NO115605B - - Google Patents
Download PDFInfo
- Publication number
- NO115605B NO115605B NO164358A NO16435866A NO115605B NO 115605 B NO115605 B NO 115605B NO 164358 A NO164358 A NO 164358A NO 16435866 A NO16435866 A NO 16435866A NO 115605 B NO115605 B NO 115605B
- Authority
- NO
- Norway
- Prior art keywords
- alloy
- strength
- temperature
- critical temperature
- processing
- Prior art date
Links
- 229910045601 alloy Inorganic materials 0.000 claims description 28
- 239000000956 alloy Substances 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 2
- 230000009467 reduction Effects 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 229910010380 TiNi Inorganic materials 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 229910000734 martensite Inorganic materials 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910001000 nickel titanium Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/007—Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/006—Resulting in heat recoverable alloys with a memory effect
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Preliminary Treatment Of Fibers (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
Description
Fremgangsmåte til bearbeidelse av en legering som inneholder 53,5 - 56,5 vektprosent nikkel og resten titan. Process for processing an alloy containing 53.5 - 56.5 weight percent nickel and the rest titanium.
Foreliggende oppfinnelse vedrører en fremgangsmåte til bearbeidelse av en legering som The present invention relates to a method for processing an alloy which
inneholder 53,5—56,5 vektprosent nikkel, fortrinnsvis omkring 55,1 vektprosent nikkel, og contains 53.5-56.5 weight percent nickel, preferably about 55.1 weight percent nickel, and
resten titan, bortsett frå forurensninger.the rest titanium, apart from impurities.
De på det nærmeste støkiometriske nikkel-titan-legeringer og deres enestående egenskaper The near-stoichiometric nickel-titanium alloys and their outstanding properties
er utførlig beskrevet i U.S patent 3 174 851. Ved is described in detail in U.S. patent 3,174,851
mange anvendelser ville det imidlertid være øn-skelig å fremstille disse legeringer med høyere in many applications, however, it would be desirable to produce these alloys with higher
flytestyrke, men forsøk med sikte på å oppnå buoyancy, but attempt with a view to achieve
økning av flytestyrken ved konvensjonelle metoder, såsom Varmebehandling, er falt dårlig ut, increasing the yield strength by conventional methods, such as heat treatment, has turned out poorly,
sannsynligvis på grunn av den kjensgjerning at probably due to the fact that
legeringen i det vesentlige består av en eneste the alloy essentially consists of a single
fase. phase.
Hensikten med oppfinnelsen er derfor å The purpose of the invention is therefore to
skaffe en på det nærmeste støkiometrisk nikkel-titan-legering med forbedret flytestyrke uten obtain a near stoichiometric nickel-titanium alloy with improved yield strength without
nevneverdig nedsettelse av bearbeidbarheten og seighéten. significant reduction in machinability and toughness.
Hensikten med oppfinnelsen er oppnådd ved at legeringen koidbéarbeides ved en temperatur under dens kritiske temperatur. Derved fås en flytestyrke over 7 000 kp/cm<2>, én forlengelse over 7 pst., en strekk-bruddstyrke over 11 200 kp/ cm<2>, et forhold styrke til spesifikk vekt over 1020 x 103 cm og en magnetisk permeabilitet på i det vesentlige én. The purpose of the invention is achieved by the alloy being coidbéworked at a temperature below its critical temperature. This results in a yield strength of more than 7,000 kp/cm<2>, an elongation of more than 7 percent, a tensile breaking strength of more than 11,200 kp/cm<2>, a ratio of strength to specific weight of more than 1020 x 103 cm and a magnetic permeability on essentially one.
Oppfinnelsen skal i det følgende beskrives The invention shall be described below
nærmere ved noen eksempler. in more detail with some examples.
Fremgangsmåten ifølge oppfinnelsen er ba-sert på den oppdagelse at bearbéidet TiNi går over i en martensitisk tilstand, hvor overgangen ér diffusjonsløs. Legeringens evne til å gå over i martensitt-tilstand er temperaturavhengig, og den maksimale temperatur, ved hvilken denne overgang kan finne sted, kalles den kritiske temperatur. Den kritiske temperatur som er en funk- sjon av legeringssammensetningen, kan lett be-stemmes ut fra en dempningskurve, og noen typiske sammensetninger med de tilsvarende tilnærmede kritiske temperaturer fremgår av tabell 1. The method according to the invention is based on the discovery that the processed TiNi transitions into a martensitic state, where the transition is diffusionless. The alloy's ability to transition into the martensite state is temperature dependent, and the maximum temperature at which this transition can take place is called the critical temperature. The critical temperature, which is a function of the alloy composition, can easily be determined from an attenuation curve, and some typical compositions with the corresponding approximate critical temperatures appear in table 1.
Fremgangsmåten ifølge oppfinnelsen for styrkeøkning av TiNi består først og fremst ved at legeringsbearbeidelsen skjer under legeringens kritisk temperatur, dvs. den temperatur, ved hvilken legeringen går over i martensitisk tilstand. Tiden for styrkeøkningen er temperaturavhengig, dvs. jo større temperaturforskjellen mellom arbeidstemperaturen og den kritiske temperatur er, desto hurtigere skjer styrkeøk-ningen. Til de fleste formål vil det være å fore-trekke at arbeidstemperaturen holdes minst 20 —30° C under den kritiske temperatur, og for å sikre at den minste ønskede temperaturforskjell opprettholdes, må den temperaturstigning som vanligvis forårsakes av friksjon, tas i betrakt-ning. Det skal imidlertid bemerkes at så lenge arbeidstemperaturen holdes under den kritiske temperatur, vil temperaturvariasjoner som stam-mer fra friksjon, ikke i vesentlig grad påvirke prosessen. The method according to the invention for increasing the strength of TiNi consists primarily of the alloy processing taking place below the alloy's critical temperature, i.e. the temperature at which the alloy changes into the martensitic state. The time for the strength increase is temperature dependent, i.e. the greater the temperature difference between the working temperature and the critical temperature, the faster the strength increase occurs. For most purposes it will be preferable that the working temperature is kept at least 20-30° C below the critical temperature, and to ensure that the minimum desired temperature difference is maintained, the temperature rise usually caused by friction must be taken into account . However, it should be noted that as long as the working temperature is kept below the critical temperature, temperature variations that originate from friction will not significantly affect the process.
Legeringen kan bearbeides ved en hvilken som helst av de gjengse, kjente metoder, blant hvilke kan nevnes senksmiing, valsing, trekking, ekstrudering, smiing, eksplosiv formgivning, strekking, planvalsing m. v. Fortrinnsvis utføres denne bearbeidelse som en del av den samlede prosess for fremstilling av legeringen frem til dens endelige struktur. The alloy can be processed by any of the usual, known methods, among which can be mentioned drop forging, rolling, drawing, extrusion, forging, explosive forming, stretching, flat rolling, etc. Preferably, this processing is carried out as part of the overall process for the production of the alloy to its final structure.
Graden av den bearbeidelse som legeringen utsettes for vil avhenge av den ønskede styrke og hårdhet, således at større bearbeidelse gir større styrke. Det skal imidlertid bemerkes at der er en øvre grense for den bearbeidelsesgrad som legeringen kan underkastes, og hvis den overskrides, vil der oppstå kantrevner og lokale sprengninger. Stort sett har det vist seg at legeringen ikke bør bearbeides ut over 20 til 25 pst. arealreduksjon ved runde emner og det samme med hensyn til tykkelsesreduksjon ved plane emner, idet en overskridelse vil resultere i en merkbar nedsettelse av duktiliteten uten en der-til svarende styrkeøkning. The degree of processing to which the alloy is subjected will depend on the desired strength and hardness, so that greater processing gives greater strength. However, it should be noted that there is an upper limit to the degree of processing to which the alloy can be subjected, and if it is exceeded, edge cracks and local bursts will occur. Generally speaking, it has been shown that the alloy should not be machined beyond a 20 to 25 percent area reduction in the case of round workpieces and the same with regard to thickness reduction in the case of flat workpieces, as an excess will result in a noticeable reduction in ductility without a corresponding strength gain.
Ved fremgangsmåten ifølge oppfinnelsen oppnås en ny legering som kombinerer meget høy styrke, høy hårdhet, høy slagstyrke eller selghet, god trekkforlengelse eller duktilitet, korrosjonsmotstand, lav spesifikk vekt og umagne-tisk stabilitet. Legeringen som bearbeides ved fremgangsmåten ifølge oppfinnelsen, oppnår fortrinnsvis en flytestyrke på 8 400 til 14 000 kp/ cm<2>, en total forlengelse på 7 til 20 pst., et forhold styrke til spes. vekt på 1320 . IO<3>til 2030 . IO<3>cm, en strekk-bruddstyrke mellom 8 400 og 18 300 kp/cm<2>og en magnetisk permeabilitet på i det vesentlige én. With the method according to the invention, a new alloy is obtained which combines very high strength, high hardness, high impact strength or ductility, good tensile elongation or ductility, corrosion resistance, low specific weight and non-magnetic stability. The alloy processed by the method according to the invention preferably achieves a yield strength of 8,400 to 14,000 kp/cm<2>, a total elongation of 7 to 20 percent, a ratio of strength to spec. weight of 1320 . IO<3>to 2030 . 10<3>cm, a tensile breaking strength between 8,400 and 18,300 kp/cm<2>and a magnetic permeability of essentially one.
Eksempel 1:Example 1:
En 3 660 . 914 . 11,9 mm plate av TiNi med 55,1 vektprosent Ni med titan som den vesentlige rest, ble utglødet ved 800° C i vakuum og ovnkjølt for eliminering av virkningen av tid-ligere bearbeidelse. A 3,660 . 914 . 11.9 mm plate of TiNi with 55.1 wt% Ni with titanium as the major residue was annealed at 800°C in vacuum and furnace cooled to eliminate the effect of earlier processing.
Platen ble derpå anbragt i flytende nitrogen i 20 min. for å sikre at legeringen var under sin kritiske temperatur og at den ville holde seg under dens kritiske temperatur under den på-følgende valsing. Mengden eller graden av det tilførte arbeide, uttrykt ved tykkelsesreduksjon, er angitt nedenfor sammen med de tilsvarende egenskaper. The plate was then placed in liquid nitrogen for 20 min. to ensure that the alloy was below its critical temperature and that it would remain below its critical temperature during the subsequent rolling. The amount or degree of added work, expressed by thickness reduction, is indicated below together with the corresponding properties.
Foruten den høye styrke og duktilitet målt ved flytespenning henholdsvis forlengelse hadde legeringen en magnetisk permeabilitet på i det vesentlige én og en høy korrosjonsmotstand og slagseighet. Besides the high strength and ductility measured by yield stress and elongation respectively, the alloy had a magnetic permeability of essentially one and a high corrosion resistance and impact strength.
Eksempel 2: Example 2:
En tråd av TiNi med 55,1 vektprosent Ni med en diameter på 1,5 mm, ble utglødet og kjølt som beskrevet i eksempel 1 og derpå trukket gjennom koniske dyser. Mengden av tilført arbeide uttrykt ved arealreduksjonen er sammen med de tilsvarende egenskaper angitt i tabell III. A wire of TiNi with 55.1% by weight Ni with a diameter of 1.5 mm was annealed and cooled as described in Example 1 and then drawn through conical dies. The amount of added work expressed by the area reduction is, together with the corresponding characteristics, indicated in table III.
Legeringen hadde en magnetisk permeabilitet på i det vesentlige én og en høy slagseighet og kor-rosj onsmotstand. The alloy had a magnetic permeability of essentially one and a high impact strength and corrosion resistance.
Legeringene som er bearbeidet ved fremgangsmåten ifølge oppfinnelsen har mange kon-struktive anvendelser, da de kombinerer de meget ønskelige egenskaper som styrke, seighet, duktilitet, korrosjonsmotstand og magnetisk permeabilitet av vesentlig ensartethet. Det høye forhold styrke til spes. vekt gjør disse legeringer særlig verdifulle ved anvendelser, hvor forhol-det mellom materialets vekt og styrke er av vesentlig betydning, såsom for raketthylstere og romfartøykomponenter. Disse legeringers høye styrke og korrosjonsmotstand, spesielt i mari-time omgivelser, gjør dem velanvendelige til støydempede skipskonstruksjoner, selvom noe av deres vibrasjonsdempende egenskap er ofret til fordel for en forbedret styrke. Legeringen vil også finne anvendelse i panserlignende materia-ler for å motstå kuleanslag. The alloys processed by the method according to the invention have many constructive applications, as they combine the highly desirable properties such as strength, toughness, ductility, corrosion resistance and magnetic permeability of substantial uniformity. The high ratio of strength to spec. weight makes these alloys particularly valuable in applications where the ratio between the material's weight and strength is of significant importance, such as for rocket casings and spacecraft components. These alloys' high strength and corrosion resistance, especially in maritime environments, make them suitable for noise-damped ship constructions, although some of their vibration-damping properties are sacrificed in favor of improved strength. The alloy will also find use in armour-like materials to resist bullet impacts.
Fremgangsmåten ifølge oppfinnelsen kan utføres ved de gjengse bearbeidelsesmetoder og har bl. a. den fordel at den til forskjell fra van-lige slip-bearbeidelses-herdeprosesser (den prosess ved hvilken dislokasjoner beveger seg i et metall som deformeres) og dislokasjonsbearbei-delses-herdeprosesser ikke innvirker merkbart på duktilitet og seighet, og til forskjell fra overgangen fra austenitt til martensitt i stål, innvirker den ikke på legeringens umagnetiske egenskaper. The method according to the invention can be carried out by the usual processing methods and has, among other things, a. the advantage that, in contrast to normal grinding-hardening processes (the process by which dislocations move in a metal that is deformed) and dislocation-hardening processes, it does not noticeably affect ductility and toughness, and unlike the transition from austenite to martensite in steel, it does not affect the alloy's non-magnetic properties.
Claims (2)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US481436A US3351463A (en) | 1965-08-20 | 1965-08-20 | High strength nickel-base alloys |
Publications (1)
Publication Number | Publication Date |
---|---|
NO115605B true NO115605B (en) | 1968-10-28 |
Family
ID=23911937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO164358A NO115605B (en) | 1965-08-20 | 1966-08-19 |
Country Status (9)
Country | Link |
---|---|
US (1) | US3351463A (en) |
AT (1) | AT281446B (en) |
BE (1) | BE685751A (en) |
CH (1) | CH504538A (en) |
DE (1) | DE1533360B1 (en) |
ES (1) | ES330445A1 (en) |
GB (1) | GB1161225A (en) |
NL (1) | NL6611720A (en) |
NO (1) | NO115605B (en) |
Families Citing this family (244)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE758862A (en) * | 1969-11-12 | 1971-04-16 | Fulmer Res Inst Ltd | Improvements relating to the treatment of alloys |
US4035007A (en) * | 1970-07-02 | 1977-07-12 | Raychem Corporation | Heat recoverable metallic coupling |
US4198081A (en) * | 1973-10-29 | 1980-04-15 | Raychem Corporation | Heat recoverable metallic coupling |
US3953253A (en) * | 1973-12-21 | 1976-04-27 | Texas Instruments Incorporated | Annealing of NiTi martensitic memory alloys and product produced thereby |
GB1571627A (en) * | 1976-01-22 | 1980-07-16 | Raychem Corp | Heat-recoverable coupling |
CH606456A5 (en) * | 1976-08-26 | 1978-10-31 | Bbc Brown Boveri & Cie | |
GB1594693A (en) * | 1976-10-29 | 1981-08-05 | Raychem Sa Nv | Heatrecoverable article |
DE2954256C2 (en) | 1978-01-09 | 1994-05-11 | Naamloze Vennootschap Raychem S.A., Kessel-Lo, Leuven | Method for forming a sealed connection between a heat-shrunk sleeve and at least two elongated substrates entering the sleeve from the same end |
DE2954743C2 (en) * | 1978-01-09 | 1996-10-31 | Raychem Sa Nv | Clips for sealing branches from distributor boxes |
GB1604981A (en) * | 1978-01-09 | 1981-12-16 | Raychem Sa Nv | Branchoff method |
US4197643A (en) * | 1978-03-14 | 1980-04-15 | University Of Connecticut | Orthodontic appliance of titanium alloy |
GB1604984A (en) * | 1978-04-04 | 1981-12-16 | Raychem Sa Nv | Branchoff method |
US4242954A (en) * | 1978-05-23 | 1981-01-06 | Graham Magnetics Incorporated | Calendar roll system |
DE3007307A1 (en) * | 1980-01-18 | 1981-07-23 | BBC AG Brown, Boveri & Cie., Baden, Aargau | Detachable shrunk joint - uses shape memory alloy with two=way effect |
US4337090A (en) * | 1980-09-05 | 1982-06-29 | Raychem Corporation | Heat recoverable nickel/titanium alloy with improved stability and machinability |
IL64508A0 (en) * | 1980-12-12 | 1982-03-31 | Raychem Pontoise Sa | Wire stripping arrangement |
US4621844A (en) * | 1982-01-25 | 1986-11-11 | Shell Oil Company | Memory metal connector |
US4565589A (en) * | 1982-03-05 | 1986-01-21 | Raychem Corporation | Nickel/titanium/copper shape memory alloy |
US4505767A (en) * | 1983-10-14 | 1985-03-19 | Raychem Corporation | Nickel/titanium/vanadium shape memory alloy |
US4570851A (en) * | 1984-05-07 | 1986-02-18 | Cirillo John R | Temperature regulating, pressure relief flow valves employing shaped memory alloys |
CA1269409A (en) * | 1984-11-14 | 1990-05-22 | N.V. Raychem S.A. | Joining insulated elongate conduit members |
US4717341A (en) * | 1986-01-13 | 1988-01-05 | Goldberg A Jon | Orthodontic appliance system |
US4720944A (en) * | 1986-06-04 | 1988-01-26 | Paul Loicq | Suspended ceiling panel retaining system |
US4839479A (en) * | 1986-06-30 | 1989-06-13 | Davis Jr Thomas O | Article using shape-memory alloy to improve and/or control the speed of recovery |
US4759293A (en) * | 1986-06-30 | 1988-07-26 | Davis Jr Thomas O | Article using shape-memory alloy to improve and/or control the speed of recovery |
US4832382A (en) * | 1987-02-19 | 1989-05-23 | Raychem Corporation | Coupling device |
US4872713A (en) * | 1987-02-19 | 1989-10-10 | Raychem Corporation | Coupling device |
DE3823186A1 (en) * | 1988-07-08 | 1990-04-12 | Messerschmitt Boelkow Blohm | ELECTROMECHANICAL RELAY |
WO1991015152A1 (en) * | 1990-04-10 | 1991-10-17 | Boston Scientific Corporation | High elongation linear elastic guidewire |
US5238004A (en) * | 1990-04-10 | 1993-08-24 | Boston Scientific Corporation | High elongation linear elastic guidewire |
US5273116A (en) * | 1992-02-14 | 1993-12-28 | Baker Hughes Incorporated | Firing mechanism for actuating wellbore tools |
US5199497A (en) * | 1992-02-14 | 1993-04-06 | Baker Hughes Incorporated | Shape-memory actuator for use in subterranean wells |
US5215145A (en) * | 1992-02-14 | 1993-06-01 | Baker Hughes Incorporated | Wedge-set sealing flap for use in subterranean wellbores |
ES2117706T3 (en) * | 1992-03-10 | 1998-08-16 | Bausch & Lomb | INTEGRAL MOUNT INTENDED FOR GLASSES. |
US5376001A (en) * | 1993-05-10 | 1994-12-27 | Tepper; Harry W. | Removable orthodontic appliance |
US5769796A (en) * | 1993-05-11 | 1998-06-23 | Target Therapeutics, Inc. | Super-elastic composite guidewire |
US7883474B1 (en) | 1993-05-11 | 2011-02-08 | Target Therapeutics, Inc. | Composite braided guidewire |
US5749837A (en) * | 1993-05-11 | 1998-05-12 | Target Therapeutics, Inc. | Enhanced lubricity guidewire |
US5772609A (en) * | 1993-05-11 | 1998-06-30 | Target Therapeutics, Inc. | Guidewire with variable flexibility due to polymeric coatings |
US6001123A (en) * | 1994-04-01 | 1999-12-14 | Gore Enterprise Holdings Inc. | Folding self-expandable intravascular stent-graft |
US6165210A (en) * | 1994-04-01 | 2000-12-26 | Gore Enterprise Holdings, Inc. | Self-expandable helical intravascular stent and stent-graft |
US6139510A (en) * | 1994-05-11 | 2000-10-31 | Target Therapeutics Inc. | Super elastic alloy guidewire |
US5522819A (en) * | 1994-05-12 | 1996-06-04 | Target Therapeutics, Inc. | Dual coil medical retrieval device |
US5454795A (en) * | 1994-06-27 | 1995-10-03 | Target Therapeutics, Inc. | Kink-free spiral-wound catheter |
US5496294A (en) * | 1994-07-08 | 1996-03-05 | Target Therapeutics, Inc. | Catheter with kink-resistant distal tip |
US6331188B1 (en) | 1994-08-31 | 2001-12-18 | Gore Enterprise Holdings, Inc. | Exterior supported self-expanding stent-graft |
US6015429A (en) * | 1994-09-08 | 2000-01-18 | Gore Enterprise Holdings, Inc. | Procedures for introducing stents and stent-grafts |
US5658264A (en) | 1994-11-10 | 1997-08-19 | Target Therapeutics, Inc. | High performance spiral-wound catheter |
CA2162620A1 (en) | 1994-11-11 | 1996-05-12 | Gene Samson | Microcatheter-less coil delivery device |
US5645558A (en) | 1995-04-20 | 1997-07-08 | Medical University Of South Carolina | Anatomically shaped vasoocclusive device and method of making the same |
US5911731A (en) * | 1995-04-20 | 1999-06-15 | Target Therapeutics, Inc. | Anatomically shaped vasoocclusive devices |
US5702373A (en) * | 1995-08-31 | 1997-12-30 | Target Therapeutics, Inc. | Composite super-elastic alloy braid reinforced catheter |
US6824553B1 (en) | 1995-04-28 | 2004-11-30 | Target Therapeutics, Inc. | High performance braided catheter |
US5891112A (en) * | 1995-04-28 | 1999-04-06 | Target Therapeutics, Inc. | High performance superelastic alloy braid reinforced catheter |
NO962336L (en) * | 1995-06-06 | 1996-12-09 | Target Therapeutics Inc | Vaso-occlusive spiral |
US5624461A (en) | 1995-06-06 | 1997-04-29 | Target Therapeutics, Inc. | Three dimensional in-filling vaso-occlusive coils |
US5582619A (en) * | 1995-06-30 | 1996-12-10 | Target Therapeutics, Inc. | Stretch resistant vaso-occlusive coils |
US5853418A (en) * | 1995-06-30 | 1998-12-29 | Target Therapeutics, Inc. | Stretch resistant vaso-occlusive coils (II) |
US6013084A (en) * | 1995-06-30 | 2000-01-11 | Target Therapeutics, Inc. | Stretch resistant vaso-occlusive coils (II) |
EP0913124B1 (en) * | 1995-06-30 | 2003-11-26 | Boston Scientific Limited | Stretch resistant vaso-occlusive coils |
US5743905A (en) * | 1995-07-07 | 1998-04-28 | Target Therapeutics, Inc. | Partially insulated occlusion device |
US6019757A (en) * | 1995-07-07 | 2000-02-01 | Target Therapeutics, Inc. | Endoluminal electro-occlusion detection apparatus and method |
US5906606A (en) * | 1995-12-04 | 1999-05-25 | Target Therapuetics, Inc. | Braided body balloon catheter |
US6042605A (en) | 1995-12-14 | 2000-03-28 | Gore Enterprose Holdings, Inc. | Kink resistant stent-graft |
EP0866677A4 (en) | 1995-12-14 | 1999-10-27 | Prograft Medical Inc | Stent-graft deployment apparatus and method |
US6488637B1 (en) | 1996-04-30 | 2002-12-03 | Target Therapeutics, Inc. | Composite endovascular guidewire |
US5927345A (en) * | 1996-04-30 | 1999-07-27 | Target Therapeutics, Inc. | Super-elastic alloy braid structure |
US6090099A (en) * | 1996-05-24 | 2000-07-18 | Target Therapeutics, Inc. | Multi-layer distal catheter section |
US5782811A (en) * | 1996-05-30 | 1998-07-21 | Target Therapeutics, Inc. | Kink-resistant braided catheter with distal side holes |
US5868754A (en) * | 1996-06-12 | 1999-02-09 | Target Therapeutics, Inc. | Medical retrieval device |
US6066158A (en) * | 1996-07-25 | 2000-05-23 | Target Therapeutics, Inc. | Mechanical clot encasing and removal wire |
US5972019A (en) * | 1996-07-25 | 1999-10-26 | Target Therapeutics, Inc. | Mechanical clot treatment device |
US5827201A (en) * | 1996-07-26 | 1998-10-27 | Target Therapeutics, Inc. | Micro-braided guidewire |
US5964797A (en) * | 1996-08-30 | 1999-10-12 | Target Therapeutics, Inc. | Electrolytically deployable braided vaso-occlusion device |
US5971975A (en) * | 1996-10-09 | 1999-10-26 | Target Therapeutics, Inc. | Guide catheter with enhanced guidewire tracking |
US6159187A (en) * | 1996-12-06 | 2000-12-12 | Target Therapeutics, Inc. | Reinforced catheter with a formable distal tip |
US6551350B1 (en) | 1996-12-23 | 2003-04-22 | Gore Enterprise Holdings, Inc. | Kink resistant bifurcated prosthesis |
US6352561B1 (en) | 1996-12-23 | 2002-03-05 | W. L. Gore & Associates | Implant deployment apparatus |
US5733329A (en) * | 1996-12-30 | 1998-03-31 | Target Therapeutics, Inc. | Vaso-occlusive coil with conical end |
US5925061A (en) * | 1997-01-13 | 1999-07-20 | Gore Enterprise Holdings, Inc. | Low profile vascular stent |
US6017323A (en) * | 1997-04-08 | 2000-01-25 | Target Therapeutics, Inc. | Balloon catheter with distal infusion section |
US5951539A (en) * | 1997-06-10 | 1999-09-14 | Target Therpeutics, Inc. | Optimized high performance multiple coil spiral-wound vascular catheter |
US6152912A (en) * | 1997-06-10 | 2000-11-28 | Target Therapeutics, Inc. | Optimized high performance spiral-wound vascular catheter |
US6258080B1 (en) | 1997-07-01 | 2001-07-10 | Target Therapeutics, Inc. | Kink-free spiral-wound catheter |
US6063070A (en) | 1997-08-05 | 2000-05-16 | Target Therapeutics, Inc. | Detachable aneurysm neck bridge (II) |
AU8772198A (en) | 1997-08-05 | 1999-03-08 | Target Therapeutics, Inc. | Detachable aneurysm neck bridge |
US6086577A (en) * | 1997-08-13 | 2000-07-11 | Scimed Life Systems, Inc. | Detachable aneurysm neck bridge (III) |
US6860893B2 (en) | 1997-08-29 | 2005-03-01 | Boston Scientific Scimed, Inc. | Stable coil designs |
US6322576B1 (en) | 1997-08-29 | 2001-11-27 | Target Therapeutics, Inc. | Stable coil designs |
US6066149A (en) | 1997-09-30 | 2000-05-23 | Target Therapeutics, Inc. | Mechanical clot treatment device with distal filter |
US5891114A (en) * | 1997-09-30 | 1999-04-06 | Target Therapeutics, Inc. | Soft-tip high performance braided catheter |
US6217566B1 (en) | 1997-10-02 | 2001-04-17 | Target Therapeutics, Inc. | Peripheral vascular delivery catheter |
US6036720A (en) * | 1997-12-15 | 2000-03-14 | Target Therapeutics, Inc. | Sheet metal aneurysm neck bridge |
US6368316B1 (en) * | 1998-06-11 | 2002-04-09 | Target Therapeutics, Inc. | Catheter with composite stiffener |
US7815626B1 (en) * | 1998-06-12 | 2010-10-19 | Target Therapeutics, Inc. | Catheter with knit section |
US5935148A (en) * | 1998-06-24 | 1999-08-10 | Target Therapeutics, Inc. | Detachable, varying flexibility, aneurysm neck bridge |
US6136014A (en) * | 1998-09-01 | 2000-10-24 | Vivant Medical, Inc. | Percutaneous tissue removal device |
US7410482B2 (en) | 1998-09-04 | 2008-08-12 | Boston Scientific-Scimed, Inc. | Detachable aneurysm neck bridge |
EP1109499B1 (en) | 1998-09-04 | 2007-08-15 | Boston Scientific Limited | Detachable aneurysm neck closure patch |
US6036698A (en) | 1998-10-30 | 2000-03-14 | Vivant Medical, Inc. | Expandable ring percutaneous tissue removal device |
US6648854B1 (en) | 1999-05-14 | 2003-11-18 | Scimed Life Systems, Inc. | Single lumen balloon-tipped micro catheter with reinforced shaft |
US6280457B1 (en) * | 1999-06-04 | 2001-08-28 | Scimed Life Systems, Inc. | Polymer covered vaso-occlusive devices and methods of producing such devices |
US6559845B1 (en) * | 1999-06-11 | 2003-05-06 | Pulse Entertainment | Three dimensional animation system and method |
US6306132B1 (en) | 1999-06-17 | 2001-10-23 | Vivant Medical | Modular biopsy and microwave ablation needle delivery apparatus adapted to in situ assembly and method of use |
US6663607B2 (en) | 1999-07-12 | 2003-12-16 | Scimed Life Systems, Inc. | Bioactive aneurysm closure device assembly and kit |
US7462162B2 (en) * | 2001-09-04 | 2008-12-09 | Broncus Technologies, Inc. | Antiproliferative devices for maintaining patency of surgically created channels in a body organ |
US7422563B2 (en) | 1999-08-05 | 2008-09-09 | Broncus Technologies, Inc. | Multifunctional tip catheter for applying energy to tissue and detecting the presence of blood flow |
US6689120B1 (en) | 1999-08-06 | 2004-02-10 | Boston Scientific Scimed, Inc. | Reduced profile delivery system |
CA2382871A1 (en) | 1999-08-24 | 2001-03-01 | Neuron Therapeutics, Inc. | Lumbar drainage catheter |
US6722371B1 (en) | 2000-02-18 | 2004-04-20 | Thomas J. Fogarty | Device for accurately marking tissue |
AU2001238382A1 (en) | 2000-02-18 | 2001-08-27 | Thomas J. M. D. Fogarty | Improved device for accurately marking tissue |
US6564806B1 (en) | 2000-02-18 | 2003-05-20 | Thomas J. Fogarty | Device for accurately marking tissue |
US6746461B2 (en) | 2000-08-15 | 2004-06-08 | William R. Fry | Low-profile, shape-memory surgical occluder |
US6635069B1 (en) | 2000-10-18 | 2003-10-21 | Scimed Life Systems, Inc. | Non-overlapping spherical three-dimensional coil |
US6602269B2 (en) | 2001-03-30 | 2003-08-05 | Scimed Life Systems | Embolic devices capable of in-situ reinforcement |
US6908448B2 (en) * | 2001-08-24 | 2005-06-21 | Dermisonics, Inc. | Substance delivery device |
US7708712B2 (en) | 2001-09-04 | 2010-05-04 | Broncus Technologies, Inc. | Methods and devices for maintaining patency of surgically created channels in a body organ |
US6685620B2 (en) | 2001-09-25 | 2004-02-03 | The Foundry Inc. | Ventricular infarct assist device and methods for using it |
US6878151B2 (en) | 2001-09-27 | 2005-04-12 | Scimed Life Systems, Inc. | Medical retrieval device |
US6878147B2 (en) | 2001-11-02 | 2005-04-12 | Vivant Medical, Inc. | High-strength microwave antenna assemblies |
US7197363B2 (en) | 2002-04-16 | 2007-03-27 | Vivant Medical, Inc. | Microwave antenna having a curved configuration |
US6752767B2 (en) | 2002-04-16 | 2004-06-22 | Vivant Medical, Inc. | Localization element with energized tip |
US6783438B2 (en) * | 2002-04-18 | 2004-08-31 | Ormco Corporation | Method of manufacturing an endodontic instrument |
US7779542B2 (en) * | 2002-04-18 | 2010-08-24 | Ormco Corporation | Method of manufacturing a dental instrument |
US7060083B2 (en) * | 2002-05-20 | 2006-06-13 | Boston Scientific Scimed, Inc. | Foldable vaso-occlusive member |
US7485122B2 (en) * | 2002-06-27 | 2009-02-03 | Boston Scientific Scimed, Inc. | Integrated anchor coil in stretch-resistant vaso-occlusive coils |
US8425549B2 (en) | 2002-07-23 | 2013-04-23 | Reverse Medical Corporation | Systems and methods for removing obstructive matter from body lumens and treating vascular defects |
US7040323B1 (en) * | 2002-08-08 | 2006-05-09 | Tini Alloy Company | Thin film intrauterine device |
US20040098023A1 (en) * | 2002-11-15 | 2004-05-20 | Scimed Life Systems, Inc. | Embolic device made of nanofibers |
US6780260B1 (en) | 2002-12-10 | 2004-08-24 | The United Sates Of America As Represented By The Secretary Of The Navy | Non-welded shape memory alloy rings produced from roll flattened wire |
US20040143317A1 (en) * | 2003-01-17 | 2004-07-22 | Stinson Jonathan S. | Medical devices |
US20040153025A1 (en) * | 2003-02-03 | 2004-08-05 | Seifert Paul S. | Systems and methods of de-endothelialization |
US7744583B2 (en) * | 2003-02-03 | 2010-06-29 | Boston Scientific Scimed | Systems and methods of de-endothelialization |
US7182735B2 (en) * | 2003-02-26 | 2007-02-27 | Scimed Life Systems, Inc. | Elongated intracorporal medical device |
EP1620159B1 (en) | 2003-04-14 | 2009-08-05 | Cook Incorporated | Large diameter delivery catheter/sheath |
AU2004233877B2 (en) | 2003-04-28 | 2010-03-11 | Cook Medical Technologies Llc | Flexible introducer sheath with varying durometer |
US7025768B2 (en) * | 2003-05-06 | 2006-04-11 | Boston Scientific Scimed, Inc. | Systems and methods for ablation of tissue |
JP4015582B2 (en) * | 2003-05-09 | 2007-11-28 | ニスカ株式会社 | Image forming apparatus |
US7632288B2 (en) | 2003-05-12 | 2009-12-15 | Boston Scientific Scimed, Inc. | Cutting balloon catheter with improved pushability |
US7758520B2 (en) * | 2003-05-27 | 2010-07-20 | Boston Scientific Scimed, Inc. | Medical device having segmented construction |
US7758604B2 (en) | 2003-05-29 | 2010-07-20 | Boston Scientific Scimed, Inc. | Cutting balloon catheter with improved balloon configuration |
US8337519B2 (en) | 2003-07-10 | 2012-12-25 | Boston Scientific Scimed, Inc. | Embolic protection filtering device |
US7311703B2 (en) | 2003-07-18 | 2007-12-25 | Vivant Medical, Inc. | Devices and methods for cooling microwave antennas |
US8308682B2 (en) | 2003-07-18 | 2012-11-13 | Broncus Medical Inc. | Devices for maintaining patency of surgically created channels in tissue |
US7092552B2 (en) * | 2003-07-30 | 2006-08-15 | Xerox Corporation | System and method for measuring and quantizing document quality |
US7896898B2 (en) * | 2003-07-30 | 2011-03-01 | Boston Scientific Scimed, Inc. | Self-centering blood clot filter |
US7780626B2 (en) | 2003-08-08 | 2010-08-24 | Boston Scientific Scimed, Inc. | Catheter shaft for regulation of inflation and deflation |
US7887557B2 (en) | 2003-08-14 | 2011-02-15 | Boston Scientific Scimed, Inc. | Catheter having a cutting balloon including multiple cavities or multiple channels |
US7641621B2 (en) * | 2003-08-25 | 2010-01-05 | Boston Scientific Scimed, Inc. | Elongated intra-lumenal medical device |
US20050209674A1 (en) * | 2003-09-05 | 2005-09-22 | Kutscher Tuvia D | Balloon assembly (V) |
US7540845B2 (en) * | 2003-09-05 | 2009-06-02 | Boston Scientific Scimed, Inc | Medical device coil |
US7833175B2 (en) * | 2003-09-05 | 2010-11-16 | Boston Scientific Scimed, Inc. | Medical device coil |
US20050059963A1 (en) * | 2003-09-12 | 2005-03-17 | Scimed Life Systems, Inc. | Systems and method for creating transmural lesions |
US7785273B2 (en) | 2003-09-22 | 2010-08-31 | Boston Scientific Scimed, Inc. | Guidewire with reinforcing member |
US7329383B2 (en) * | 2003-10-22 | 2008-02-12 | Boston Scientific Scimed, Inc. | Alloy compositions and devices including the compositions |
US7586828B1 (en) | 2003-10-23 | 2009-09-08 | Tini Alloy Company | Magnetic data storage system |
US7422403B1 (en) | 2003-10-23 | 2008-09-09 | Tini Alloy Company | Non-explosive releasable coupling device |
US20050090856A1 (en) * | 2003-10-27 | 2005-04-28 | Scimed Life Systems, Inc. | Vasco-occlusive devices with bioactive elements |
US7645292B2 (en) * | 2003-10-27 | 2010-01-12 | Boston Scientific Scimed, Inc. | Vaso-occlusive devices with in-situ stiffening elements |
US7237313B2 (en) * | 2003-12-05 | 2007-07-03 | Boston Scientific Scimed, Inc. | Elongated medical device for intracorporal use |
US20050149109A1 (en) * | 2003-12-23 | 2005-07-07 | Wallace Michael P. | Expanding filler coil |
US7747314B2 (en) * | 2003-12-30 | 2010-06-29 | Boston Scientific Scimed, Inc. | Distal assembly for a medical device |
US7243408B2 (en) * | 2004-02-09 | 2007-07-17 | Boston Scientific Scimed, Inc. | Process method for attaching radio opaque markers to shape memory stent |
US7967605B2 (en) | 2004-03-16 | 2011-06-28 | Guidance Endodontics, Llc | Endodontic files and obturator devices and methods of manufacturing same |
US7754047B2 (en) * | 2004-04-08 | 2010-07-13 | Boston Scientific Scimed, Inc. | Cutting balloon catheter and method for blade mounting |
US7566319B2 (en) | 2004-04-21 | 2009-07-28 | Boston Scientific Scimed, Inc. | Traction balloon |
US7632361B2 (en) | 2004-05-06 | 2009-12-15 | Tini Alloy Company | Single crystal shape memory alloy devices and methods |
US7749242B2 (en) * | 2004-06-21 | 2010-07-06 | Boston Scientific Scimed, Inc. | Expanding vaso-occlusive device |
US7416534B2 (en) * | 2004-06-22 | 2008-08-26 | Boston Scientific Scimed, Inc. | Medical device including actuator |
US7296442B2 (en) * | 2004-07-15 | 2007-11-20 | Owens-Brockway Glass Container Inc. | Neck ring cooling |
US8409167B2 (en) | 2004-07-19 | 2013-04-02 | Broncus Medical Inc | Devices for delivering substances through an extra-anatomic opening created in an airway |
US7229438B2 (en) | 2004-10-14 | 2007-06-12 | Boston Scientific Scimed, Inc. | Ablation probe with distal inverted electrode array |
US7524318B2 (en) * | 2004-10-28 | 2009-04-28 | Boston Scientific Scimed, Inc. | Ablation probe with flared electrodes |
EP1827251B8 (en) * | 2004-11-09 | 2013-12-11 | Stryker Corporation | Vaso-occlusive devices comprising complex-shape proximal portion and smaller diameter distal portion |
US7291158B2 (en) | 2004-11-12 | 2007-11-06 | Boston Scientific Scimed, Inc. | Cutting balloon catheter having a segmented blade |
US8038691B2 (en) | 2004-11-12 | 2011-10-18 | Boston Scientific Scimed, Inc. | Cutting balloon catheter having flexible atherotomes |
US7989042B2 (en) | 2004-11-24 | 2011-08-02 | Boston Scientific Scimed, Inc. | Medical devices with highly flexible coated hypotube |
US7815599B2 (en) | 2004-12-10 | 2010-10-19 | Boston Scientific Scimed, Inc. | Catheter having an ultra soft tip and methods for making the same |
US20060155323A1 (en) * | 2005-01-07 | 2006-07-13 | Porter Stephen C | Intra-aneurysm devices |
US20060155324A1 (en) * | 2005-01-12 | 2006-07-13 | Porter Stephen C | Vaso-occlusive devices with attached polymer structures |
US20060178696A1 (en) * | 2005-02-04 | 2006-08-10 | Porter Stephen C | Macroporous materials for use in aneurysms |
US20060178697A1 (en) * | 2005-02-04 | 2006-08-10 | Carr-Brendel Victoria E | Vaso-occlusive devices including non-biodegradable biomaterials |
US20060184191A1 (en) | 2005-02-11 | 2006-08-17 | Boston Scientific Scimed, Inc. | Cutting balloon catheter having increased flexibility regions |
US7431687B2 (en) * | 2005-03-07 | 2008-10-07 | Boston Scientific Scimed, Inc. | Percutaneous array delivery system |
US7678107B2 (en) * | 2005-03-10 | 2010-03-16 | Boston Scientific Scimed, Inc. | Medical needles and electrodes with improved bending stiffness |
US7670337B2 (en) | 2005-03-25 | 2010-03-02 | Boston Scientific Scimed, Inc. | Ablation probe having a plurality of arrays of electrodes |
US7763342B2 (en) | 2005-03-31 | 2010-07-27 | Tini Alloy Company | Tear-resistant thin film methods of fabrication |
USRE47376E1 (en) | 2005-04-01 | 2019-05-07 | Nexgen Medical Systems, Incorporated | Thrombus removal system and process |
US8603122B2 (en) | 2005-04-01 | 2013-12-10 | Nexgen Medical Systems, Incorporated | Thrombus removal system and process |
US7955344B2 (en) * | 2005-04-01 | 2011-06-07 | Nexgen Medical Systems, Inc. | Thrombus removal system and process |
US7955345B2 (en) * | 2005-04-01 | 2011-06-07 | Nexgen Medical Systems, Inc. | Thrombus removal system and process |
US7441888B1 (en) | 2005-05-09 | 2008-10-28 | Tini Alloy Company | Eyeglass frame |
US7540899B1 (en) | 2005-05-25 | 2009-06-02 | Tini Alloy Company | Shape memory alloy thin film, method of fabrication, and articles of manufacture |
US20070073374A1 (en) * | 2005-09-29 | 2007-03-29 | Anderl Steven F | Endoprostheses including nickel-titanium alloys |
US20070078479A1 (en) * | 2005-10-04 | 2007-04-05 | Boston Scientific Scimed, Inc. | Self-expanding vaso-occlusive devices with regulated expansion |
US20070078480A1 (en) * | 2005-10-04 | 2007-04-05 | Boston Scientific Scimed, Inc. | Self-expanding biodegradable or water-soluble vaso-occlusive devices |
US7704248B2 (en) * | 2005-12-21 | 2010-04-27 | Boston Scientific Scimed, Inc. | Ablation device with compression balloon |
EP2446919B1 (en) | 2006-02-14 | 2016-08-31 | C.R. Bard Inc. | Coaxial PTA balloon |
US20070239194A1 (en) * | 2006-04-05 | 2007-10-11 | Boston Scientific Scimed, Inc. | Vaso-occlusive devices having expandable fibers |
US20070239193A1 (en) * | 2006-04-05 | 2007-10-11 | Boston Scientific Scimed, Inc. | Stretch-resistant vaso-occlusive devices with distal anchor link |
US20080097139A1 (en) * | 2006-07-14 | 2008-04-24 | Boston Scientific Scimed, Inc. | Systems and methods for treating lung tissue |
US8068921B2 (en) | 2006-09-29 | 2011-11-29 | Vivant Medical, Inc. | Microwave antenna assembly and method of using the same |
US7780798B2 (en) * | 2006-10-13 | 2010-08-24 | Boston Scientific Scimed, Inc. | Medical devices including hardened alloys |
WO2008133738A2 (en) | 2006-12-01 | 2008-11-06 | Tini Alloy Company | Method of alloying reactive components |
WO2008092028A1 (en) | 2007-01-25 | 2008-07-31 | Tini Alloy Company | Frangible shape memory alloy fire sprinkler valve actuator |
US8584767B2 (en) | 2007-01-25 | 2013-11-19 | Tini Alloy Company | Sprinkler valve with active actuation |
US7972375B2 (en) * | 2007-02-05 | 2011-07-05 | Boston Scientific Scimed, Inc. | Endoprostheses including metal matrix composite structures |
CA2681663A1 (en) * | 2007-04-12 | 2008-10-23 | Boston Scientific Limited | Instantaneous mechanical detachment mechanism for vaso-occlusive devices |
US8216226B2 (en) * | 2007-04-13 | 2012-07-10 | Boston Scientific Scimed, Inc. | Radiofrequency ablation device |
US20080287982A1 (en) * | 2007-05-16 | 2008-11-20 | Boston Scientific Scimed, Inc. | Catheters for electrolytically detachable embolic devices |
WO2009018289A2 (en) | 2007-07-30 | 2009-02-05 | Tini Alloy Company | Method and devices for preventing restenosis in cardiovascular stents |
US9220522B2 (en) | 2007-10-17 | 2015-12-29 | Covidien Lp | Embolus removal systems with baskets |
US11337714B2 (en) | 2007-10-17 | 2022-05-24 | Covidien Lp | Restoring blood flow and clot removal during acute ischemic stroke |
US8088140B2 (en) | 2008-05-19 | 2012-01-03 | Mindframe, Inc. | Blood flow restorative and embolus removal methods |
US10123803B2 (en) | 2007-10-17 | 2018-11-13 | Covidien Lp | Methods of managing neurovascular obstructions |
US9198687B2 (en) | 2007-10-17 | 2015-12-01 | Covidien Lp | Acute stroke revascularization/recanalization systems processes and products thereby |
US8926680B2 (en) | 2007-11-12 | 2015-01-06 | Covidien Lp | Aneurysm neck bridging processes with revascularization systems methods and products thereby |
US8066757B2 (en) | 2007-10-17 | 2011-11-29 | Mindframe, Inc. | Blood flow restoration and thrombus management methods |
US8585713B2 (en) | 2007-10-17 | 2013-11-19 | Covidien Lp | Expandable tip assembly for thrombus management |
US8518037B2 (en) * | 2007-10-30 | 2013-08-27 | Boston Scientific Scimed, Inc. | Radiofrequency ablation device |
US8292880B2 (en) | 2007-11-27 | 2012-10-23 | Vivant Medical, Inc. | Targeted cooling of deployable microwave antenna |
US8556969B2 (en) | 2007-11-30 | 2013-10-15 | Ormco Corporation | Biocompatible copper-based single-crystal shape memory alloys |
US7842143B2 (en) | 2007-12-03 | 2010-11-30 | Tini Alloy Company | Hyperelastic shape setting devices and fabrication methods |
US8382917B2 (en) | 2007-12-03 | 2013-02-26 | Ormco Corporation | Hyperelastic shape setting devices and fabrication methods |
EP2240093B1 (en) * | 2008-01-04 | 2013-04-24 | Boston Scientific Scimed, Inc. | Detachment mechanisms for implantable devices |
EP2254485B1 (en) | 2008-02-22 | 2017-08-30 | Covidien LP | Apparatus for flow restoration |
CN101977650A (en) | 2008-04-11 | 2011-02-16 | 曼德弗雷姆公司 | Monorail neuro-microcatheter for delivery of medical devices to treat stroke, processes and products thereby |
US20090306701A1 (en) * | 2008-06-10 | 2009-12-10 | Boston Scientific Scimed, Inc. | Vascular access sheath with integrated return electrode |
WO2010016923A1 (en) | 2008-08-06 | 2010-02-11 | Boston Scientific Scimed, Inc. | Vaso-occlusive devices with textured surfaces |
US8940011B2 (en) * | 2008-09-09 | 2015-01-27 | Boston Scientific Scimed, Inc. | Composite detachment mechanisms |
US20100137898A1 (en) * | 2008-12-02 | 2010-06-03 | Boston Scientific Scimed, Inc. | Vaso-occlusive devices with attachment assemblies for stretch-resistant members |
US8500688B2 (en) | 2009-04-16 | 2013-08-06 | Medtronic, Inc. | Retrograde coronary sinus perfusion cannula and methods of using same |
US20110087318A1 (en) | 2009-10-09 | 2011-04-14 | Daugherty John R | Bifurcated highly conformable medical device branch access |
WO2011119872A1 (en) | 2010-03-24 | 2011-09-29 | Nexgen Medical Systems, Inc. | Thrombus removal system and process |
US9017246B2 (en) | 2010-11-19 | 2015-04-28 | Boston Scientific Scimed, Inc. | Biliary catheter systems including stabilizing members |
US9345532B2 (en) | 2011-05-13 | 2016-05-24 | Broncus Medical Inc. | Methods and devices for ablation of tissue |
US8709034B2 (en) | 2011-05-13 | 2014-04-29 | Broncus Medical Inc. | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall |
WO2013078235A1 (en) | 2011-11-23 | 2013-05-30 | Broncus Medical Inc | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall |
US10342548B2 (en) | 2012-01-13 | 2019-07-09 | W. L. Gore & Associates, Inc. | Occlusion devices and methods of their manufacture and use |
US11040230B2 (en) | 2012-08-31 | 2021-06-22 | Tini Alloy Company | Fire sprinkler valve actuator |
US10124197B2 (en) | 2012-08-31 | 2018-11-13 | TiNi Allot Company | Fire sprinkler valve actuator |
US9435107B2 (en) * | 2012-09-07 | 2016-09-06 | Kohler Co. | Shape memory faucet |
US10194914B2 (en) | 2014-08-14 | 2019-02-05 | W. L. Gore & Associates, Inc. | Anastomosis devices |
CN115433892B (en) * | 2022-09-14 | 2023-03-21 | 贵州大学 | Method for simultaneously improving strength and plasticity of GH4169 high-temperature alloy plate |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3174851A (en) * | 1961-12-01 | 1965-03-23 | William J Buehler | Nickel-base alloys |
-
1965
- 1965-08-20 US US481436A patent/US3351463A/en not_active Expired - Lifetime
-
1966
- 1966-08-08 DE DE19661533360 patent/DE1533360B1/en active Pending
- 1966-08-09 CH CH1144066D patent/CH504538A/en not_active IP Right Cessation
- 1966-08-17 GB GB36882/66A patent/GB1161225A/en not_active Expired
- 1966-08-19 NO NO164358A patent/NO115605B/no unknown
- 1966-08-19 AT AT790666A patent/AT281446B/en not_active IP Right Cessation
- 1966-08-19 NL NL6611720A patent/NL6611720A/xx unknown
- 1966-08-19 BE BE685751D patent/BE685751A/xx unknown
- 1966-08-20 ES ES0330445A patent/ES330445A1/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
BE685751A (en) | 1967-02-01 |
US3351463A (en) | 1967-11-07 |
GB1161225A (en) | 1969-08-13 |
NL6611720A (en) | 1967-02-21 |
DE1533360B1 (en) | 1971-01-07 |
CH504538A (en) | 1971-03-15 |
ES330445A1 (en) | 1967-07-01 |
AT281446B (en) | 1970-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO115605B (en) | ||
NO164358B (en) | PROCEDURE AND APPARATUS FOR THE MANUFACTURE OF NON-SENSITIVE ARTICLES OF PRECIOUS METAL. | |
RU2277134C2 (en) | Titanium-based high-strength alpha-beta alloy | |
US8771590B2 (en) | Titanium base alloy | |
EP0683242B1 (en) | Method for making titanium alloy products | |
US20150354031A1 (en) | Nickel-cobalt alloy | |
GB1564771A (en) | Method for fatique properties of titanium alloy articles | |
US3592639A (en) | Tantalum-tungsten alloy | |
CN111826550B (en) | Moderate-strength nitric acid corrosion resistant titanium alloy | |
US3366471A (en) | High strength alloy steel compositions and process of producing high strength steel including hot-cold working | |
US4671827A (en) | Method of forming high-strength, tough, corrosion-resistant steel | |
US3556776A (en) | Stainless steel | |
CN113174551B (en) | Dual-phase high-strength high-plasticity titanium alloy with heterogeneous laminated structure and preparation method thereof | |
US2892706A (en) | Titanium base alloys | |
US3093518A (en) | Nickel alloy | |
RU2690257C1 (en) | Titanium-based alloy | |
JPS61250138A (en) | Titanium alloy excelling in cold workability | |
Rajagopal et al. | Investigation of physical and mechanical properties of ti alloy (Ti-6Al-4V) under precisely controlled heat treatment processes | |
US3258335A (en) | Titanium alloy | |
US4935069A (en) | Method for working nickel-base alloy | |
US3649376A (en) | Process for preparing and treating austenitic stainless steels | |
US3316129A (en) | Metallurgical conditioning process for precipitation-hardening stainless steels | |
US2319538A (en) | Heat treatment of copper-chromium alloy steels | |
US3510295A (en) | Titanium base alloy | |
Wood et al. | The all-beta titanium alloy (Ti-13V-11Cr-3Al) |