DE19723631A1 - Mehrkomponentensystem zum Verändern, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen sowie Verfahren zu seiner Anwendung - Google Patents

Mehrkomponentensystem zum Verändern, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen sowie Verfahren zu seiner Anwendung

Info

Publication number
DE19723631A1
DE19723631A1 DE1997123631 DE19723631A DE19723631A1 DE 19723631 A1 DE19723631 A1 DE 19723631A1 DE 1997123631 DE1997123631 DE 1997123631 DE 19723631 A DE19723631 A DE 19723631A DE 19723631 A1 DE19723631 A1 DE 19723631A1
Authority
DE
Germany
Prior art keywords
hydroxy
radical
alkyl
acid
dihydroxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE1997123631
Other languages
English (en)
Inventor
Johannes Dr Freudenreich
Juergen Dr Stohrer
Manfred Dr Amann
Robert Mueller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consortium fuer Elektrochemische Industrie GmbH
Original Assignee
Consortium fuer Elektrochemische Industrie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consortium fuer Elektrochemische Industrie GmbH filed Critical Consortium fuer Elektrochemische Industrie GmbH
Priority to DE1997123631 priority Critical patent/DE19723631A1/de
Priority to PCT/EP1998/003035 priority patent/WO1998055489A1/de
Priority to AU82099/98A priority patent/AU8209998A/en
Publication of DE19723631A1 publication Critical patent/DE19723631A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C5/00Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
    • D21C5/005Treatment of cellulose-containing material with microorganisms or enzymes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/1026Other features in bleaching processes
    • D21C9/1036Use of compounds accelerating or improving the efficiency of the processes

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Detergent Compositions (AREA)

Description

Die vorliegende Erfindung betrifft ein Mehrkomponentensystem zum Verändern, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen sowie Verfahren zu seiner Anwendung.
Als heute hauptsächlich zur Zellstoffherstellung verwendete Verfahren sind das Sulfat- und das Sulfitverfahren zu nennen. Mit beiden Verfahren wird unter Kochung und unter Druck Zell­ stoff erzeugt. Das Sulfat-Verfahren arbeitet unter Zusatz von NaOH und Na2S, während im Sulfit-Verfahren Ca(HSO3)2 + SO2 zur Anwendung kommt, bzw. heute wegen ihrer besseren Löslichkeit die Natrium- oder Ammonium-Salze des Hydrogensulfits.
Alle Verfahren haben als Hauptziel die Entfernung des Lignins aus dem verwendeten Pflanzenmaterial, Holz oder Einjahrespflanzen.
Das Lignin, das mit der Cellulose und der Hemicellulose den Hauptbestandteil des Pflanzenmaterials (Stengel oder Stamm) ausmacht, muß entfernt werden, da es sonst nicht möglich ist, nicht vergilbende und mechanisch hochbelastbare Papiere herzustellen.
Die Holzstofferzeugungsverfahren arbeiten mit Steinschleifern (Holzschliff) oder mit Refinern (TMP), die das Holz nach ent­ sprechender Vorbehandlung (chemisch, thermisch oder chemisch­ thermisch) durch Mahlen defibrillieren.
Diese Holzstoffe besitzen noch einen Großteil des Lignins. Sie werden v. a. für die Herstellung von Zeitungen, Illustrierten, etc. verwendet.
Seit einigen Jahren werden die Möglichkeiten des Einsatzes von Enzymen für den Ligninabbau erforscht. Der Wirkmechanismus derartiger lignolytischer Systeme ist erst vor wenigen Jahren aufgeklärt worden, als es gelang, durch geeignete Anzuchtbe­ dingungen und Induktorzusätze bei dem Weißfäulepilz Phanero­ chaete chrysosporium zu ausreichenden Enzymmengen zu kommen. Hierbei wurden die bis dahin unbekannten Ligninperoxidasen und Manganperoxidasen entdeckt. Da Phanerochaete chrysosporium ein sehr effektiver Ligninabbauer ist, versuchte man dessen Enzyme zu isolieren und in gereinigter Form für den Ligninabbau zu verwenden. Dies gelang jedoch nicht, da sich herausstellte, daß die Enzyme vor allem zu einer Repolymerisation des Lignins und nicht zu dessen Abbau führen.
Ähnliches gilt auch für andere lignolytische Enzymspezies wie Laccasen, die das Lignin mit Hilfe von Sauerstoff anstelle von Wasserstoffperoxid oxidativ abbauen. Es konnte festgestellt werden, daß es in allen Fällen zu ähnlichen Prozessen kommt. Es werden nämlich Radikale gebildet, die wieder selbst mitein­ ander reagieren und somit zur Polymerisation führen.
So gibt es heute nur Verfahren, die mit in-vivo Systemen ar­ beiten (Pilzsysteme). Hauptschwerpunkte von Optimierungsversu­ chen sind das sogenannte Biopulping und das Biobleaching.
Unter Biopulping versteht man die Behandlung von Holzhack­ schnitzeln mit lebenden Pilzsystemen.
Es gibt 2 Arten von Applikationsformen:
  • 1. Vorbehandlung von Hackschnitzeln vor dem Refinern oder Mah­ len zum Einsparen von Energie bei der Herstellung von Holz­ stoffen (z. B. TMP oder Holzschliff).
Ein weiterer Vorteil ist die meist vorhandene Verbesserung der mechanischen Eigenschaften des Stoffes, ein Nachteil die schlechtere Endweiße.
  • 2. Vorbehandlung von Hackschnitzeln (Softwood/Hardwood) vor der Zellstoffkochung (Kraftprozeß, Sulfitprozeß).
Hier ist das Ziel, die Reduzierung von Kochchemikalien, die Verbesserung der Kochkapazität und "extended cooking".
Als Vorteile werden auch eine verbesserte Kappareduzierung nach dem Kochen im Vergleich zu einem Kochen ohne Vorbehand­ lung erreicht.
Nachteile dieser Verfahren sind eindeutig die langen Behand­ lungszeiten (mehrere Wochen) und v. a. die nicht gelöste Kontaminierungsgefahr während der Behandlung, wenn man auf die wohl unwirtschaftliche Sterilisation der Hackschnitzel ver­ zichten will.
Das Biobleaching arbeitet ebenfalls mit in-vivo Systemen. Der gekochte Zellstoff (Softwood/Hardwood) wird vor der Bleiche mit dem Pilz beimpft und für Tage bis Wochen behandelt. Nur nach dieser langen Behandlungszeit zeigt sich eine signifikan­ te Kappazahlerniedrigung und Weißesteigerung, was den Prozeß unwirtschaftlich für eine Implementierung in den gängigen Bleichsequenzen macht.
Eine weitere meist mit immobilisierten Pilzsystemen durchge­ führte Applikation ist die Behandlung von Zellstoffabrikati­ onsabwässern, insbesondere Bleichereiabwässern zu deren Ent­ färbung und Reduzierung des AOX (Reduzierung von chlorierten Verbindungen im Abwasser, die Chlor- oder Chlordioxid-Bleich­ stufen verursachen).
Darüber hinaus ist bekannt, Hemicellulasen u. a. Xylanasen, Mannanasen als "Bleichbooster" einzusetzen.
Diese Enzyme sollen hauptsächlich gegen das nach dem Kochpro­ zeß das Restlignin zum Teil überdeckende reprecipitierte Xylan wirken und durch dessen Abbau die Zugänglichkeit des Lignins für die in den nachfolgenden Bleichsequenzen angewendeten Bleichchemikalien (v. a. Chlordioxid) erhöhen. Die im Labor nachgewiesenen Einsparungen von Bleichchemikalien wurden in großem Maßstab nur bedingt bestätigt, so daß man diesen Enzym­ typ allenfalls als Bleichadditiv einstufen kann.
Ein weiterer, in letzter Zeit untersuchter möglicher Einsatz von lignolytischen Enzymen oder Pilzen wurde bei der "Kohle­ verflüssigung" erkennbar. Vorläufige Untersuchungen zeigen die prinzipielle Möglichkeit, Braun- oder Steinkohle mit Hilfe von in vivo Behandlung mit z. B. Weißfäulepilzen wie Phanerochaete chrysosporium anzugreifen und zu verflüssigen (Inkubationszeit mehrere Wochen; Bioengineering 4.92.8 Jg.).
Die mögliche Struktur von Steinkohle zeigt ein dreidimensiona­ les Netzwerk von polycyclischen aromatischen Ringsystemen mit einer "gewissen" Ähnlichkeit zu Ligninstrukturen.
Als Cofaktor neben den lignolytischen Enzymen nimmt man Che­ latsubstanzen (Siderophoren, wie Ammoniumoxalat) und Biotensi­ de an.
In der Anmeldung PCT/EP87/00635 wird ein System zur Entfernung von Lignin aus lignincellulosehaltigem Material unter gleich­ zeitiger Bleiche beschrieben, welches mit lignolytischen Enzy­ men aus Weißfäulepilzen unter Zusatz von Reduktions- und Oxi­ dationsmitteln und phenolischen Verbindungen als Mediatoren arbeitet.
In der DE 40 08 893 C2 werden zusätzlich zu Red/Ox-System "Mimic Substanzen", die das aktive Zentrum (prosthetische Gruppe) von lignolytischen Enzymen simulieren, zugesetzt. So konnte eine erhebliche Performanceverbesserung erzielt werden.
In der Anmeldung PCT/EP92/01086 wird als zusätzliche Verbesse­ rung eine Redoxkaskade mit Hilfe von im Oxidationspotential "abgestimmten" phenolischen oder nichtphenolischen Aromaten eingesetzt.
Bei allen drei Verfahren ist die Limitierung für einen groß­ technischen Einsatz die Anwendbarkeit bei geringen Stoffdichten (bis maximal 4%) und bei den beiden letzten An­ meldungen die Gefahr des "Ausleachens" von Metallen beim Ein­ satz der Chelatverbindungen, die v.a. bei nachgeschalteten Peroxidbleichstufen zur Zerstörung des Peroxids führen können.
Aus WO/12619, WO 94/12620 und WO 94/12621 sind Verfahren be­ kannt, bei welchen die Aktivität von Peroxidase mittels soge­ nannter Enhancer-Substanzen gefördert werden.
Die Enhancer-Substanzen werden in WO 94/12619 anhand ihrer Halbwertslebensdauer charakterisiert.
Gemäß WO 94/12620 sind Enhancer-Substanzen durch die Formel A=N-N=B charakterisiert, wobei A und B jeweils definierte cy­ clische Reste sind.
Gemäß WO 94/12620 sind Enhancer-Substanzen organische Chemika­ lien, die mindestens zwei aromatische Ringe enthalten, von de­ nen zumindest einer mit jeweils definierten Resten substitu­ iert ist.
Alle drei Anmeldungen betreffen "dye transfer inhibition" und den Einsatz der jeweiligen Enhancer-Substanzen zusammen mit Peroxidasen als Detergent-Additiv oder Detergent-Zusammenset­ zung im waschmittelbereich. Zwar wird in der Beschreibung der Anmeldung auf eine Verwendbarkeit zum Behandeln von Lignin verwiesen, aber eigene Versuche mit den in den Anmeldungen konkret offenbarten Substanzen zeigten, daß sie als Mediatoren zur Steigerung der Bleichwirkung der Peroxidasen beim Behan­ deln von ligninhaltigen Materialien keine Wirkung zeigten!
WO 94/29510 beschreibt ein Verfahren zur enzymatischen De­ lignifizierung, bei dem Enzyme zusammen mit Mediatoren einge­ setzt werden. Als Mediatoren werden allgemein Verbindungen mit der Struktur NO-, NOH- oder HRNOH offenbart.
Von den in WO 94/29510 aufgeführten Mediatoren liefert 1-Hydroxy-1H-benzotriazol (HBT) die besten Ergebnisse in der Delignifizierung. HBT hat jedoch verschiedene Nachteile:
Es ist nur zu hohen Preisen und nicht in hinreichenden Mengen verfügbar.
Es reagiert unter Delignifizierungsbedingungen zu 1H-Benzotriazol. Diese Verbindung ist relativ schlecht abbau­ bar und kann in größeren Mengen eine beträchtliche Umweltbela­ stung darstellen. Es führt in gewissem Umfang zu einer Schädi­ gung von Enzymen. Seine Delignifizierungsgeschwindigkeit ist nicht allzu hoch.
Es ist daher wünschenswert, Systeme zum Verändern, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen zur Verfügung zu stellen, die die genannten Nachteile nicht oder in geringerem Maße aufweisen.
Die vorliegende Erfindung betrifft daher ein Mehrkomponenten­ system zum Verändern, Abbau oder Bleichen von Lignin, lignin­ haltigen Materialien oder ähnlichen Stoffen enthaltend
  • a. ggf. mindestens einen Oxidationskatalysator und
  • b. mindestens ein geeignetes Oxidationsmittel und
  • c. mindestens einen Mediator, dadurch gekennzeichnet, daß der Mediator ausgewählt ist aus der Gruppe der N-Alkyl-N-Hydroxy-Amide.
Es wurde nun gefunden, daß das erfindungsgemäße Mehrkomponen­ tensystem mit Mediatoren ausgewählt der Klasse der N-Alkyl-N- Hydroxy-Amide nicht die Nachteile der aus dem Stand der Tech­ nik bekannten Mehrkomponentensysteme aufweist.
Bevorzugt werden als Mediatoren im erfindungsgemäßen Mehrkom­ ponentensystem Verbindungen der allgemeinen Formeln (I) oder (II)
sowie deren Salze, Ether oder Ester eingesetzt, wobei
A gleich oder verschieden ist und einbindiger linearer oder verzweigter oder cyclischer oder polycyclischer gesättigter oder ungesättigter Alkylrest mit 1-24 C-Atomen bedeutet und
wobei dieser Alkylrest durch einen oder mehrere Reste R1, die gleich oder verschieden sind und ausgewählt sind aus der Grup­ pe Hydroxy-, Mercapto-, Formyl-, Carbamoyl-, Carboxy-, Ester oder Salz des Carboxyrests, Sulfonorest, Ester oder Salz des Sulfonorests, Sulfamoyl-, Nitro-, Nitroso-, Amino-, Hydroxyla­ mino-, Phenyl-, C1-C5-Alkoxy-, C1-C10-Carbonyl-, Phospho-, Phos­ phono-, Phosphonooxyrest, Ester oder Salz des Phosphonooxy­ rests substituiert sein kann und
wobei Carbamoyl, Sulfamoyl -, Amino-, Hydroxylamino-, Mercapto- und Phenylreste unsubstituiert oder ein- oder mehrfach mit ei­ nem Rest R2 substituiert sein können und die C1-C5-Alkoxy-, C1-C10-Carbonyl-Reste gesättigt oder ungesättigt, verzweigt oder unverzweigt sein können und mit einem Rest R2 ein- oder mehr­ fach substituiert sein können, wobei
R2 gleich oder verschieden ist und Hydroxy-, Formyl-, Cyano-, Carboxyrest, Ester oder Salz des Carboxyrests, Carbamoyl, Sul­ fono-, Sulfamoyl-, Nitro-, Nitroso-, Amino-, Phenyl-, Ben­ zoyl-, C1-C5-Alkyl-, C1-C5-Alkoxy-, C1-C5-Alkylcarbonylrest be­ deutet und
nicht α-ständige Methylengruppen durch Sauerstoff, Schwefel oder einen ggf. einfach substituierten Iminorest ersetzt sein können und
B in amidischer Form vorliegender einbindiger Säurerest von Säuren ausgewählt aus der Gruppe aliphatischer oder ein- oder zweikerniger aromatischer oder ein- oder zweikerniger heteroa­ romatischer Carbonsäuren mit bis zu 20 C-Atomen, Kohlensäure, Halbester der Kohlensäure oder der Carbaminsäure, Sulfonsäure, Phosphonsäure, Phosphorsäure, Monoester der Phosphorsäure, Diester der Phosphorsäure bedeutet und
D in amidischer Form vorliegender zweibindiger Säurerest von Säuren ausgewählt aus der Gruppe aliphatischer, ein- oder zweikerniger aromatischer oder ein- oder zweikerniger heteroa­ romatischer Dicarbonsäuren mit bis zu 20 C-Atomen, Kohlensäu­ re, Sulfonsäure, Phosphonsäure, Phosphorsäure, Monoester der Phosphorsäure bedeutet und
wobei Alkylreste der in amidischer Form vorliegenden aliphati­ schen Säuren B und D linear oder verzweigt und/oder cyclisch und/oder polycyclisch gesättigt oder ungesättigt sein können und 0-24 Kohlenstoffatome beinhalten und nicht substituiert sind oder ein- oder mehrfach dem Rest R1 substituiert sind und
Aryl- und Heteroarylreste der in amidischer Form vorliegenden aromatischenoder heteroaromatischen Säuren B und D durch ei­ nen oder mehrere Reste R3, die gleich oder verschieden sind und ausgewählt sind aus der Gruppe Hydroxy-, Mercapto-, Formyl-, Cyano-, Carbamoyl-, Carboxy-, Ester oder Salz des Carboxy­ rests, Sulfonorest, Ester oder Salz des Sulfonorests, Sulfa­ moyl-, Nitro-, Nitroso-, Amino-, Phenyl-, Aryl-C1-C5-Alkyl-, C1-C12-Alkyl-, C1-C5-Alkoxy-, C1-C10-Carbonyl-, Phospho-, Phospho­ no-, Phosphonooxyrest, Ester oder Salz des Phosphonooxyrests substituiert sein können und
wobei Carbamoyl, Sulfamoyl-, Amino-, Mercapto- und Phenylreste unsubstituiert oder ein- oder mehrfach mit dem Rest R2 substituiert sein können und die Aryl-C1-C5-Alkyl-, C1-C12-Alkyl-C1-C5-Alkoxy-, C1-C10-Carbonyl-Reste gesättigt oder ungesättigt, verzweigt oder unverzweigt sein können und ein oder mehrfach mit dem Rest R2 substituiert sein können.
Als Mediatoren im erfindungsgemäßen Mehrkomponentensystem be­ sonders bevorzugt sind Verbindungen mit den allgemeinen For­ meln (III, IV, V oder VI):
sowie deren Salze, Ether oder Ester, wobei
Alk1 gleich oder verschieden ist und einbindiger linearer oder verzweigter oder cyclischer oder polycyclischer gesättigter oder ungesättigter Alkylrest mit 1-10 C-Atomen bedeutet,
wobei dieser Alkylrest durch einen oder mehrere Reste R4, die gleich oder verschieden sind und ausgewählt sind aus der Grup­ pe Hydroxy-, Formyl-, Carbamoyl-, Carboxy-, Ester oder Salz des Carboxyrests, Sulfonorest, Ester oder Salz des Sulfono­ rests, Sulfamoyl-, Nitro-, Nitroso-, Amino-, Hydroxylamino-, Phenyl-, C1-C5-Alkoxy-, C1-C5-Carbonyl-Reste substituiert sein kann und
wobei Carbamoyl, Sulfamoyl-, Amino-, Hydroxylamino- und Phenylreste unsubstituiert oder ein- oder mehrfach mit einem Rest R5 substituiert sein können und die C1-C5-Alkoxy-, C1-C10-Carbonyl-Reste gesättigt oder ungesättigt, verzweigt oder unverzweigt sein können und mit einem Rest R5 ein- oder mehr­ fach substituiert sein können, wobei
R5 gleich oder verschieden ist und Hydroxy-, Formyl-, Cyano-, Carboxyrest, Ester oder Salz des Carboxyrests, Carbamoyl, Sul­ fono-, Sulfamoyl-, Nitro-, Amino-, Phenyl-, Benzoyl-, C1-C5-Alkyl-, C1-C5-Alkoxy-, C1-C5-Alkylcarbonylrest bedeutet und
nicht α-ständige Methylengruppen durch Sauerstoff, Schwefel oder einen ggf. einfach substituierten Iminorest ersetzt sein können und
wobei R6 gleiche oder verschiedene einbindige Reste ausgewählt aus der Gruppe Wasserstoff-, Phenyl-, Pyridyl-, Furyl-, Pyrro­ lyl-, Thienyl-, Aryl-C1-C5-Alkyl-, C1-C12-Alkyl-, C1-C10-Alkoxy, C1-C10-Carbonylrest bedeutet,
wobei Phenyl-, Pyridyl-, Furyl- + Pyrrolyl- und Thienylreste unsubstituiert oder ein- oder mehrfach mit einem Rest R7 sub­ stituiert sein können und die Aryl-C1-C5-alkyl-, C1-C12-Alkyl-, C1-C5-Alkoxy- und C1-C10-Carbonyl-Reste gesättigt oder ungesät­ tigt, verzweigt oder unverzweigt sein können und mit einem Rest R7 ein- oder mehrfach substituiert sein können und
R7 gleich oder verschieden ist und Hydroxy-, Formyl-, Carboxy­ rest, Ester oder Salz des Carboxyrests, Carbamoyl-, Sulfono-, Sulfamoyl-, Nitro-, Amino-, Phenyl-, C1-C5-Alkyl-, C1-C5-Alkoxyrest bedeutet und
R8 zweibindige Reste ausgewählt aus der Gruppe Phenylen-, Pyri­ dylen-, Thienylen-, Furylen-, Pyrrolylen-, Aryl-C1-C5-alkyl-, C1-C12-Alkylen-, C1-C5-Alkylendioxy-Rest bedeutet, wobei Pheny­ len-, Pyridylen-, Thienylen-, Furylen-, Pyrrolylen- unsubsti­ tuiert oder ein- oder mehrfach mit einem Rest R7 substituiert sein können und die Aryl-C1-C5-alkyl-, C1-C12-Alkyl-, C1-C5-Alkoxy-Reste gesättigt oder ungesättigt, verzweigt oder unverzweigt sein können und mit einem Rest R7 ein- oder mehr­ fach substituiert sein können, wobei
p 0 oder 1 bedeutet.
Als Mediatoren im erfindungsgemäßen Mehrkomponentensystem ganz besonders bevorzugt sind Verbindungen mit der allgemeinen For­ mel (III-VI), bei denen
Alk1 gleich oder verschieden ist und einbindiger linearer oder verzweigter oder cyclischer gesättigter oder ungesättigter Al­ kylrest mit 1-10 C-Atomen bedeutet,
wobei dieser Alkylrest durch einen oder mehrere Reste R4, die gleich oder verschieden sind und ausgewählt sind aus der Grup­ pe Hydroxy-, Carbamoyl-, Carboxy-, Ester oder Salz des Car­ boxyrests, Sulfonorest, Ester oder Salz des Sulfonorests, Sul­ famoyl-, Amino-, Phenyl-, C1-C5-Alkoxy-, C1-C5-Carbonyl-Reste substituiert sein kann und
wobei Carbamoyl, Sulfamoyl-, Amino- und Phenylreste unsubsti­ tuiert oder ein- oder mehrfach mit einem Rest R5 substituiert sein können und die C1-C5-Alkoxy-, C1-C10-Carbonyl-Reste gesät­ tigt oder ungesättigt, verzweigt oder unverzweigt sein können und mit einem Rest R5 ein- oder mehrfach substituiert sein kön­ nen, wobei
R5 gleich oder verschieden ist und Hydroxy-, Carboxyrest, Ester oder Salz des Carboxyrests, Carbamoyl, Sulfono-, Sulfamoyl-, Nitro-, Amino-, Phenyl-, Benzoyl-, C1-C5-Alkyl-, C1-C5-Alkoxy-, C1-C5-Alkylcarbonylrest bedeutet und
wobei R6 gleiche oder verschiedene einbindige Reste ausgewählt aus der Gruppe Wasserstoff-, Phenyl-, Furyl-, Aryl-C1-C5-Alkyl-, C1-C12-Alkyl-, C1-C10-Alkoxy-, C1-C10-Carbonylrest bedeutet,
wobei Phenyl- und Furylreste unsubstituiert oder ein- oder mehrfach mit einem Rest R7 substituiert sein können und die Aryl-C1-C5-alkyl-, C1-C12-Alkyl-, C1-C5-Alkoxy- und
C1-C10-Carbonyl-Reste gesättigt oder ungesättigt, verzweigt oder unverzweigt sein können und mit einem Rest R7 ein- oder mehr­ fach substituiert sein können, wobei
R7 gleich oder verschieden ist und Carboxyrest, Ester oder Salz des Carboxyrests, Carbamoyl-, Phenyl-, C1-C5-Alkyl-, C1-C5-Alkoxyrest bedeutet und
R8 zweibindiger Rest ausgewählt aus der Gruppe Phenylen-, Fury­ len-, C1-C12-Alkylen-, C1-C5-Alkylendioxy-Rest bedeutet, wobei Phenylen-, Furanylen- unsubstituiert oder ein- oder mehrfach mit einem Rest R7 substituiert sein können und die Aryl-C1-C5-alkyl-, C1-C12-Alkyl-, C1-C5-Alkoxy-Reste gesättigt oder ungesättigt, verzweigt oder unverzweigt sein können und mit einem Rest R7 ein- oder mehrfach substituiert sein können, wobei
p 0 oder 1 bedeutet.
Beispiele für Verbindungen, die im erfindungsgemäßen Mehrkom­ ponentensystem als Mediatoren (Komponente c) eingesetzt werden können, sind
N-Hydroxy-N-methyl-benzoesäureamid, N-Hydroxy-N-methyl-benzol­ sulfonsäure-amid, N-Hydroxy-N-methyl-p-toluolsulfonsäureamid,
N-Hydroxy-N-methyl-furan-2-carbonsäureamid,
N-Hydroxy-N-methyl-thiophen-2-carbonsäureamid,
N,N'-Dihydroxy-N,N'-dimethyl-phthalsäurediamid,
N,N'-Dihydroxy-N,N'-dimethyl-isophthalsäurediamid,
N,N'-Dihydroxy-N,N'-dimethyl-terephthalsäurediamid,
N,N'-Dihydroxy-N,N'-dimethyl-benzol-1,3-disulfonsäurediamid,
N,N'-Dihydroxy-N,N'-dimethyl-furan-3,4-dicarbonsäurediamid,
N-Hydroxy-N-tert.-butyl-benzoesäureamid,
N-Hydroxy-N-tert.-butyl-benzolsulfonsäureamid,
N-Hydroxy-N-tert.-butyl-p-toluolsulfonsäureamid,
N-Hydroxy-N-tert.-butyl-furan-2-carbonsäureamid,
N-Hydroxy-N-tert.-butyl-thiophen-2-carbonsäureamid,
N,N'-Dihydroxy-N,N'-di-tert.-butyl-phthalsäurediamid,
N,N'-Dihydroxy-N,N'-di-tert.-butyl-isophthalsäurediamid,
N,N'-Dihydroxy-N,N'-di-tert.-butyl-terephthalsäurediamid,
N,N'-Dihydroxy-N,N'-di-tert.-butyl-benzol-1,3-disulfonsäuredi­ amid,
N,N'-Dihydroxy-N,N'-di-tert.-butyl-furan-3,4-dicarbonsäuredi­ amid,
N-Hydroxy-N-cyclohexyl-benzoesäureamid,
N-Hydroxy-N-cyclohexyl-benzolsulfonsäureamid,
N-Hydroxy-N-cyclohexyl-p-toluolsulfonsäure-amid,
N-Hydroxy-N-cyclohexyl-furan-2-carbonsäureamid,
N-Hydroxy-N-cyclohexyl-thiophen-2-carbonsäureamid,
N,N'-Dihydroxy-N,N'-dicyclohexyl-phthalsäurediamid,
N,N'-Dihydroxy-N,N'-dicyclohexyl-isophthalsäurediamid,
N,N'-Dihydroxy-N,N'-dicyclohexyl-terephthalsäurediamid,
N,N'-Dihydroxy-N,N'-dicyclohexyl-benzol-1,3-disulfonsäuredi­ amid,
N,N'-Dihydroxy-N,N'-dicyclohexyl-furan-3,4-dicarbonsäure-di­ amid,
N-Hydroxy-N-isopropyl-benzoesäureamid, N-Hydroxy-N-isopropyl­ benzol-sulfonsäureamid, N-Hydroxy-N-isopropyl-p-toluol­ sulfonsäureamid,N-Hydroxy-N-isopropyl-furan-2-carbonsäureamid, N-Hydroxy-N-isopropyl-thiophen-2-carbon-säureamid, N,N'- Dihydroxy-N,N'-diisopropyl-phthalsäurediamid, N,N'-Dihydroxy- N,N'-diisopropyl-isophthalsäurediamid, N,N'-Dihydroxy-N,N'-di­ isopropyl-terephthal-säurediamid, N,N'-Dihydroxy-N,N'-diiso­ propyl-benzol-1,3-disulfonsäurediamid, N,N'-Dihydroxy-N,N'-di­ isopropyl-furan-3,4-dicarbonsäurediamid, N-Hydroxy-N-methyl­ acetamid, N-Hydroxy-N-tert.-butyl-acetamid,
N-Hydroxy-N-isopropyl-acetamid,
N-Hydroxy-N-cyclohexyl-acetamid,
N-Hydroxy-N-methyl-pivalinsäureamid,
N-Hydroxy-N-isopropyl-pivalinsäureamid,
N-Hydroxy-N-methyl-acrylamid,
N-Hydroxy-N-tert.-butyl-acrylamid, N-Hydroxy-N-isopropyl-acry­ lamid, N-Hydroxy-N-cyclohexyl-acrylamid, N-Hydroxy-N-methyl­ methansulfonamid, N-Hydroxy-N-isopropyl-methansulfonamid, N- Hydroxy-N-isopropyl-methylcarbamat,
N-Hydroxy-N-methyl-3-oxo-buttersaureamid, N,N'-Dihydroxy-N,N'- dibenzoyl-ethylendiamin, N,N'-Dihydroxy-N,N'-dimethyl­ bernsteinsäurediamid,
N,N'-Dihydroxy-N,N'-di-tert.-butyl-maleinsäurediamid,
N-Hydroxy-N-tert.-butyl-maleinsäuremonoamid,
N,N'-Dihydroxy-N,N'-di-tert.-butyl-oxalsäurediamid,
N,N'-Dihydroxy-N,N'-di-tert.-butyl-phosphor-säurediamid.
Als Mediatoren werden bevorzugt Verbindungen ausgewählt aus der Gruppe N-Hydroxy-N-methyl-benzoesäureamid, N-Hydroxy-N-me­ thyl-benzolsulfonsäureamid, N-Hydroxy-N-methyl-p-toluolsul­ fon-säureamid, N-Hydroxy-N-methyl-furan-2-carbonsäureamid,
N,N'-Dihydroxy-N,N'-dimethyl-phthalsäurediamid,
N,N'-Dihydroxy-N,N'-dimethyl-terephthalsäurediamid,
N,N'-Dihydroxy-N,N'-dimethyl-benzol-1,3-disulfonsäurediamid,
N-Hydroxy-N-tert.-butyl-benzoesäureamid,
N-Hydroxy-N-tert.-butyl-benzolsulfonsäureamid,
N-Hydroxy-N-tert.-butyl-p-toluolsulfonsäureamid,
N-Hydroxy-N-tert.-butyl-furan-2-carbonsäureamid,
N,N'-Dihydroxy-N,N'-di-tert.-butyl-terephthalsäurediamid, N- Hydroxy-N-isopropyl-benzoesäureamid, N-Hydroxy-N-isopropyl-p- toluolsulfon-säureamid,
N-Hydroxy-N-isopropyl-furan-2-carbonsäureamid, N,N'-Dihydroxy- N,N'-diisopropyl-terephthal-säurediamid, N,N'-Dihydroxy-N,N'- diisopropyl-benzol-1,3-disulfonsäurediamid, N-Hydroxy-N-me­ thyl-acetamid, N-Hydroxy-N-tert.-butyl-acetamid, N-Hydroxy-N- isopropyl-acetamid, N-Hydroxy-N-cyclohexyl-acetamid, N- Hydroxy-N-methyl-pivalinsäureamid,
N-Hydroxy-N-tert.-butyl-acrylamid, N-Hydroxy-N-isopropyl-acry­ lamid, N-Hydroxy-N-methyl-3-oxo-buttersäureamid, N,N'- Dihydroxy-N,N'-dibenzoyl-ethylendiamin,
N,N'-Dihydroxy-N,N'-di-tert.-butyl-maleinsäurediamid,
N-Hydroxy-N-tert.-butyl-maleinsäuremonoamid,
N,N'-Dihydroxy-N,N'-di-tert.-butyl-oxalsäurediamid.
Das erfindungsgemäße Mehrkomponentensystem enthält Mediatoren, die gegenüber den aus dem Stand der Technik bekannten Mediato­ ren (insbesondere HBT), folgende Vorteile aufweisen:
  • 1) Die für die bekannten Substanzen (v. a. HBT) typische Bil­ dung von gefärbten Reaktanten ist nicht oder nur sehr schwach vorhanden. Dies ist ein großer Vorteil für die Anwendung.
  • 2) Die Reaktionsgeschwindigkeit ist schneller.
  • 3) Die Abbaubarkeit des Mediators ist wesentlich besser.
Vorzugsweise umfaßt das erfindungsgemäße Mehrkomponentensystem mindestens einen Oxidationskatalysator.
Als Oxidationskatalysatoren werden im erfindungsgemäßen Mehr­ komponentensystem bevorzugt Enzyme eingesetzt. Im Sinne der Erfindung umfaßt der Begriff Enzym auch enzymatisch aktive Proteine oder Peptide oder prosthetische Gruppen von Enzymen.
Als Enzym können im erfindungsgemäßen Mehrkomponentensystem Oxidoreduktasen der Klassen 1.1.1 bis 1.97 gemäß Internationa­ ler Enzym-Nomenklature, Committee of the International Union of Biochemistry and Molecular Biology (Enzyme Nomenclature, Academic Press, Inc., 1992, S. 24-154) eingesetzt werden.
Vorzugsweise werden Enzyme der im folgenden genannten Klassen eingesetzt:
Enzyme der Klasse 1.1, die alle Dehydrogenasen, die auf primä­ re, sekundäre Alkohole und Semiacetale wirken, umfassen und die als Akzeptoren NAD⁺ oder NADP⁺ (Subklasse 1.1.1), Cyto­ chrome (1.1.2), Sauerstoff (O2) (1.1.3), Disulfide (1.1.4), Chinone (1.1.5) oder die andere Akzeptoren haben (1.1.99).
Aus dieser Klasse sind besonders bevorzugt die Enzyme der Klasse 1.1.5 mit Chinonen als Akzeptoren und die Enzyme der Klasse 1.1.3 mit Sauerstoff als Akzeptor.
Insbesondere bevorzugt in dieser Klasse ist Cellobiose: quinone-1-oxidoreduktase (1.1.5.1).
Weiterhin bevorzugt sind Enzyme der Klasse 1.2. Diese Enzym­ klasse (1.1.5.1) umfaßt solche Enzyme, die Aldehyde zu den korrespondierenden Säuren oder Oxo-Gruppen oxidieren. Die Ak­ zeptoren können NAD⁺, NADP⁺ (1.2.1), Cytochrome (1.2.2), Sau­ erstoff (1.2.3), Sulfide (1.2.4), Eisen-Schwefel-Proteine (1.2.5) oder andere Akzeptoren (1.2.99) sein.
Besonders bevorzugt sind hier die Enzyme der Gruppe (1.2.3) mit Sauerstoff als Akzeptor.
Weiterhin bevorzugt sind Enzyme der Klasse 1.3.
In dieser Klasse sind Enzyme zusammengefaßt, die auf CH-CH- Gruppen des Donors wirken.
Die entsprechenden Akzeptoren sind NAD⁺, NADP⁺ (1.3.1), Cyto­ chrome (1.3.2), Sauerstoff (1.3.3), Chinone oder verwandte Verbindungen (1.3.5), Eisen-Schwefel-Proteine (1.3.7) oder an­ dere Akzeptoren (1.3.99).
Besonders bevorzugt ist die Bilirubinoxidase (1.3.3.5).
Hier sind ebenfalls die Enzyme der Klasse (1.3.3) mit Sauer­ stoff als Akzeptor und (1.3.5) mit Chinonen etc. als Akzeptor besonders bevorzugt.
Weiterhin bevorzugt sind Enzyme der Klasse 1.4, die auf CH-NH2-Gruppen des Donors wirken.
Die entsprechenden Akzeptoren sind NAD⁺, NADP⁺ (1.4.1), Cyto­ chrome (1.4.2), Sauerstoff (1.4.3), Disulfide (1.4.4), Eisen- Schwefel-Proteine (1.4.7) oder andere Akzeptoren (1.4.99).
Besonders bevorzugt sind auch hier Enzyme der Klasse 1.4.3 mit Sauerstoff als Akzeptor.
Weiterhin bevorzugt sind Enzyme der Klasse 1.5, die auf CH-NH- Gruppen des Donors wirken. Die entsprechenden Akzeptoren sind NAD⁺, NADP⁺ (1.5.1), Sauerstoff (1.5.3), Disulfide (1.5.4), Chinone (1.5.5) oder andere Akzeptoren (1.5.99).
Auch hier sind besonders bevorzugt Enzyme mit Sauerstoff (O2) (1.5.3) und mit Chinonen (1.5.5) als Akzeptoren.
Weiterhin bevorzugt sind Enzyme der Klasse 1.6, die auf NADH oder NADPH wirken.
Die Akzeptoren sind hier NADP⁺ (1.6.1), Hämproteine (1.6.2), Disulfide (1.6.4), Chinone (1.6.5), NO2-Gruppen (1.6.6), und ein Flavin (1.6.8) oder einige andere Akzeptoren (1.6.99).
Besonders bevorzugt sind hier Enzyme der Klasse 1.6.5 mit Chinonen als Akzeptoren.
Weiterhin bevorzugt sind Enzyme der Klasse 1.7, die auf andere NO2-Verbindungen als Donatoren wirken und als Akzeptoren Cyto­ chrome (1.7.2), Sauerstoff (O2) (1.7.3), Eisen-Schwefel-Pro­ teine (1.7.7) oder andere (1.7.99) haben.
Hier sind besonders bevorzugt die Klasse 1.7.3 mit Sauerstoff als Akzeptor.
Weiterhin bevorzugt sind Enzyme der Klasse 1.8, die auf Schwe­ felgruppen als Donatoren wirken und als Akzeptoren NAD⁺, NADP⁺ (1.8.1), Cytochrome (1.8.2), Sauerstoff (O2) (1.8.3), Disulfi­ de (1.8.4), Chinone (1.8.5), Eisen-Schwefel-Proteine (1.8.7) oder andere (1.8.99) haben.
Besonders bevorzugt ist die Klasse 1.8.3 mit Sauerstoff (O2) und (1.8.5) mit Chinonen als Akzeptoren.
Weiterhin bevorzugt sind Enzyme der Klasse 1.9, die auf Häm­ gruppen als Donatoren wirken und als Akzeptoren Sauerstoff (O2) (1.9.3), NO2-Verbindungen (1.9.6) und andere (1.9.99) haben.
Besonders bevorzugt ist hier die Gruppe 1.9.3 mit Sauerstoff (O2) als Akzeptor (Cytochromoxidasen).
Weiterhin bevorzugt sind Enzyme der Klasse 1.12, die auf Was­ serstoff als Donor wirken.
Die Akzeptoren sind NAD⁺ oder NADP⁺ (1.12.1) oder andere (1.12.99).
Desweiteren bevorzugt sind Enzyme der Klasse 1.13 und 1.14 (Oxigenasen).
Weiterhin sind bevorzugte Enzyme die der Klasse 1.15, die auf Superoxid-Radikale als Akzeptoren wirken.
Besonders bevorzugt ist hier die Superoxid-Dismutase (1.15.1.1).
Weiterhin sind bevorzugt Enzyme der Klasse 1.16.
Als Akzeptoren wirken NAD⁺ oder NADP⁺ (1.16.1) oder Sauerstoff (O2) (1.16.3).
Besonders bevorzugt sind hier Enzyme der Klasse 1.16.3.1 (Ferroxidase, z. B. Ceruloplasmin).
Weiterhin bevorzugte Enzyme sind diejenigen, die der Gruppe 1.17 (Wirkung auf CH2-Gruppen, die zu -CHOH- oxidiert werden), 1.18 (Wirkung auf reduziertes Ferredoxin als Donor), 1.19 (Wirkung auf reduziertes Flavodoxin als Donor) und 1.97 (andere Oxidoreduktasen) angehören.
Weiterhin besonders bevorzugt sind die Enzyme der Gruppe 1.11. die auf ein Peroxid als Akzeptor wirken. Diese einzige Sub­ klasse (1.11.1) enthält die Peroxidasen.
Besonders bevorzugt sind hier die Cytochrom-C-Peroxidasen (1.11.1.5), Catalase (1.11.1.6), die Peroxydase (1.11.1.7) die Iodid-Peroxidase (1.11.1.8), die Glutathione-Peroxidase (1.11.1.9), die Chlorid-Peroxidase (1.11.1.10), die L-Ascorbat-Peroxidase (1.11.1.11), die Phospholipid-Hydroper­ oxid-Glutathione-Peroxidase (1.11.1.12), die Mangan-Peroxida­ se (1.12.1.13), die Diarylpropan-Peroxidase (Ligninase, Lignin-Peroxidase) (1.11.1.14).
Ganz besonders bevorzugt sind Enzyme der Klasse 1.10, die auf Biphenole und verwandten Verbindungen wirken. Sie katalysieren die Oxidation von Biphenolen und Ascorbaten. Als Akzeptoren fungieren NAD⁺, NADP⁺ (1.10.1), Cytochrome (1.10.2), Sauer­ stoff (1.10.3) oder andere (1.10.99).
Von diesen wiederum sind Enzyme der Klasse 1.10.3 mit Sauer­ stoff (O2) als Akzeptor besonders bevorzugt.
Von den Enzymen dieser Klasse sind die Enzyme Catechol Oxidase (Tyrosinase) (1.10.3.1), L-Ascorbate Oxidase (1.10.3.3), o-A­ minophenol Oxidase (1.10.3.4) und Laccase (Benzoldiol: Oxigen Oxidoreduktase) (1.10.3.2) bevorzugt, wobei die Laccasen (Ben­ zoldiol: Oxigen Oxidoreduktase) (1.10.3.2) insbesondere bevor­ zugt sind.
Die genannten Enzyme sind käuflich erhältlich oder lassen sich nach Standardverfahren gewinnen. Als Organismen zur Produktion der Enzyme kommen beispielsweise Pflanzen, tierische Zellen, Bakterien und Pilze in Betracht. Grundsätzlich können sowohl natürlich vorkommende als auch gentechnisch veränderte Orga­ nismen Enzymproduzenten sein. Ebenso sind Teile von einzelli­ gen oder mehrzelligen Organismen als Enzymproduzenten denkbar, vor allem Zellkulturen.
Für die insbesondere bevorzugten Enzyme, wie die aus der Grup­ pe 1.11.1 vor allem aber 1.10.3 und insbesondere zur Produkti­ on von Laccasen werden beispielsweise Weißfäulepilze wie Pleu­ rotus, Phlebia und Trametes verwendet.
Das erfindungsgemäße Mehrkomponentensystem umfaßt mindestens ein Oxidationsmittel. Als Oxidationsmittel können beispiels­ weise Luft, Sauerstoff, Ozon, H2O2, organische Peroxide, Persäuren wie die Peressigsäure, Perameisensäure, Perschwefel­ säure, Persalpetersäure, Metachlorperoxibenzosäure Perchlor­ säure, Perborate, Peracetate, Persulfate, Peroxide oder Sauer­ stoffspezies und deren Radikale wie OH, OOH, Singulettsauer­ stoff, Superoxid (O2⁻), Ozonid, Dioxygenyl-Kation (O2⁺), Di­ oxirane, Dioxetane oder Fremy Radikale eingesetzt werden.
Vorzugsweise werden solche Oxidationsmittel eingesetzt, die entweder durch die entsprechenden Oxidoreduktasen generiert werden können z. B. Dioxirane aus Laccasen plus Carbonylen oder die chemisch den Mediator regenerieren können oder diesen di­ rekt umsetzen können.
Die Erfindung betrifft auch die Verwendung von Substanzen, welche erfindungsgemäß als Mediatoren geeignet sind zum Verän­ dern, Abbau oder Bleichen von Lignin, ligninhaltigen Materia­ lien oder ähnlichen Stoffen.
Die Wirksamkeit des Mehrkomponentensystems beim Verändern, Ab­ bau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen ist häufig nochmals gesteigert, wenn neben den genannten Bestandteilen noch Mg2+ Ionen vorhanden sind. Die Mg2+ Ionen können beispielsweise als Salz, wie z. B. MgSO4, eingesetzt werden. Die Konzentration liegt im Bereich von 0,1-2 mg/g ligninhaltigem Material, vorzugsweise bei 0,2-0,6 mg/g.
In manchen Fällen läßt sich eine weitere Steigerung der Wirk­ samkeit des erfindungsgemäßen Mehrkomponentensystems dadurch erreichen, daß das Mehrkomponentensystem neben den Mg2+ Ionen auch Komplexbildner wie z. B. Ethylendiamintetraessigsäure (ED­ TA), Diethylentriaminpentaessigsäure (DTPA), Hydroxyethylen­ diamintriessigsäure (HEDTA), Diethylentriaminpentamethylen­ phosphonsäure (DTPPA), Nitrilotriessigsäure (NTA), Polyphos­ phorsäure (PPA) etc. enthält. Die Konzentration liegt im Be­ reich von 0,2-5 mg/g ligninhaltigem Material, vorzugsweise bei 1-3 mg.
Der Einsatz des erfindungsgemäßen Mehrkomponentensystems in einem Verfahren zu Behandeln von Lignin erfolgt beispielsweise dadurch, daß man die jeweils ausgewählten Komponenten a) bis c) gemäß Anspruch 1 gleichzeitig oder in beliebiger Reihenfol­ ge mit einer wäßrigen Suspension des ligninhaltigen Materials mischt.
Vorzugsweise wird ein Verfahren unter Einsatz des erfindungs­ gemäßen Mehrkomponentensystems in Gegenwart von Sauerstoff oder Luft bei Normaldruck bis 10 bar und in einem pH-Bereich von 2 bis 11, bei einer Temperatur von 20 bis 95°C, vorzugs­ weise 40-95°C, und einer Stoffdichte von 0,5 bis 40% durchgeführt.
Ein für den Einsatz von Enzymen bei der Zellstoffbleiche unge­ wöhnlicher und überraschender Befund ist, daß beim Einsatz des erfindungsgemäßen Mehrkomponentensystems eine Steigerung der Stoffdichte eine erhebliche Steigerung der Kappaerniedrigung ermöglicht.
Aus ökonomischen Gründen bevorzugt wird ein erfindungsgemäßes Verfahren bei Stoffdichten von 8 bis 35%, besonders bevorzugt 9 bis 15% durchgeführt.
Überraschenderweise zeigte sich ferner, daß eine saure Wäsche (pH 2 bis 6, vorzugsweise 4 bis 5) oder Q-Stufe (pH-Wert 2 bis 6, vorzugsweise 4 bis 5) vor der Enzym-Mediatorstufe bei man­ chen Zellstoffen zu einer erheblichen Kappazahlerniedrigung im Vergleich zur Behandlung ohne diese spezielle Vorbehandlung führt. In der Q-Stufe werden als Chelatbildner die zu diesem Zwecke üblichen Substanzen (wie z. B. EDTA, DTPA) eingesetzt. Sie werden vorzugsweise in Konzentrationen von 0,1%/to bis 1 %/to besonders bevorzugt 0,1%/to bis 0,5%/to eingesetzt.
Im erfindungsgemäßen Verfahren werden vorzugsweise 0,01 bis 100 IU Enzym pro g ligninhaltiges Material eingesetzt. Beson­ ders bevorzugt werden 0,1 bis 100 insbesondere bevorzugt wer­ den 1 bis 40 IU Enzym pro g ligninhaltiges Material eingesetzt (1 U entspricht dem Umsatz von 1 mol 2,2'-Azino-bis(3-ethyl-benzothiazolin-6-sulfonsäure-diammonium­ salz) (ABTS)/min/ml Enzym).
Im erfindungsgemäßen Verfahren werden vorzugsweise 0,01 mg bis 100 mg Oxidationsmittel pro g ligninhaltigem Material einge­ setzt. Besonders bevorzugt werden 0,01 bis 50 mg Oxidationsmit­ tel pro g ligninhaltigem Material eingesetzt.
Im erfindungsgemäßen Verfahren werden vorzugsweise 0,5 bis 80 mg Mediator pro g ligninhaltigem Material eingesetzt. Besonders bevorzugt werden 0,5 bis 40 mg Mediator pro g ligninhaltigem Material eingesetzt.
Gleichzeitig können Reduktionsmittel zugegeben werden, die zu­ sammen mit den vorhandenen Oxidationsmitteln zur Einstellung eines bestimmten Redoxpotentials dienen.
Als Reduktionsmittel können Natrium-Bisulfit, Natrium-Dithio­ nit, Ascorbinsäure, Thioverbindungen, Mercaptoverbindungen oder Glutathion etc. eingesetzt werden.
Die Reaktion läuft beispielsweise bei Laccase unter Luft- oder Sauerstoffzufuhr oder Sauerstoff- bzw. Luftüberdruck ab, bei den Peroxidasen (z. B. Ligninperoxidasen, Manganperoxidasen) mit Wasserstoffperoxid. Dabei können beispielsweise der Sauer­ stoff auch durch Wasserstoffperoxid + Katalase und Wasser­ stoffperoxid durch Glucose + GOD oder andere Systeme in situ generiert werden.
Außerdem können dem System Radikalbildner oder Radikalfänger (Abfangen von beispielsweise OH oder OOH Radikalen) zugesetzt werden. Diese können das Zusammenspiel innerhalb der Red/Ox- und Radikalmediatoren verbessern.
Der Reaktionslösung können auch weitere Metallsalze zugegeben werden.
Diese sind im Zusammenwirken mit Chelatbildnern als Radikal­ bildner oder Red/Ox-Zentren wichtig. Die Salze bilden in der Reaktionslösung Kationen. Solche Ionen sind u. a. Fe2+, Fe3+, Mn2+, Mn3+, Mn4+, Cu2+, Ca2+, Ti3+, Cer4+, Al3+.
Die in der Lösung vorhandenen Chelate können darüber hinaus als Mimicsubstanzen für die Enzyme, beispielsweise für die Laccasen (Kupferkomplexe) oder für die Lignin- oder Manganper­ oxidasen (Hämkomplexe) dienen. Unter Mimicsubstanzen sind sol­ che Stoffe zu verstehen, die die prosthetischen Gruppen von (hier) Oxidoreduktasen simulieren und z. B. Oxidationsreaktio­ nen katalysieren können.
Weiterhin kann dem Reaktionsgemisch NaOCl zugesetzt werden. Diese Verbindung kann im Zusammenspiel mit Wasserstoffperoxid Singulettsauerstoff bilden.
Schließlich ist es auch möglich, unter Einsatz von Detergenti­ en zu arbeiten. Als solche kommen nicht-ionische, anionische, kationische und amphotere Tenside in Betracht. Die Detergenti­ en können die Penetration der Enzyme und Mediatoren in die Fa­ ser verbessern.
Ebenso kann es für die Reaktion förderlich sein, Polysacchari­ de und/oder Proteine zuzusetzen. Hier sind insbesondere als Polysaccharide Glucane, Mannane, Dextrane, Lävane, Pektine, Alginate oder Pflanzengummis und/oder eigene von den Pilzen gebildete oder in der Mischkultur mit Hefen produzierte Poly­ saccharide und als Proteine Gelantine und Albumin zu nennen. Diese Stoffe dienen hauptsächlich als Schutzkolloide für die Enzyme.
Weitere Proteine, die zugesetzt werden können, sind Proteasen wie Pepsin, Bromelin, Papain usw. Diese können u. a. dazu die­ nen, durch den Abbau des im Holz vorhandenen Extensins C, hydroxyprolinreiches Protein, einen besseren Zugang zum Lignin zu erreichen.
Als weitere Schutzkolloide kommen Aminosäuren, Einfachzucker, Oligomerzucker, PEG-Typen der verschiedensten Molekulargewich­ te, Polyethylenoxide, Polyethylenimine und Polydimethylsiloxa­ ne in Frage.
Das erfindungsgemäße Verfahren kann nicht nur bei der Deligni­ fizierung (Bleiche) von Sulfat-, Sulfit-/Organosol-, o. a. Zellstoffen und von Holzstoffen eingesetzt werden, sondern auch bei der Herstellung von Zellstoffen allgemein, sei es aus Holz- oder Einjahrespflanzen, wenn eine Defibrillierung durch die üblichen Kochverfahren (verbunden eventuell mit mechani­ schen Verfahren oder Druck) d. h. eine sehr schonende Kochung bis zu Kappazahlen, die im Bereich von ca. 50-120 Kappa lie­ gen können, gewährleistet ist.
Bei der Bleiche von Zellstoffen wie auch bei der Herstellung von Zellstoffen kann die Behandlung mehrfach wiederholt wer­ den, entweder nach Wäsche und Extraktion des behandelten Stof­ fes mit NaOH oder ohne diese Zwischenschritte. Dies führt zu noch wesentlich weiter reduzierbaren Kappawerten und zu erheb­ lichen Weißesteigerungen. Ebenso kann vor der Enzym/Mediator­ behandlung eine O2-Stufe eingesetzt werden oder auch wie be­ reits erwähnt eine saure Wäsche oder Q-Stufe (Chelatstufe) ausgeführt werden.
Bei der "Verflüssigung" von Kohle (Steinkohle, Braunkohle) wird eine ähnliche Verfahrensführung wie bei der Delignifizie­ rung (Bleiche) von Holz- oder Einjahrespflanzen eingesetzt.
Im folgenden wird Erfindung anhand von Beispielen näher erläutert:
Beispiel 1 Enzymatische Bleiche mit N-Hydroxy-N-methyl-benzoesäureamid und Softwood Sulfatzellstoff
5 g atro Zellstoff (Softwood O2 delignifiziert), Stoffdichte 30% (ca. 17 g feucht) werden zu folgenden Lösungen gegeben:
  • A) 20 ml Leitungswasser werden mit 56,0 mg N-Hydroxy-N-methyl­ benzoesäureamid unter Rühren versetzt, der pH-Wert mit 0,5 mol/l H2SO4-Lsg. so eingestellt, daß nach Zugabe des Zell­ stoffs und des Enzyms pH 4,5 resultiert.
  • B) 5 ml Leitungswasser werden mit der Menge Laccase von Trame­ tes versicolor versetzt, daß eine Aktivität von 15 U (1 U = Umsatz von 1 µmol ABTS/min/ml Enzym) pro g Zellstoff resultiert.
Die Lösungen A und B werden zusammen gegeben und auf 33 ml aufgefüllt.
Nach Zugabe des Zellstoffes wird für 2 min mit einem Teigkne­ ter gemixt.
Danach wird der Stoff in eine auf 45°C vorgeheizte Reaktions­ bombe gegeben und unter 1-10 bar Sauerstoffüberdruck für 1-4 Stunden inkubiert.
Danach wird der Stoff über einem Nylonsieb (30 µm) gewaschen und 1 Stunde bei 60°C, 2% Stoffdichte und 8% NaOH pro g Zell­ stoff extrahiert.
Nach erneuter Wäsche des Stoffes wird die Kappazahl bestimmt.
Ergebnis vergl. Tabelle 1
Beispiel 2 Enzymatische Bleiche mit N-tert.-Butyl-N-hydroxy-benzoesäureamid und Softwood Sulfatzellstoff
5 g atro Zellstoff (Softwood O2 delignifiziert), Stoffdichte 30% (ca. 17 g feucht) werden zu folgenden Lösungen gegeben:
  • A) 20 ml Leitungswasser werden mit 71,5 mg N-tert.-Butyl-N-hydroxy-benzoesäureamid unter Rühren versetzt, der pH-Wert mit 0,5 mol/l H2SO4-Lsg. so eingestellt, daß nach Zugabe des Zellstoffs und des Enzyms pH 4,5 resultiert.
  • B) 5 ml Leitungswasser werden mit der Menge Laccase von Trame­ tes versicolor versetzt, daß eine Aktivität von 15 U (1 U = Umsatz von 1 µmol ABTS/min/ml Enzym) pro g Zellstoff resultiert.
Die Lösungen A und B werden zusammen gegeben und auf 33 ml aufgefüllt.
Nach Zugabe des Zellstoffes wird für 2 min mit einem Teigkne­ ter gemixt.
Danach wird der Stoff in eine auf 45°C vorgeheizte Reaktions­ bombe gegeben und unter 1-10 bar Sauerstoffüberdruck für 1-4 Stunden inkubiert.
Danach wird der Stoff über einem Nylonsieb (30 µm) gewaschen und 1 Stunde bei 60°C, 2% Stoffdichte und 8% NaOH pro g Zell­ stoff extrahiert.
Nach erneuter Wäsche des Stoffes wird die Kappazahl bestimmt.
Ergebnis vergl. Tabelle 1
Beispiel 3 Enzymatische Bleiche mit N-Hydroxy-N-methyl-furan-2-carbonsäureamid und Softwood Sulfatzellstoff
5 g atro Zellstoff (Softwood O2 delignifiziert), Stoffdichte 30% (ca. 17 g feucht) werden zu folgenden Lösungen gegeben:
  • A) 20 ml Leitungswasser werden mit 52,2 mg N-Hydroxy-N-methyl-furan-2-carbonsäureamid unter Rühren ver­ setzt, der pH-Wert mit 0,5 mol/l H2SO4-Lsg. so eingestellt, daß nach Zugabe des Zellstoffs und des Enzyms pH 4,5 resultiert.
  • B) 5 ml Leitungswasser werden mit der Menge Laccase von Trame­ tes versicolor versetzt, daß eine Aktivität von 15 U (1. U = Umsatz von 1 µmol ABTS/min/ml Enzym) pro g Zellstoff resultiert.
Die Lösungen A und B werden zusammen gegeben und auf 33 ml aufgefüllt.
Nach Zugabe des Zellstoffes wird für 2 min mit einem Teigkne­ ter gemixt.
Danach wird der Stoff in eine auf 45°C vorgeheizte Reaktions­ bombe gegeben und unter 1-10 bar Sauerstoffüberdruck für 1-4 Stunden inkubiert.
Danach wird der Stoff über einem Nylonsieb (30 µm) gewaschen und 1 Stunde bei 60°C, 2% Stoffdichte und 8% NaOH pro g Zell­ stoff extrahiert.
Nach erneuter Wäsche des Stoffes wird die Kappazahl bestimmt.
Ergebnis vergl. Tabelle 1
Beispiel 4 Enzymatische Bleiche mit N-Hydroxy-N-methyl-acetamid und Soft­ wood Sulfatzellstoff
5 g atro Zellstoff (Softwood O2 delignifiziert), Stoffdichte 30% (ca. 17 g feucht) werden zu folgenden Lösungen gegeben:
  • A) 20 ml Leitungswasser werden mit 33,0 mg N-Hydroxy-N-methyl­ acetamid unter Rühren versetzt, der pH-Wert mit 0,5 mol/l H2SO4-Lsg. so eingestellt, daß nach Zugabe des Zellstoffs und des Enzyms pH 4,5 resultiert.
  • B) 5 ml Leitungswasser werden mit der Menge Laccase von Trame­ tes versicolor versetzt, daß eine Aktivität von 15 U (1 U = Umsatz von 1 µmol ABTS/min/ml Enzym) pro g Zellstoff resultiert.
Die Lösungen A und B werden zusammen gegeben und auf 33 ml aufgefüllt.
Nach Zugabe des Zellstoffes wird für 2 min mit einem Teigkne­ ter gemixt.
Danach wird der Stoff in eine auf 45°C vorgeheizte Reaktions­ bombe gegeben und unter 1-10 bar Sauerstoffüberdruck für 1-4 Stunden inkubiert.
Danach wird der Stoff über einem Nylonsieb (30 µm) gewaschen und 1 Stunde bei 60°C, 2% Stoffdichte und 8% NaOH pro g Zell­ stoff extrahiert.
Nach erneuter Wäsche des Stoffes wird die Kappazahl bestimmt.
Ergebnis vergl. Tabelle 1
Beispiel 5 Enzymatische Bleiche mit N-Hydroxy-N-tert.-butyl-acetamid und Softwood Sulfatzellstoff
5 g atro Zellstoff (Softwood O2 delignifiziert), Stoffdichte 30% (ca. 17 g feucht) werden zu folgenden Lösungen gegeben:
  • A) 20 ml Leitungswasser werden mit 48,6 mg N-Hydroxy-N-methyl­ acetamid unter Rühren versetzt, der pH-Wert mit 0,5 mol/l H2SO4-Lsg. so eingestellt, daß nach Zugabe des Zellstoffs und des Enzyms pH 4,5 resultiert.
  • B) 5 ml Leitungswasser werden mit der Menge Laccase von Trame­ tes versicolor versetzt, daß eine Aktivität von 15 U (1 U = Umsatz von 1 µmol ABTS/min/ml Enzym) pro g Zellstoff resultiert.
Die Lösungen A und B werden zusammen gegeben und auf 33 ml aufgefüllt.
Nach Zugabe des Zellstoffes wird für 2 min mit einem Teigkne­ ter gemixt.
Danach wird der Stoff in eine auf 45°C vorgeheizte Reaktions­ bombe gegeben und unter 1-10 bar Sauerstoffüberdruck für 1-4 Stunden inkubiert.
Danach wird der Stoff über einem Nylonsieb (30 µm) gewaschen und 1 Stunde bei 60°C, 2% Stoffdichte und 8% NaOH pro g Zell­ stoff extrahiert.
Nach erneuter Wäsche des Stoffes wird die Kappazahl bestimmt.
Ergebnis vergl. Tabelle 1
Ergebnisse Beispiel 1 bis 5: Enzymdosage 15 U/g Zellstoff, In­ kubationszeit 2 h
Ergebnisse Beispiel 1 bis 5: Enzymdosage 15 U/g Zellstoff, In­ kubationszeit 2 h

Claims (10)

1. Mehrkomponentensystem zum Verändern, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen enthaltend
  • a. ggf. mindestens einen Oxidationskatalysator und
  • b. mindestens ein geeignetes Oxidationsmittel und
  • c. mindestens einen Mediator, dadurch gekennzeichnet, daß der Mediator ausgewählt ist aus der Gruppe der N-Alkyl-N-Hydroxy-Amide.
2. Mehrkomponentensystem gemäß Anspruch 1, dadurch gekenn­ zeichnet, daß der Mediator ausgewählt ist aus der Gruppe der N-Alkyl-N-Hydroxy-Amide der allgemeinen Formel (I) oder (II)
sowie deren Salze, Ether oder Ester, wobei A gleich oder verschieden ist und einbindiger linearer oder verzweigter oder cyclischer oder polycyclischer gesättigter oder ungesättigter Alkylrest mit 1-24 C-Atomen bedeutet und
wobei dieser Alkylrest durch einen oder mehrere Reste R1, die gleich oder verschieden sind und ausgewählt sind aus der Grup­ pe Hydroxy-, Mercapto-, Formyl-, Carbamoyl-, Carboxy-, Ester oder Salz des Carboxyrests, Sulfonorest, Ester oder Salz des Sulfonorests, Sulfamoyl-, Nitro-, Nitroso-, Amino-, Hydroxyla­ mino-, Phenyl-, C1-C5-Alkoxy-, C1-C10-Carbonyl-, Phospho-, Phosphono-, Phosphonooxyrest, Ester oder Salz des Phospho­ nooxyrests substituiert sein kann und
wobei Carbamoyl, Sulfamoyl-, Amino-, Hydroxylamino-, Mercapto- und Phenylreste unsubstituiert oder ein- oder mehrfach mit ei­ nem Rest R2 substituiert sein können und die C1-C5-Alkoxy-, C1-C10-Carbonyl-Reste gesättigt oder ungesättigt, verzweigt oder unverzweigt sein können und mit einem Rest R2 ein- oder mehr­ fach substituiert sein können, wobei
R2 gleich oder verschieden ist und Hydroxy-, Formyl-, Cyano-, Carboxyrest, Ester oder Salz des Carboxyrests, Carbamoyl, Sul­ fono-, Sulfamoyl-, Nitro-, Nitroso-, Amino-, Phenyl-, Ben­ zoyl-, C1-C5-Alkyl-, C1-C5-Alkoxy-, C1-C5-Alkylcarbonylrest be­ deutet und
nicht α-ständige Methylengruppen durch Sauerstoff, Schwefel oder einen ggf. einfach substituierten Iminorest ersetzt sein können und
B in amidischer Form vorliegender einbindiger Säurerest von Säuren ausgewählt aus der Gruppe aliphatischer oder ein- oder zweikerniger aromatischer oder ein- oder zweikerniger heteroa­ romatischer Carbonsäuren mit bis zu 20 C-Atomen, Kohlensäure, Halbester der Kohlensäure oder der Carbaminsäure, Sulfonsäure, Phosphonsäure, Phosphorsäure, Monoester der Phosphorsäure, Diester der Phosphorsäure bedeutet und
D in amidischer Form vorliegender zweibindiger Säurerest von Säuren ausgewählt aus der Gruppe aliphatischer, ein- oder zweikerniger aromatischer oder ein- oder zweikerniger heteroa­ romatischer Dicarbonsäuren mit bis zu 20 C-Atomen, Kohlensäu­ re, Sulfonsäure, Phosphonsäure, Phosphorsäure, Monoester der Phosphorsäure bedeutet und
wobei Alkylreste der in amidischer Form vorliegenden aliphati­ schen Säuren B und b linear oder verzweigt und/oder cyclisch und/oder polycyclisch gesättigt oder ungesättigt sein können und 0-24 Kohlenstoffatome beinhalten und nicht substituiert sind oder ein- oder mehrfach dem Rest R1 substituiert sind und Aryl- und Heteroarylreste der in amidischer Form vorliegenden aromatischen oder heteroaromatischen Säuren B und D durch ei­ nen oder mehrere Reste R3, die gleich oder verschieden sind und ausgewählt sind aus der Gruppe Hydroxy-, Mercapto-, Formyl-, Cyano-, Carbamoyl-, Carboxy-, Ester oder Salz des Carboxy­ rests, Sulfonorest, Ester oder Salz des Sulfonorests, Sulfa­ moyl-, Nitro-, Nitroso-, Amino-, Phenyl-, Aryl-C1-C5-Alkyl-, C1-C12-Alkyl-, C1-C5-Alkoxy-, C1-C10-Carbonyl-, Phospho-, Phospho­ no-, Phosphonooxyrest, Ester oder Salz des Phosphonooxyrests substituiert sein können und
wobei Carbamoyl, Sulfamoyl-, Amino-, Mercapto- und Phenylreste unsubstituiert oder ein- oder mehrfach mit dem Rest R2 substi­ tuiert sein können und die Aryl-C1-C5-Alkyl-, C1-C12-Alkyl-C1-C5-Alkoxy-, C1-C10-Carbonyl-Reste gesättigt oder ungesättigt, verzweigt oder unverzweigt sein können und ein oder mehrfach mit dem Rest R2 substituiert sein können.
3. Mehrkomponentensystem gemäß Anspruch 1, dadurch gekenn­ zeichnet, daß der Mediator ausgewählt ist aus der Gruppe der N-Alkyl-N-Hydroxy-Amide der allgemeinen Formeln III, IV, V oder VI
sowie deren Salze, Ether oder Ester, wobei
Alk1 gleich oder verschieden ist und einbindiger linearer oder verzweigter oder cyclischer oder polycyclischer gesättigter oder ungesättigter Alkylrest mit 1-10 C-Atomen bedeutet, wobei dieser Alkylrest durch einen oder mehrere Reste R4, die gleich oder verschieden sind und ausgewählt sind aus der Grup­ pe Hydroxy-, Formyl-, Carbamoyl-, Carboxy-, Ester oder Salz des Carboxyrests, Sulfonorest, Ester oder Salz des Sulfono­ rests, Sulfamoyl-, Nitro-, Nitroso-, Amino-, Hydroxylamino-, Phenyl-, C1-C5-Alkoxy-, C1-C5-Carbonyl-Reste substituiert sein kann und
wobei Carbamoyl, Sulfamoyl-, Amino-, Hydroxylamino- und Phenylreste unsubstituiert oder ein- oder mehrfach mit einem Rest R5 substituiert sein können und die C1-C5-Alkoxy-, C1-C10-Carbonyl-Reste gesättigt oder ungesättigt, verzweigt oder unverzweigt sein können und mit einem Rest R5 ein- oder mehr­ fach substituiert sein können, wobei
R5 gleich oder verschieden ist und Hydroxy-, Formyl-, Cyano-, Carboxyrest, Ester oder Salz des Carboxyrests, Carbamoyl, Sul­ fono-, Sulfamoyl-, Nitro-, Amino-, Phenyl-, Benzoyl-, C1-C5-Alkyl-, C1-C5-Alkoxy-, C1-C5-Alkylcarbonylrest bedeutet und
nicht α-ständige Methylengruppen durch Sauerstoff, Schwefel oder einen ggf. einfach substituierten Iminorest ersetzt sein können und
wobei R6 gleiche oder verschiedene einbindige Reste ausgewählt aus der Gruppe Wasserstoff-, Phenyl-, Pyridyl-, Furyl-, Pyrro­ lyl-, Thienyl-, Aryl-C1-C5-Alkyl-, C1-C12-Alkyl-, C1-C10-Alkoxy-, C1-C10-Carbonylrest bedeutet,
wobei Phenyl-, Pyridyl-, Furyl-, Pyrrolyl- und Thienylreste unsubstituiert oder ein- oder mehrfach mit einem Rest R7 sub­ stituiert sein können und die Aryl-C1-C5-alkyl-, C1-C12-Alkyl-, C1-C5-Alkoxy- und C1-C10-Carbonyl-Reste gesättigt oder ungesät­ tigt, verzweigt oder unverzweigt sein können und mit einem Rest R7 ein- oder mehrfach substituiert sein können und
R7 gleich oder verschieden ist und Hydroxy-, Formyl-, Carboxy­ rest, Ester oder Salz des Carboxyrests, Carbamoyl-, Sulfono-, Sulfamoyl-, Nitro-, Amino-, Phenyl-, C1-C5-Alkyl-, C1-C5-Alkoxyrest bedeutet und
R8 zweibindige Reste ausgewählt aus der Gruppe Phenylen-, Pyri­ dylen-, Thienylen-, Furylen-, Pyrrolylen-, Aryl-C1-C5-alkyl-, C1-C12-Alkylen-, C1-C5-Alkylendioxy-Rest bedeutet, wobei Pheny­ len-, Pyridylen-, Thiophenylen-, Furanylen- unsubstituiert oder ein- oder mehrfach mit einem Rest R7 substituiert sein können und die Aryl-C1-C5-alkyl-, C1-C12-Alkyl-, C1-C5-Alkoxy-Reste gesättigt oder ungesättigt, verzweigt oder unverzweigt sein können und mit einem Rest R7 ein- oder mehr­ fach substituiert sein können, wobei
p 0 oder 1 bedeutet.
4. Mehrkomponentensystem gemäß Anspruch 3, dadurch gekenn­ zeichnet, daß der Mediator ausgewählt ist aus der Gruppe der N-Alkyl-N-Hydroxy-Amide der allgemeinen Formeln III, IV, V oder VI, bei denen
Alk1 gleich oder verschieden ist und einbindiger linearer oder verzweigter oder cyclischer gesättigter oder ungesättigter Al­ kylrest mit 1-10 C-Atomen bedeutet,
wobei dieser Alkylrest durch einen oder mehrere Reste R4, die gleich oder verschieden sind und ausgewählt sind aus der Grup­ pe Hydroxy-, Carbamoyl-, Carboxy-, Ester oder Salz des Car­ boxyrests, Sulfonorest, Ester oder Salz des Sulfonorests, Sul­ famoyl-, Amino-, Phenyl-, C1-C5-Alkoxy-, C1-C5-Carbonyl-Reste substituiert sein kann und
wobei Carbamoyl, Sulfamoyl-, Amino- und Phenylreste unsubsti­ tuiert oder ein- oder mehrfach mit einem Rest R5 substituiert sein können und die C1-C5-Alkoxy-, C1-C10-Carbonyl-Reste gesät­ tigt oder ungesättigt, verzweigt oder unverzweigt sein können und mit einem Rest R5 ein- oder mehrfach substituiert sein kön­ nen, wobei
R5 gleich oder verschieden ist und Hydroxy-, Carboxyrest, Ester oder Salz des Carboxyrests, Carbamoyl, Sulfono-, Sulfamoyl-, Nitro-, Amino-, Phenyl-, Benzoyl-, C1-C5-Alkyl-, C1-C5-Alkoxy-, C1-C5-Alkylcarbonylrest bedeutet und
wobei R6 gleiche oder verschiedene einbindige Reste ausgewählt aus der Gruppe Wasserstoff-, Phenyl-, Furyl-, Aryl-C1-C5-Alkyl-, C1-C12-Alkyl-, C1-C 10-Alkoxy-, C1-C10-Carbonylrest bedeutet,
wobei Phenyl- und Furylreste unsubstituiert oder ein- oder mehrfach mit einem Rest R7 substituiert sein können und die Aryl-C1-C5-alkyl-, C1-C12-Alkyl-, C1-C5-Alkoxy- und C1-C10-Carbonyl-Reste gesättigt oder ungesättigt, verzweigt oder unverzweigt sein können und mit einem Rest R7 ein- oder mehr­ fach substituiert sein können, wobei
R7 gleich oder verschieden ist und Carboxyrest, Ester oder Salz des Carboxyrests, Carbamoyl-, Phenyl-, C1-C5-Alkyl-, C1-C5-Alkoxyrest bedeutet und
R8 zweibindiger Rest ausgewählt aus der Gruppe Phenylen-, Fury­ len-, C1-C12-Alkylen-, C1-C5-Alkylendioxy-Rest bedeutet, wobei Phenylen-, Furanylen- unsubstituiert oder ein- oder mehrfach mit einem Rest R7 substituiert sein können und die Aryl-C1-C5-alkyl-, C1-C12-Alkyl-, C1-5-Alkoxy-Reste gesättigt oder ungesättigt, verzweigt oder unverzweigt sein können und mit einem Rest R7 ein- oder mehrfach substituiert sein können, wobei
p 0 oder 1 bedeutet.
5. Mehrkomponentensystem gemäß Anspruch 1, 2, 3 oder 4, da­ durch gekennzeichnet, daß es mindestens einen Oxidationskata­ lysator umfaßt.
6. Mehrkomponentensystem gemäß Anspruch 5, dadurch gekenn­ zeichnet, daß als Oxidationskatalysator eine Oxidoreduktase eingesetzt wird.
7. Mehrkomponentensystem gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß als Oxidationsmittel Luft, Sauer­ stoff, Ozon, H2O2, organische Peroxide, Persäuren wie die Peressigsäure, Perameisensäure, Perschwefelsäure, Persalpeter­ säure, Metachlorperoxibenzoesäure, Perchlorsäure, Perborate, Peracetate, Persulfate, Peroxide oder Sauerstoffspezies und deren Radikale wie OH˙, OOH˙, Singulettsauerstoff, Superoxid (O2˙⁻), Ozonid, Dioxygenyl-Kation (O2⁺), Dioxirane, Dioxetane oder Fremy Radikale eingesetzt werden.
8. Mehrkomponentensystem gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Mediator (Komponente c) ausge­ wählt ist aus der Gruppe der Verbindungen N-Hydroxy-N-methyl­ benzoesäureamid, N-Hydroxy-N-methyl-benzolsulfonsäure-amid, N- Hydroxy-N-methyl-p-toluolsulfonsäureamid,
N-Hydroxy-N-methyl-furan-2-carbonsäureamid,
N-Hydroxy-N-methyl-thiophen-2-carbonsäureamid,
N,N'-Dihydroxy-N,N'-dimethyl-phthalsäurediamid,
N,N'-Dihydroxy-N,N'-dimethyl-isophthalsäurediamid,
N,N'-Dihydroxy-N,N'-dimethyl-terephthalsäurediamid,
N,N'-Dihydroxy-N,N'-dimethyl-benzol-1,3-disulfonsäurediamid,
N,N'-Dihydroxy-N,N'-dimethyl-furan-3,4-dicarbonsäurediamid,
N-Hydroxy-N-tert.-butyl-benzoesäureamid,
N-Hydroxy-N-tert.-butyl-benzolsulfonsäureamid,
N-Hydroxy-N-tert.-butyl-p-toluolsulfonsäureamid,
N-Hydroxy-N-tert.-butyl-furan-2-carbonsäureamid,
N-Hydroxy-N-tert.-butyl-thiophen-2-carbonsäureamid,
N,N'-Dihydroxy-N,N'-di-tert.-butyl-phthalsäurediamid,
N,N'-Dihydroxy-N,N'-di-tert.-butyl-isophthalsäurediamid,
N,N'-Dihydroxy-N,N'-di-tert.-butyl-terephthalsäurediamid,
N,N'-Dihydroxy-N,N'-di-tert.-butyl-benzol-1,3-disulfonsäuredi­ amid,
N,N'-Dihydroxy-N,N'-di-tert.-butyl-furan-3,4-dicarbonsäuredi­ amid,
N-Hydroxy-N-cyclohexyl-benzoesäureamid,
N-Hydroxy-N-cyclohexyl-benzolsulfonsäureamid,
N-Hydroxy-N-cyclohexyl-p-toluolsulfonsäure-amid,
N-Hydroxy-N-cyclohexyl-furan-2-carbonsäureamid,
N-Hydroxy-N-cyclohexyl-thiophen-2-carbonsäureamid,
N,N'-Dihydroxy-N,N'-dicyclohexyl-phthalsäurediamid,
N,N'-Dihydroxy-N,N'-dicyclohexyl-isophthalsäurediamid,
N,N'-Dihydroxy-N,N'-dicyclohexyl-terephthalsäurediamid,
N,N'-Dihydroxy-N,N'-dicyclohexyl-benzol-1,3-disulfonsäuredi­ amid,
N,N'-Dihydroxy-N,N'-dicyclohexyl-furan-3,4-dicarbonsäure-di­ amid,
N-Hydroxy-N-isopropyl-benzoesäureamid, N-Hydroxy-N-isopropyl­ benzol-sulfonsäureamid, N-Hydroxy-N-isopropyl-p-toluol­ sulfonsäureamid, N-Hydroxy-N-isopropyl-furan-2-carbonsäureamid, N-Hydroxy-N-isopropyl-thiophen-2-carbon-säureamid, N,N'- Dihydroxy-N,N'-diisopropyl-phthalsäurediamid, N,N'-Dihydroxy- N,N'-diisopropyl-isophthalsäurediamid, N,N'-Dihydroxy-N,N'-di­ isopropyl-terephthal-säurediamid, N,N'-Dihydroxy-N,N'-diiso­ propyl-benzol-1,3-disulfonsäurediamid, N,N'-Dihydroxy-N,N'-di­ isopropyl-furan-3,4-dicarbonsäurediamid, N-Hydroxy-N-methyl­ acetamid, N-Hydroxy-N-tert.-butyl-acetamid,
N-Hydroxy-N-isopropyl-acetamid,
N-Hydroxy-N-cyclohexyl-acetamid,
N-Hydroxy-N-methyl-pivalinsäureamid,
N-Hydroxy-N-isopropyl-pivalinsäureamid,
N-Hydroxy-N-methyl-acrylamid,
N-Hydroxy-N-tert.-butyl-acrylamid, N-Hydroxy-N-isopropyl-acry­ lamid, N-Hydroxy-N-cyclohexyl-acrylamid, N-Hydroxy-N-methyl­ methansulfonamid, N-Hydroxy-N-isopropyl-methansulfonamid, N- Hydroxy-N-isopropyl-methylcarbamat,
N-Hydroxy-N-methyl-3-oxo-buttersäureamid, N,N'-Dihydroxy-N,N'- dibenzoyl-ethylendiamin, N,N'-Dihydroxy-N,N'-dimethyl­ bernsteinsäurediamid,
N,N'-Dihydroxy-N,N'-di-tert.-butyl-maleinsäurediamid,
N-Hydroxy-N-tert.-butyl-maleinsäuremonoamid,
N,N'-Dihydroxy-N,N'-di-tert.-butyl-oxalsäurediamid,
N,N'-Dihydroxy-N,N'-di-tert.-butyl-phosphor-säurediamid.
9. Verfahren zum Behandeln von Lignin, dadurch gekennzeichnet, daß man die jeweils ausgewählten Komponenten a) bis c) gemäß Anspruch 1 gleichzeitig oder in beliebiger Reihenfolge mit ei­ ner wäßrigen Suspension des ligninhaltigen Materials mischt.
10. Verwendung von in Anspruch 1 als Komponente c) genannten Mediatoren zum Verändern, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen.
DE1997123631 1997-06-05 1997-06-05 Mehrkomponentensystem zum Verändern, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen sowie Verfahren zu seiner Anwendung Withdrawn DE19723631A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE1997123631 DE19723631A1 (de) 1997-06-05 1997-06-05 Mehrkomponentensystem zum Verändern, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen sowie Verfahren zu seiner Anwendung
PCT/EP1998/003035 WO1998055489A1 (de) 1997-06-05 1998-05-22 Mehrkomponentensystem zum verändern, abbau oder bleichen von lignin, ligninhaltigen materialien oder ähnlichen stoffen sowie verfahren zu seiner anwendung
AU82099/98A AU8209998A (en) 1997-06-05 1998-05-22 Multi-constituent system for modifying, degrading or bleaching lignin, materialscontaining lignin or similar substances, and method for using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1997123631 DE19723631A1 (de) 1997-06-05 1997-06-05 Mehrkomponentensystem zum Verändern, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen sowie Verfahren zu seiner Anwendung

Publications (1)

Publication Number Publication Date
DE19723631A1 true DE19723631A1 (de) 1998-12-10

Family

ID=7831516

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1997123631 Withdrawn DE19723631A1 (de) 1997-06-05 1997-06-05 Mehrkomponentensystem zum Verändern, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen sowie Verfahren zu seiner Anwendung

Country Status (3)

Country Link
AU (1) AU8209998A (de)
DE (1) DE19723631A1 (de)
WO (1) WO1998055489A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7202371B2 (en) * 2004-01-20 2007-04-10 The University Of Chicago Catalytic asymmetric epoxidation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8609282D0 (en) * 1986-04-16 1986-05-21 Roussel Lab Ltd Chemical compounds
US5117054A (en) * 1991-09-26 1992-05-26 Ortho Pharmaceutical Corporation N-hydroxy, N-methyl propanamides
DK87592D0 (da) * 1992-07-03 1992-07-03 Novo Nordisk As Enzym
ATE191927T1 (de) * 1993-06-16 2000-05-15 Call Hans Peter Mehrkomponentenbleichsystem
DE19632623A1 (de) * 1996-08-13 1998-02-19 Consortium Elektrochem Ind Mehrkomponentensystem zum Verändern, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen sowie Verfahren zu seiner Anwendung

Also Published As

Publication number Publication date
WO1998055489A1 (de) 1998-12-10
AU8209998A (en) 1998-12-21

Similar Documents

Publication Publication Date Title
EP0825294B1 (de) Mehrkomponentensystem zum Verändern, Abbau oder Bleichen von Lignin, oder ligninhaltigen Materialien sowie Verfahren zu seiner Anwendung
EP0943032B1 (de) Mehrkomponentensystem zum verändern, abbau oder bleichen von lignin oder ligninhaltigen materialien sowie verfahren zu seiner anwendung
EP0739433B1 (de) Verfahren zur veränderung, abbau oder bleichen von lignin, ligninhaltigen materialien oder kohle
KR100197048B1 (ko) 리그닌, 리그닌함유재 또는 그 동일물질을 개질, 분해 또는 표백하는 조성물
EP0905306A1 (de) Mehrkomponentensystem zum Verändern, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien sowie Verfahren zu seiner Anwendung
EP0584176A1 (de) Verfahren zur delignifizierung von lignocellulosehaltigem material. bleiche und behandlung von abwässern mittels laccasen mit erweiterter wirksamkeit
DE19612193A1 (de) Mehrkomponentensystem zum Verändern, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen sowie Verfahren zu seiner Anwendung
WO1998059108A2 (de) Oxidations- und bleichsystem mit enzymatisch hergestellten oxidationsmitteln
EP1483442A2 (de) Neue katalytische aktivitaten von oxidoreduktasen zur oxidation und/oder bleiche
DE19612194A1 (de) Mehrkomponentensystem zum Verändern, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen sowie Verfahren zu seiner Anwendung
EP1436371A2 (de) Enzymatische systeme zur generierung aktiver sauerstoffspezies zur reaktion mit anderen precursern zur oxidation und/oder bleiche
DE19723629B4 (de) Verfahren zum Behandeln von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen
DE19723631A1 (de) Mehrkomponentensystem zum Verändern, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen sowie Verfahren zu seiner Anwendung
DE19631131A1 (de) Mehrkomponentensystem zum Verändern, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen sowie Verfahren zu seiner Anwendung
DE19804583A1 (de) Mehrkomponentensystem zum Verändern, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien sowie Verfahren zu seiner Anwendung
DE19842662A1 (de) Zusammensetzung und Verfahren zum Verändern, Abbau oder Bleichen von ligninhaltigen Materialien
DE10215277A1 (de) Oxidationssysteme mit Hydrolase katalysierter Bildung von Hydroxamsäuren

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee