DE19833086A1 - Verfahren und Vorrichtung zur Erkennung einer Leckage in einem Kraftstoffversorgungssystem einer Brennkraftmaschine - Google Patents

Verfahren und Vorrichtung zur Erkennung einer Leckage in einem Kraftstoffversorgungssystem einer Brennkraftmaschine

Info

Publication number
DE19833086A1
DE19833086A1 DE1998133086 DE19833086A DE19833086A1 DE 19833086 A1 DE19833086 A1 DE 19833086A1 DE 1998133086 DE1998133086 DE 1998133086 DE 19833086 A DE19833086 A DE 19833086A DE 19833086 A1 DE19833086 A1 DE 19833086A1
Authority
DE
Germany
Prior art keywords
pressure
internal combustion
combustion engine
leak
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE1998133086
Other languages
English (en)
Other versions
DE19833086B4 (de
Inventor
Andreas Kellner
Juergen Hammer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE1998133086 priority Critical patent/DE19833086B4/de
Priority to EP19990109147 priority patent/EP0974826B1/de
Priority to JP20892399A priority patent/JP4382199B2/ja
Publication of DE19833086A1 publication Critical patent/DE19833086A1/de
Application granted granted Critical
Publication of DE19833086B4 publication Critical patent/DE19833086B4/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/08Safety, indicating, or supervising devices
    • F02B77/088Safety, indicating, or supervising devices relating to tightness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Es werden ein Verfahren und eine Vorrichtung zur Erkennung einer Leckage in einem Kraftstoffversorgungssystem einer Brennkraftmaschine, insbesondere einer Brennkraftmaschine mit einem Common Rail System, beschrieben. Eine steuerbare Pumpe fördert Kraftstoff in einen Speicher. Ein Drucksensor erfaßt den Druck in dem Speicher. Zur Erkennung einer Leckage wird im Schubbetrieb ein Ansteuersignal der Pumpe mit wenigstens einem Schwellwert verglichen und/oder es wird überprüft, ob der Druck wie erwartet abfällt.

