DE19700615A1 - Kondensor-Monochromator-Anordnung für Röntgenstrahlung - Google Patents

Kondensor-Monochromator-Anordnung für Röntgenstrahlung

Info

Publication number
DE19700615A1
DE19700615A1 DE19700615A DE19700615A DE19700615A1 DE 19700615 A1 DE19700615 A1 DE 19700615A1 DE 19700615 A DE19700615 A DE 19700615A DE 19700615 A DE19700615 A DE 19700615A DE 19700615 A1 DE19700615 A1 DE 19700615A1
Authority
DE
Germany
Prior art keywords
condenser
axis
zone plate
monochromator
arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19700615A
Other languages
English (en)
Inventor
Bastian Dr Niemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE19700615A priority Critical patent/DE19700615A1/de
Publication of DE19700615A1 publication Critical patent/DE19700615A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K7/00Gamma- or X-ray microscopes

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • X-Ray Techniques (AREA)

Description

Die Erfindung betrifft eine Kondensor-Monochromator-Anordnung für Röntgenstrahlung entsprechend den Merkmalen im Oberbegriff des Anspruchs 1.
In den letzten Jahren wurden erhebliche Fortschritte in der Röntgenmikroskopie im Wellenlängenbereich von etwa 0.2-5 nm gemacht. Es wurden Röntgenmikroskope entwickelt, die an brillanten Röntgenquellen betrieben werden. Zu diesen Röntgenquellen zählen Elektronenspeicherringe, deren Ablenkmagneten und Undulatoren Quellorte intensiver Röntgenstrahlung sind; andere Röntgenquellen vergleichbarer Brillanz gibt es bislang nicht. Für Transmissions- Röntgenmikroskope wurde bislang nur die von Ablenkmagneten erzeugte Röntgenstrahlung genutzt.
Als hochauflösende Objektive in Röntgenmikroskopen kommen heutzutage nur Mikrozonenplatten zum Einsatz. Mikrozonenplatten sind rotationssymmetrische Transmissionskreisgitter mit nach außen hin abnehmender Gitterkonstanten, haben typischerweise bis zu 0.1 mm Durchmesser und einige hundert Zonen. Die numerische Apertur einer Zonenplatte ist ganz allgemein durch den Beugungswinkel bestimmt, unter dem die äußeren und damit feinsten Zonen senkrecht einfallende Röntgenstrahlen beugen. Die erzielbare räumliche Auflösung einer Zonenplatte ist durch ihre numerische Apertur bestimmt. Die numerische Apertur der benutzten Röntgenobjektive konnte in den letzten Jahren wesentlich erhöht werden, so daß deren Auflösung sich verbesserte. Dieser Trend zu höherer Auflösung wird sich fortsetzen.
Generell wird für Röntgenmikroskope, die Zonenplatten als Röntgenobjektive benutzen, eine hohlkegelförmige Objektbeleuchtung benötigt. Andernfalls würde sich dem Bild auch in seinem Zentrum die Strahlung aus der 0. und der 1. Beugungsordnung der Kondensorzonenplatte überlagern. Das liegt daran, daß der überwiegende Anteil der Strahlung, die parallel oder fast parallel zur optischen Achse auf das Objekt fällt, dieses und die folgende Mikrozonenplatte (das beugende Röntgenobjektiv) ungebeugt durchdringt und sich als allgemeiner diffuser Untergrund in Geradeausrichtung, also im Zentrum des Bildfeldes bemerkbar macht. Aus diesem Grunde benutzen alle Transmissions-Röntgenmikroskope ringförmige Kondensoren und der nutzbare, nicht diffus überstrahlte Bereich des Bildfeldes wird um so größer, je größer der innere, strahlungsfreie Raumwinkelbereich des Kondensors ist.
Aus der Theorie der Mikroskopie ist bekannt, daß die numerische Apertur des beleuchtenden Kondensors eines Durchlichtmikroskopes stets in etwa angepaßt sein sollte an die numerische Apertur des Mikroskopobjektives, um von inkohärent strahlenden Lichtquellen auch eine inkohärente Objektbeleuchtung und damit eine nahezu lineare Beziehung zwischen Objektintensität und Bildintensität zu erhalten. Ist die Apertur des Kondensors dagegen geringer als die des Mikroskopobjektivs, so liegt eine teilkohärente Abbildung vor und die lineare Transformation zwischen Objektintensität und Bildintensität geht für die wichtigen, die Auflösung des Mikroskopes bestimmenden hohen Raumfrequenzen verloren.
Als Kondensoren für Röntgenstrahlung werden bislang "großflächige" ringförmige Zonenplatten benutzt. Sie fokussieren die Röntgenstrahlung auf das mit dem Röntgenmikroskop zu untersuchende Objekt. Eine solche "Kondensorzonenplatte" ist in ihrer Größe angepaßt an den Strahldurchmesser, der am Ende des Strahlrohres eines Ablenkmagneten eines Elektronenspeicherrings typisch bis zu 1 cm beträgt. Da die Kondensorzonenplatte ringförmig ist, fängt sie etwa % der in diesem Strahldurchmesser liegenden Strahlung auf. Da die Brennweite einer Zonenplatte reziprok zur benutzten Wellenlänge ist, wirkt eine solche Kondensorzonenplatte zusammen mit einer kleinen sogenannten Monochromatorlochblende, die in der Objektebene um das Objekt gelegen ist, gleichzeitig als Linearmonochromator (Optics Communication 12, S. 160-163, 1974, "Soft X-Ray Imaging Zone Plates with Large Zone Numbers for Microscopic and Spectroscopic Applications", Niemann, Rudolph, Schmahl). Nur ein enger Spektralbereich der einfallenden polychromatischen Strahlung eines Elektronenspeicherrings wird in die Lochblende fokussiert und zur Beleuchtung des Objektes genutzt.
Die spektrale Auflösung eines solchen Linearmonochromators beträgt R = D/2d, wenn D und d die Durchmesser von Kondensorzonenplatte und Monochromatorlochblende sind und wenn die Kondensorzonenplatte das Quellgebiet der Röntgenstrahlung stark verkleinert abbildet. Allerdings gilt die Beziehung nur, wenn das Bild der Quelle - es handelt sich um die sogenannte "kritische Beleuchtung" - nicht größer ist als der Durchmesser d der Lochblende. Ist R mindestens so groß wie die Zonenzahl n der Mikrozonenplatte des Röntgenmikroskopes, so ist die chromatische Aberration der Mikrozonenplatte vernachlässigbar und sie verschlechtert die Qualität der Röntgenabbildung nur unwesentlich. Um dieser Anforderung an die spektrale Auflösung R zu genügen, wird stets eine Kondensorzonenplatte nicht zu kleinen Durchmessers D benutzt, so daß der erlaubte Durchmesser d der Monochromatorlochblende größer als das Bild der Quelle ist.
Da der Standort eines Röntgenmikroskopes aus praktischen Gründen nie nahe an den Quellort der Röntgenstrahlung eines Elektronenspeicherringes gebracht werden kann und die Entfernung typischerweise bei mindestens 15 m liegt, kann auch die vom Strahl ausgeleuchtete Fläche bestimmte Werte nicht unterschreiten. Damit sollte auch der Durchmesser D einer möglichst viel Röntgenstrahlung auffangenden Kondensorzonenplatte diese Werte nicht unterschreiten. Wird nun für diese Einsatzbedingungen die numerische Apertur der Kondensorzonenplatte erhöht, so verringert sich zwangsläufig die Brennweite der Kondensorzonenplatte. Damit verringert sich der Abbildungsmaßstab, mit dem die Quelle in die Objektebene abgebildet wird und es sinkt der Durchmesser des beleuchteten Objektgebietes (in der Praxis auf wenige µm Durchmesser), was nachteilig ist. Nur durch andere Maßnahmen - etwa durch rasternde parallele Bewegungen von Kondensor und Monochromatorlochblende - kann dann sichergestellt werden, daß ein größeres Objektgebiet homogen ausgeleuchtet wird. Dazu kommt, daß während der Bewegung Monochromatorblende und Kondensorzonenplatte genau zueinanderjustiert bleiben müssen.
Kondensorzonenplatten werden üblicherweise in der ersten Beugungsordnung benutzt, in der alle bislang realisierten Kondensorzonenplatten ihren höchsten Beugungswirkungsgrad besitzen. Dabei ist es auch aus einem weiteren, im folgenden erläuterten Grunde schwierig, die zuvor geforderte Anpassung der numerischen Apertur der Kondensorzonenplatte an die der Mikrozonenplatte ohne neue Schwierigkeiten zu erreichen. Um die Anpassung zu verwirklichen, muß die Kondensorzonenplatte außen dieselben feinen Zonen besitzen wie die Mikrozonenplatte selbst. Die lichtstärksten gebauten Mikrozonenplatten besitzen inzwischen Zonenbreiten von nur noch 19 nm (entsprechend 38 nm Periode der Zonenstrukturen). Zonenplatten mit solch feinen Zonenstrukturen können bislang nur mit Methoden der Elektronenstrahllithographie, in der die Zonen nacheinander erzeugt werden, hergestellt werden. Holographische Methoden, die das Muster einer Zonenplatte in einem Schritt "parallel" und damit in kurzer Zeit erzeugen, scheiden aus, da eine geeignet kurzwellige UV-Holographie nicht existiert. Dementsprechend könnten auch Kondensorzonenplatten mit angepaßter numerischer Apertur nur mit Methoden der Elektronenstrahllithographie, welches als serielles und damit langsames Verfahren zu bezeichnen ist, hergestellt werden. Solche Kondensorzonenplatten haben aber wegen ihres notwendigerweise großen Durchmessers typischerweise viele 10 000 Zonen. Die Schreibzeiten mit einem Elektronenstrahllithographiesystem liegen dann in der für die Praxis unrealistischen Größenordnung von Wochen, weshalb Kondensorzonenplatten mit Methoden der Elektronenstrahllithographie bislang nicht hergestellt wurden.
Für die Dunkelfeld-Röntgenmikroskopie sind sogar noch lichtstärkere Kondensor-Monochromator-Anordnungen nötig (sofern nicht ein sehr präzise zu justierender absorbierender Ring in der hinteren Fokalebene des Mikroobjektivs plaziert wird). Die Perioden der Zonenstrukturen geeigneter Kondensorzonenplatten müßten dafür weniger als 38 nm betragen.
Für die Phasenkontrast-Röntgenmikroskopie ist eine Kondensor- Monochromator-Anordnung von Vorteil, die möglichst alles vom Strahlrohr zur Verfügung gestellte Röntgenlicht in eine ringförmige Hohlkegel-Apertur großen Aperturwinkels zum Objekt liefert.
Um die Auflösung der Röntgenmikroskope zu erhöhen, wird gegenwärtig daran gearbeitet Mikrozonenplatten zu entwickeln, die eine kleinste Zonenbreite von nur noch 10 nm besitzen. Damit steigen die Aperturen der Mikrozonenplatten und dementsprechend die nötigen numerischen Aperturen der Kondensoren, um eine in kohärente Objektbeleuchtung sicherzustellen, und die bereits erwähnten Schwierigkeiten vergrößern sich weiter.
Es sind weltweit Elektronenspeicherringe im Bau und z. T. fertiggestellt, die Röntgenstrahlung aus Undulatoren zur Verfügung stellen. Diese Undulatoren liefern einen etwa 10 bis 100 mal höheren Röntgenstrahlungsfluß, der für die Röntgenmikroskopie voll genutzt werden kann. Außerdem ist die Röntgenstrahlung viel besser kollimiert, typischerweise hat der Strahl am Ende eines Strahlrohres am Standort eines Mikroskopes nur 1-2 mm Durchmesser und die bislang genutzten und in ihrer Apertur nicht angepaßten "großen" Kondensorzonenplatten können nicht mehr voll ausgeleuchtet werden. Damit Kondensorzonenplatten die Strahlung ausreichend monochromatisieren, müßten dann entweder Anordnungen mit den bereits oben diskutierten Nachteilen - kleinere Kondensorzonenplatten mit kürzeren Brennweiten und entsprechend kleinere Monochromatorlochblenden - benutzt werden, oder große Kondensorzonenplatten müssen außeraxial, d. h. in einem Randgebiet, beleuchtet werden. Solche außeraxialen Anordnungen beleuchten aber das Objekt schräg, was zu einer unsymmetrischen optischen Übertragungsfunktion des Mikroskops führt und die damit erzeugten Abbildungen sind nur schwer auswertbar. Ein anderer Weg, der bereits vorgeschlagen wurde, besteht darin, den Strahl mit einer zusätzlichen Zonenplatte vor dem Kondensor geeignet aufzuweiten. Dies hat aber den Nachteil, daß an diesem zusätzlichen beugenden Element ein weiterer Lichtverlust auftritt - der Beugungswirkungsgrad von Zonenplatten liegt im Bereich von nur 10% bis 20% - und zudem sind dann insgesamt drei Zonenplatten im Mikroskop vorhanden, die wegen der Wellenlängenabhängigkeit ihrer Brennweiten viel schwieriger exakt aufeinander einjustiert werden können als zwei Zonenplatten. Zudem kann die Anpassung der Aperturen auch in den beiden zuletzt genannten Fällen nachteiligerweise nur durch eine Anpassung der kleinsten Zonen breiten der Kondensorzonenplatte an die der Mikrozonenplatte erreicht werden.
Es ist die Aufgabe der Erfindung, für eine quasimonochromatische Objektbeleuchtung in einem Röntgenmikroskop und eine inkohärente Bildaufzeichnung eine Kondensor-Monochromator-Anordnung anzugeben, die eine ringförmige Beleuchtungspupille besitzt, nur ein einziges beugendes optisches Element enthält, das in angemessener Zeit hergestellt werden kann, und die auch bei einem engen Strahlenbündel mit wenigen Millimetern Durchmesser optimal genutzt werden kann.
Diese Aufgabe wird erfindungsgemäß durch die im Kennzeichen des Anspruchs 1 angegebenen Merkmale gelöst. Zudem wird die Aufgabe auch durch die in den Kennzeichen der Ansprüche 5, 9 und 11 angegebenen Merkmale gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen.
Die Erfindung geht von der Erkenntnis aus, daß eine in kohärente Bildaufzeichnung erhalten wird, wenn ein abzubildendes Objekt während der Belichtungszeit eines Bildes sukzessive aus unterschiedlichen Richtungen beleuchtet wird. Es wird eine Kondensor-Monochromator- Anordnung genutzt, die aus einer off-axis Zonenplatte, einem Planspiegel, einer Monochromatorlochblende auf der optischen Achse und einem mechanischen Halter für die off-axis Zonenplatte und den Planspiegel besteht. Der Halter ist um die optische Achse des Mikroskopes drehbar. Durch diese Drehung wird eine Beleuchtung aus verschiedenen Richtungen erzeugt.
Die Kondensor-Monochromator-Anordnung enthält nur ein einziges beugendes optisches Element und dieses enthält gröbere und damit eine insgesamt geringere Anzahl beugender Strukturen als in bisher genutzten optischen Elementen, so daß sich diese mit Hilfe der Elektronenstrahllithographie in deutlich kürzeren Zeiten belichten lassen. Außerdem kann die Beleuchtungsapertur der Kondensor- Monochromator- Anordnung variabel eingestellt werden, ohne daß ein zweites beugendes optisches Element benutzt werden muß. Der nutzbare Bereich des Bildfeldes ist vergrößert, da die Beleuchtung nur aus einen sehr "dünnwandigen Hohlkegelmantel" besteht.
Im folgenden werden schematisch dargestellte Ausführungsbeispiele der Erfindung anhand der Zeichnung näher erläutert.
Fig. 1 zeigt einen Kondensor-Monochromator bestehend aus einer off-axis Transmissionszonenplatte und einem nachgeordneten Planspiegel.
Fig. 2 zeigt einen Kondensor-Monochromator bestehend aus einer off-axis Transmissionszonenplatte, einem vorgeschaltetem und einem nachgeordnetem Planspiegel.
Fig. 3 zeigt einen Kondensor-Monochromator bestehend aus einer off-axis Transmissionszonenplatte und zwei vorgeschalteten Planspiegeln.
Fig. 4 zeigt einen Kondensor-Monochromator bestehend aus einer off-axis Transmissionszonenplatte und einem vorgeschalteten Planspiegel.
Fig. 5 zeigt einen Kondensor-Monochromator bestehend aus einer Kondensorzonenplatte und zwei vorgeschalteten Planspiegeln.
Fig. 6 zeigt einen Kondensor-Monochromator bestehend aus einer off-axis Reflexionszonenplatte und einem nachgeordneten Planspiegel.
Fig. 7a zeigt einen Kondensor-Monochromator bestehend aus einem Reflexionsplangitter und einem nachgeordneten fokussierenden Spiegel.
Fig. 7b zeigt einen Kondensor-Monochromator bestehend aus einem Transmissionsplangitter und einem nachgeordneten fokussierenden Spiegel.
Fig. 8 zeigt einen Kondensor-Monochromator bestehend aus einer off-axis Reflexionszonenplatte und einem vorgeschalteten Planspiegel.
Fig. 9 zeigt einen Kondensor-Monochromator bestehend aus einer off-axis Reflexionszonenplatte, einem vorgeschalteten und einem nachgeordneten Planspiegel.
Fig. 10 zeigt einen Kondensor-Monochromator bestehend aus einer off- axis Reflexionszonenplatte und zwei vorgeschalteten Planspiegeln.
Fig. 11 zeigt einen Kondensor-Monochromator bestehend aus einer off- axis Transmissionszonenplatte und zwei nachgeschalteten Planspiegeln.
Fig. 12 zeigt einen Kondensor-Monochromator bestehend aus einer off- axis Transmissionszonenplatte und drei nachgeschalteten Planspiegeln.
Fig. 13 zeigt einen Kondensor-Monochromator, der eine off-axis Transmissionszonenplatte aus zwei Segmenten unterschiedlicher Brennpunkte und zwei Paare Planspiegel enthält.
Fig. 14 zeigt einen Kondensor-Monochromator, der eine off-axis Transmissionszonenplatte aus zwei Segmenten unterschiedlicher Brennpunkte und zwei Paare Planspiegel enthält.
Fig. 15 zeigt einen Kondensor-Monochromator bestehend aus einem Fokussator mit Ringfokus und einem nachgeschalteten Hohlkegelspiegel.
Fig. 16 zeigt einen Kondensor-Monochromator bestehend aus einem Fokussator mit Ringfokus und zwei nachgeschalteten Hohlkegelspiegeln.
In Fig. 1 ist eine Kondensor-Monochromator-Anordnungen dargestellt, die zwei optische Elemente enthält. Die einfallende Röntgenstrahlung 1 trifft auf ein beugendes und zugleich abbildendes optisches Element 7 und wird von diesem fokussiert und in Richtung eines Planspiegels 2 gebeugt.
Der Planspiegel 2 steht einige cm vor dem Fokalpunkt der Röntgenstrahlung und spiegelt diese in die Monochromatorlochblende 11 auf das Objekt 4, das sich auf der optischen Achse 6 des Röntgenmikroskops 5 befindet. Der Planspiegel 2 steht unter streifendem Einfall mit wenigen Grad Einfallswinkel, so daß Totalreflexion auftritt (Materie hat für weiche Röntgenstrahlung einen Brechungsindex, der kleiner als eins ist) und eine hohe Reflektivität erzielt wird. An die Oberflächenqualität des Planspiegels 2 muß hinsichtlich des Winkeltangentenfehlers keine besonders hohe Anforderung gestellt werden (ein Winkeltangentenfehler von besser als 10 Bogensekunden ist ausreichend), da der Planspiegel 2 sich nur wenige cm vor dem zu beleuchtenden Objekt 4 befindet. Dadurch kann der Winkeltangentenfehler das ausgeleuchtete Bildfeld durch Zerstreuung nur unbedeutend aufweiten. Da der Planspiegel 2 relativ nahe am Fokalpunkt der Röntgenstrahlung liegt und der Strahlquerschnitt hier bereits klein ist, braucht der Planspiegel 2 günstigerweise nur wenige cm lang zu sein.
Zusammen als Einheit bilden die beiden beschriebenen optischen Elemente 2, 7 mit der Monochromatorlochblende 11 eine Kondensor- Monochromator-Anordnung. Die optischen Elemente 2, 7 sind drehbar um die optische Achse 6 des Röntgenmikroskops 5 gelagert. Hierzu können sie in einer hier nicht dargestellten mechanischen Halterung befestigt sein. Die Halterung besitzt eine mit der optischen Achse 6 zusammenfallende Drehachse, um die sie sich zusammen mit den optischen Elementen 2, 7 drehen kann. Die optische Achse 6 des Röntgenmikroskops 5 ist in Ausbreitungsrichtung der einfallenden Röntgenstrahlung 1 ausgerichtet. Der gesamte Aufbau befindet sich wegen der hohen Absorption der benutzten weichen Röntgenstrahlung in einer Vakuumkammer.
Das beugende und abbildende optische Element 7 kann eine off-axis Zonenplatte sein. Unter einer off-axis Zonenplatte wird hier eine Zonenplatte verstanden, die nur aus einem kleinen, unsymmetrisch und fern zur Zonenplattenmitte liegenden, zusammenhängenden Zonenbereich besteht. Deswegen sind die Strukturen innerhalb dieses Zonenbereichs im allgemeinen nicht rotationssymmetrisch. Der Zonenbereich ist dabei so groß, daß er einen Röntgenstrahl von einigen mm² Querschnittsfläche auffangen kann. Sie kann in Transmission als off- axis Transmissionszonenplatte 7 gemäß Fig. 1, oder in Reflexion als off- axis Reflexionszonenplatte 3 gemäß Fig. 6 eingesetzt werden. Da eine off- axis Zonenplatte die Röntgenstrahlung seitlich auslenkt, ist der Planspiegel 2 zwingend notwendig, um die Röntgenstrahlung auf die optischen Achse 6 zurückzuspiegeln.
Wird nun während der Belichtung eines mikroskopischen Bildes, die typischerweise wenige Sekunden beträgt, die mechanische Halterung mit den optischen Elementen 7, 2 (Fig. 1) genau eine Umdrehung um die optische Achse 6 gedreht, so beschreibt der schräg auf das Objekt 4 einfallende Beleuchtungskegel 8 einen Hohlkegel, der die wirksame Apertur der Beleuchtung bestimmt. Der Öffnungswinkel 10 dieses Hohlkegels kann über den Reflexionswinkel 9 des Planspiegels 2 eingestellt werden. Dazu muß auch der Abstand des Planspiegels 2 von der optischen Achse 6 und die Lage der off-axis Transmissionszonenplatte 7 (bzw. der off-axis Reflexionszonenplatte 3 in Fig. 6) entlang der optischen Achse 6 neu justiert werden, damit der Fokus genau wieder auf der optischen Achse 6 im Objekt 4 liegt. Die Lage der Drehachse der Halterung muß bis auf wenige µm stabil bleiben, was mit Spindelkugellagern oder spielfreien Kugelführungen erreicht werden kann.
Da die Aperturanpassung mit dem Planspiegel 2 vorgenommen wird, sind hinsichtlich der Stärke der Strahlablenkung durch Beugung an der off-axis Zonenplatte 7, 3 keine besonderen Anforderungen zu stellen. Die off-axis Zonenplatte 7, 3 muß nur ein Bild der Röntgenstrahlungsquelle in geeigneter Größe in der Objektebene erzeugen und die Röntgenstrahlung spektral zerlegen. Da Undulatoren sehr kleine Quellgrößen besitzen - sie sind deutlich kleiner als die Quellgrößen in den bislang benutzten Ablenkmagneten -, kann ein geringer Verkleinerungsmaßstab und damit eine off-axis Zonenplatte 7, 3 mit typisch mindestens zwei mal größerer Brennweite als die der in der Einleitung genannten Kondensorzonenplatten benutzt werden, um das Objekt in sogenannter "kritischer Beleuchtung" zu beleuchten. Dies hat zur Folge, daß nicht nur eine unter streifendem Einfall benutzte off-axis Reflexionszonenplatte 3 (Fig. 6, ebenso auch Fig. 8-10), die von vorn herein gröbere Zonen besitzt, verwendet werden kann, sondern daß bereits eine off-axis Transmissionszonenplatte 7 (Fig. 1, ebenso auch Fig. 2-4, 11-14) genügt, die gröbere und damit weniger Zonen besitzt als die oben diskutierte Kondensorzonenplatte, die dem Stand der Technik entsprechend in einer Kondensor-Monochromator-Anordnung nur als einziges optisches Element (stets in Transmission) zur quasimonochromatischen Beleuchtung genutzt wird. Zudem ist die zu strukturierende Fläche für Anwendungen an Undulatoren wegen des besser gebündelten Strahls typischerweise 10 mal geringer als bei der in der Einleitung beschriebenen Kondensorzonenplatte für die Strahlung aus Ablenkmagneten. Dazu kommt, daß die Zonenbreiten einer off-axis Zonenplatte 7, 3 nahezu konstant sind, so daß sie vorteilhafterweise über ihre gesamte Fläche eine nahezu einheitlich hohe Dispersion besitzen.
Wie bereits erwähnt, sind prinzipiell Anordnungen mit off-axis Transmissions- und Reflexionszonenplatten nutzbar. Eine off-axis Transmissionszonenplatte 7 für eine Röntgenstrahlung mit 2.4 nm Wellenlänge besitzt z. B. 50 nm breite und 300 nm hohe Germaniumzonen - was zur Zeit technologisch herstellbar ist. Eine in ihren optischen Eigenschaften äquivalente off-axis Reflexionszonenplatte 3, die bei Einfallswinkeln von wenigen Grad benutzt wird, besitzt dagegen etwa 10 bis 50 mal größere Zonenbreiten bei gleichzeitig deutlich geringerer Zonenhöhe. Daher ist die off-axis Reflexionszonenplatte 3 technologisch viel einfacher zu realisieren als die äquivalente off-axis Transmissionszonenplatte 7.
Im Unterschied zu einer off-axis Transmissionszonenplatte 7, die freitragend mit feinen Stützstrukturen oder auf einer sehr dünnen Stützfolie hergestellt ist, kann sich eine off-axis Reflexionszonenplatte 3 auf einem stabilen festen Substrat befinden. Wegen des extrem schrägen Einfalls der Röntgenstrahlung ist dieses Substrat thermisch belastbar und kühlbar.
Auch mit mehreren Planspiegeln 2 kann sowohl die off-axis Transmissionszonenplatte 7 als auch die off-axis Reflexionszonenplatte 3 in unterschiedlicher Weise angeordnet werden, was beispielhaft in den Fig. 2, 3 und 9-14 dargestellt ist.
So wird gemäß Fig. 2 und auch gemäß Fig. 9 die einfallende Röntgenstrahlung 1 zuerst mit einem Planspiegel 2 aus ihrer ursprünglichen Richtung zu einer off-axis Zonenplatte 7, 3 hin abgelenkt. Hinter der off-axis Zonenplatte 7, 3 wird mit einem zweiten Planspiegel 2 die gebeugte und konvergierende Strahlung in Richtung zur optischen Achse 6 gespiegelt, wobei durch diesen zweiten Planspiegel 2 die Apertur der Beleuchtung eingestellt werden kann. Gemäß Fig. 2 wird eine off-axis Transmissionszonenplatte 7 und gemäß Fig. 9 eine off-axis Reflexionszonenplatte 3 eingesetzt. Die Anordnung beider Planspiegel 2 und der off-axis Zonenplatte 7, 3 wird während der Belichtungszeit für ein Röntgenbild eine Umdrehung um die optische Achse 6 gedreht. Der schräg auf das Objekt einfallende Beleuchtungskegel 8 beschreibt einen Hohlkegel, der die wirksame Apertur der Beleuchtung bestimmt. Die gewünschte Aperturanpassung geschieht mit dem zweiten im Strahlengang hinter der off-axis Zonenplatte 7, 3 angeordneten Planspiegel 2, indem der Reflexionswinkel 9 geeignet eingestellt wird.
Gemäß Fig. 3 und auch gemäß Fig. 10 wird die einfallende Röntgenstrahlung 1 zuerst mit einem Planspiegel 2 aus ihrer ursprünglichen Richtung gelenkt und trifft auf einen zweiten Planspiegel 2. Von dort gelangt sie gemäß Fig. 3 auf eine off-axis Transmissionszonenplatte 7 bzw. gemäß Fig. 10 auf eine off-axis Reflexionszonenplatte 3. Die off-axis Zonenplatte 7, 3 fokussiert das Röntgenlicht in das Objekt 4. Die beschriebene Anordnung der beiden Planspiegel 2 und der off-axis Zonenplatte 7, 3 wird mit Hilfe einer nicht dargestellten mechanischen Halterung während der Belichtungszeit des Röntgenmikroskopes 5 eine Umdrehung um die optische Achse 6 gedreht. Der schräg auf das Objekt 4 einfallende Beleuchtungskegel 8 beschreibt einen Hohlkegel, der die wirksame Apertur der Beleuchtung bestimmt. Die gewünschte Aperturanpassung geschieht mit zweiten im Strahlengang kurz vor der off-axis Zonenplatte 7, 3 angeordneten Planspiegel 2, indem der Reflexionswinkel 9 geeignet eingestellt wird.
Fig. 4 zeigt eine Kondensor-Monochromator-Anordnung mit einer off-axis Transmissionszonenplatte 7 und einem vorgeschalteten Planspiegel 2. Die off-axis Transmissionszonenplatte 7 fokussiert das Röntgenlicht schräg zurück zum Objekt 4 auf die optische Achse 6. Die off-axis Transmissionszonenplatte 7 und der vorgeschaltete Planspiegel 2 werden während der Belichtungszeit des Röntgenmikroskopes 5 eine Umdrehung um die optische Achse 6 gedreht. Der schräg auf das Objekt einfallende Beleuchtungskegel 8 beschreibt einen Hohlkegel, der die wirksame Apertur der Beleuchtung bestimmt. Allerdings ist mit dieser Anordnung keine flexible Aperturanpassung mehr möglich.
In Fig. 5 ist ein Ausführungsbeispiel dargestellt, in dem als beugendes Element eine in der Einleitung beschriebene ringförmige Kondensorzonenplatte 14 genutzt wird. Im Strahlengang davor befinden sich zur Strahlablenkung zwei Planspiegel 2, die während der Belichtungszeit eines röntgenmikroskopischen Bildes mittels einer drehbaren mechanischen Halterung einmal um die optische Achse 6 gedreht werden, so daß das abgelenkte Strahlenbündel die gesamte ringförmige Kondensorzonenplatte 14 einmal überstreicht. Die Kondensorzonenplatte 14 braucht daher nicht gedreht zu werden. Der schräg auf das Objekt 4 einfallende Beleuchtungskegel 8 beschreibt einen Hohlkegel, der die wirksame Apertur der Beleuchtung bestimmt.
In Fig. 6 ist eine Kondensor-Monochromator-Anordnung dargestellt, bei der die einfallende Röntgenstrahlung 1 auf eine off-axis Reflexionszonenplatte 3 trifft, die die Röntgenstrahlung 1 in Reflexion beugt und zugleich fokussiert. Der Planspiegel 2 lenkt die gebeugte Röntgenstrahlung auf das Objekt 4. Dabei drehen sich die off-axis Reflexionszonenplatte 3 und der Planspiegel um die optische Achse 6. Unter der Beschreibung der Fig. 1 ist die Funktionsweise bereits detailliert dargelegt.
In Fig. 7a ist ein Ausführungsbeispiel dargestellt, in der als beugendes Element ein Reflexionsplangitter 15a mit variabler Liniendichte genutzt wird. Die Liniendichte des Reflexionsplangitters 15a variiert derart, daß die Röntgenstrahlung nach Beugung am Reflexionsplangitter 15a dieselbe Strahldivergenz besitzt wie vor dem Reflexionsplangitter 15a. Diese Technik ist allgemein bekannt und wird bereits genutzt. Erfindungsgemäß befindet sich zusätzlich aber im weiteren Strahlengang ein fokussierender Spiegel 16 und wird zusammen mit dem Reflexionsplangitter 15 um die optische Achse 6 gedreht. Der fokussierende Spiegel 16 fokussiert die Röntgenstrahlung auf das Objekt 4, wobei durch die Rotation ein die Apertur der Beleuchtung bestimmender Hohlkegel gebildet wird.
Es ist natürlich auch möglich, anstelle des Reflexionsplangitters 15 - bei Verwendung geeignet kurzwelliger Röntgenstrahlung - einen Kristall unter Braggreflexion einzusetzen.
Die Fig. 7b unterscheidet sich von Fig. 7a nur dadurch, daß als beugendes optisches Element ein Transmissionsplangitter 15b anstelle des Reflexionsplangitters 15a eingesetzt ist. Das Transmissionsplangitter 15b beugt die einfallende Röntgenstrahlung 1 in Transmission und behält deren Parallelität auch nach der Beugung bei. Erst der fokussierende Spiegel 16, der zusammen mit dem Transmissionsplangitter um die optische Achse 6 rotiert, fokussiert die Röntgenstrahlung auf das Objekt 4.
Fig. 8 zeigt eine Kondensor-Monochromator-Anordnung mit einer off-axis Reflexionszonenplatte 3 und einem vorgeschalteten Planspiegel 2. Die off- axis Reflexionszonenplatte 3 fokussiert das Röntgenlicht schräg zurück zum Objekt 4 auf die optische Achse 6. Die off-axis Reflexionszonenplatte 3 und der vorgeschaltete Planspiegel 2 werden während der Belichtungszeit des Röntgenmikroskopes 5 eine Umdrehung um die optische Achse 6 gedreht. Der schräg auf das Objekt einfallende Beleuchtungskegel 8 beschreibt einen Hohlkegel, der die wirksame Apertur der Beleuchtung bestimmt. Allerdings ist mit dieser Anordnung keine flexible Aperturanpassung mehr möglich.
Bei Verwendung geeignet kurzwelliger Röntgenstrahlung ist es natürlich auch möglich, anstelle des Planspiegels 2 in Fig. 8 einen Kristall unter Braggreflexion einzusetzen.
Ebenso kann bei Verwendung geeignet kurzwelliger Röntgenstrahlung anstelle der off-axis Reflexionszonenplatte 3 in Fig. 8 ein gekrümmter Kristall in der sogenannten "Rowlandanordnung" und unter Ausnutzung der Braggreflexion eingesetzt werden.
Die Kondensor-Monochromator-Anordnungen gemäß Fig. 9 und Fig. 10 mit jeweils zwei Planspiegeln 2 und einer off-axis Reflexionszonenplatte 3, die um die optische Achse 6 rotieren, sind der Analogie wegen bereits im Text zu Fig. 2 und. Fig. 3 beschrieben.
Es soll noch erwähnt werden, daß sich diese bislang gefundenen Lösungen mit Transmissions- und Reflexionszonenplatten 7, 3 auch für Strahlung längerer Wellenlängen, etwa für UV-Strahlung und sichtbare Strahlung eignen. Insbesondere kann mit diesen rotierenden Optiken eine Objektbeleuchtung für inkohärente Bildaufzeichnung auch mit kohärenten Lichtquellen, z. B. bei Beleuchtung mit Lasern, erzeugt werden. Entsprechende Systeme werden als Systeme mit "dynamischer kohärenter Apertur" bezeichnet. Sie verkörpern dazu den Spezialfall stark schräger und rotierender Beleuchtung. Für diese ist im sichtbaren Spektralbereich bekannt, daß die Übertragungsfunktion bei hohen Raumfrequenzen deutlich angehoben wird gegenüber nahezu inkohärenter Beleuchtung mit einem Kondensor kreisförmiger Pupille, so daß eine verbesserte Kontrastübertagung erreicht wird. Bei Verwendung monochromatischer Laserstrahlung reicht es natürlich, die Stahlablenkung nur durch Spiegel vorzunehmen, d. h. in Fig. 6 und in Fig. 8-10 kann auf die monochromatisierenden Eigenschaften der off-axis Reflexionszonenplatte 3 verzichtet werden und diese durch einen fokussierenden Spiegel ersetzt werden. Aus demselben Grund kann dann in Fig. 1-4 die off-axis Transmissionszonenplatte 7 durch eine Linse ersetzt werden, die in einem Teilstück weit ab von der Linsenmitte benutzt wird.
In Fig. 11 ist der z. B. in Fig. 1 gezeigte Planspiegel 2 durch zwei aufeinanderfolgende einzelne Planspiegel 2 ersetzt. Dabei lenken beide Planspiegel 2 die Röntgenstrahlung in dieselbe Richtung ab. Es ist aber auch möglich, daß die beiden Planspiegel 2 die Röntgenstrahlung entgegengesetzt gerichtet ablenken. Eine Anordnung mit zwei aufeinanderfolgenden um die optische Achse 6 rotierenden Planspiegeln 2 (wie sie auch in Fig. 3 und Fig. 10 dargestellt sind) bewirkt in jedem Fall, daß das Bild der Röntgenstrahlungsquelle trotz rotierender off-axis Transmissionszonenplatte 7 und der rotierenden Planspiegel 2 nicht gedreht wird. Dies hat die weiter unten noch diskutierten Vorteile bei Anwendungen mit elliptischen Strahlungsquellen und es kann die Genauigkeitsanforderungen an das Spiel der Drehachse der Spiegel- und Zonenplattenhalterung reduzieren.
In Fig. 12. ist ein Kondensor-Monochromator bestehend aus einer off-axis Transmissionszonenplatte 7 und drei nachgeschalteten Planspiegeln 17, 18, 19 gezeigt. In dieser Anordnung brauchen sich nur die beiden nachgeschalteten Planspiegel 17, 18 um die optische Achse 6 des Röntgenmikroskops 5 zu drehen. Die off-axis Transmissionszonenplatte 7 und der Planspiegel 19 können dabei raumfest bleiben. Diese Anordnung hat den Vorteil, daß das von der off-axis Transmissionszonenplatte 7 erzeugte Bild der Röntgenstrahlungsquelle wegen der zweifachen Spiegelung an den sich drehenden Spiegeln 17, 18 nicht gedreht ist. Wenn als Röntgenstrahlungsquelle ein Elektronenstrahl-Undulator benutzt wird, so hat dieser im allgemeinen ein stark elliptisches Quellgebiet, von dem die off-axis Transmissionszonenplatte 7 ein Bild erzeugt. Die Dispersionsrichtung der off-axis Transmissionszonenplatte 7 kann nun so gelegt werden, daß diese in Richtung der kleinen Ellipsenachse fällt. Dabei verlaufen die nur leicht gekrümmten Zonen der off-axis Transmissionszonenplatte 7 im wesentlichen "parallel" zur großen Ellipsenachse des Bildes. Da sich das Bild der Röntgenstrahlungsquelle infolge zweifacher Spiegelung an der beiden rotierenden, nachgeschalteten Spiegeln 17, 18 nicht dreht, kann daher auf diese Weise ein relativ homogen ausgeleuchtetes "Band" von der Breite des großen Durchmessers der Bildellipse erzeugt werden, dessen Intensität in Dispersionsrichtung nur langsam variiert.
Gleichzeitig ist diese Anordnung relativ unempfindlich gegen Verkippungen und Translationen der Drehachse der Spiegelanordnung, da zwei sich drehende Planspiegel 2 verwendet werden.
In Fig. 13 ist eine Kondensor-Monochromator-Anordnung mit zwei off-axis Transmissionszonenplattensegmenten 20a, 20b und mit zwei Paaren nachgeschalteter und jeweils entgegengesetzt ablenkender Planspiegel 2 gezeigt. Hier wird die Röntgenstrahlung von zwei off-axis Transmissionszonenplattensegmenten 20a, 20b derselben Brennweite eingefangen. Die off-axis Transmissionszonenplattensegmente 20a, 20b sind in ihrer Struktur identisch, aber um 180° gegeneinander gedreht, so daß die beiden zugehörigen Foci sich gegenüber liegen, symmetrisch zur optischen Achse 6. Mit je einem Planspiegelpaar werden die Strahlen zurückgespiegelt auf die optische Achse 6, so daß sich die beiden Brennpunkte im Objekt 4 überlagern. Diese Art der Beleuchtung ist streng spiegelsymmetrisch und führt zu anderen Abbildungseigenschaften als die "Einseitenbandabbildung" bei einseitiger und extremer Hellfeld- Schrägbeleuchtung. Insbesondere kann mit dieser Art der Beleuchtung bei weiterer Vergrößerung der Beleuchtungswinkels in der Objektebene Dunkelfeldmikroskopie betrieben werden. Es sind dann stets komplementär gebeugte Strahlen in der Bildebene vorhanden, die miteinander interferieren können. Dies ist eine notwendige Voraussetzung, wenn die Grenzauflösung im Dunkelfeld erreicht werden soll.
In Fig. 14. ist eine Kondensor-Monochromator-Anordnung mit einer off-axis Transmissionszonenplatte 7 und mit zwei Paaren jeweils gleichgerichtet ablenkender Planspiegeln 2 dargestellt. Die off-axis Transmissionszonenplatte 7 ist wie die gemäß Fig. 13 aus zwei Segmenten 20a, 20b zusammengesetzt, die die gleiche Brennweite besitzen aber mit - bezogen auf die optische Achse 6 - gegenüberliegenden Brennpunkten. Aufgrund der strahlungsumlenkenden Planspiegel 2 überlagern sich aber die sonst getrennten Brennpunkte in einem Brennpunkt im Objekt 4. Die prinzipielle Funktionsweise ist dieselbe wie unter Fig. 13 bereits beschrieben.
Schließlich ist es gemäß Fig. 15 auch möglich, die Aufgabenstellung erfüllende äquivalente Systeme zur quasimonochromatischen Objektbeleuchtung mit inkohärenter Bildaufzeichnung anzugeben, die während der Belichtungszeit eines Bildes keine Rotation des ganzen Systems um die optische Achse 6 erfordern. In diesem Fall wird - wie allgemein in der optischen Mikroskopie üblich - ein Kondensor- Monochromator benutzt, der eine Beleuchtungswelle hoher numerischer Apertur erzeugt. Dazu kann ein besonderes beugendes Element mit einem nachgeschalteten Spiegel benutzt werden. Das beugende Element ist ein sogenannter Fokussator 13 mit Ringfokus, der statt eines Brennpunktes einen scharf fokussierten Ring konzentrisch zur optischen Achse 6 erzeugt. Solche Fokussatoren 13 lassen sich genauso wie off- axis Zonenplatten 7, 3 mit Hilfe der Elektronenstrahllithographie erzeugen. Sie besitzen ganz ähnliche Parameter und Gesetzmäßigkeiten wie die zuvor beschriebenen off-axis Zonenplatten 7 in Transmission, insbesondere brauchen sie nur vergleichbar "grobe" beugende Strukturen zu besitzen wie in den oben beschriebenen Fällen. Ein weiterer Vorteil des Fokussators 13 besteht darin, daß er gut geeignet ist für stark kollimierte Strahlung. Alle Strahlung aus dem zentralen Strahl beugt und fokussiert der Fokussator 13 in einen Ring größeren Durchmessers, der konzentrisch um die optische Achse 6 liegt (Fig. 15). Das folgende Spiegelsystem besteht aus einem oder zwei hintereinandergeschalteten Hohlkegelspiegeln 12. Es wird in geeignetem Abstand hinter dem Fokussator 13 und vor dem Ringfokus angeordnet. Dadurch wird anstelle eines Ringfokus ein punktförmiger Fokus auf der optischen Achse 6 erhalten. Wird um diesen "Brennpunkt" eine kleine Lochblende 11 gelegt, so wirkt die Anordnung aus Fokussator 13, Hohlkegelspiegel 12 und Lochblende 11 als Monochromator. Die Aperturanpassung geschieht über eine geeignete Wahl des Ablenkwinkels des Hohlkegelspiegelsystems.
Fig. 16 zeigt eine Kondensor-Monochromator-Anordnung mit einem Fokussator 13 mit Ringfokus und zwei nachgeschalteten Hohlkegelspiegeln 12. Der Vorteil eines Systems mit zwei Hohlkegelspiegeln 12 liegt darin, daß in einem solchen System die sogenannte "Knickfläche" der Strahlungsablenkung nahezu senkrecht zur optischen Achse 6 liegt (Die Knickfläche ist diejenige Fläche, auf der sich die in Strahlrichtung verlängerten und die rückwärtig verlängerten reflektierten Strahlen schneiden.). Es ist bekannt, das in optischen Systemen die Aberrationen, die bei Verkippung des Systems - also z. B. bei fehlerhafter Justierung - auftreten, geringer sind als in Systemen, deren Knickfläche fast parallel zur optischen Achse 6 verläuft. Letzteres ist bei Benutzung eines Systems mit nur einem Hohlkegelspiegel 12 der Fall, für den die reflektierende Oberfläche und die Knickfläche übereinstimmen muß und der sehr viel genauer justiert werden muß.
Im folgenden sind die Vorteile der Erfindung nochmals zusammengefaßt. Es können mit einem einzigen Aufbau die Aperturen aller bislang zur Verfügung stehender Mikrozonenplatten für Hellfeld-, Phasenkontrast- und Dunkelfeldmikroskopie angepaßt werden. Die Apertur einer Ringpupille wird durch Rotation einer Schrägbeleuchtung um 360° erhalten, wobei der Winkel der Schrägbeleuchtung über einen Planspiegel 2 über einen weiten Bereich eingestellt werden kann. Der Planspiegel 2 ist sehr klein, typischerweise wenige cm lang und daher preiswert. Für den Betrieb an gut kollimierten Strahlen aus Undulatoren ist eine Strahlaufweitung nicht nötig. Die Wellenlänge kann in sehr weiten Bereichen verändert werden. Die Kondensor-Monochromator-Anordnung enthält eine off-axis Zonenplatte 7, 3 mit Zonen breiten, die deutlich größer sind als die der zur Verfügung stehenden Mikrozonenplatten, die als Röntgenobjektiv eingesetzt werden. Die Wellenlänge kann in sehr weiten Bereichen verändert werden. Alternativ kann eine Ringpupille auch durch einen Fokussator 13 erzeugtwerden, wobei dann ein Hohlkegelspiegel 12 zur Fokussierung der Strahlung auf die optische Achse 6 verwendet wird.
Bezugszeichenliste
1 einfallende Röntgenstrahlung
2 Planspiegel
3 off-axis Reflexionszonenplatte
4 Objekt
5 Röntgenmikroskop
6 optische Achse des Röntgenmikroskops
7 off-axis Transmissionszonenplatte
8 schräg einfallender Beleuchtungskegel
9 Reflexionswinkel
10 halber Öffnungswinkel der Hohlkegelbeleuchtung
11 Monochromatorlochblende in der Objektebene
12 Hohlkegelspiegel
13 Fokussator mit Ringfokus
14 ringförmige Kondensorzonenplatte
15a Reflexionsplangitter
15b Transmissionsplangitter
16 fokussierender Spiegel
17 Planspiegel
18 Planspiegel
19 Planspiegel
20a off-axis Zonenplattensegment
20b off-axis Zonenplattensegment

Claims (11)

1. Kondensor-Monochromator-Anordnung für Röntgenstrahlung zur quasimonochromatischen Beleuchtung und inkohärenten Bildaufzeichnung eines Objekts (4) in einem Röntgenmikroskop (5) mit strahlablenkenden optischen Elementen und mit einer auf der optischen Achse (6) des Röntgenmikroskops (5) angeordneten Monochromatorlochblende (11), dadurch gekennzeichnet, daß als optische Elemente eine off-axis Zonenplatte (3; 7) und mindestens ein Planspiegel (2, 17, 18) vorgesehen sind, die drehbar um die optische Achse (6) des Röntgenmikroskopes (5) gelagert sind.
2. Kondensor-Monochromator-Anordnung für Röntgenstrahlung nach Anspruch 1, dadurch gekennzeichnet, daß mindestens ein Planspiegel (2) im Strahlengang vor oder hinter der off-axis Zonenplatte (3; 7) angeordnet ist.
3. Kondensor-Monochromator-Anordnung für Röntgenstrahlung nach Anspruch 1, dadurch gekennzeichnet, daß jeweils ein Planspiegel (2) im Strahlengang vor und hinter der off-axis Zonenplatte (3; 7) angeordnet ist.
4. Kondensor-Monochromator-Anordnung für Röntgenstrahlung nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß die off-axis Zonenplatte (3; 7) eine Transmissionszonenplatte (7) oder eine Reflexionszonenplatte (3) ist.
5. Kondensor-Monochromator-Anordnung für Röntgenstrahlung zur quasimonochromatischen Beleuchtung und inkohärenten Bildaufzeichnung eines Objekts (4) in einem Röntgenmikroskop (5) mit strahlablenkenden optischen Elementen und mit einer auf der optischen Achse (6) des Röntgenmikroskops (5) angeordneten Monochromatorlochblende (11), dadurch gekennzeichnet, daß als optische Elemente ein Gitter und ein fokussierender Spiegel (16) vorgesehen sind, die drehbar um die optische Achse (6) des Röntgenmikroskopes (5) gelagert sind.
6. Kondensor-Monochromator-Anordnung für Röntgenstrahlung nach Anspruch 5, dadurch gekennzeichnet, daß das Gitter ein Reflexionsplangitter (15a) oder ein Transmissionsplangitter (15b) ist.
7. Kondensor-Monochromator-Anordnung für Röntgenstrahlung nach Anspruch 5, dadurch gekennzeichnet, daß das Gitter ein Kristall ist, der in Braggreflexion benutzt wird.
8. Kondensor-Monochromator-Anordnung für Röntgenstrahlung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß der fokussierende Spiegel (16) ein gekrümmter Kristall ist, der in Rowlandanordnung benutzt wird.
9. Kondensor-Monochromator-Anordnung für Röntgenstrahlung zur quasimonochromatischen Beleuchtung und inkohärenten Bildaufzeichnung eines Objekts (4) in einem Röntgenmikroskop (5) mit strahlablenkenden optischen Elementen und mit einer auf der optischen Achse (6) des Röntgenmikroskops (5) angeordneten Monochromatorlochblende (11), dadurch gekennzeichnet, daß als optische Elemente mindestens ein um die Achse (6) des Röntgenmikroskops (5) rotierender Planspiegel (2) und eine im Strahlengang vor der Monochromatorlochblende (11) angeordnete feststehende Kondensorzonenplatte (14) vorgesehen sind, wobei der Planspiegel (2) die auf ihn einfallende Röntgenstrahlung (1) auf die Kondensorzonenplatte lenkt (14).
10. Kondensor-Monochromator-Anordnung für Röntgenstrahlung nach Anspruch 9, dadurch gekennzeichnet, daß zwei um die Achse (6) des Röntgenmikroskops (5) rotierende Planspiegel (2) zueinander parallel versetzt angeordnet sind, die die einfallende Röntgenstrahlung (1) parallel versetzt zur optischen Achse (6) auf die Kondensorzonenplatte (14) lenken.
11. Kondensor-Monochromator-Anordnung für Röntgenstrahlung zur quasimonochromatischen Beleuchtung und inkohärenten Bildaufzeichnung eines Objekts (4) in einem Röntgenmikroskop (5) mit strahlablenkenden optischen Elementen und mit einer auf der optischen Achse (6) des Röntgenmikroskops (5) angeordneten Monochromatorlochblende (11), dadurch gekennzeichnet, daß als optische Elemente ein Fokussator (13) mit Ringfokus und mindestens ein im Strahlengang nachgeordneter Hohlkegelspiegel (12) vorgesehen sind.
DE19700615A 1996-01-10 1997-01-10 Kondensor-Monochromator-Anordnung für Röntgenstrahlung Withdrawn DE19700615A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19700615A DE19700615A1 (de) 1996-01-10 1997-01-10 Kondensor-Monochromator-Anordnung für Röntgenstrahlung

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19600701 1996-01-10
DE19633047 1996-08-18
DE19700615A DE19700615A1 (de) 1996-01-10 1997-01-10 Kondensor-Monochromator-Anordnung für Röntgenstrahlung

Publications (1)

Publication Number Publication Date
DE19700615A1 true DE19700615A1 (de) 1997-07-17

Family

ID=26021979

Family Applications (2)

Application Number Title Priority Date Filing Date
DE59700582T Expired - Fee Related DE59700582D1 (de) 1996-01-10 1997-01-10 Kondensor-monochromator-anordnung für röntgenstrahlung
DE19700615A Withdrawn DE19700615A1 (de) 1996-01-10 1997-01-10 Kondensor-Monochromator-Anordnung für Röntgenstrahlung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
DE59700582T Expired - Fee Related DE59700582D1 (de) 1996-01-10 1997-01-10 Kondensor-monochromator-anordnung für röntgenstrahlung

Country Status (5)

Country Link
US (1) US6128364A (de)
EP (1) EP0873565B1 (de)
JP (1) JP3069131B2 (de)
DE (2) DE59700582D1 (de)
WO (1) WO1997025722A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10242431A1 (de) * 2002-09-11 2004-03-25 Lutz Dr. Kipp Element zur Fokussierung von elektromagnetischen Strahlen oder Strahlen von Elementarteilchen
DE102005056404B4 (de) * 2005-11-23 2013-04-25 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Röntgenmikroskop mit Kondensor-Monochromator-Anordnung hoher spektraler Auflösung
DE102017105275A1 (de) 2017-03-13 2018-09-13 Focus Gmbh Vorrichtung und Verfahren zur Generierung monochromatischer Strahlung einer Strahlungsquelle mit Linienspektrum
WO2021175910A1 (de) 2020-03-03 2021-09-10 Friedrich Grimm Optisches bauelement mit hybridprisma

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326428A (en) 1993-09-03 1994-07-05 Micron Semiconductor, Inc. Method for testing semiconductor circuitry for operability and method of forming apparatus for testing semiconductor circuitry for operability
US6327335B1 (en) * 1999-04-13 2001-12-04 Vanderbilt University Apparatus and method for three-dimensional imaging using a stationary monochromatic x-ray beam
US6259764B1 (en) * 1999-07-16 2001-07-10 Agere Systems Guardian Corp. Zone plates for X-rays
WO2001009684A1 (de) * 1999-07-30 2001-02-08 Carl Zeiss Steuerung der beleuchtungsverteilung in der austrittspupille eines euv-beleuchtungssystems
DE19954520A1 (de) * 1999-11-12 2001-05-17 Helmut Fischer Gmbh & Co Vorrichtung zur Führung von Röntgenstrahlen
US20050122509A1 (en) * 2002-07-18 2005-06-09 Leica Microsystems Semiconductor Gmbh Apparatus for wafer inspection
US7268945B2 (en) * 2002-10-10 2007-09-11 Xradia, Inc. Short wavelength metrology imaging system
US7170969B1 (en) * 2003-11-07 2007-01-30 Xradia, Inc. X-ray microscope capillary condenser system
US7486984B2 (en) * 2004-05-19 2009-02-03 Mxisystems, Inc. System and method for monochromatic x-ray beam therapy
GB2457836B (en) * 2006-09-11 2010-07-07 Medway Nhs Trust Radiation device or signal
CA2745370A1 (en) 2008-12-01 2010-06-10 Brookhaven Science Associates Systems and methods for detecting an image of an object using multi-beam imaging from an x-ray beam having a polychromatic distribution
WO2011002037A1 (ja) * 2009-07-01 2011-01-06 株式会社リガク X線装置、その使用方法およびx線照射方法
US8294989B2 (en) * 2009-07-30 2012-10-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Apparatus and method for creating a photonic densely-accumulated ray-point
WO2013130681A1 (en) * 2012-02-27 2013-09-06 Integrated Medical Systems International, Inc. Systems and methods for identifying optical material
DE102012013530B3 (de) * 2012-07-05 2013-08-29 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Vorrichtung zur Messung resonanter inelastischer Röntgenstreuung einer Probe
US10541102B2 (en) * 2016-09-14 2020-01-21 The Boeing Company X-ray back scattering for inspection of part

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5199057A (en) * 1989-08-09 1993-03-30 Nikon Corporation Image formation-type soft X-ray microscopic apparatus
US5204887A (en) * 1990-06-01 1993-04-20 Canon Kabushiki Kaisha X-ray microscope
DE4027285A1 (de) * 1990-08-29 1992-03-05 Zeiss Carl Fa Roentgenmikroskop
JPH04353800A (ja) * 1991-05-31 1992-12-08 Olympus Optical Co Ltd 軟x線顕微鏡
US5177774A (en) * 1991-08-23 1993-01-05 Trustees Of Princeton University Reflection soft X-ray microscope and method
US5361292A (en) * 1993-05-11 1994-11-01 The United States Of America As Represented By The Department Of Energy Condenser for illuminating a ring field
JP3167095B2 (ja) * 1995-07-04 2001-05-14 キヤノン株式会社 照明装置とこれを有する露光装置や顕微鏡装置、ならびにデバイス生産方法
US6023496A (en) * 1997-04-30 2000-02-08 Shimadzu Corporation X-ray fluorescence analyzing apparatus
US6028911A (en) * 1998-08-03 2000-02-22 Rigaku Industrial Corporation X-ray analyzing apparatus with enhanced radiation intensity

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10242431A1 (de) * 2002-09-11 2004-03-25 Lutz Dr. Kipp Element zur Fokussierung von elektromagnetischen Strahlen oder Strahlen von Elementarteilchen
DE102005056404B4 (de) * 2005-11-23 2013-04-25 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Röntgenmikroskop mit Kondensor-Monochromator-Anordnung hoher spektraler Auflösung
DE102017105275A1 (de) 2017-03-13 2018-09-13 Focus Gmbh Vorrichtung und Verfahren zur Generierung monochromatischer Strahlung einer Strahlungsquelle mit Linienspektrum
WO2018166562A1 (de) * 2017-03-13 2018-09-20 Focus Gmbh Vorrichtung und verfahren zur generierung monochromatischer strahlung einer strahlungsquelle mit linienspektrum
DE102017105275B4 (de) 2017-03-13 2019-02-14 Focus Gmbh Vorrichtung und Verfahren zur Generierung monochromatischer Strahlung einer Strahlungsquelle mit Linienspektrum
WO2021175910A1 (de) 2020-03-03 2021-09-10 Friedrich Grimm Optisches bauelement mit hybridprisma

Also Published As

Publication number Publication date
US6128364A (en) 2000-10-03
WO1997025722A2 (de) 1997-07-17
EP0873565B1 (de) 1999-10-20
DE59700582D1 (de) 1999-11-25
JPH11508692A (ja) 1999-07-27
EP0873565A2 (de) 1998-10-28
JP3069131B2 (ja) 2000-07-24
WO1997025722A3 (de) 1997-09-04

Similar Documents

Publication Publication Date Title
EP0873565B1 (de) Kondensor-monochromator-anordnung für röntgenstrahlung
EP1225481B1 (de) Kollektor für Beleuchtungssysteme
EP1257882B1 (de) Vorrichtung zur wellenfronterfassung
EP1288652B1 (de) Röntgenstrahlen-Diffraktometer mit röntgenoptischen Elementen zur Ausbildung mehrerer Strahlpfade
DE4214069A1 (de) Hochaufloesendes optisches mikroskop und maske zum bilden von beleuchtungsfleckstrahlen
EP1202101A2 (de) Beleuchtungssystem mit variabler Einstellung der Ausleuchtung
DE102011077223B4 (de) Messsystem
DE19700880A1 (de) Röntgenmikroskop mit Zonenplatten
EP0053723B1 (de) Plangitter-Monochromator
DE102007023411A1 (de) Optisches Element, Beleuchtungsoptik für die Mikrolithographie mit mindestens einem derartigen optischen Element sowie Beleuchtungssystem mit einer derartigen Beleuchtungsoptik
DE102012213515A1 (de) Verfahren zum Betreiben einer mikrolithographischen Projektionsbelichtungsanlage
DE19627568A1 (de) Anordnung und Verfahren zur konfokalen Mikroskopie
DE102011076658A1 (de) Beleuchtungsoptik für die EUV-Projektionslithographie
WO2019134773A1 (de) Pupillenfacettenspiegel, beleuchtungsoptik und optisches system für eine projektionsbelichtungsanlage
WO2003083579A1 (de) Kollektoreinheit mit einem reflektiven element für beleuchtungssysteme mit einer wellenlänge kleiner als 193 nm
EP1471539B1 (de) Abbildungssystem für ein, auf extrem ultravioletter (EUV) Strahlung basierendem Mikroskop
DE10146944A1 (de) Meßanordnung
DE102005056404B4 (de) Röntgenmikroskop mit Kondensor-Monochromator-Anordnung hoher spektraler Auflösung
WO2003081712A2 (de) Gitterelement zum filtern von wellenlängen ≤ 100nm
DE102012013530B3 (de) Vorrichtung zur Messung resonanter inelastischer Röntgenstreuung einer Probe
DE102005043475A1 (de) Kollektor mit konischen Spiegelschalen
DE102005048375A1 (de) Vorrichtung und Verfahren zur Erzeugung einer vorbestimmten Ausleuchtung einer Pupille eines optischen Systems
DE868979C (de) Einrichtung zur Herstellung optischer Bilder
WO2009030390A1 (de) Vorrichtung und verfahren für die xuv-mikroskopie
DE202015009027U1 (de) Beleuchtungs- und Abbildungsvorrichtung für hochauflösende Röntgenmikroskopie mit hoher Photonenenergie

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee