DE1533360B1 - Process for the production of nearly stoechiometric nickel-titanium alloys and their use - Google Patents

Process for the production of nearly stoechiometric nickel-titanium alloys and their use

Info

Publication number
DE1533360B1
DE1533360B1 DE19661533360 DE1533360A DE1533360B1 DE 1533360 B1 DE1533360 B1 DE 1533360B1 DE 19661533360 DE19661533360 DE 19661533360 DE 1533360 A DE1533360 A DE 1533360A DE 1533360 B1 DE1533360 B1 DE 1533360B1
Authority
DE
Germany
Prior art keywords
nickel
titanium
alloy
production
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE19661533360
Other languages
German (de)
Inventor
William J Buehler
Alexander G Rozner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of DE1533360B1 publication Critical patent/DE1533360B1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/006Resulting in heat recoverable alloys with a memory effect

Description

Die nahezu stöchiometrischen Nickel-Titan-Legierungen und ihre einmaligen Eigenschaften sind eingehend in der USA.-Patentschrift 3 174 851 dargelegt worden. Für manche Anwendungen ist es erwünscht, derartige Nickel-Titan-Legierungen mit höherer 0,2-Grenze zu erhalten. Versuche, die 0,2-Grenze durch konventionelle Maßnahmen, wie Wärmebehandlung, zu erhöhen, haben nur geringen Erfolg gehabt. Dies dürfte wahrscheinlich auf die Tatsache zurückzuführen sein, daß die Legierungen im wesentlichen in einer einzigen Phase vorliegen. Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren zur Erhöhung der Festigkeit und zur Erzeugung eines martensitischen Gefüges solcher Legierungen anzugeben.The almost stoichiometric nickel-titanium alloys and their unique properties are detailed in U.S. Patent 3,174,851 been. For some applications it is desirable to use such nickel-titanium alloys with a higher 0.2 limit to obtain. Attempts to exceed the 0.2 limit by conventional measures such as heat treatment, increases have had little success. This is likely due to the fact be that the alloys are essentially in a single phase. The invention thus lies the object is based on a method for increasing the strength and for generating a martensitic Indicate the structure of such alloys.

Das Erfindungsziel, das zu einer 0,2-Grenze von mindestens 68 kp/mmz, vorzugsweise von 81,7 bis 129 kp/mm2, einer Bruchdehnung, bezogen auf eine Meßlänge von 25,4 mm, von mindestens 7%, vorzugsweise von 7 bis 20%, einer Zugfestigkeit von mindestens 109 kp/mm2, vorzugsweise von 129 bis 177 kp/mm2, einer spezifischen Festigkeit, d.h. einem Zugfestigkeits - Dichte - Verhältnis, von mindestensThe aim of the invention, which leads to a 0.2 limit of at least 68 kp / mm z , preferably from 81.7 to 129 kp / mm 2 , an elongation at break, based on a measuring length of 25.4 mm, of at least 7%, preferably from 7 to 20%, a tensile strength of at least 109 kg / mm 2 , preferably from 129 to 177 kg / mm 2 , a specific strength, ie a tensile strength-density ratio, of at least

kp/mm2
101,6 g/cm 3 , vorzugsweise zwischen 127 und
kp / mm 2
101.6 g / cm 3 , preferably between 127 and

203,2 , bei einer Permeabilität von etwa 1 in203.2, with a permeability of about 1 in

einer Nickel-Titan-Legierung aus 53,5 bis 56,5% Nickel, Rest Titan, die nach an sich bekannter Lösungsglühung und Abkühlung kaltverformt wird, führt, wird erfindungsgemäß dadurch erreicht, daß die Kaltverformung in Abhängigkeit von der Legierungszusammensetzung unterhalb, vorzugsweise wenigstens um 20 bis 30° C unter den folgenden kritischen Temperaturen, bei denen das Kristallgitter eine martensitische Umwandlung erfährt, erfolgt:a nickel-titanium alloy made from 53.5 to 56.5% nickel, the remainder being titanium, after a known solution heat treatment and cooling is cold-deformed, is achieved according to the invention in that the cold deformation depending on the alloy composition below, preferably at least by 20 to 30 ° C below the following critical temperatures at which the crystal lattice is martensitic Conversion takes place:

Tabelle ITable I.

LegierungszusammensetzungAlloy composition 55 53,553.5 Kritische TemperaturenCritical temperatures (Gewichtsprozent Nickel, Rest Titan)(Weight percent nickel, remainder titanium) 54,054.0 54,554.5 (0Q ·( 0 Q ίο 55,0ίο 55.0 9898 55,555.5 140140 56,056.0 170170 56,556.5 140140 3030th -25-25 -50-50

°c° c Für eine Legierungszusammensetzung
(Gewichtsprozent Nickel, Rest Titan)
For an alloy composition
(Weight percent nickel, remainder titanium)
9898 53,553.5 140140 54,054.0 170170 54,554.5 140140 55,055.0 3030th 55,555.5 -25-25 56,056.0 -50-50 56,556.5

Vorteilhafterweise wird die Nickel-Titan-Legierung nach der Wärmebehandlung durch Walzen, Ziehen oder Strangpressen verformt.The nickel-titanium alloy is advantageously made after the heat treatment by rolling, drawing deformed or extrusion.

Bei der Kaltverformung erfährt die Nickel-Titan-Legierung eine martensitische (diffusionslose) Umwandlung. Die Fähigkeit der Legierung, eine martensitische Umwandlung durchzumachen, ist temperaturabhängig. Die höchste Temperatur, bei welcher diese Umwandlung eintreten kann, wird als kritische Temperatur bezeichnet. Diese kritische Temperatur, die eine Funktion der Legierungszusammensetzung ist, kann leicht aus einer Dämpfungsübergangskurve bestimmt werden. In Tabelle I sind die ungefähren kritischen Temperaturen einiger typischer Nickel-Titan-Legierungen angegeben.During cold working, the nickel-titanium alloy undergoes a martensitic (diffusion-free) transformation. The ability of the alloy to undergo a martensitic transformation is temperature dependent. The highest temperature at which this conversion can occur is called the critical temperature designated. This critical temperature, which is a function of the alloy composition, can easily be determined from a damping transition curve. In Table I are the approximate critical temperatures of some typical nickel-titanium alloys are given.

Bislang bestand in der Fachwelt die Ansicht, daßSo far there has been the opinion in the professional world that

Legierungen mit 52 bis 56% Nickel, Rest Titan, vorwiegend aus der einzigen Phase TiNi bestehen und daß ihre Härte durch eine Wärmebehandlung oder durch Veränderung der Abkühlungsgeschwindigkeit nur unwesentlich beeinflußt werden können. Vorliegende Erfindung beruht auf der weitergehenden Erkenntnis, daß eine Erhöhung der Festigkeit derartiger Legierungen jedoch erreicht werden kann, wenn diese Legierungen geglüht, abgekühlt und anschließend kaltverformt werden, wobei gleichzeitig ein martensitisches Gefüge entsteht.Alloys with 52 to 56% nickel, the remainder titanium, consist mainly of the single phase TiNi and that their hardness by a heat treatment or by changing the cooling rate can only be influenced insignificantly. The present invention is based on the broader one Realization that an increase in the strength of such alloys can be achieved, when these alloys are annealed, cooled and then cold worked, at the same time a martensitic structure is created.

Auch die Zeit zur Steigerung der Zugfestigkeit ist temperaturabhängig. Je größer der Temperaturunterschied zwischen der Verarbeitungstemperatur und der kritischen Temperatur ist, um so höher wird die Festigkeit. Für die meisten Zwecke wird die Arbeitstemperatur vorzugsweise wenigstens 20 bis 300C unter der kritischen Temperatur gehalten. Um sicherzustellen, daß der geringste gewünschte Temperaturunterschied erhalten wird, muß auch der Temperaturanstieg, der gewöhnlich durch die Reibung bewirkt wird, mit in Rechnung gestellt werden. Solange allerdings die Arbeitstemperatur unter der kritischen Temperatur gehalten wird, können die durch Reibung bewirkten Temperaturänderungen den Vorgang nicht wesentlich beeinflussen.The time to increase the tensile strength also depends on the temperature. The greater the temperature difference between the processing temperature and the critical temperature, the higher the strength. For most purposes, the working temperature is preferably kept at least 20 to 30 ° C. below the critical temperature. In order to ensure that the smallest desired temperature difference is obtained, the temperature increase which is usually caused by the friction must also be taken into account. However, as long as the working temperature is kept below the critical temperature, the temperature changes caused by friction cannot significantly influence the process.

Die Legierungen können in an sich bekannter Weise verarbeitet werden. Beispielsweise können sie im Gesenk geschmiedet, grobgewalzt, gezogen, stranggepreßt, freiformgeschmiedet, gestreckt, feingewalzt, durch Sprengverformung oder in anderer Weise verarbeitet werden, wobei diese Verarbeitungen im wesentlichen Teile der Gesamtverarbeitung sind. Das Maß der durchzuführenden Verarbeitung hängt von der gewünschten Festigkeit und Härte ab, wobei ein höherer Verformungsgrad eine größere Festigkeit ergibt. Der Verarbeitung, welcher die Legierung unterworfen werden kann, ist allerdings eine obere Grenze gesetzt, bei deren überschreiten Einrisse und örtliche Ausbrüche auftreten können. Als Faustregel kann gelten, daß die Verarbeitung nur bis zu einer Querschnittsverminderung von 20 oder 25% bei Rundmaterial bzw. einer Dickenverminderung von 20 bis 25% bei Flachmaterial durchgeführt werden sollte, da übermäßiges Verarbeiten zu einer beachtlichen Abnahme der Duktilität ohne vergleichbare Zunahme der Festigkeit führt.The alloys can be processed in a manner known per se. For example, they can drop-forged, rough-rolled, drawn, extruded, open-die forged, stretched, fine-rolled, processed by explosive deformation or in any other way, these processing operations in are essential parts of the overall processing. The level of processing to be performed depends depends on the desired strength and hardness, with a higher degree of deformation a greater strength results. The processing to which the alloy can be subjected, however, is an upper limit Limit set which, if exceeded, can cause cracks and local breakouts. As a rule of thumb it can apply that the processing is only up to a cross-section reduction of 20 or 25% Round material or a thickness reduction of 20 to 25% for flat material should, since excessive processing leads to a considerable decrease in ductility without comparable Increase in strength.

Durch das erfindungsgemäße Verfahren wird eine Nickel-Titan-Legierung mit hoher Festigkeit, großer Härte, hoher Schlagzähigkeit, hoher Dehnung (Duktilität), großer Korrosionsbeständigkeit, niederer Dichte und stabiler Unmagnetigkeit erhalten.By the method according to the invention, a nickel-titanium alloy with high strength, large Hardness, high impact strength, high elongation (ductility), high corrosion resistance, low density and stable non-magnetism.

Die nachfolgenden Beispiele zeigen Ausführungsformen der Erfindung. The following examples show embodiments of the invention.

Beispiel IExample I.

Ein Nickel-Titan-Blech (55,1 Gewichtsprozent Nickel, Rest Titan) von 101,6 χ 25,4 χ 3,30 mm wurde bei 8000C im Vakuum geglüht und zum Ausschalten der Einflüsse der vorangegangenen Verarbeitung ofengekühlt. Anschließend wurde das Blech 20 Minuten lang in flüssigen Stickstoff gegeben, um sicherzustellen, daß die Legierung eine Temperatur annimmt, die unterhalb ihrer kritischen Temperatur liegt, und um ferner sicherzustellen, daß die Legierung unterhalb der kritischen Temperatur während des Walzens bleibt. Anschließend wurde das Blech gewalzt, wobei sich in Abhängigkeit der Dickenverminderung der in der folgenden Tabelle II festgehaltenen Festigkeitswerte ergaben.A nickel-titanium plate (55.1 weight percent nickel, balance titanium) was 101.6 mm by 25.4 χ χ 3.30 annealed at 800 0 C in a vacuum oven and cooled to switch off the influence of the previous processing. The sheet was then placed in liquid nitrogen for 20 minutes to ensure that the alloy reached a temperature below its critical temperature and also to ensure that the alloy remained below the critical temperature during rolling. The sheet metal was then rolled, the strength values recorded in Table II below being obtained as a function of the reduction in thickness.

Tabelle IITable II

2525th

3030th

Neben der hohen Zugfestigkeit und Duktilität wies die Legierung eine magnetische Permeabilität von nahezu 1 sowie hohe Korrosionsbeständigkeit und Schlagzähigkeit auf.In addition to the high tensile strength and ductility, the alloy exhibited magnetic permeability of almost 1 as well as high corrosion resistance and impact strength.

Beispiel IIExample II

Ein Nickel-Titan-Draht von 1,5 mm Durchmesser (55,1 Gewichtsprozent Nickel, Rest Titan), wurde geglüht und wie im Beispiel I gekühlt. Die Legierung wurde dann durch konische Ziehsteine gezogen, wobei sich die in Tabelle III angegebenen Werte ergaben.A nickel-titanium wire 1.5 mm in diameter (55.1 percent by weight nickel, remainder titanium) was used annealed and cooled as in example I. The alloy was then drawn through conical drawing dies, whereby the values given in Table III resulted.

Dicken
verminderung
Thick
reduction
0,2-Grenze
(kp/mm2)
0.2 limit
(kp / mm 2 )
Zugfestigkeit
(kp/mm2)
tensile strenght
(kp / mm 2 )
Bruchdehnung,
bezogen auf eine
Meßlänge von
25,4 mm
Elongation at break,
based on a
Measuring length from
25.4 mm
O (geglüht)
10
15
O (annealed)
10
15th
20,4
75,0
88,5
20.4
75.0
88.5
88,5
111
130
88.5
111
130
22
25
13
22nd
25th
13th

Tabelle IIITable III

Querschnitts
verminderung
(%)
Cross-sectional
reduction
(%)
0,2-Grenze
(kp/mm2)
0.2 limit
(kp / mm 2 )
Zugfestigkeit
(kp/mm2)
tensile strenght
(kp / mm 2 )
Bruchdehnung,
bezogen auf eine
Meßlänge von
25,4 mm
(%)
Elongation at break,
based on a
Measuring length from
25.4 mm
(%)
0 (geglüht)
13
20
35
0 (annealed)
13th
20th
35
20,4
79,5
100,0
135,5
20.4
79.5
100.0
135.5
88,5
131,0
165,0
177,5
88.5
131.0
165.0
177.5
über 40
20
15
7,5
over 40
20th
15th
7.5

Die Legierung wies hohe Schlagzähigkeit und Korrosionsbeständigkeit sowie eine Permeabilität auf, die im wesentlichen 1 war.The alloy had high impact strength and corrosion resistance as well as permeability, which was essentially 1.

Das erfindungsgemäße Verfahren findet mannigfache Anwendung, da es die hocherstrebten Eigenschaften von Festigkeit, Zähigkeit, Duktilität, Korrosionsbeständigkeit und magnetische Permeabilität von etwa 1 bewirkt. Das hohe Festigkeits-Dichte-Verhältnis macht die Legierung insbesondere dort anwendbar, wo hochfeste Werkstoffe geringen Gewichtes benötigt werden, beispielsweise im Raketenbau und in der Raumfahrt. Die hohe Festigkeit und_ die Korrosionsbeständigkeit der Legierung macht sie außerdem für den Schiffsbau verwendbar, und zwar trotz der Tatsache, daß etwas von der Schwingungsdämpfungsfähigkeit für die erhöhte Festigkeit geopfert worden ist. Die Legierung kann auch als Panzermaterial gegen Beschüß Verwendung finden. Im Gegensatz zum konventionellen Härtungsprozeß wird erfindungsgemäß die Duktilität und Zähigkeit nicht nennenswert beeinflußt, und im Gegensatz zum Austenit-Martensit-Ubergang beim Stahl werden die amagnetischen Eigenschaften der Legierung gleichfalls nicht beeinflußt.The process according to the invention is used in many ways, since it has the highly sought-after properties of strength, toughness, ductility, corrosion resistance and magnetic permeability of about 1 causes. The high strength-density ratio makes the alloy especially there applicable where high-strength, light-weight materials are required, for example in rocket construction and in space travel. The high strength and corrosion resistance of the alloy makes they can also be used for shipbuilding, despite the fact that some of the vibration damping ability has been sacrificed for increased strength. The alloy can also be used as armor material against bombardment. In contrast to the conventional hardening process, the ductility and Toughness is not significantly influenced, and in contrast to the austenite-martensite transition in steel the non-magnetic properties of the alloy are also not affected.

Claims (3)

Patentansprüche:Patent claims: 1. Verfahren zur Erzielung einer 0,2-Grenze von mindestens 68 kp/mm2, vorzugsweise von 81,7 bis 129 kp/mm2, einer Bruchdehnung, bezogen auf eine Meßlänge von 25,4 mm, von mindestens 7%, vorzugsweise von 7 bis 20%, einer Zugfestigkeit von mindestens 109 kp/mm2, vorzugsweise von 129 bis 177 kp/mm2, einer spezifischen Festigkeit von mindestens 101,6 >1. Process for achieving a 0.2 limit of at least 68 kp / mm 2 , preferably from 81.7 to 129 kp / mm 2 , an elongation at break, based on a measuring length of 25.4 mm, of at least 7%, preferably from 7 to 20%, a tensile strength of at least 109 kg / mm 2 , preferably from 129 to 177 kg / mm 2 , a specific strength of at least 101.6> vorzugsweise zwischen 127 und 203,2 kP/mm ,preferably between 127 and 203.2 k P / mm , g/cm3 g / cm 3 bei einer Permeabilität von etwa 1 in einer Nickel-Titan-Legierung aus 5,3,5 bis 56,5% Nickel, Rest Titan, die nach an sich bekannter Lösungsglühung und Abkühlung kaltverformt wird, dadurch gekennzeichnet, daß die Kaltverformung in Abhängigkeit von der Legierungszusammensetzung unterhalb, vorzugsweise wenigstens um 20 bis 30° C unter den folgenden kritischen Temperaturen erfolgt:at a permeability of about 1 in a nickel-titanium alloy from 5.3.5 to 56.5% nickel, the remainder titanium, after known solution annealing and cooling is cold-worked, characterized in that the cold-working depending on the alloy composition below, preferably at least around 20 to 30 ° C under the following critical temperatures: 4545 5555 6060 6565 Für eine LegierungszusammensetzungFor an alloy composition 0C 0 C (Gewichtsprozent Nickel, Rest Titan(Weight percent nickel, remainder titanium 9898 53,553.5 140140 54,054.0 170170 54,554.5 140140 55,055.0 3030th 55,555.5 -25-25 56,056.0 -50-50 56,556.5
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Nickel-Titan-Legierung der Zusammensetzung nach Anspruch 1 nach der Wärmebehandlung durch Walzen, Ziehen oder Strangpressen verformt wird.2. The method according to claim 1, characterized in that the nickel-titanium alloy of Composition according to claim 1 after heat treatment by rolling, drawing or Extrusion is deformed. 3. Verwendung der nach dem Anspruch 1 oder 2 behandelten Nickel-Titan-Legierungen aus 53,5 bis 56,5% Nickel, Rest Titan und herstellungsbedingten Verunreinigungen, zur Herstellung unmagnetischer Gegenstände großer Härte und hoher Zugfestigkeit, von Panzerplatten, von Teilen für Raketen und Raumfahrzeugen sowie für den Schiffsbau.3. Use of the treated according to claim 1 or 2 nickel-titanium alloys from 53.5 to 56.5% nickel, the remainder titanium and production-related impurities, for the production of non-magnetic Objects of great hardness and high tensile strength, armor plates, parts for Rockets and spacecraft as well as for shipbuilding.
DE19661533360 1965-08-20 1966-08-08 Process for the production of nearly stoechiometric nickel-titanium alloys and their use Pending DE1533360B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US481436A US3351463A (en) 1965-08-20 1965-08-20 High strength nickel-base alloys

Publications (1)

Publication Number Publication Date
DE1533360B1 true DE1533360B1 (en) 1971-01-07

Family

ID=23911937

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19661533360 Pending DE1533360B1 (en) 1965-08-20 1966-08-08 Process for the production of nearly stoechiometric nickel-titanium alloys and their use

Country Status (9)

Country Link
US (1) US3351463A (en)
AT (1) AT281446B (en)
BE (1) BE685751A (en)
CH (1) CH504538A (en)
DE (1) DE1533360B1 (en)
ES (1) ES330445A1 (en)
GB (1) GB1161225A (en)
NL (1) NL6611720A (en)
NO (1) NO115605B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2644041A1 (en) * 1976-08-26 1978-03-02 Bbc Brown Boveri & Cie MEMORY ALLOY

Families Citing this family (242)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE758862A (en) * 1969-11-12 1971-04-16 Fulmer Res Inst Ltd Improvements relating to the treatment of alloys
US4035007A (en) * 1970-07-02 1977-07-12 Raychem Corporation Heat recoverable metallic coupling
US4198081A (en) * 1973-10-29 1980-04-15 Raychem Corporation Heat recoverable metallic coupling
US3953253A (en) * 1973-12-21 1976-04-27 Texas Instruments Incorporated Annealing of NiTi martensitic memory alloys and product produced thereby
GB1571627A (en) * 1976-01-22 1980-07-16 Raychem Corp Heat-recoverable coupling
GB1594693A (en) * 1976-10-29 1981-08-05 Raychem Sa Nv Heatrecoverable article
DE2954743C2 (en) * 1978-01-09 1996-10-31 Raychem Sa Nv Clips for sealing branches from distributor boxes
GB1604981A (en) * 1978-01-09 1981-12-16 Raychem Sa Nv Branchoff method
US4197643A (en) * 1978-03-14 1980-04-15 University Of Connecticut Orthodontic appliance of titanium alloy
GB1604984A (en) * 1978-04-04 1981-12-16 Raychem Sa Nv Branchoff method
US4242954A (en) * 1978-05-23 1981-01-06 Graham Magnetics Incorporated Calendar roll system
DE3007307A1 (en) * 1980-01-18 1981-07-23 BBC AG Brown, Boveri & Cie., Baden, Aargau Detachable shrunk joint - uses shape memory alloy with two=way effect
US4337090A (en) * 1980-09-05 1982-06-29 Raychem Corporation Heat recoverable nickel/titanium alloy with improved stability and machinability
IL64508A0 (en) * 1980-12-12 1982-03-31 Raychem Pontoise Sa Wire stripping arrangement
US4621844A (en) * 1982-01-25 1986-11-11 Shell Oil Company Memory metal connector
US4565589A (en) * 1982-03-05 1986-01-21 Raychem Corporation Nickel/titanium/copper shape memory alloy
US4505767A (en) * 1983-10-14 1985-03-19 Raychem Corporation Nickel/titanium/vanadium shape memory alloy
US4570851A (en) * 1984-05-07 1986-02-18 Cirillo John R Temperature regulating, pressure relief flow valves employing shaped memory alloys
DE3563873D1 (en) * 1984-11-14 1988-08-25 Raychem Sa Nv Joining insulated elongate conduit members
US4717341A (en) * 1986-01-13 1988-01-05 Goldberg A Jon Orthodontic appliance system
US4720944A (en) * 1986-06-04 1988-01-26 Paul Loicq Suspended ceiling panel retaining system
US4839479A (en) * 1986-06-30 1989-06-13 Davis Jr Thomas O Article using shape-memory alloy to improve and/or control the speed of recovery
US4759293A (en) * 1986-06-30 1988-07-26 Davis Jr Thomas O Article using shape-memory alloy to improve and/or control the speed of recovery
US4872713A (en) * 1987-02-19 1989-10-10 Raychem Corporation Coupling device
US4832382A (en) * 1987-02-19 1989-05-23 Raychem Corporation Coupling device
DE3823186A1 (en) * 1988-07-08 1990-04-12 Messerschmitt Boelkow Blohm ELECTROMECHANICAL RELAY
US5238004A (en) * 1990-04-10 1993-08-24 Boston Scientific Corporation High elongation linear elastic guidewire
DE69127078T2 (en) * 1990-04-10 1998-01-22 Boston Scient Corp LINEAR ELASTIC GUIDE WIRE WITH GREAT STRENGTH
US5215145A (en) * 1992-02-14 1993-06-01 Baker Hughes Incorporated Wedge-set sealing flap for use in subterranean wellbores
US5273116A (en) * 1992-02-14 1993-12-28 Baker Hughes Incorporated Firing mechanism for actuating wellbore tools
US5199497A (en) * 1992-02-14 1993-04-06 Baker Hughes Incorporated Shape-memory actuator for use in subterranean wells
ATE165920T1 (en) * 1992-03-10 1998-05-15 Bausch & Lomb INTEGRATED GLASSES FRAMES
US5376001A (en) * 1993-05-10 1994-12-27 Tepper; Harry W. Removable orthodontic appliance
US5769796A (en) * 1993-05-11 1998-06-23 Target Therapeutics, Inc. Super-elastic composite guidewire
US5749837A (en) * 1993-05-11 1998-05-12 Target Therapeutics, Inc. Enhanced lubricity guidewire
US5772609A (en) * 1993-05-11 1998-06-30 Target Therapeutics, Inc. Guidewire with variable flexibility due to polymeric coatings
US7883474B1 (en) * 1993-05-11 2011-02-08 Target Therapeutics, Inc. Composite braided guidewire
US6001123A (en) * 1994-04-01 1999-12-14 Gore Enterprise Holdings Inc. Folding self-expandable intravascular stent-graft
US6165210A (en) * 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
US6139510A (en) * 1994-05-11 2000-10-31 Target Therapeutics Inc. Super elastic alloy guidewire
US5522819A (en) * 1994-05-12 1996-06-04 Target Therapeutics, Inc. Dual coil medical retrieval device
US5454795A (en) * 1994-06-27 1995-10-03 Target Therapeutics, Inc. Kink-free spiral-wound catheter
US5496294A (en) * 1994-07-08 1996-03-05 Target Therapeutics, Inc. Catheter with kink-resistant distal tip
US6331188B1 (en) 1994-08-31 2001-12-18 Gore Enterprise Holdings, Inc. Exterior supported self-expanding stent-graft
US6015429A (en) * 1994-09-08 2000-01-18 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US5658264A (en) * 1994-11-10 1997-08-19 Target Therapeutics, Inc. High performance spiral-wound catheter
CA2162620A1 (en) 1994-11-11 1996-05-12 Gene Samson Microcatheter-less coil delivery device
US5911731A (en) * 1995-04-20 1999-06-15 Target Therapeutics, Inc. Anatomically shaped vasoocclusive devices
US5645558A (en) 1995-04-20 1997-07-08 Medical University Of South Carolina Anatomically shaped vasoocclusive device and method of making the same
US5702373A (en) * 1995-08-31 1997-12-30 Target Therapeutics, Inc. Composite super-elastic alloy braid reinforced catheter
US6824553B1 (en) 1995-04-28 2004-11-30 Target Therapeutics, Inc. High performance braided catheter
US5891112A (en) * 1995-04-28 1999-04-06 Target Therapeutics, Inc. High performance superelastic alloy braid reinforced catheter
US5624461A (en) * 1995-06-06 1997-04-29 Target Therapeutics, Inc. Three dimensional in-filling vaso-occlusive coils
NO962336L (en) * 1995-06-06 1996-12-09 Target Therapeutics Inc Vaso-occlusive spiral
EP0754435B1 (en) * 1995-06-30 2000-11-08 Target Therapeutics, Inc. Stretch-resistant vaso-occlusive coils
US5582619A (en) * 1995-06-30 1996-12-10 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils
US5853418A (en) * 1995-06-30 1998-12-29 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils (II)
US6013084A (en) 1995-06-30 2000-01-11 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils (II)
US5743905A (en) * 1995-07-07 1998-04-28 Target Therapeutics, Inc. Partially insulated occlusion device
US6019757A (en) * 1995-07-07 2000-02-01 Target Therapeutics, Inc. Endoluminal electro-occlusion detection apparatus and method
US5906606A (en) * 1995-12-04 1999-05-25 Target Therapuetics, Inc. Braided body balloon catheter
US6042605A (en) 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
EP0866677A4 (en) 1995-12-14 1999-10-27 Prograft Medical Inc Stent-graft deployment apparatus and method
US5927345A (en) * 1996-04-30 1999-07-27 Target Therapeutics, Inc. Super-elastic alloy braid structure
US6488637B1 (en) 1996-04-30 2002-12-03 Target Therapeutics, Inc. Composite endovascular guidewire
US6090099A (en) * 1996-05-24 2000-07-18 Target Therapeutics, Inc. Multi-layer distal catheter section
US5782811A (en) 1996-05-30 1998-07-21 Target Therapeutics, Inc. Kink-resistant braided catheter with distal side holes
US5868754A (en) * 1996-06-12 1999-02-09 Target Therapeutics, Inc. Medical retrieval device
US5972019A (en) * 1996-07-25 1999-10-26 Target Therapeutics, Inc. Mechanical clot treatment device
US6066158A (en) * 1996-07-25 2000-05-23 Target Therapeutics, Inc. Mechanical clot encasing and removal wire
US5827201A (en) * 1996-07-26 1998-10-27 Target Therapeutics, Inc. Micro-braided guidewire
US5964797A (en) * 1996-08-30 1999-10-12 Target Therapeutics, Inc. Electrolytically deployable braided vaso-occlusion device
US5971975A (en) * 1996-10-09 1999-10-26 Target Therapeutics, Inc. Guide catheter with enhanced guidewire tracking
US6159187A (en) * 1996-12-06 2000-12-12 Target Therapeutics, Inc. Reinforced catheter with a formable distal tip
US6551350B1 (en) 1996-12-23 2003-04-22 Gore Enterprise Holdings, Inc. Kink resistant bifurcated prosthesis
US6352561B1 (en) * 1996-12-23 2002-03-05 W. L. Gore & Associates Implant deployment apparatus
US5733329A (en) * 1996-12-30 1998-03-31 Target Therapeutics, Inc. Vaso-occlusive coil with conical end
US5925061A (en) * 1997-01-13 1999-07-20 Gore Enterprise Holdings, Inc. Low profile vascular stent
US6017323A (en) * 1997-04-08 2000-01-25 Target Therapeutics, Inc. Balloon catheter with distal infusion section
US6152912A (en) * 1997-06-10 2000-11-28 Target Therapeutics, Inc. Optimized high performance spiral-wound vascular catheter
US5951539A (en) * 1997-06-10 1999-09-14 Target Therpeutics, Inc. Optimized high performance multiple coil spiral-wound vascular catheter
US6258080B1 (en) 1997-07-01 2001-07-10 Target Therapeutics, Inc. Kink-free spiral-wound catheter
EP1003422B1 (en) 1997-08-05 2006-06-14 Boston Scientific Limited Detachable aneurysm neck bridge
US6063070A (en) * 1997-08-05 2000-05-16 Target Therapeutics, Inc. Detachable aneurysm neck bridge (II)
US6086577A (en) * 1997-08-13 2000-07-11 Scimed Life Systems, Inc. Detachable aneurysm neck bridge (III)
US6322576B1 (en) 1997-08-29 2001-11-27 Target Therapeutics, Inc. Stable coil designs
US6860893B2 (en) 1997-08-29 2005-03-01 Boston Scientific Scimed, Inc. Stable coil designs
US6066149A (en) 1997-09-30 2000-05-23 Target Therapeutics, Inc. Mechanical clot treatment device with distal filter
US5891114A (en) * 1997-09-30 1999-04-06 Target Therapeutics, Inc. Soft-tip high performance braided catheter
US6217566B1 (en) 1997-10-02 2001-04-17 Target Therapeutics, Inc. Peripheral vascular delivery catheter
US6036720A (en) * 1997-12-15 2000-03-14 Target Therapeutics, Inc. Sheet metal aneurysm neck bridge
US6368316B1 (en) 1998-06-11 2002-04-09 Target Therapeutics, Inc. Catheter with composite stiffener
US7815626B1 (en) 1998-06-12 2010-10-19 Target Therapeutics, Inc. Catheter with knit section
US5935148A (en) * 1998-06-24 1999-08-10 Target Therapeutics, Inc. Detachable, varying flexibility, aneurysm neck bridge
US6136014A (en) * 1998-09-01 2000-10-24 Vivant Medical, Inc. Percutaneous tissue removal device
WO2000013593A1 (en) 1998-09-04 2000-03-16 Boston Scientific Limited (Incorporated In Ireland) Detachable aneurysm neck closure patch
US7410482B2 (en) 1998-09-04 2008-08-12 Boston Scientific-Scimed, Inc. Detachable aneurysm neck bridge
US6036698A (en) 1998-10-30 2000-03-14 Vivant Medical, Inc. Expandable ring percutaneous tissue removal device
US6648854B1 (en) 1999-05-14 2003-11-18 Scimed Life Systems, Inc. Single lumen balloon-tipped micro catheter with reinforced shaft
US6280457B1 (en) * 1999-06-04 2001-08-28 Scimed Life Systems, Inc. Polymer covered vaso-occlusive devices and methods of producing such devices
US6559845B1 (en) * 1999-06-11 2003-05-06 Pulse Entertainment Three dimensional animation system and method
US6306132B1 (en) 1999-06-17 2001-10-23 Vivant Medical Modular biopsy and microwave ablation needle delivery apparatus adapted to in situ assembly and method of use
US6663607B2 (en) 1999-07-12 2003-12-16 Scimed Life Systems, Inc. Bioactive aneurysm closure device assembly and kit
US7462162B2 (en) * 2001-09-04 2008-12-09 Broncus Technologies, Inc. Antiproliferative devices for maintaining patency of surgically created channels in a body organ
US7422563B2 (en) 1999-08-05 2008-09-09 Broncus Technologies, Inc. Multifunctional tip catheter for applying energy to tissue and detecting the presence of blood flow
US6689120B1 (en) 1999-08-06 2004-02-10 Boston Scientific Scimed, Inc. Reduced profile delivery system
CN1370086A (en) 1999-08-24 2002-09-18 神经细胞治疗学公司 Lumbar drainage catheter
US6722371B1 (en) 2000-02-18 2004-04-20 Thomas J. Fogarty Device for accurately marking tissue
JP5090600B2 (en) 2000-02-18 2012-12-05 トーマス ジェイ. フォガーティー, Improved device for accurately marking tissues
US6564806B1 (en) 2000-02-18 2003-05-20 Thomas J. Fogarty Device for accurately marking tissue
US6746461B2 (en) 2000-08-15 2004-06-08 William R. Fry Low-profile, shape-memory surgical occluder
US6635069B1 (en) 2000-10-18 2003-10-21 Scimed Life Systems, Inc. Non-overlapping spherical three-dimensional coil
US6602269B2 (en) 2001-03-30 2003-08-05 Scimed Life Systems Embolic devices capable of in-situ reinforcement
US6908448B2 (en) * 2001-08-24 2005-06-21 Dermisonics, Inc. Substance delivery device
US7708712B2 (en) 2001-09-04 2010-05-04 Broncus Technologies, Inc. Methods and devices for maintaining patency of surgically created channels in a body organ
US6685620B2 (en) * 2001-09-25 2004-02-03 The Foundry Inc. Ventricular infarct assist device and methods for using it
US6878151B2 (en) 2001-09-27 2005-04-12 Scimed Life Systems, Inc. Medical retrieval device
US6878147B2 (en) 2001-11-02 2005-04-12 Vivant Medical, Inc. High-strength microwave antenna assemblies
US7197363B2 (en) 2002-04-16 2007-03-27 Vivant Medical, Inc. Microwave antenna having a curved configuration
US6752767B2 (en) 2002-04-16 2004-06-22 Vivant Medical, Inc. Localization element with energized tip
US6783438B2 (en) * 2002-04-18 2004-08-31 Ormco Corporation Method of manufacturing an endodontic instrument
US7779542B2 (en) * 2002-04-18 2010-08-24 Ormco Corporation Method of manufacturing a dental instrument
US7060083B2 (en) * 2002-05-20 2006-06-13 Boston Scientific Scimed, Inc. Foldable vaso-occlusive member
US7485122B2 (en) * 2002-06-27 2009-02-03 Boston Scientific Scimed, Inc. Integrated anchor coil in stretch-resistant vaso-occlusive coils
US8425549B2 (en) 2002-07-23 2013-04-23 Reverse Medical Corporation Systems and methods for removing obstructive matter from body lumens and treating vascular defects
US7040323B1 (en) * 2002-08-08 2006-05-09 Tini Alloy Company Thin film intrauterine device
US20040098023A1 (en) * 2002-11-15 2004-05-20 Scimed Life Systems, Inc. Embolic device made of nanofibers
US6780260B1 (en) 2002-12-10 2004-08-24 The United Sates Of America As Represented By The Secretary Of The Navy Non-welded shape memory alloy rings produced from roll flattened wire
US20040143317A1 (en) * 2003-01-17 2004-07-22 Stinson Jonathan S. Medical devices
US20040153025A1 (en) * 2003-02-03 2004-08-05 Seifert Paul S. Systems and methods of de-endothelialization
US7744583B2 (en) * 2003-02-03 2010-06-29 Boston Scientific Scimed Systems and methods of de-endothelialization
US7182735B2 (en) * 2003-02-26 2007-02-27 Scimed Life Systems, Inc. Elongated intracorporal medical device
AU2004229523B2 (en) 2003-04-14 2008-09-25 Cook Medical Technologies Llc Large diameter delivery catheter/sheath
US11000670B2 (en) 2003-04-28 2021-05-11 Cook Medical Technologies Llc Flexible sheath with varying durometer
US7025768B2 (en) * 2003-05-06 2006-04-11 Boston Scientific Scimed, Inc. Systems and methods for ablation of tissue
JP4015582B2 (en) * 2003-05-09 2007-11-28 ニスカ株式会社 Image forming apparatus
US7632288B2 (en) 2003-05-12 2009-12-15 Boston Scientific Scimed, Inc. Cutting balloon catheter with improved pushability
US7758520B2 (en) * 2003-05-27 2010-07-20 Boston Scientific Scimed, Inc. Medical device having segmented construction
US7758604B2 (en) 2003-05-29 2010-07-20 Boston Scientific Scimed, Inc. Cutting balloon catheter with improved balloon configuration
US8337519B2 (en) 2003-07-10 2012-12-25 Boston Scientific Scimed, Inc. Embolic protection filtering device
US8308682B2 (en) 2003-07-18 2012-11-13 Broncus Medical Inc. Devices for maintaining patency of surgically created channels in tissue
US7311703B2 (en) 2003-07-18 2007-12-25 Vivant Medical, Inc. Devices and methods for cooling microwave antennas
US7024022B2 (en) * 2003-07-30 2006-04-04 Xerox Corporation System and method for measuring and quantizing document quality
US7896898B2 (en) * 2003-07-30 2011-03-01 Boston Scientific Scimed, Inc. Self-centering blood clot filter
US7780626B2 (en) 2003-08-08 2010-08-24 Boston Scientific Scimed, Inc. Catheter shaft for regulation of inflation and deflation
US7887557B2 (en) 2003-08-14 2011-02-15 Boston Scientific Scimed, Inc. Catheter having a cutting balloon including multiple cavities or multiple channels
US7641621B2 (en) * 2003-08-25 2010-01-05 Boston Scientific Scimed, Inc. Elongated intra-lumenal medical device
US7833175B2 (en) * 2003-09-05 2010-11-16 Boston Scientific Scimed, Inc. Medical device coil
US7540845B2 (en) * 2003-09-05 2009-06-02 Boston Scientific Scimed, Inc Medical device coil
US20050209674A1 (en) * 2003-09-05 2005-09-22 Kutscher Tuvia D Balloon assembly (V)
US20050059963A1 (en) * 2003-09-12 2005-03-17 Scimed Life Systems, Inc. Systems and method for creating transmural lesions
US7785273B2 (en) 2003-09-22 2010-08-31 Boston Scientific Scimed, Inc. Guidewire with reinforcing member
US7329383B2 (en) * 2003-10-22 2008-02-12 Boston Scientific Scimed, Inc. Alloy compositions and devices including the compositions
US7422403B1 (en) 2003-10-23 2008-09-09 Tini Alloy Company Non-explosive releasable coupling device
US7586828B1 (en) 2003-10-23 2009-09-08 Tini Alloy Company Magnetic data storage system
US7645292B2 (en) * 2003-10-27 2010-01-12 Boston Scientific Scimed, Inc. Vaso-occlusive devices with in-situ stiffening elements
US20050090856A1 (en) * 2003-10-27 2005-04-28 Scimed Life Systems, Inc. Vasco-occlusive devices with bioactive elements
US7237313B2 (en) * 2003-12-05 2007-07-03 Boston Scientific Scimed, Inc. Elongated medical device for intracorporal use
US20050149109A1 (en) * 2003-12-23 2005-07-07 Wallace Michael P. Expanding filler coil
US7747314B2 (en) * 2003-12-30 2010-06-29 Boston Scientific Scimed, Inc. Distal assembly for a medical device
US7243408B2 (en) * 2004-02-09 2007-07-17 Boston Scientific Scimed, Inc. Process method for attaching radio opaque markers to shape memory stent
US7967605B2 (en) 2004-03-16 2011-06-28 Guidance Endodontics, Llc Endodontic files and obturator devices and methods of manufacturing same
US7754047B2 (en) * 2004-04-08 2010-07-13 Boston Scientific Scimed, Inc. Cutting balloon catheter and method for blade mounting
US7566319B2 (en) 2004-04-21 2009-07-28 Boston Scientific Scimed, Inc. Traction balloon
US7632361B2 (en) 2004-05-06 2009-12-15 Tini Alloy Company Single crystal shape memory alloy devices and methods
US7749242B2 (en) * 2004-06-21 2010-07-06 Boston Scientific Scimed, Inc. Expanding vaso-occlusive device
US7416534B2 (en) * 2004-06-22 2008-08-26 Boston Scientific Scimed, Inc. Medical device including actuator
US7296442B2 (en) * 2004-07-15 2007-11-20 Owens-Brockway Glass Container Inc. Neck ring cooling
US8409167B2 (en) 2004-07-19 2013-04-02 Broncus Medical Inc Devices for delivering substances through an extra-anatomic opening created in an airway
US7229438B2 (en) 2004-10-14 2007-06-12 Boston Scientific Scimed, Inc. Ablation probe with distal inverted electrode array
US7524318B2 (en) * 2004-10-28 2009-04-28 Boston Scientific Scimed, Inc. Ablation probe with flared electrodes
US9055948B2 (en) * 2004-11-09 2015-06-16 Stryker Corporation Vaso-occlusive devices comprising complex-shape proximal portion and smaller diameter distal portion
US8038691B2 (en) 2004-11-12 2011-10-18 Boston Scientific Scimed, Inc. Cutting balloon catheter having flexible atherotomes
US7291158B2 (en) 2004-11-12 2007-11-06 Boston Scientific Scimed, Inc. Cutting balloon catheter having a segmented blade
US7989042B2 (en) 2004-11-24 2011-08-02 Boston Scientific Scimed, Inc. Medical devices with highly flexible coated hypotube
US7815599B2 (en) 2004-12-10 2010-10-19 Boston Scientific Scimed, Inc. Catheter having an ultra soft tip and methods for making the same
US20060155323A1 (en) 2005-01-07 2006-07-13 Porter Stephen C Intra-aneurysm devices
US20060155324A1 (en) * 2005-01-12 2006-07-13 Porter Stephen C Vaso-occlusive devices with attached polymer structures
US20060178697A1 (en) * 2005-02-04 2006-08-10 Carr-Brendel Victoria E Vaso-occlusive devices including non-biodegradable biomaterials
US20060178696A1 (en) * 2005-02-04 2006-08-10 Porter Stephen C Macroporous materials for use in aneurysms
US20060184191A1 (en) 2005-02-11 2006-08-17 Boston Scientific Scimed, Inc. Cutting balloon catheter having increased flexibility regions
US7431687B2 (en) 2005-03-07 2008-10-07 Boston Scientific Scimed, Inc. Percutaneous array delivery system
US7678107B2 (en) * 2005-03-10 2010-03-16 Boston Scientific Scimed, Inc. Medical needles and electrodes with improved bending stiffness
US7670337B2 (en) * 2005-03-25 2010-03-02 Boston Scientific Scimed, Inc. Ablation probe having a plurality of arrays of electrodes
US7763342B2 (en) 2005-03-31 2010-07-27 Tini Alloy Company Tear-resistant thin film methods of fabrication
US7955345B2 (en) * 2005-04-01 2011-06-07 Nexgen Medical Systems, Inc. Thrombus removal system and process
US8603122B2 (en) 2005-04-01 2013-12-10 Nexgen Medical Systems, Incorporated Thrombus removal system and process
US7955344B2 (en) * 2005-04-01 2011-06-07 Nexgen Medical Systems, Inc. Thrombus removal system and process
USRE47376E1 (en) 2005-04-01 2019-05-07 Nexgen Medical Systems, Incorporated Thrombus removal system and process
US7441888B1 (en) 2005-05-09 2008-10-28 Tini Alloy Company Eyeglass frame
US7540899B1 (en) 2005-05-25 2009-06-02 Tini Alloy Company Shape memory alloy thin film, method of fabrication, and articles of manufacture
US20070073374A1 (en) * 2005-09-29 2007-03-29 Anderl Steven F Endoprostheses including nickel-titanium alloys
US20070078480A1 (en) * 2005-10-04 2007-04-05 Boston Scientific Scimed, Inc. Self-expanding biodegradable or water-soluble vaso-occlusive devices
US20070078479A1 (en) * 2005-10-04 2007-04-05 Boston Scientific Scimed, Inc. Self-expanding vaso-occlusive devices with regulated expansion
US7704248B2 (en) * 2005-12-21 2010-04-27 Boston Scientific Scimed, Inc. Ablation device with compression balloon
EP2446919B1 (en) 2006-02-14 2016-08-31 C.R. Bard Inc. Coaxial PTA balloon
US20070239193A1 (en) * 2006-04-05 2007-10-11 Boston Scientific Scimed, Inc. Stretch-resistant vaso-occlusive devices with distal anchor link
US20070239194A1 (en) * 2006-04-05 2007-10-11 Boston Scientific Scimed, Inc. Vaso-occlusive devices having expandable fibers
US20080097139A1 (en) * 2006-07-14 2008-04-24 Boston Scientific Scimed, Inc. Systems and methods for treating lung tissue
US8068921B2 (en) 2006-09-29 2011-11-29 Vivant Medical, Inc. Microwave antenna assembly and method of using the same
US7780798B2 (en) * 2006-10-13 2010-08-24 Boston Scientific Scimed, Inc. Medical devices including hardened alloys
US8349099B1 (en) 2006-12-01 2013-01-08 Ormco Corporation Method of alloying reactive components
US8584767B2 (en) 2007-01-25 2013-11-19 Tini Alloy Company Sprinkler valve with active actuation
WO2008092028A1 (en) 2007-01-25 2008-07-31 Tini Alloy Company Frangible shape memory alloy fire sprinkler valve actuator
US7972375B2 (en) * 2007-02-05 2011-07-05 Boston Scientific Scimed, Inc. Endoprostheses including metal matrix composite structures
CA2681663A1 (en) * 2007-04-12 2008-10-23 Boston Scientific Limited Instantaneous mechanical detachment mechanism for vaso-occlusive devices
US8216226B2 (en) * 2007-04-13 2012-07-10 Boston Scientific Scimed, Inc. Radiofrequency ablation device
US20080287982A1 (en) * 2007-05-16 2008-11-20 Boston Scientific Scimed, Inc. Catheters for electrolytically detachable embolic devices
WO2009018289A2 (en) 2007-07-30 2009-02-05 Tini Alloy Company Method and devices for preventing restenosis in cardiovascular stents
US9198687B2 (en) 2007-10-17 2015-12-01 Covidien Lp Acute stroke revascularization/recanalization systems processes and products thereby
US9220522B2 (en) 2007-10-17 2015-12-29 Covidien Lp Embolus removal systems with baskets
US8585713B2 (en) 2007-10-17 2013-11-19 Covidien Lp Expandable tip assembly for thrombus management
US8545514B2 (en) 2008-04-11 2013-10-01 Covidien Lp Monorail neuro-microcatheter for delivery of medical devices to treat stroke, processes and products thereby
US8066757B2 (en) 2007-10-17 2011-11-29 Mindframe, Inc. Blood flow restoration and thrombus management methods
US10123803B2 (en) 2007-10-17 2018-11-13 Covidien Lp Methods of managing neurovascular obstructions
US8926680B2 (en) 2007-11-12 2015-01-06 Covidien Lp Aneurysm neck bridging processes with revascularization systems methods and products thereby
US11337714B2 (en) 2007-10-17 2022-05-24 Covidien Lp Restoring blood flow and clot removal during acute ischemic stroke
US8088140B2 (en) 2008-05-19 2012-01-03 Mindframe, Inc. Blood flow restorative and embolus removal methods
US8518037B2 (en) * 2007-10-30 2013-08-27 Boston Scientific Scimed, Inc. Radiofrequency ablation device
US8292880B2 (en) 2007-11-27 2012-10-23 Vivant Medical, Inc. Targeted cooling of deployable microwave antenna
WO2009073609A1 (en) 2007-11-30 2009-06-11 Tini Alloy Company Biocompatible copper-based single-crystal shape memory alloys
US7842143B2 (en) 2007-12-03 2010-11-30 Tini Alloy Company Hyperelastic shape setting devices and fabrication methods
US8382917B2 (en) 2007-12-03 2013-02-26 Ormco Corporation Hyperelastic shape setting devices and fabrication methods
WO2009088969A2 (en) * 2008-01-04 2009-07-16 Boston Scientific Scimed, Inc. Detachment mechanisms for implantable devices
JP5457373B2 (en) 2008-02-22 2014-04-02 コヴィディエン リミテッド パートナーシップ Device for blood flow recovery
US20090306701A1 (en) * 2008-06-10 2009-12-10 Boston Scientific Scimed, Inc. Vascular access sheath with integrated return electrode
CA2732507A1 (en) 2008-08-06 2010-02-11 Boston Scientific Scimed, Inc. Vaso-occlusive devices with textured surfaces
EP2859854B1 (en) 2008-09-09 2020-01-15 Boston Scientific Scimed, Inc. Composite detachment mechanism
US20100137898A1 (en) * 2008-12-02 2010-06-03 Boston Scientific Scimed, Inc. Vaso-occlusive devices with attachment assemblies for stretch-resistant members
US8500688B2 (en) 2009-04-16 2013-08-06 Medtronic, Inc. Retrograde coronary sinus perfusion cannula and methods of using same
US8474120B2 (en) 2009-10-09 2013-07-02 W. L. Gore & Associates, Inc. Bifurcated highly conformable medical device branch access
EP2549937B1 (en) 2010-03-24 2017-05-03 Nexgen Medical Systems, Inc. Thrombus removal system
US9017246B2 (en) 2010-11-19 2015-04-28 Boston Scientific Scimed, Inc. Biliary catheter systems including stabilizing members
US9486229B2 (en) 2011-05-13 2016-11-08 Broncus Medical Inc. Methods and devices for excision of tissue
US8709034B2 (en) 2011-05-13 2014-04-29 Broncus Medical Inc. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
WO2013078235A1 (en) 2011-11-23 2013-05-30 Broncus Medical Inc Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
US10342548B2 (en) 2012-01-13 2019-07-09 W. L. Gore & Associates, Inc. Occlusion devices and methods of their manufacture and use
US10124197B2 (en) 2012-08-31 2018-11-13 TiNi Allot Company Fire sprinkler valve actuator
US11040230B2 (en) 2012-08-31 2021-06-22 Tini Alloy Company Fire sprinkler valve actuator
US9435107B2 (en) * 2012-09-07 2016-09-06 Kohler Co. Shape memory faucet
US10194914B2 (en) 2014-08-14 2019-02-05 W. L. Gore & Associates, Inc. Anastomosis devices
CN115433892B (en) * 2022-09-14 2023-03-21 贵州大学 Method for simultaneously improving strength and plasticity of GH4169 high-temperature alloy plate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3174851A (en) * 1961-12-01 1965-03-23 William J Buehler Nickel-base alloys

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3174851A (en) * 1961-12-01 1965-03-23 William J Buehler Nickel-base alloys

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2644041A1 (en) * 1976-08-26 1978-03-02 Bbc Brown Boveri & Cie MEMORY ALLOY

Also Published As

Publication number Publication date
NO115605B (en) 1968-10-28
CH504538A (en) 1971-03-15
BE685751A (en) 1967-02-01
GB1161225A (en) 1969-08-13
NL6611720A (en) 1967-02-21
AT281446B (en) 1970-05-25
US3351463A (en) 1967-11-07
ES330445A1 (en) 1967-07-01

Similar Documents

Publication Publication Date Title
DE1533360B1 (en) Process for the production of nearly stoechiometric nickel-titanium alloys and their use
DE112010003614B4 (en) High strength screw
DE1458330C3 (en) Use of a tough, precipitation hardenable, rustproof, chrome, nickel and aluminum containing steel alloy
DE2131318B2 (en) PROCESS FOR MANUFACTURING REINFORCEMENT BAR FOR PRE-STAINED CONCRETE
DE2500084C3 (en) Process for the production of aluminum semi-finished products
DE2427038A1 (en) STAINLESS STEEL AND THE METHOD OF MANUFACTURING IT
DE3247873C2 (en)
DE1233148B (en) Use of a martensite hardenable steel alloy for pressure and impact resistant objects
DE2641924C2 (en) Austenitic Ni-Cv alloy with high corrosion resistance and hot formability
DE1621266A1 (en) Process for surface treatment of titanium or titanium alloys
EP0035069A1 (en) Memory alloy based on Cu-Al or on Cu-Al-Ni and process for the stabilisation of the two-way effect
DE1217076B (en) Martensite-hardenable steel alloy
DE1533360C (en) Process for the production of nearly stoichiometric nickel titanium alloys and the use of the same
DE1290727B (en) Process for the production of high strength niobium alloys
AT411269B (en) ALUMINUM-SILICON ALLOYS WITH IMPROVED MECHANICAL PROPERTIES
DE2219287A1 (en) Iron-chromium-molybdenum-nickel-cobalt alloy
DE1292412B (en) Process for the heat treatment of titanium alloys
DE1558508B2 (en) USING A MARTENSITE HARDENABLE CHROME NICKEL STEEL
DE1808910B2 (en) USE OF ALUMINUM ALLOYS FOR THE MANUFACTURING OF WORKPIECES THAT HAVE A GOOD RESISTANCE TO CORROSIONAL STRESS AFTER A COLD FORMING OF AT LEAST 5% AND DO NOT TEND TO FLAT
DE1458464C3 (en) Application of a heat treatment and stretch aging process to a steel
DE1807992B2 (en) Heat treatment process to achieve a bainitic structure in a high-strength steel
DE1212306B (en) Age-hardening, corrosion-resistant steel alloy
DE2451182C3 (en) Process for the heat treatment of chromed steel
DE1204831B (en) Process for the production of tempered cast parts from a magnesium-aluminum-zinc alloy
DE2031899B2 (en) USE OF TITANIUM ALLOYS WITH 0.1 TO 2% COPPER