaliumpersulfat in 40 Teilen Wasser wurde schließlich in nerhalb von 2 Stunden eine Mischung aus 196 Teilen Acrylsäurebutyle ster, 4 Teilen Tricyclodecenylacrylat sowie 1,52 Teilen des Emulgators zugetropft. Die Polymerisatmischung wurde anschließend noch 2 Stunden bei 65°C nachpolymerisiert. Man erhielt eine etwa 40%ige Dispersion mit einem mittleren Teilchendurchmesser von etwa 500 nm.
Gab man statt insgesamt 300 Teilen an Monomeren nur 100 Teile zu, so erhielt man einen Latex mit einem mittleren Teilchendurchmesser von etwa 300 nm. - 2. 465 Teile Styrol und 200 Teile Acrylnitril wurden in Gegenwart von 2500 Teilen des Polymerisatlatex nach (a1) mit der mittleren Teilchengröße 0,1 bzw. 0,3 bzw. 0,5 µm, 2 Teilen Kaliumsulfat, 1,33 Teilen Laurylperoxid und 1005 Teilen Wasser unter Rühren bei 60°C polymerisiert. Man erhielt eine 40%ige Dispersion, aus der das Festprodukt durch Zusatz einer 0,5%igen Calciumchloridlösung ausgefällt, mit Wasser gewaschen und getrocknet wurde.
Ein Monomeren-Gemisch aus Styrol und Acrylnitril wurde unter üblichen
Bedingungen in Lösung polymerisiert. Das erhaltene Styrol/Acrylnitril-Copoly
merisat hatte einen Acrylnitril-Gehalt von 35 Gew.-%, bezogen auf das Co
polymerisat, und eine Viskositätszahl von 80 ml/g.
Ein Monomeren-Gemisch aus Styrol und Acrylnitril wurde unter üblichen
Bedingungen in Lösung polymerisiert. Das erhaltene Styrol/Acrylnitril-Copoly
merisat hatte einen Acrylnitril-Gehalt von 18 Gew.-%, bezogen auf das
Copolymerisat, und eine Viskositätszahl von 70 ml/g.
Ein Monomeren-Gemisch aus Styrol und Acrylnitril wurde unter üblichen
Bedingungen in Lösung polymerisiert. Das erhaltene Styrol/Acrylnitril-Copoly
merisat hatte einen Acrylnitril-Gehalt von 27 Gew.-%, bezogen auf das Co
polymerisat, und eine Viskositätszahl von 80 ml/g.
Als Vergleichspolymerisat wurde ein Polybutadien-Kautschuk verwendet, der
gepfropft war mit einem Styrol-Acrylnitril-Copolymer als Komponente (A), die in
einer Styrol-Acrylnitril-Copolymer-Matrix als Komponente (B) vorlag. Der Gehalt
an Pfropfkautschuk betrug 30 Gew.-%, bezogen auf das Gesamtgewicht des fertigen
Polymerisats.
Als Komponente C wurde ein übliches Polycarbonat (PC) verwendet, das eine
Viskositätszahl von 61,5 ml/g aufwies, bestimmt im Lösungsmittel Methylenchlorid.
Entsprechend den Angaben in der nachstehenden Tabelle 1 werden die angegebenen
Mengen der entsprechenden Polymerisate (A), (B) und (C) bzw. der
Vergleichsmassen in einem Schneckenextruder bei einer Temperatur von
250°C-280°C gemischt. Aus den dadurch gebildeten Formmassen wurden Formkörper
hergestellt.
Die Zusammensetzung der Formmassen ist in der nachstehenden Tabelle dargestellt:
Die Kratzfestigkeit wird mit einem CSEM Automatic Scratch Tester-Modell AMI
(Hersteller: Center Suisse d'Electronique et de Microtechnique S. A.) bestimmt. Der
Scratchtester besitzt eine Diamantspitze mit 120° Spitzenwinkel und 0,2 mm
Radius. Mit dieser Diamantspitze werden in spritzgegossene Probekörper aus dem
zu prüfendem Material Kratzer von 5 mm Länge eingebracht. Die Andruckkraft des
Diamanten beträgt, sofern nicht anders angegeben, 2,6 N. Nach einer Stunde
Wartezeit werden die entstandenen Kratzer in Querrichtung abgetastet und als
Höhen/Tiefen-Profil dargestellt. Daraus kann dann die Kratztiefe abgelesen werden.
Die Spannungsrißbeständigkeit wird mit dem Biegestreifenverfahren gemäß
ISO 4599 bestimmt. Die verwendeten Probekörper werden dabei spritzgegossen. Sie
haben die Maße 80 × 15 × 2 mm. Falls nicht anders angegeben, wurde mit einem
Biegeradius der Probekörper von 50 mm gearbeitet. Dazu wurden die Probekörper
in eine Schablone eingespannt, gebogen und während 24 h mit dem Prüfmedium
benetzt. Danach wird mit einem Schlagpendel die Schlagarbeit bei Bruch bestimmt.
Als Prüfmedium wurde in b1 Isopropanol eingesetzt. In b2 wurde ein üblicher
Haushaltsreiniger (Ajax Ultra Classic® der Colgate Palmolive Deutschland, ein
tensidischer Haushaltsreiniger) verwendet.
Zur Messung der Quellung werden spritzgegossene Schulterstäbe (Zugstäbe gemäß
ISO 3167 mit einer Dicke von 4 mm) während 96 h im zu prüfendem Medium
gelagert. Sodann werden sie oberflächlich abgetrocknet, und die
Gewichtsveränderung sowie gegebenenfalls die Änderung des Zug-E-Moduls
(bestimmt nach ISO 527) werden im Vergleich zum Ausgangswert bestimmt. In
Tabelle II, Spalte C1 ist die Gewichtsveränderung in Methanol, in C2 in
Supberbenzin und in C3 die Veränderung des Zug-E-Moduls in Superbenzin
dargestellt.
Zur Prüfung der Permeabilität werden Folien aus dem zu prüfenden Material
gepresst (Dicke etwa 120 bis 250 µm), deren Durchlässigkeit gegen die
angegebenen Gase bzw. Flüssigkeiten bei 23°C bestimmt wird. Dabei werden die
Werte in (cm3 100 µm)/(m2 d bar) bei Gasen bzw. in (g 100 µm)/(m2 d) bei Wasser
angegeben. (Tabelle III)
Vorteilhaft einsetzbare Formmassen sollten die folgenden Bedingungen erfüllen:
Kratztiefe von weniger als 6 µm, Veränderung der Schlagarbeit im Vergleich zum
Ausgangswert von weniger als 10%, Quellung in Methanol von weniger als 1%
bzw. Quellung und Änderung des E-Moduls in Superbenzin von weniger als 6%.
Die Ergebnisse sind in den nachstehenden Tabellen II und III angegeben.
Zudem wurden an der Formmasse III und der Vergleichsformmasse VII die
Quellung bei unterschiedlicher Einwirkungszeit untersucht. Die Ergebnisse sind in
der nachstehenden Tabelle N angegeben:
Weiterhin wurde für die Formmasse I, II und die Vergleichsmasse III das Fogging-
Verhalten gemäß VW-PV 3015 Verfahren B (100°C, 16 h) untersucht. Für
Formmasse I wurde wenig Fogging beobachtet, für Formmasse II kaum Fogging, für
die Vergleichsformmasse III ein spürbares Fogging.
Als maximale Gebrauchstemperatur wurde für Formmasse I 110°C und für
Formmasse II 115°C ermittelt.
Die Formmassen mit einem Anteil an Polycarbonat von mehr als 50 Gew.-% wiesen
eine hervorragende Kombination von Eigenschaften auf. Dieses vorteilhafte
Eigenschaftssprektum macht sie insbesondere für die Anwendung in Formkörpern
für den Garten- und Tierhaltungsbereich geeignet.
Claims (10)
1. Verwendung einer von ABS verschiedenen thermoplastischen Formmasse,
enthaltend, bezogen auf die Summe der Mengen der Komponenten A, B, C und
gegebenenfalls D, die insgesamt 100 Gew.-% ergibt,
- a) 1-48 Gew.-% mindestens eines ein- oder mehrphasigen teil chenförmigen Emulsionspolymerisats mit einer Glasübergangs temperatur unterhalb von 0°C in mindestens einer Phase und einer mittleren Teilchengröße von 50-1000 nm, als Komponente A,
- b) 1-48 Gew.-% mindestens eines amorphen oder teilkristallinen Polymerisats als Komponente B,
- c) 51-98 Gew.-% Polycarbonate als Komponente C, und
- d) 0-47 Gew.-% übliche Additive und/oder faser- oder teilchenförmige Füllstoffe oder deren Gemische als Komponente D
2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß es sich bei der
Komponente A um ein mehrphasiges Polymerisat handelt aus
- 1. 1-99 Gew.-% einer teilchenförmigen ersten Phase A1 mit einer Glasübergangstemperatur unterhalb von 0°C,
- 2. 1-99 Gew.-% einer zweiten Phase A2 aus den Monomeren, bezogen auf A2,
- 3. 40-100 Gew.-% Einheiten eines vinylaromatischen Monomeren als Komponente A21 und
- 4. bis 60 Gew.-% Einheiten eines ethylenisch ungesättigten Monome ren als Komponente A22,
- 5. 0 bis 50 Gew.-% einer dritten Phase mit einer Glasübergangs temperatur von mehr als 0°C als Komponente A3, wobei die Gesamtmenge der Komponenten A1, A2 und A3 100 Gew.-% ergibt.
3. Verwendung nach Anspruch 2, dadurch gekennzeichnet, daß die Formmasse
als teilchenförmige erste Phase A1 einen Acrylat-, EP-, EPDM- oder
Siliconkautschuk enthält.
4. Verwendung nach Anspruch 3, dadurch gekennzeichnet, daß die Komponente
A1 besteht aus den Monomeren
- 1. 80-99,99 Gew.-% eines C1-8-Alkylesters der Acrylsäure als Komponente A11,
- 2. 0,01-20 Gew.-% mindestens eines polyfunktionellen vernetzenden Monomeren als Komponente A12.
5. Verwendung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß
die Teilchengrößenverteilung der Komponente A bimodal ist, wobei 1-99
Gew.-% eine mittlere Teilchengröße von 50-200 nm und 1-99 Gew.-% eine
mittlere Teilchengröße von 200-1000 nm aufweisen, bezogen auf das Gesamt
gewicht der Komponente A.
6. Verwendung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß
die Formkörper für den Gartenbereich Gartengebäude, Gartengeräte,
Gartenmöbel oder Gartenausstattungsgegenstände sind.
7. Verwendung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß
die Formkörper für den Tierhaltungsbereich Weidezäune, Käfige oder
Transportbehältnisse sind.
8. Verwendung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß
die Formmassen zur Herstellung von Profilen, Platten, Rohren oder Folien für
den Einsatz im Garten- und Tierhaltungsbereich eingesetzt werden.
9. Formkörper für den Garten- und Tierhaltungsbereich oder Gehäuse davon aus
einer thermoplastischen Formmasse, wie sie in einem der Ansprüche 1 bis 5
definiert ist.
10. Formkörper nach Anspruch 8, dadurch gekennzeichnet, daß es sich um
Gartengebäude, Gartengeräte, Gartenaustattung, Gartenmöbel, Weidezäune,
Kleintierkäfige oder Kleintiertransportbehälter handelt.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19846244A DE19846244A1 (de) | 1998-10-07 | 1998-10-07 | Formkörper für den Garten- und Tierhaltungsbereich |
EP99948964A EP1123351A1 (de) | 1998-10-07 | 1999-10-06 | Formkörper für den garten- und tierhaltungsbereich |
US09/806,863 US6566436B1 (en) | 1998-10-07 | 1999-10-06 | Molded forms for use in gardening and animal husbandry |
PCT/EP1999/007491 WO2000020510A1 (de) | 1998-10-07 | 1999-10-06 | Formkörper für den garten- und tierhaltungsbereich |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19846244A DE19846244A1 (de) | 1998-10-07 | 1998-10-07 | Formkörper für den Garten- und Tierhaltungsbereich |
Publications (1)
Publication Number | Publication Date |
---|---|
DE19846244A1 true DE19846244A1 (de) | 2000-04-13 |
Family
ID=7883730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19846244A Withdrawn DE19846244A1 (de) | 1998-10-07 | 1998-10-07 | Formkörper für den Garten- und Tierhaltungsbereich |
Country Status (4)
Country | Link |
---|---|
US (1) | US6566436B1 (de) |
EP (1) | EP1123351A1 (de) |
DE (1) | DE19846244A1 (de) |
WO (1) | WO2000020510A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002035008A1 (en) * | 2000-10-23 | 2002-05-02 | Borealis Technology Oy | Road restraint system parts |
EP2085716A2 (de) | 2008-02-01 | 2009-08-05 | Michael Rinner | Solarwanne |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4864323B2 (ja) * | 2002-10-15 | 2012-02-01 | ソルヴェイ アドバンスド ポリマーズ リミテッド ライアビリティ カンパニー | 抗黄変性重縮合ポリマー組成物及び製品 |
WO2005040281A1 (en) * | 2003-10-10 | 2005-05-06 | Basf Aktiengesellschaft | Thermoplastic molding compositions |
US7332188B2 (en) * | 2004-11-22 | 2008-02-19 | T.F.H. Publications, Inc. | Animal chew containing fermented soyfood |
US8182855B2 (en) * | 2004-11-22 | 2012-05-22 | T.F.H. Publications, Inc. | Fish food containing fermented soyfood |
CN100366675C (zh) * | 2005-12-30 | 2008-02-06 | 上海林达塑胶化工有限公司 | Abs(丙烯腈-丁二烯-苯乙烯共聚物)塑料加工用消泡除湿干燥母料的制备方法 |
US20110297106A1 (en) * | 2010-06-07 | 2011-12-08 | Kaplan Andrea J | Leash, collar, and harness with interchangeable accessories |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4234296A1 (de) * | 1992-10-12 | 1994-04-14 | Basf Ag | Thermoplastische Formmasse |
DE19630062A1 (de) * | 1996-07-25 | 1998-01-29 | Basf Ag | Formteile für Garten- und Gerätehäuser |
DE19630061A1 (de) * | 1996-07-25 | 1998-01-29 | Basf Ag | Gehäuse für Gartengeräte |
-
1998
- 1998-10-07 DE DE19846244A patent/DE19846244A1/de not_active Withdrawn
-
1999
- 1999-10-06 US US09/806,863 patent/US6566436B1/en not_active Expired - Fee Related
- 1999-10-06 EP EP99948964A patent/EP1123351A1/de not_active Withdrawn
- 1999-10-06 WO PCT/EP1999/007491 patent/WO2000020510A1/de not_active Application Discontinuation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002035008A1 (en) * | 2000-10-23 | 2002-05-02 | Borealis Technology Oy | Road restraint system parts |
EP2085716A2 (de) | 2008-02-01 | 2009-08-05 | Michael Rinner | Solarwanne |
Also Published As
Publication number | Publication date |
---|---|
US6566436B1 (en) | 2003-05-20 |
WO2000020510A1 (de) | 2000-04-13 |
EP1123351A1 (de) | 2001-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19846244A1 (de) | Formkörper für den Garten- und Tierhaltungsbereich | |
EP1123353B1 (de) | Formkörper für den bausektor im aussenbereich | |
DE19846205A1 (de) | Gehäuse für Geräte zur Informationsverarbeitung und -übermittlung | |
DE19846202A1 (de) | Formkörper für den Bausektor im Innenbereich | |
WO1998004628A2 (de) | Innenausbauteile für schienenfahrzeuge | |
EP0914374B1 (de) | Vorrichtung zur haltung oder versorgung von kleintieren | |
EP0914373B1 (de) | Verwendung einer Formmasse zur Herstellung von Gehäusen für Gartengeräte | |
WO1998004631A1 (de) | Formteile für sanitär- und badausrüstungen | |
DE19630120A1 (de) | Gehäuse von Kleintransformatoren enthaltenden Elektrogeräten | |
DE19631148A1 (de) | Vernetzer für Emulsionspolymerisate | |
WO1998004625A1 (de) | Gehäuse für sicherheitseinrichtungen | |
DE19846209A1 (de) | Sportartikel | |
DE19630103A1 (de) | Wärmeisolierte Transportbehältnisse | |
EP1123352B1 (de) | Gehäuse und abdeckungen für filter, pumpen und motoren | |
DE19630062A1 (de) | Formteile für Garten- und Gerätehäuser | |
EP1123149A1 (de) | Spielgeräte für den aussenbereich | |
DE19846246A1 (de) | Karosserieteile für Kraftfahrzeuge | |
WO2000020503A1 (de) | Massagegeräte und gehäuse dafür | |
DE19846252A1 (de) | Gehäuse von Kleintransformatoren enthaltenden Elektrogeräten | |
WO2000020502A1 (de) | Formkörper für den möbelsektor | |
DE19630116A1 (de) | Heckspoiler | |
DE19630118A1 (de) | Flächige Wandelemente |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8130 | Withdrawal |