Description

Stand der Technik
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Erkennung einer Leckage in einem Kraftstoffversorgungssystem einer Brennkraftmaschine gemäß den Oberbegriffen der unabhängigen Ansprüche.
Ein Verfahren und eine Vorrichtung zur Erkennung einer Leckage in einem Kraftstoffversorgungssystem einer Brennkraftmaschine sind aus der DE 195 20 300 (US 5 715 786) bekannt. Dort wird in bestimmten Betriebszuständen ein Druckregelventil derart angesteuert, daß der Druck ansteigt Erfolgt kein Druckanstieg, so wird von einer Leckage ausgegangen.
Bei Systemen, bei denen die Druckregelung mittels einer gesteuerten Hochdruckpumpe erfolgt, ist eine derartige Leckageerkennung nicht ohne weiteres möglich.
Aus der DE 195 13 158 ist ein Verfahren und eine Vorrichtung zur Erkennung einer Leckage in einem Kraftstoffversorgungssystem einer Brennkraftmaschine bekannt. Dort wird in beim Abschalten der Brennkraftmaschine überprüft, ob der Druck wie erwartet abfällt.
Eine Überprüfung erfolgt nur beim Abschalten. Fehler, die im Laufenden Betrieb auftreten können nicht erkannt werden.
Aufgabe der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung bereitzustellen, mit denen auch bei Systemen mit gesteuerter Hochdruckpumpe eine sichere Erkennung einer Leckage möglich ist. Diese Aufgabe wird durch die in den unabhängigen Ansprüchen gekennzeichneten Merkmalen gelöst.
Vorteile der Erfindung
Dadurch, daß zur Erkennung einer Leckage im Schubbetrieb ein Ansteuersignal der Pumpe mit wenigstens einem Schwellwert verglichen und/oder überprüft wird, ob ein Drucksignal wie erwartet abfällt, ist eine sichere Leckageerkennung möglich.
Besonders vorteilhaft ist es, daß eine Leckage erkannt wird, wenn das Drucksignal schneller als ein vorgebbarer Schwellwert abfällt und/oder daß ein Leckage erkannt wird, wenn das Ansteuersignal größer als ein Schwellwert ist, da keine zusätzlichen Sensoren benötigt werden.
Vorteilhaft ist, daß die Schwellwert ausgehend von dem Druck im Speicher vorgebbar ist, da genauere Schwellwerte vorgebbar sind, und die Sicherheit erhöht wird.
Dadurch, daß bei einer kleinen Leckage ein Notfahrbetrieb erfolgen kann und bei einer großen Leckage eine Abschaltung der Brennkraftmaschine erfolgt, wir die Verfügbarkeit der Brennkraftmaschine erhöht.
Besonders vorteilhaft ist es, daß in einem ersten Zeitabschnitt, der unmittelbar zu Beginn des Schubbetriebs beginnt, überprüft wird, ob das Drucksignal wie erwartet abfällt und/oder daß in einem zweiten Zeitabschnitt, der zeitlich nach dem ersten Zeitabschnitt liegt, das Ansteuersignal mit einem Schwellwert verglichen wird.
Vorteilhafte und zweckmäßige Ausgestaltungen und Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
Zeichnung
Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsformen erläutert. Es zeigen Fig. 1 ein Blockdiagramm eines Kraftstoffeinspritzsystems, Fig. 2 ein Flußdiagramm der erfindungsgemäßen Vorgehensweise und Fig. 3 verschiedene über Zeit aufgetragene Signale.
Beschreibung der Ausführungsbeispiele
In Fig. 1 sind die für das Verständnis der Erfindung erforderlichen Bauteile eines Kraftstoffversorgungssystems einer Brennkraftmaschine mit Hochdruckeinspritzung dargestellt. Das dargestellte System wird üblicherweise als Common-Rail-System bezeichnet.
Mit 100 ist ein Kraftstoffvorratsbehälter bezeichnet. Dieser steht über einen Filter 115, mit einer vorzugsweise mechanischen Vorförderpumpe 110 in Verbindung. Von der Vorförderpumpe 110 gelangt der Kraftstoff über eine Leitung zu einem Zumeßventil 120. Die Verbindungsleitung zwischen der Vorförderpumpe 110 und dem Zumeßventil 120 steht über ein Niederdruckbegrenzungsventil 145 mit dem Vorratsbehälter 100 in Verbindung. Das Ventil 120 steht über eine Hochdruckpumpe 125 mit einem Rail 130 in Verbindung. Das Rail wird auch als Speicher bezeichnet und steht über Kraftstoffleitungen mit verschiedenen Injektoren 131 in Kontakt.
Abhängig von der jeweiligen Ausführungsform des Systems kann das Rail über ein Druckregelventil 135 oder ein Druckablaßventil mit dem Kraftstoffvorratsbehälter 110 verbunden sein. Das Druckregelventil oder das Druckablaßventil 135 ist mittels einer Spule 136 steuerbar.
Von den Injektoren gelangt Kraftstoff über eine Rückleitung ebenfalls zum Tank 100.
Die Leitungen zwischen dem Ausgang der Hochdruckpumpe 125 und dem Eingang der Injektoren 131 und des Druckregelventils 135 werden als Hochdruckbereich bezeichnet. In diesem Bereich steht der Kraftstoff unter hohem Druck. Der Druck im Hochdruckbereich wird mittels eines Sensors 140 erfaßt. Der Sensor 140 liefert ein Drucksignal, das den Druck in dem Speicher charakterisiert. Die Leitungen zwischen dem Tank 100 und der Hochdruckpumpe 125 werden als Niederdruckbereich bezeichnet.
Eine Steuerung 160 beinhaltet einen Druckregler und beaufschlagt entsprechende Stellglieder, wie beispielsweise das Zumeßventil 120 mit einer Stellgröße PS. Ferner kann auch vorgesehen sein, daß der Druckregler die Spule 136 des Druckregelventils oder Druckablaßventils 135, mit einem Ansteuersignal A beaufschlagt. Die Steuerung 160 verarbeitet verschiedene Signale verschiedener Sensoren 165, die den Betriebszustand der Brennkraftmaschine und/oder des Kraftfahrzeugs, daß die Brennkraftmaschine antreibt, charakterisieren. Ein solcher Betriebszustand ist beispielsweise die Drehzahl N der Brennkraftmaschine.
Der Regler ist vorzugsweise als PI-Regler ausgebildet. Es kann auch vorgesehen sein, daß der Regler noch andere Anteile, beispielsweise D-Anteile aufweist.
Die dargestellte Vorrichtung ist nur beispielhaft gewählt. Verschiedene Elemente können auch weggelassen oder an anderer Stelle angeordnet sein. Wesentlich ist, daß der Tank 100 über eine Leitung mit der Vorförderpumpe 110 verbunden ist. Diese steht über eine Leitung mit der Hochdruckpumpe 125 in Verbindung. Die Hochdruckpumpe fördert den Kraftstoff in das Rail, von wo er zu den Injektoren gelangt. Von den Injektoren gelangt eine geringe Menge von Kraftstoff zurück in den Tank.
Diese Einrichtung arbeitet wie folgt: Der Kraftstoff, der sich im Vorratsbehälter befindet, wird von der Vorförderpumpe 110 durch die Filtermittel 115 gesaugt. Ausgangsseitig der Vorförderpumpe 110 ist der Kraftstoff mit einem Druck zwischen 4 bis ca. 6 bar beaufschlagt.
Der Druck im Niederdruckbereich wird durch das Niederdruckbegrenzungsventil 145 eingestellt. Dieses gibt bei zu hohem Druck die Verbindung zwischen dem Ausgang der Vorförderpumpe 110 und dem Vorratsbehälter 100 frei.
Die Hochdruckpumpe 125 verdichtet den Kraftstoff von Niederdruck auf Hochdruck. Die Hochdruckpumpe 125 baut im Rail 130 einen sehr hohen Druck auf. Üblicherweise werden bei Systemen für fremdgezündete Brennkraftmaschinen Druckwerte von etwa 30 bis 100 bar und bei selbstzündenden Brennkraftmaschinen Druckwerte von etwa 1000 bis 2000 bar erzielt. Über die Injektoren 131 kann der Kraftstoff unter hohem Druck den einzelnen Zylinder der Brennkraftmaschine zugemessen werden.
Mittels des Sensors 140 wird der Druck im Rail bzw. im gesamten Hochdruckbereich erfaßt. Mittels der steuerbaren Hochdruckpumpe 125 kann der Druck im Hochdruckbereich geregelt werden. Beispielsweise kann vorgesehen sein, daß die Hochdruckpumpe ein Magnetventil umfaßt, das die geförderte Kraftstoffmenge beeinflußt. Dieses Ventil ist vorzugsweise im Zulauf der Hochdruckpumpe angeordnet. Abhängig von dem Ansteuersignal PS fördert die Hochdruckpumpe Kraftstoffmengen.
Als Vorförderpumpe 110 werden üblicherweise mechanisch angetriebene Zahnradpumpen verwendet. Alternativ können auch elektrische Kraftstoffpumpen zum Einsatz kommen.
Zur Regelung des Druckes P im Hochdruckbereich können zusätzlich weitere Stellglieder eingesetzt werden. Dies sind beispielsweise ein elektrisch verstellbares Druckablaßventil 135 oder ein Druckregelventil 135.
Von der Hochdruckpumpe 125 wird die Fördermenge QP in das Rail 130 gefördert. Vom Rail 130 gelangt die Zumessmenge QI zu den Injektoren 131. Die Menge QT setzt sich zusammen aus der eingespritzten Kraftstoffmenge QK, der Injektorleckagemenge QL und einer Steuermenge QS der Injektoren. Die Injektorleckagemenge QL und die Steuermenge QS gelangen zurück in den Niederdruckbereich. Die eingespritzte Kraftstoffmenge QK gelangt in die Brennräume der Brennkraftmaschine.
Bei offenem Druckregelventil 135 gelangt die Absteuermenge QA zurück in den Tank 100.
Die Injektorleckagemenge QL tritt immer auf und ist vom Betriebszustand abhängig. Die Menge beruht auf unvermeidlichen Undichtigkeiten im Injektor. Die Steuermenge QS nimmt nur bei einer Einspritzung von Kraftstoff Werte größer Null an. Sie dient zur Steuerung der Einspritzung.
Tritt in dem System eine Undichtheit nach außen auf, so handelt es sich um eine äußere Leckage. Schließt einer der Injektoren nicht vollständig, verspätet oder bleibt er ständig geöffnet, so gelangt eine gegenüber der einzuspritzenden Kraftstoffmenge QK erhöhte Kraftstoffmenge in die Brennräume. Dies wird als innere Leckage bezeichnet.
Solche inneren und äußeren Leckagen müssen sicher erkannt werden.
In Fig. 2 ist die Erfindungsgemäße Vorgehensweise anhand eines Flußdiagrammes dargestellt.
Die beschriebene Vorgehensweise basiert im wesentlichen darauf, daß bei dem dargestellten System die Druckregelung über die mengengesteuerte Hochdruckpumpe erfolgt. Ein Druckregelventil oder ein Druckablaßventil 135 kann vorhanden sein, wird aber derart angesteuert, daß es sich in seinem geschlossenen Zustand befindet, so daß die Menge QA zu Null wird. Befindet sich die Brennkraftmaschine im Schubbetrieb, in dem kein Kraftstoff eingespritzt wird, so bedeutet dies, daß die eingespritzte Menge QK und die Steuermenge QS zu Null werden. Lediglich die Leckagemenge QL nimmt einen Wert größer als Null an. Wird in einem solchen Betriebszustand die Hochdruckpumpe derart angesteuert, daß kein Kraftstoff gefördert wird, so erfolgt der Abbau des Druckes im Rail lediglich über die Leckagemenge QL. Die Leckagemenge QL hängt von Betriebszustand der Brennkraftmaschine ab. Im wesentlichen hängt die Leckagemenge von dem Druck P im Speicher 130 und dem Volumen des Speichers ab. Es kann daher als Funktion des Druckes P im Rail 130 ein maximal möglicher Wert PAM für den Druckabbau pro Zeit vorgegeben werden.
Erfindungsgemäß ist vorgesehen, daß beim Übergang in den Schubbetrieb, bei dem kein Kraftstoff eingespritzt wird, der Abfall des Druckes bei nicht angesteuerter Hochdruckpumpe ausgewertet wird. Fällt der Druck schneller, als erwartet ab, wobei der erwartete Wert vom Druck abhängt, so wird auf Leckage erkannt.
Bei einer weiteren Ausgestaltung ist vorgesehen, daß die Stellgröße PS, mit der die Hochdruckpumpe 120 beaufschlagt wird, um den Sollwert des Druckes aufrecht zu erhalten, ausgewertet wird. Übersteigt das Ansteuersignal PS einen vorgegebenen Wert, der der maximal zulässigen Leckagemenge Ql entspricht, so wird ebenfalls auf Leckage erkannt.
Besonders vorteilhaft ist es, wenn die beiden Vorgehensweisen kombiniert werden.
In einem ersten Schritt 200 wird überprüft, ob ein Betriebszustand vorliegt, in dem die Prüfung auf Leckage erfolgen kann. Ein solcher Betriebszustand liegt beispielsweise vor, wenn die einzuspritzende Kraftstoffmenge QK gleich Null ist. Dies ist beispielsweise dann der Fall, wenn sich die Brennkraftmaschine im Schubbetrieb befindet. Besonders vorteilhaft ist es, wenn die Überprüfung in einem Betriebszustand erfolgt, bei dem die Brennkraftmaschine von einem Betriebszustand, bei dem ein hoher Raildruck vorgegeben wird auf einen Betriebszustand übergeht, bei dem ein niederer Raildruck vorgegeben wird, wobei gleichzeitig Übergang auf den niederen Raildruck kein Kraftstoff eingespritzt wird. Dies ist beispielsweise der Fall, wenn sich die Brennkraftmaschine nach einem Beschleunigungsvorgang in den Schubbetrieb übergeht. Liegt ein solcher Betriebszustand nicht vor, erfolgt erneut die Abfrage 200.
Liegt ein entsprechender Betriebszustand vor, so wird in Schritt 205 das Ansteuersignal A für das Druckregelventil 135 so vorgegeben, daß dieses schließt. Dieser Schritt ist lediglich dann vorgesehen, wenn die Einrichtung mit einem solchen Druckregelventil ausgestattet ist. Anschließend wird in Schritt 210 die Änderung PA des Raildruckes erfaßt. Hierzu wird beispielsweise das Drucksignal P differenziert.
Die anschließende Abfrage 220 überprüft, ob die Änderung des Druckes PA kleiner als ein erster maximaler Wert PAM1 ist. Der Wert PAM1 ist so gewählt, das er uni einen ersten Toleranzwert größer als eine in diesem Betriebspunkt zulässige Druckänderung PAM ist.
Ist dies nicht der Fall, so folgt Schritt 235. Ist die Änderung des Druckes PA kleiner als der erste Wert PAM1, so wird in Schritt 225 überprüft, ob die Änderung des Druckes PA kleiner als ein zweiter maximaler Wert PAM2 ist. Der Wert PAM2 ist so gewählt, das er um einen zweiten Toleranzwert größer als die in diesem Betriebspunkt zulässige Druckänderung PAM ist.
Ist dies der Fall, so wird in Schritt 260 auf Fehler erkannt. Ist die Änderung des Druckes PA kleiner als der erste Wert PAM1 und größer als der zweite Wert PAM2 wird in Schritt 230 auf einen Notbetrieb übergegangen. Anschließend folgt Schritt 235.
Fällt der Druck im Rail schneller ab als erwartet, so wird ein Fehler erkannt. Bei einem ersten Wert wird in einen Notbetrieb übergegangen. Bei einem sehr schnellen Druckabfall erkennt die Einrichtung auf Fehler. Dies hat in der Regel eine Notabschaltung zur Folge. Durch diese Maßnahme kann die Verfügbarkeit der Brennkraftmaschine erhöht werden. Bei einer kleinen Leckage, die nur einen etwas beschleunigten Druckabfall zur Folge hat, geht die Einrichtung in einen Notlauf über. Erst bei größeren Leckagen, die einen sehr schnellen Druckabfall bewirken, erfolgt die Notabschaltung.
Bei der Abfrage 225 und dem Übergang in den Notbetrieb 230 handelt es sich um eine besonders vorteilhafte Ausgestaltung mit der bei kleinen Abweichungen lediglich auf einen Notbetrieb umgeschaltet und bei großen Abweichungen auf Fehler erkannt wird.
Die in dem Betriebspunkt zulässige Druckänderung PAM wird vorzugsweise aus einem Kennfeld abhängig vom Raildruck P ausgelesen. Ein solches Kennfeld ist in Fig. 3a aufgetragen Dort ist der maximal zulässige Änderung PAM des Druckes über dem Raildruck aufgetragen. Dieser Figur ist zu entnehmen, daß bei steigendem Druck der Wert für die max. zulässige Änderung PAM des Druckes ansteigt. Dies bedeutet bei höherem Druck ist der Druckabfall steiler als bei niederem Druck. Der Wert PAM1, bei dem auf Notfahrbetrieb umgeschaltet wird, nimmt einen kleineren Wert als der Wert PAM2 an.
Fällt der Druck langsamer ab als ein vorgegebener Wert PAM1, so überprüft die Abfrage 235 ob der Druckwert P größer als ein Sollwert PW ist. Ist dies der Fall, d. h. der Druck ist größer als sein Sollwert, so folgt erneut Schritt 210. Ist der Druck P kleiner oder gleich dem Sollwert PW, so folgt die Abfrage 240.
Hat der Druckwert seinen Sollwert erreicht, so liefert der Druckregler eine Stellgröße PS zur Ansteuerung der Hochdruckpumpe 120. Diese Stellgröße PS ist so bemessen, daß die Hochdruckpumpe 120 so viel Kraftstoff fördert, daß der Druck konstant auf dem Sollwert verbleibt. Im Schubbetrieb bedeutet dies, daß die von der Hochdruckpumpe geförderte Menge entspricht der Leckagemenge QL.
Erfindungsgemäß wird diese Stellgröße PS zur Fehlerüberwachung ausgewertet. Die Abfrage 240 überprüft, ob die Stellgröße PS kleiner als ein maximaler Wert PSM1 ist. Ist dies nicht der Fall, so wird in Schritt 260 auf Fehler erkannt, und die Brennkraftmaschine abgeschaltet. Der Wert PSM1 ist so gewählt, das er um einen ersten Toleranzwert größer als eine in diesem Betriebspunkt zulässige Stellgröße PSM ist.
Erkennt die Abfrage 240 daß die Stellgröße PS kleiner als der Schwellwert PSM1 ist, so überprüft die Abfrage 245 ob die Stellgröße PS kleiner als ein zweiter Schwellwert PSM2 ist. Der Wert PSM2 ist so gewählt, das er um einen zweiten Toleranzwert größer als die in diesem Betriebspunkt zulässige Stellgröße PSM ist. Der zweite Toleranzwert ist größer als der erste Toleranzwert.
Ist dies nicht der Fall, d. h. die Stellgröße PS nimmt Werte zwischen dem ersten und dem zweiten Schwellwert an, so wird in Schritt 250 auf den Notfahrbetrieb übergegangen. Ist die Stellgröße PS kleiner als der zweite Schwellwert PSM2, so wird auf fehlerfreien Zustand erkannt, und das Programm endet in Schritt 255. Die zweite Abfrage 245 mit dem zweiten Schwellwert stellt entsprechend der Abfrage 225 eine besonders vorteilhafte Ausgestaltung dar, die auch weggelassen werden kann.
Vorzugsweise ist der zweite Schwellwert PSM2 kleiner als der erste Schwellwert und zeigt an, daß lediglich eine kleine Leckage vorliegt, bei der lediglich ein Notfahrbetrieb erforderlich ist. Weicht die Stellgröße nur gering von der zulässigen Stellgröße PSM ab, so wird der Notfahrbetrieb eingeleitet. Weicht die Stellgröße PS wesentlich von der zulässigen Stellgröße PSAM ab, so erkennt die Einrichtung auf Fehler und leitet die Notabschaltung der Brennkraftmaschine ein.
Da in die Abschätzung des maximal möglichen Druckabfalls PAM lediglich die Toleranzen der Leckagemenge eingehen, können die Toleranzwerte, die zur Bildung der Schwellwerte dienen, wesentlich kleiner gewählt werden, als bei herkömmlichen Verfahren. Dies bedeutet, die Abweichung zwischen den maximal zulässigen Werten für die Änderung des Druckes und den Schwellwerten sowie die Abweichung zwischen der zulässigen Stellgröße und den Schwellwerten können sehr klein gewählt werden. Diese Toleranzen der Leckagemenge betreffen insbesondere die Streuungen zwischen den einzelnen Injektoren sowie die Änderungen der Leckagemenge über die Lebensdauer und deren Abhängigkeit von der Kraftstofftemperatur.
Durch die Einführung zweier Schwellwerte und die Unterscheidung zwischen einer Abschaltung im Fehlerfall bei einer großen Leckage und einem Notfahrbetrieb bei einer kleinen Leckage kann die Verfügbarkeit der Brennkraftmaschine wesentlich erhöht werden.
In Fig. 3b sind verschiedene Größen über der Zeit t aufgetragen. Mit einer einfachen durchgezogenen Linie ist der Sollwert PW für den Druck im Rail und mit einer strichpunktierten einfachen Linie der reale Druck P im Rail aufgetragen. Mit einer gestrichelten Linie ist der Druck P bei dem maximal zulässigen Druckabfall dargestellt. Mit einer doppelt gezogenen Linie ist das Ansteuersignal für die Hochdruckpumpe und mit einer doppelt gezogenen unterbrochenen Linie der maximal zulässige Wert PSM für das Ansteuersignal aufgetragen.
Bis zu dem Zeitpunkt t0 wird ein hoher Sollwert für den Druck vorgegeben. Zum Zeitpunkt t0 geht die Brennkraftmaschine in den Schubbetrieb über, dies bedeutet, daß der Drucksollwert auf einen niederen Wert abgesenkt wird. Hierzu wird der Druck zuerst sehr schnell auf einen niederen Sollwert abgesenkt und geht dann, verursacht durch die Drehzahlabnahme, langsamer auf niedrigere Sollwerte über. Der tatsächliche Wert, der mit einer strichpunktierten Linie eingezeichnet wird, des Druckes P fällt wesentlich langsamer ab als der Sollwert PW. In diesem Zeitabschnitt steuert die Steuerung 160 die Hochdruckpumpe 120 derart an, daß sie kein Kraftstoff fördert.
Zum Zeitpunkt t1 erreicht der tatsächliche Druck P den Sollwert PW. Ab diesem Zeitpunkt steigt die Stellgröße PS von dem Wert 0 auf einen Wert <0 an. Im dargestellten Beispiel ist der Wert der Stellgröße PS kleiner als der mit einer doppelt gezogenen gestrichelten Linie eingetragene maximale Stellgröße PSM.
Besonders vorteilhaft ist es, wenn anstelle der Druckänderung PA die Zeitdauer zwischen den Zeitpunkten t0 und t1 ausgewertet wird. Dies bedeutet, die Einrichtung erkennt auf Fehler, wenn die Zeitdauer zwischen t0 und t1 kleiner als ein Schwellwert ist.
In einem ersten Zeitabschnitt wird der Druckabfall zur Leckageerkennung ausgewertet. Dieser Zeitabschnitt beginnt zum Zeitpunkt t0 mit dem Übergang in den Schubbetrieb und endet zum Zeitpunkt t1, wenn der Druck seinen Sollwert erreicht hat. In einem zweiten Zeitabschnitt wird zur Leckageerkennung die Stellgröße, mit der die Hochdruckpumpe angesteuert wird, ausgewertet. Dieser zweite Zeitabschnitt beginnt zum Zeitpunkt t1, wenn der Druck seinen Sollwert erreicht und endet zum Zeitpunkt t2. Die Dauer des zweiten Zeitabschnitts endet bei Beenden des Schubbetriebs.
Erfindungsgemäß kann die Überwachung in beiden Zeitabschnitten oder nur in einem der beiden Zeitabschnitte erfolgen.

Claims (9)

1. Verfahren zur Erkennung einer Leckage in einem Kraftstoffversorgungssystem einer Brennkraftmaschine, insbesondere einer Brennkraftmaschine mit einem Common Rail System, wobei Kraftstoff von einer steuerbaren Pumpe in einen Speicher gefördert und ein Drucksignal erfaßt wird, das den Druck in dem Speicher charakterisiert, dadurch gekennzeichnet, daß im Schubbetrieb zur Erkennung einer Leckage ein Ansteuersignal der Pumpe mit wenigstens einem Maximalwert verglichen wird und/oder daß überprüft wird, ob das Drucksignal wie erwartet abfällt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Leckage erkannt wird, wenn das Drucksignal schneller als ein vorgebbarer Schwellwert abfällt.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Leckage erkannt wird, wenn das Ansteuersignal größer als der Maximalwert ist.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Schwellwert ausgehend von dem Drucksignal vorgebbar ist.
5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß bei überschreiten eines ersten Schwellwerts eine kleine Leckage erkannt und ein Notfahrbetrieb eingeleitet wird, und daß bei Überschreiten eines zweiten Schwellwerts eine große Leckage erkannt und eine Abschaltung der Brennkraftmaschine eingeleitet wird.
6. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß bei überschreiten eines ersten Maximalwerts eine kleine Leckage erkannt und ein Notfahrbetrieb eingeleitet wird, und daß bei Überschreiten eines zweiten Maximalwerts eine große Leckage erkannt und eine Abschaltung der Brennkraftmaschine eingeleitet wird.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in einem ersten Zeitabschnitt, der unmittelbar zu Beginn des Schubbetriebs beginnt, überprüft wird, ob das Drucksignal wie erwartet abfällt.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in einem zweiten Zeitabschnitt, der zeitlich nach dem ersten Zeitabschnitt liegt, das Ansteuersignal mit einem Schwellwert verglichen wird.
9. Vorrichtung zur Erkennung einer Leckage in einem Kraftstoffversorgungssystem einer Brennkraftmaschine, insbesondere einer Brennkraftmaschine mit einem Common Rail System, wobei eine steuerbare Pumpe Kraftstoff in einen Speicher fördert und ein Drucksignal erfaßt wird, das den Druck in dem Speicher charakterisiert, dadurch gekennzeichnet, daß Mittel vorgesehen sind, die zur Erkennung einer Leckage im Schubbetrieb ein Ansteuersignal der Pumpe mit wenigstens einem Schwellwert vergleichen und/oder die überprüfen, ob der Druck wie erwartet abfällt.
DE1998133086 1998-07-23 1998-07-23 MaximalwertVerfahren und Vorrichtung zur Erkennung einer Leckage in einem Kraftstoffversorgungssystem einer Brennkraftmaschine Expired - Fee Related DE19833086B4 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE1998133086 DE19833086B4 (de) 1998-07-23 1998-07-23 MaximalwertVerfahren und Vorrichtung zur Erkennung einer Leckage in einem Kraftstoffversorgungssystem einer Brennkraftmaschine
EP19990109147 EP0974826B1 (de) 1998-07-23 1999-05-08 Verfahren und Vorrichtung zur Erkennung einer Leckage in einem Kraftstoffversorgungssystem einer Brennkraftmaschine
JP20892399A JP4382199B2 (ja) 1998-07-23 1999-07-23 内燃機関の燃料供給装置における漏れ識別方法および漏れ識別装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1998133086 DE19833086B4 (de) 1998-07-23 1998-07-23 MaximalwertVerfahren und Vorrichtung zur Erkennung einer Leckage in einem Kraftstoffversorgungssystem einer Brennkraftmaschine

Publications (2)

Publication Number Publication Date
DE19833086A1 true DE19833086A1 (de) 2000-01-27
DE19833086B4 DE19833086B4 (de) 2013-08-01

Family

ID=7874995

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1998133086 Expired - Fee Related DE19833086B4 (de) 1998-07-23 1998-07-23 MaximalwertVerfahren und Vorrichtung zur Erkennung einer Leckage in einem Kraftstoffversorgungssystem einer Brennkraftmaschine

Country Status (3)

Country Link
EP (1) EP0974826B1 (de)
JP (1) JP4382199B2 (de)
DE (1) DE19833086B4 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19936102C1 (de) * 1999-07-31 2000-10-26 Daimler Chrysler Ag Verfahren zur Überprüfung von in Common-Rail-Einspritzsystemen eingesetzten Einspritzinjektoren
DE10003906A1 (de) * 2000-01-29 2001-08-09 Bosch Gmbh Robert Verfahren und Vorrichtung zum Kalibrieren eines Drucksensors
DE10020629A1 (de) * 2000-04-27 2001-11-08 Bosch Gmbh Robert Verfahren zum Betreiben eines Kraftstoffversorgungssystems für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE10303443B3 (de) * 2003-01-29 2004-10-21 Siemens Ag Verfahren zur Prüfung eines Kraftstoffhochdrucksystems
CN108700488A (zh) * 2016-03-04 2018-10-23 罗伯特·博世有限公司 减少误拒绝以及增加针对密封性被测试的容器的数量的测试方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1319633B1 (it) 2000-01-18 2003-10-20 Fiat Ricerche Metodo di valutazione della funzionalita' di un impianto di iniezionea collettore comune di un motore a combustione interna.
KR20020094217A (ko) * 2001-06-04 2002-12-18 주식회사 만도 통합 브레이크 성능시험장치
US6715468B2 (en) * 2001-11-07 2004-04-06 Denso Corporation Fuel injection system
KR100456877B1 (ko) * 2002-02-18 2004-11-10 현대자동차주식회사 디젤 엔진의 연소압 분배 장치
DE102005043971A1 (de) * 2005-09-15 2007-03-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung eines Kraftstoffzumesssystems
DE102015206303A1 (de) 2015-04-09 2016-10-13 Robert Bosch Gmbh Verfahren zum Detektieren einer Leckage
DE102016208088A1 (de) * 2016-05-11 2017-11-16 Robert Bosch Gmbh Verfahren zur Steuerung eines Kraftstoffversorgungssystems
US20200249115A1 (en) * 2019-02-05 2020-08-06 Sunwest Engineering Constructors, Inc. Fuel line leak detection system and method
CN111520268A (zh) * 2020-04-29 2020-08-11 河南柴油机重工有限责任公司 一种高压共轨柴油机预打压装置、建压方法以及清洁方法
CN115370475B (zh) * 2022-08-19 2023-10-13 东风汽车集团股份有限公司 一种油箱泄漏的诊断方法和诊断系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230613A (en) * 1990-07-16 1993-07-27 Diesel Technology Company Common rail fuel injection system
JP3345933B2 (ja) * 1993-01-19 2002-11-18 株式会社デンソー 蓄圧式燃料噴射装置
JP3460319B2 (ja) * 1994-08-19 2003-10-27 いすゞ自動車株式会社 蓄圧式燃料噴射装置及びその制御方法
DE19513158A1 (de) * 1995-04-07 1996-10-10 Bosch Gmbh Robert Einrichtung zur Erkennung eines Lecks in einem Kraftstoffversorgungssystem
DE19520300A1 (de) 1995-06-02 1996-12-05 Bosch Gmbh Robert Einrichtung zur Erkennung eines Lecks in einem Kraftstoffversorgungssystem
DE19604552B4 (de) * 1996-02-08 2007-10-31 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19613184C2 (de) * 1996-04-02 1998-01-22 Daimler Benz Ag Verfahren zum Erkennen von Betriebsstörungen in einer Kraftstoffeinspritzanlage
DE19634982C2 (de) * 1996-08-29 2002-10-10 Siemens Ag Verfahren zur Überwachung eines Kraftstoffdruckes
JP3796912B2 (ja) * 1997-02-21 2006-07-12 トヨタ自動車株式会社 内燃機関の燃料噴射装置
US6016791A (en) * 1997-06-04 2000-01-25 Detroit Diesel Corporation Method and system for controlling fuel pressure in a common rail fuel injection system
JPH1182134A (ja) * 1997-09-03 1999-03-26 Fuji Heavy Ind Ltd 筒内燃料噴射エンジンの高圧燃料系診断装置及び制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19936102C1 (de) * 1999-07-31 2000-10-26 Daimler Chrysler Ag Verfahren zur Überprüfung von in Common-Rail-Einspritzsystemen eingesetzten Einspritzinjektoren
DE10003906A1 (de) * 2000-01-29 2001-08-09 Bosch Gmbh Robert Verfahren und Vorrichtung zum Kalibrieren eines Drucksensors
JP2003535313A (ja) * 2000-01-29 2003-11-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 圧力センサの較正方法および装置
JP4791671B2 (ja) * 2000-01-29 2011-10-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 圧力センサの較正方法および装置
DE10020629A1 (de) * 2000-04-27 2001-11-08 Bosch Gmbh Robert Verfahren zum Betreiben eines Kraftstoffversorgungssystems für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE10303443B3 (de) * 2003-01-29 2004-10-21 Siemens Ag Verfahren zur Prüfung eines Kraftstoffhochdrucksystems
CN108700488A (zh) * 2016-03-04 2018-10-23 罗伯特·博世有限公司 减少误拒绝以及增加针对密封性被测试的容器的数量的测试方法

Also Published As

Publication number Publication date
EP0974826A2 (de) 2000-01-26
DE19833086B4 (de) 2013-08-01
EP0974826B1 (de) 2011-09-21
JP4382199B2 (ja) 2009-12-09
EP0974826A3 (de) 2001-09-12
JP2000046684A (ja) 2000-02-18

Similar Documents

Publication Publication Date Title
DE19626689C1 (de) Verfahren und Vorrichtung zur Überwachung eines Einspritzsystems
EP0778922B1 (de) Einrichtung zur erkennung eines lecks in einem kraftstoffversorgungssystem
DE19622757B4 (de) Verfahren und Vorrichtung zur Erkennung einer Leckage in einem Kraftstoffversorgungssystem einer Brennkraftmaschine mit Hochdruckeinspritzung
WO1997012137A1 (de) Verfahren und vorrichtung zur überwachung eines kraftstoffzumesssystems
DE19833086B4 (de) MaximalwertVerfahren und Vorrichtung zur Erkennung einer Leckage in einem Kraftstoffversorgungssystem einer Brennkraftmaschine
DE19604552B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP0811116A1 (de) Verfahren und vorrichtung zur überwachung eines kraftstoffzumesssystems einer brennkraftmaschine
DE10329331B3 (de) Verfahren zur Diagnose eines Volumenstromregelventils bei einer Brennkraftmaschine mit Hochdruck-Speichereinspritzsystem
DE102010013602A1 (de) Verfahren zur Erkennung eines Fehlverhaltens eines elektronisch geregelten Kraftstoffeinspritzsystems eines Verbrennungsmotors
DE102008055747B4 (de) Verfahren und Vorrichtung zum Betreiben einer Einspritzanlage für eine Brennkraftmaschine
DE102007057452A1 (de) Verfahren zum Betreiben eines Kraftstoffsystems einer Brennkraftmaschine
WO2007031492A1 (de) Verfahren und vorrichtung zur überwachung eines kraftstoffzumesssystems
DE19937962A1 (de) Verfahren und Vorrichtung zur Steuerung eines Einspritzsystems
EP0764777B1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19620038B4 (de) Verfahren und Vorrichtung zur Überwachung eines Kraftstoffzumeßsystems
DE19614884A1 (de) Anordnung und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP0886056B1 (de) Verfahren und Vorrichtung zur überwachung eines Kraftstoffzumesssystems
DE19917711C2 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
WO2017186326A1 (de) Verfahren zum betrieb einer brennkraftmaschine, einrichtung zum steuern und/oder regeln einer brennkraftmaschine, einspritzsystem und brennkraftmaschine
DE102004003316A1 (de) Kraftstoffeinspritzsystem der Drucksammelbauart
DE102016220123B4 (de) Verfahren und Vorrichtung zur Plausibilierung der Funktionsfähigkeit eines Hochdrucksensors eines Kraftstoffeinspritzsystems eines Kraftfahrzeugs
DE102010004215B4 (de) Vorrichtung zur Verhinderung des Absterbens des Motors bei einem mit einem Dieseleinspritzsystem ausgestatteten Fahrzeug
DE102018217327B4 (de) Verfahren und Vorrichtung zur Plausibilisierung der Funktionsfähigkeit eines Hochdrucksensors einer Hochdruckkraftstoffeinspritzvorrichtung eines Kraftfahrzeugs
DE102004007048A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10313133B3 (de) Anordnung zum Überwachen von Betriebsparametern in einem Verbrennungsmotor

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final

Effective date: 20131105

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee