NO115605B - - Google Patents

Download PDF

Info

Publication number
NO115605B
NO115605B NO164358A NO16435866A NO115605B NO 115605 B NO115605 B NO 115605B NO 164358 A NO164358 A NO 164358A NO 16435866 A NO16435866 A NO 16435866A NO 115605 B NO115605 B NO 115605B
Authority
NO
Norway
Prior art keywords
alloy
strength
temperature
critical temperature
processing
Prior art date
Application number
NO164358A
Other languages
Norwegian (no)
Inventor
Alexander George Rozner
Original Assignee
Alexander George Rozner
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alexander George Rozner filed Critical Alexander George Rozner
Publication of NO115605B publication Critical patent/NO115605B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/006Resulting in heat recoverable alloys with a memory effect

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Preliminary Treatment Of Fibers (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Description

Fremgangsmåte til bearbeidelse av en legering som inneholder 53,5 - 56,5 vektprosent nikkel og resten titan. Process for processing an alloy containing 53.5 - 56.5 weight percent nickel and the rest titanium.

Foreliggende oppfinnelse vedrører en fremgangsmåte til bearbeidelse av en legering som The present invention relates to a method for processing an alloy which

inneholder 53,5—56,5 vektprosent nikkel, fortrinnsvis omkring 55,1 vektprosent nikkel, og contains 53.5-56.5 weight percent nickel, preferably about 55.1 weight percent nickel, and

resten titan, bortsett frå forurensninger.the rest titanium, apart from impurities.

De på det nærmeste støkiometriske nikkel-titan-legeringer og deres enestående egenskaper The near-stoichiometric nickel-titanium alloys and their outstanding properties

er utførlig beskrevet i U.S patent 3 174 851. Ved is described in detail in U.S. patent 3,174,851

mange anvendelser ville det imidlertid være øn-skelig å fremstille disse legeringer med høyere in many applications, however, it would be desirable to produce these alloys with higher

flytestyrke, men forsøk med sikte på å oppnå buoyancy, but attempt with a view to achieve

økning av flytestyrken ved konvensjonelle metoder, såsom Varmebehandling, er falt dårlig ut, increasing the yield strength by conventional methods, such as heat treatment, has turned out poorly,

sannsynligvis på grunn av den kjensgjerning at probably due to the fact that

legeringen i det vesentlige består av en eneste the alloy essentially consists of a single

fase. phase.

Hensikten med oppfinnelsen er derfor å The purpose of the invention is therefore to

skaffe en på det nærmeste støkiometrisk nikkel-titan-legering med forbedret flytestyrke uten obtain a near stoichiometric nickel-titanium alloy with improved yield strength without

nevneverdig nedsettelse av bearbeidbarheten og seighéten. significant reduction in machinability and toughness.

Hensikten med oppfinnelsen er oppnådd ved at legeringen koidbéarbeides ved en temperatur under dens kritiske temperatur. Derved fås en flytestyrke over 7 000 kp/cm<2>, én forlengelse over 7 pst., en strekk-bruddstyrke over 11 200 kp/ cm<2>, et forhold styrke til spesifikk vekt over 1020 x 103 cm og en magnetisk permeabilitet på i det vesentlige én. The purpose of the invention is achieved by the alloy being coidbéworked at a temperature below its critical temperature. This results in a yield strength of more than 7,000 kp/cm<2>, an elongation of more than 7 percent, a tensile breaking strength of more than 11,200 kp/cm<2>, a ratio of strength to specific weight of more than 1020 x 103 cm and a magnetic permeability on essentially one.

Oppfinnelsen skal i det følgende beskrives The invention shall be described below

nærmere ved noen eksempler. in more detail with some examples.

Fremgangsmåten ifølge oppfinnelsen er ba-sert på den oppdagelse at bearbéidet TiNi går over i en martensitisk tilstand, hvor overgangen ér diffusjonsløs. Legeringens evne til å gå over i martensitt-tilstand er temperaturavhengig, og den maksimale temperatur, ved hvilken denne overgang kan finne sted, kalles den kritiske temperatur. Den kritiske temperatur som er en funk- sjon av legeringssammensetningen, kan lett be-stemmes ut fra en dempningskurve, og noen typiske sammensetninger med de tilsvarende tilnærmede kritiske temperaturer fremgår av tabell 1. The method according to the invention is based on the discovery that the processed TiNi transitions into a martensitic state, where the transition is diffusionless. The alloy's ability to transition into the martensite state is temperature dependent, and the maximum temperature at which this transition can take place is called the critical temperature. The critical temperature, which is a function of the alloy composition, can easily be determined from an attenuation curve, and some typical compositions with the corresponding approximate critical temperatures appear in table 1.

Fremgangsmåten ifølge oppfinnelsen for styrkeøkning av TiNi består først og fremst ved at legeringsbearbeidelsen skjer under legeringens kritisk temperatur, dvs. den temperatur, ved hvilken legeringen går over i martensitisk tilstand. Tiden for styrkeøkningen er temperaturavhengig, dvs. jo større temperaturforskjellen mellom arbeidstemperaturen og den kritiske temperatur er, desto hurtigere skjer styrkeøk-ningen. Til de fleste formål vil det være å fore-trekke at arbeidstemperaturen holdes minst 20 —30° C under den kritiske temperatur, og for å sikre at den minste ønskede temperaturforskjell opprettholdes, må den temperaturstigning som vanligvis forårsakes av friksjon, tas i betrakt-ning. Det skal imidlertid bemerkes at så lenge arbeidstemperaturen holdes under den kritiske temperatur, vil temperaturvariasjoner som stam-mer fra friksjon, ikke i vesentlig grad påvirke prosessen. The method according to the invention for increasing the strength of TiNi consists primarily of the alloy processing taking place below the alloy's critical temperature, i.e. the temperature at which the alloy changes into the martensitic state. The time for the strength increase is temperature dependent, i.e. the greater the temperature difference between the working temperature and the critical temperature, the faster the strength increase occurs. For most purposes it will be preferable that the working temperature is kept at least 20-30° C below the critical temperature, and to ensure that the minimum desired temperature difference is maintained, the temperature rise usually caused by friction must be taken into account . However, it should be noted that as long as the working temperature is kept below the critical temperature, temperature variations that originate from friction will not significantly affect the process.

Legeringen kan bearbeides ved en hvilken som helst av de gjengse, kjente metoder, blant hvilke kan nevnes senksmiing, valsing, trekking, ekstrudering, smiing, eksplosiv formgivning, strekking, planvalsing m. v. Fortrinnsvis utføres denne bearbeidelse som en del av den samlede prosess for fremstilling av legeringen frem til dens endelige struktur. The alloy can be processed by any of the usual, known methods, among which can be mentioned drop forging, rolling, drawing, extrusion, forging, explosive forming, stretching, flat rolling, etc. Preferably, this processing is carried out as part of the overall process for the production of the alloy to its final structure.

Graden av den bearbeidelse som legeringen utsettes for vil avhenge av den ønskede styrke og hårdhet, således at større bearbeidelse gir større styrke. Det skal imidlertid bemerkes at der er en øvre grense for den bearbeidelsesgrad som legeringen kan underkastes, og hvis den overskrides, vil der oppstå kantrevner og lokale sprengninger. Stort sett har det vist seg at legeringen ikke bør bearbeides ut over 20 til 25 pst. arealreduksjon ved runde emner og det samme med hensyn til tykkelsesreduksjon ved plane emner, idet en overskridelse vil resultere i en merkbar nedsettelse av duktiliteten uten en der-til svarende styrkeøkning. The degree of processing to which the alloy is subjected will depend on the desired strength and hardness, so that greater processing gives greater strength. However, it should be noted that there is an upper limit to the degree of processing to which the alloy can be subjected, and if it is exceeded, edge cracks and local bursts will occur. Generally speaking, it has been shown that the alloy should not be machined beyond a 20 to 25 percent area reduction in the case of round workpieces and the same with regard to thickness reduction in the case of flat workpieces, as an excess will result in a noticeable reduction in ductility without a corresponding strength gain.

Ved fremgangsmåten ifølge oppfinnelsen oppnås en ny legering som kombinerer meget høy styrke, høy hårdhet, høy slagstyrke eller selghet, god trekkforlengelse eller duktilitet, korrosjonsmotstand, lav spesifikk vekt og umagne-tisk stabilitet. Legeringen som bearbeides ved fremgangsmåten ifølge oppfinnelsen, oppnår fortrinnsvis en flytestyrke på 8 400 til 14 000 kp/ cm<2>, en total forlengelse på 7 til 20 pst., et forhold styrke til spes. vekt på 1320 . IO<3>til 2030 . IO<3>cm, en strekk-bruddstyrke mellom 8 400 og 18 300 kp/cm<2>og en magnetisk permeabilitet på i det vesentlige én. With the method according to the invention, a new alloy is obtained which combines very high strength, high hardness, high impact strength or ductility, good tensile elongation or ductility, corrosion resistance, low specific weight and non-magnetic stability. The alloy processed by the method according to the invention preferably achieves a yield strength of 8,400 to 14,000 kp/cm<2>, a total elongation of 7 to 20 percent, a ratio of strength to spec. weight of 1320 . IO<3>to 2030 . 10<3>cm, a tensile breaking strength between 8,400 and 18,300 kp/cm<2>and a magnetic permeability of essentially one.

Eksempel 1:Example 1:

En 3 660 . 914 . 11,9 mm plate av TiNi med 55,1 vektprosent Ni med titan som den vesentlige rest, ble utglødet ved 800° C i vakuum og ovnkjølt for eliminering av virkningen av tid-ligere bearbeidelse. A 3,660 . 914 . 11.9 mm plate of TiNi with 55.1 wt% Ni with titanium as the major residue was annealed at 800°C in vacuum and furnace cooled to eliminate the effect of earlier processing.

Platen ble derpå anbragt i flytende nitrogen i 20 min. for å sikre at legeringen var under sin kritiske temperatur og at den ville holde seg under dens kritiske temperatur under den på-følgende valsing. Mengden eller graden av det tilførte arbeide, uttrykt ved tykkelsesreduksjon, er angitt nedenfor sammen med de tilsvarende egenskaper. The plate was then placed in liquid nitrogen for 20 min. to ensure that the alloy was below its critical temperature and that it would remain below its critical temperature during the subsequent rolling. The amount or degree of added work, expressed by thickness reduction, is indicated below together with the corresponding properties.

Foruten den høye styrke og duktilitet målt ved flytespenning henholdsvis forlengelse hadde legeringen en magnetisk permeabilitet på i det vesentlige én og en høy korrosjonsmotstand og slagseighet. Besides the high strength and ductility measured by yield stress and elongation respectively, the alloy had a magnetic permeability of essentially one and a high corrosion resistance and impact strength.

Eksempel 2: Example 2:

En tråd av TiNi med 55,1 vektprosent Ni med en diameter på 1,5 mm, ble utglødet og kjølt som beskrevet i eksempel 1 og derpå trukket gjennom koniske dyser. Mengden av tilført arbeide uttrykt ved arealreduksjonen er sammen med de tilsvarende egenskaper angitt i tabell III. A wire of TiNi with 55.1% by weight Ni with a diameter of 1.5 mm was annealed and cooled as described in Example 1 and then drawn through conical dies. The amount of added work expressed by the area reduction is, together with the corresponding characteristics, indicated in table III.

Legeringen hadde en magnetisk permeabilitet på i det vesentlige én og en høy slagseighet og kor-rosj onsmotstand. The alloy had a magnetic permeability of essentially one and a high impact strength and corrosion resistance.

Legeringene som er bearbeidet ved fremgangsmåten ifølge oppfinnelsen har mange kon-struktive anvendelser, da de kombinerer de meget ønskelige egenskaper som styrke, seighet, duktilitet, korrosjonsmotstand og magnetisk permeabilitet av vesentlig ensartethet. Det høye forhold styrke til spes. vekt gjør disse legeringer særlig verdifulle ved anvendelser, hvor forhol-det mellom materialets vekt og styrke er av vesentlig betydning, såsom for raketthylstere og romfartøykomponenter. Disse legeringers høye styrke og korrosjonsmotstand, spesielt i mari-time omgivelser, gjør dem velanvendelige til støydempede skipskonstruksjoner, selvom noe av deres vibrasjonsdempende egenskap er ofret til fordel for en forbedret styrke. Legeringen vil også finne anvendelse i panserlignende materia-ler for å motstå kuleanslag. The alloys processed by the method according to the invention have many constructive applications, as they combine the highly desirable properties such as strength, toughness, ductility, corrosion resistance and magnetic permeability of substantial uniformity. The high ratio of strength to spec. weight makes these alloys particularly valuable in applications where the ratio between the material's weight and strength is of significant importance, such as for rocket casings and spacecraft components. These alloys' high strength and corrosion resistance, especially in maritime environments, make them suitable for noise-damped ship constructions, although some of their vibration-damping properties are sacrificed in favor of improved strength. The alloy will also find use in armour-like materials to resist bullet impacts.

Fremgangsmåten ifølge oppfinnelsen kan utføres ved de gjengse bearbeidelsesmetoder og har bl. a. den fordel at den til forskjell fra van-lige slip-bearbeidelses-herdeprosesser (den prosess ved hvilken dislokasjoner beveger seg i et metall som deformeres) og dislokasjonsbearbei-delses-herdeprosesser ikke innvirker merkbart på duktilitet og seighet, og til forskjell fra overgangen fra austenitt til martensitt i stål, innvirker den ikke på legeringens umagnetiske egenskaper. The method according to the invention can be carried out by the usual processing methods and has, among other things, a. the advantage that, in contrast to normal grinding-hardening processes (the process by which dislocations move in a metal that is deformed) and dislocation-hardening processes, it does not noticeably affect ductility and toughness, and unlike the transition from austenite to martensite in steel, it does not affect the alloy's non-magnetic properties.

Claims (2)

1. Fremgangsmåte til bearbeidelse av en legering som inneholder 53,6 til 56,5 vektprosent nikkel, fortrinnsvis omkring 55,1 vektprosent nikkel og resten titan, bortsett fra forurensninger, karakterisert ved at legeringen koldbearbeides ved en temperatur under dens kritiske temperatur.1. Process for working an alloy containing 53.6 to 56.5 weight percent nickel, preferably about 55.1 weight percent nickel and the rest titanium, excluding impurities, characterized in that the alloy is cold worked at a temperature below its critical temperature. 2. Fremgangsmåte i henhold til krav 1, karakterisert ved at bearbeidelsestempera-turen er minst 20° C, fortrinnsvis minst 30° C under den kritiske temperatur.2. Method according to claim 1, characterized in that the processing temperature is at least 20° C, preferably at least 30° C below the critical temperature.
NO164358A 1965-08-20 1966-08-19 NO115605B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US481436A US3351463A (en) 1965-08-20 1965-08-20 High strength nickel-base alloys

Publications (1)

Publication Number Publication Date
NO115605B true NO115605B (en) 1968-10-28

Family

ID=23911937

Family Applications (1)

Application Number Title Priority Date Filing Date
NO164358A NO115605B (en) 1965-08-20 1966-08-19

Country Status (9)

Country Link
US (1) US3351463A (en)
AT (1) AT281446B (en)
BE (1) BE685751A (en)
CH (1) CH504538A (en)
DE (1) DE1533360B1 (en)
ES (1) ES330445A1 (en)
GB (1) GB1161225A (en)
NL (1) NL6611720A (en)
NO (1) NO115605B (en)

Families Citing this family (244)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE758862A (en) * 1969-11-12 1971-04-16 Fulmer Res Inst Ltd Improvements relating to the treatment of alloys
US4035007A (en) * 1970-07-02 1977-07-12 Raychem Corporation Heat recoverable metallic coupling
US4198081A (en) * 1973-10-29 1980-04-15 Raychem Corporation Heat recoverable metallic coupling
US3953253A (en) * 1973-12-21 1976-04-27 Texas Instruments Incorporated Annealing of NiTi martensitic memory alloys and product produced thereby
GB1571627A (en) * 1976-01-22 1980-07-16 Raychem Corp Heat-recoverable coupling
CH606456A5 (en) * 1976-08-26 1978-10-31 Bbc Brown Boveri & Cie
GB1594693A (en) * 1976-10-29 1981-08-05 Raychem Sa Nv Heatrecoverable article
DE2954256C2 (en) 1978-01-09 1994-05-11 Naamloze Vennootschap Raychem S.A., Kessel-Lo, Leuven Method for forming a sealed connection between a heat-shrunk sleeve and at least two elongated substrates entering the sleeve from the same end
DE2954743C2 (en) * 1978-01-09 1996-10-31 Raychem Sa Nv Clips for sealing branches from distributor boxes
GB1604981A (en) * 1978-01-09 1981-12-16 Raychem Sa Nv Branchoff method
US4197643A (en) * 1978-03-14 1980-04-15 University Of Connecticut Orthodontic appliance of titanium alloy
GB1604984A (en) * 1978-04-04 1981-12-16 Raychem Sa Nv Branchoff method
US4242954A (en) * 1978-05-23 1981-01-06 Graham Magnetics Incorporated Calendar roll system
DE3007307A1 (en) * 1980-01-18 1981-07-23 BBC AG Brown, Boveri & Cie., Baden, Aargau Detachable shrunk joint - uses shape memory alloy with two=way effect
US4337090A (en) * 1980-09-05 1982-06-29 Raychem Corporation Heat recoverable nickel/titanium alloy with improved stability and machinability
IL64508A0 (en) * 1980-12-12 1982-03-31 Raychem Pontoise Sa Wire stripping arrangement
US4621844A (en) * 1982-01-25 1986-11-11 Shell Oil Company Memory metal connector
US4565589A (en) * 1982-03-05 1986-01-21 Raychem Corporation Nickel/titanium/copper shape memory alloy
US4505767A (en) * 1983-10-14 1985-03-19 Raychem Corporation Nickel/titanium/vanadium shape memory alloy
US4570851A (en) * 1984-05-07 1986-02-18 Cirillo John R Temperature regulating, pressure relief flow valves employing shaped memory alloys
CA1269409A (en) * 1984-11-14 1990-05-22 N.V. Raychem S.A. Joining insulated elongate conduit members
US4717341A (en) * 1986-01-13 1988-01-05 Goldberg A Jon Orthodontic appliance system
US4720944A (en) * 1986-06-04 1988-01-26 Paul Loicq Suspended ceiling panel retaining system
US4839479A (en) * 1986-06-30 1989-06-13 Davis Jr Thomas O Article using shape-memory alloy to improve and/or control the speed of recovery
US4759293A (en) * 1986-06-30 1988-07-26 Davis Jr Thomas O Article using shape-memory alloy to improve and/or control the speed of recovery
US4832382A (en) * 1987-02-19 1989-05-23 Raychem Corporation Coupling device
US4872713A (en) * 1987-02-19 1989-10-10 Raychem Corporation Coupling device
DE3823186A1 (en) * 1988-07-08 1990-04-12 Messerschmitt Boelkow Blohm ELECTROMECHANICAL RELAY
WO1991015152A1 (en) * 1990-04-10 1991-10-17 Boston Scientific Corporation High elongation linear elastic guidewire
US5238004A (en) * 1990-04-10 1993-08-24 Boston Scientific Corporation High elongation linear elastic guidewire
US5273116A (en) * 1992-02-14 1993-12-28 Baker Hughes Incorporated Firing mechanism for actuating wellbore tools
US5199497A (en) * 1992-02-14 1993-04-06 Baker Hughes Incorporated Shape-memory actuator for use in subterranean wells
US5215145A (en) * 1992-02-14 1993-06-01 Baker Hughes Incorporated Wedge-set sealing flap for use in subterranean wellbores
ES2117706T3 (en) * 1992-03-10 1998-08-16 Bausch & Lomb INTEGRAL MOUNT INTENDED FOR GLASSES.
US5376001A (en) * 1993-05-10 1994-12-27 Tepper; Harry W. Removable orthodontic appliance
US5769796A (en) * 1993-05-11 1998-06-23 Target Therapeutics, Inc. Super-elastic composite guidewire
US7883474B1 (en) 1993-05-11 2011-02-08 Target Therapeutics, Inc. Composite braided guidewire
US5749837A (en) * 1993-05-11 1998-05-12 Target Therapeutics, Inc. Enhanced lubricity guidewire
US5772609A (en) * 1993-05-11 1998-06-30 Target Therapeutics, Inc. Guidewire with variable flexibility due to polymeric coatings
US6001123A (en) * 1994-04-01 1999-12-14 Gore Enterprise Holdings Inc. Folding self-expandable intravascular stent-graft
US6165210A (en) * 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
US6139510A (en) * 1994-05-11 2000-10-31 Target Therapeutics Inc. Super elastic alloy guidewire
US5522819A (en) * 1994-05-12 1996-06-04 Target Therapeutics, Inc. Dual coil medical retrieval device
US5454795A (en) * 1994-06-27 1995-10-03 Target Therapeutics, Inc. Kink-free spiral-wound catheter
US5496294A (en) * 1994-07-08 1996-03-05 Target Therapeutics, Inc. Catheter with kink-resistant distal tip
US6331188B1 (en) 1994-08-31 2001-12-18 Gore Enterprise Holdings, Inc. Exterior supported self-expanding stent-graft
US6015429A (en) * 1994-09-08 2000-01-18 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US5658264A (en) 1994-11-10 1997-08-19 Target Therapeutics, Inc. High performance spiral-wound catheter
CA2162620A1 (en) 1994-11-11 1996-05-12 Gene Samson Microcatheter-less coil delivery device
US5645558A (en) 1995-04-20 1997-07-08 Medical University Of South Carolina Anatomically shaped vasoocclusive device and method of making the same
US5911731A (en) * 1995-04-20 1999-06-15 Target Therapeutics, Inc. Anatomically shaped vasoocclusive devices
US5702373A (en) * 1995-08-31 1997-12-30 Target Therapeutics, Inc. Composite super-elastic alloy braid reinforced catheter
US6824553B1 (en) 1995-04-28 2004-11-30 Target Therapeutics, Inc. High performance braided catheter
US5891112A (en) * 1995-04-28 1999-04-06 Target Therapeutics, Inc. High performance superelastic alloy braid reinforced catheter
NO962336L (en) * 1995-06-06 1996-12-09 Target Therapeutics Inc Vaso-occlusive spiral
US5624461A (en) 1995-06-06 1997-04-29 Target Therapeutics, Inc. Three dimensional in-filling vaso-occlusive coils
US5582619A (en) * 1995-06-30 1996-12-10 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils
US5853418A (en) * 1995-06-30 1998-12-29 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils (II)
US6013084A (en) * 1995-06-30 2000-01-11 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils (II)
EP0913124B1 (en) * 1995-06-30 2003-11-26 Boston Scientific Limited Stretch resistant vaso-occlusive coils
US5743905A (en) * 1995-07-07 1998-04-28 Target Therapeutics, Inc. Partially insulated occlusion device
US6019757A (en) * 1995-07-07 2000-02-01 Target Therapeutics, Inc. Endoluminal electro-occlusion detection apparatus and method
US5906606A (en) * 1995-12-04 1999-05-25 Target Therapuetics, Inc. Braided body balloon catheter
US6042605A (en) 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
EP0866677A4 (en) 1995-12-14 1999-10-27 Prograft Medical Inc Stent-graft deployment apparatus and method
US6488637B1 (en) 1996-04-30 2002-12-03 Target Therapeutics, Inc. Composite endovascular guidewire
US5927345A (en) * 1996-04-30 1999-07-27 Target Therapeutics, Inc. Super-elastic alloy braid structure
US6090099A (en) * 1996-05-24 2000-07-18 Target Therapeutics, Inc. Multi-layer distal catheter section
US5782811A (en) * 1996-05-30 1998-07-21 Target Therapeutics, Inc. Kink-resistant braided catheter with distal side holes
US5868754A (en) * 1996-06-12 1999-02-09 Target Therapeutics, Inc. Medical retrieval device
US6066158A (en) * 1996-07-25 2000-05-23 Target Therapeutics, Inc. Mechanical clot encasing and removal wire
US5972019A (en) * 1996-07-25 1999-10-26 Target Therapeutics, Inc. Mechanical clot treatment device
US5827201A (en) * 1996-07-26 1998-10-27 Target Therapeutics, Inc. Micro-braided guidewire
US5964797A (en) * 1996-08-30 1999-10-12 Target Therapeutics, Inc. Electrolytically deployable braided vaso-occlusion device
US5971975A (en) * 1996-10-09 1999-10-26 Target Therapeutics, Inc. Guide catheter with enhanced guidewire tracking
US6159187A (en) * 1996-12-06 2000-12-12 Target Therapeutics, Inc. Reinforced catheter with a formable distal tip
US6551350B1 (en) 1996-12-23 2003-04-22 Gore Enterprise Holdings, Inc. Kink resistant bifurcated prosthesis
US6352561B1 (en) 1996-12-23 2002-03-05 W. L. Gore & Associates Implant deployment apparatus
US5733329A (en) * 1996-12-30 1998-03-31 Target Therapeutics, Inc. Vaso-occlusive coil with conical end
US5925061A (en) * 1997-01-13 1999-07-20 Gore Enterprise Holdings, Inc. Low profile vascular stent
US6017323A (en) * 1997-04-08 2000-01-25 Target Therapeutics, Inc. Balloon catheter with distal infusion section
US5951539A (en) * 1997-06-10 1999-09-14 Target Therpeutics, Inc. Optimized high performance multiple coil spiral-wound vascular catheter
US6152912A (en) * 1997-06-10 2000-11-28 Target Therapeutics, Inc. Optimized high performance spiral-wound vascular catheter
US6258080B1 (en) 1997-07-01 2001-07-10 Target Therapeutics, Inc. Kink-free spiral-wound catheter
US6063070A (en) 1997-08-05 2000-05-16 Target Therapeutics, Inc. Detachable aneurysm neck bridge (II)
AU8772198A (en) 1997-08-05 1999-03-08 Target Therapeutics, Inc. Detachable aneurysm neck bridge
US6086577A (en) * 1997-08-13 2000-07-11 Scimed Life Systems, Inc. Detachable aneurysm neck bridge (III)
US6860893B2 (en) 1997-08-29 2005-03-01 Boston Scientific Scimed, Inc. Stable coil designs
US6322576B1 (en) 1997-08-29 2001-11-27 Target Therapeutics, Inc. Stable coil designs
US6066149A (en) 1997-09-30 2000-05-23 Target Therapeutics, Inc. Mechanical clot treatment device with distal filter
US5891114A (en) * 1997-09-30 1999-04-06 Target Therapeutics, Inc. Soft-tip high performance braided catheter
US6217566B1 (en) 1997-10-02 2001-04-17 Target Therapeutics, Inc. Peripheral vascular delivery catheter
US6036720A (en) * 1997-12-15 2000-03-14 Target Therapeutics, Inc. Sheet metal aneurysm neck bridge
US6368316B1 (en) * 1998-06-11 2002-04-09 Target Therapeutics, Inc. Catheter with composite stiffener
US7815626B1 (en) * 1998-06-12 2010-10-19 Target Therapeutics, Inc. Catheter with knit section
US5935148A (en) * 1998-06-24 1999-08-10 Target Therapeutics, Inc. Detachable, varying flexibility, aneurysm neck bridge
US6136014A (en) * 1998-09-01 2000-10-24 Vivant Medical, Inc. Percutaneous tissue removal device
US7410482B2 (en) 1998-09-04 2008-08-12 Boston Scientific-Scimed, Inc. Detachable aneurysm neck bridge
EP1109499B1 (en) 1998-09-04 2007-08-15 Boston Scientific Limited Detachable aneurysm neck closure patch
US6036698A (en) 1998-10-30 2000-03-14 Vivant Medical, Inc. Expandable ring percutaneous tissue removal device
US6648854B1 (en) 1999-05-14 2003-11-18 Scimed Life Systems, Inc. Single lumen balloon-tipped micro catheter with reinforced shaft
US6280457B1 (en) * 1999-06-04 2001-08-28 Scimed Life Systems, Inc. Polymer covered vaso-occlusive devices and methods of producing such devices
US6559845B1 (en) * 1999-06-11 2003-05-06 Pulse Entertainment Three dimensional animation system and method
US6306132B1 (en) 1999-06-17 2001-10-23 Vivant Medical Modular biopsy and microwave ablation needle delivery apparatus adapted to in situ assembly and method of use
US6663607B2 (en) 1999-07-12 2003-12-16 Scimed Life Systems, Inc. Bioactive aneurysm closure device assembly and kit
US7462162B2 (en) * 2001-09-04 2008-12-09 Broncus Technologies, Inc. Antiproliferative devices for maintaining patency of surgically created channels in a body organ
US7422563B2 (en) 1999-08-05 2008-09-09 Broncus Technologies, Inc. Multifunctional tip catheter for applying energy to tissue and detecting the presence of blood flow
US6689120B1 (en) 1999-08-06 2004-02-10 Boston Scientific Scimed, Inc. Reduced profile delivery system
CA2382871A1 (en) 1999-08-24 2001-03-01 Neuron Therapeutics, Inc. Lumbar drainage catheter
US6722371B1 (en) 2000-02-18 2004-04-20 Thomas J. Fogarty Device for accurately marking tissue
AU2001238382A1 (en) 2000-02-18 2001-08-27 Thomas J. M. D. Fogarty Improved device for accurately marking tissue
US6564806B1 (en) 2000-02-18 2003-05-20 Thomas J. Fogarty Device for accurately marking tissue
US6746461B2 (en) 2000-08-15 2004-06-08 William R. Fry Low-profile, shape-memory surgical occluder
US6635069B1 (en) 2000-10-18 2003-10-21 Scimed Life Systems, Inc. Non-overlapping spherical three-dimensional coil
US6602269B2 (en) 2001-03-30 2003-08-05 Scimed Life Systems Embolic devices capable of in-situ reinforcement
US6908448B2 (en) * 2001-08-24 2005-06-21 Dermisonics, Inc. Substance delivery device
US7708712B2 (en) 2001-09-04 2010-05-04 Broncus Technologies, Inc. Methods and devices for maintaining patency of surgically created channels in a body organ
US6685620B2 (en) 2001-09-25 2004-02-03 The Foundry Inc. Ventricular infarct assist device and methods for using it
US6878151B2 (en) 2001-09-27 2005-04-12 Scimed Life Systems, Inc. Medical retrieval device
US6878147B2 (en) 2001-11-02 2005-04-12 Vivant Medical, Inc. High-strength microwave antenna assemblies
US7197363B2 (en) 2002-04-16 2007-03-27 Vivant Medical, Inc. Microwave antenna having a curved configuration
US6752767B2 (en) 2002-04-16 2004-06-22 Vivant Medical, Inc. Localization element with energized tip
US6783438B2 (en) * 2002-04-18 2004-08-31 Ormco Corporation Method of manufacturing an endodontic instrument
US7779542B2 (en) * 2002-04-18 2010-08-24 Ormco Corporation Method of manufacturing a dental instrument
US7060083B2 (en) * 2002-05-20 2006-06-13 Boston Scientific Scimed, Inc. Foldable vaso-occlusive member
US7485122B2 (en) * 2002-06-27 2009-02-03 Boston Scientific Scimed, Inc. Integrated anchor coil in stretch-resistant vaso-occlusive coils
US8425549B2 (en) 2002-07-23 2013-04-23 Reverse Medical Corporation Systems and methods for removing obstructive matter from body lumens and treating vascular defects
US7040323B1 (en) * 2002-08-08 2006-05-09 Tini Alloy Company Thin film intrauterine device
US20040098023A1 (en) * 2002-11-15 2004-05-20 Scimed Life Systems, Inc. Embolic device made of nanofibers
US6780260B1 (en) 2002-12-10 2004-08-24 The United Sates Of America As Represented By The Secretary Of The Navy Non-welded shape memory alloy rings produced from roll flattened wire
US20040143317A1 (en) * 2003-01-17 2004-07-22 Stinson Jonathan S. Medical devices
US20040153025A1 (en) * 2003-02-03 2004-08-05 Seifert Paul S. Systems and methods of de-endothelialization
US7744583B2 (en) * 2003-02-03 2010-06-29 Boston Scientific Scimed Systems and methods of de-endothelialization
US7182735B2 (en) * 2003-02-26 2007-02-27 Scimed Life Systems, Inc. Elongated intracorporal medical device
EP1620159B1 (en) 2003-04-14 2009-08-05 Cook Incorporated Large diameter delivery catheter/sheath
AU2004233877B2 (en) 2003-04-28 2010-03-11 Cook Medical Technologies Llc Flexible introducer sheath with varying durometer
US7025768B2 (en) * 2003-05-06 2006-04-11 Boston Scientific Scimed, Inc. Systems and methods for ablation of tissue
JP4015582B2 (en) * 2003-05-09 2007-11-28 ニスカ株式会社 Image forming apparatus
US7632288B2 (en) 2003-05-12 2009-12-15 Boston Scientific Scimed, Inc. Cutting balloon catheter with improved pushability
US7758520B2 (en) * 2003-05-27 2010-07-20 Boston Scientific Scimed, Inc. Medical device having segmented construction
US7758604B2 (en) 2003-05-29 2010-07-20 Boston Scientific Scimed, Inc. Cutting balloon catheter with improved balloon configuration
US8337519B2 (en) 2003-07-10 2012-12-25 Boston Scientific Scimed, Inc. Embolic protection filtering device
US7311703B2 (en) 2003-07-18 2007-12-25 Vivant Medical, Inc. Devices and methods for cooling microwave antennas
US8308682B2 (en) 2003-07-18 2012-11-13 Broncus Medical Inc. Devices for maintaining patency of surgically created channels in tissue
US7092552B2 (en) * 2003-07-30 2006-08-15 Xerox Corporation System and method for measuring and quantizing document quality
US7896898B2 (en) * 2003-07-30 2011-03-01 Boston Scientific Scimed, Inc. Self-centering blood clot filter
US7780626B2 (en) 2003-08-08 2010-08-24 Boston Scientific Scimed, Inc. Catheter shaft for regulation of inflation and deflation
US7887557B2 (en) 2003-08-14 2011-02-15 Boston Scientific Scimed, Inc. Catheter having a cutting balloon including multiple cavities or multiple channels
US7641621B2 (en) * 2003-08-25 2010-01-05 Boston Scientific Scimed, Inc. Elongated intra-lumenal medical device
US20050209674A1 (en) * 2003-09-05 2005-09-22 Kutscher Tuvia D Balloon assembly (V)
US7540845B2 (en) * 2003-09-05 2009-06-02 Boston Scientific Scimed, Inc Medical device coil
US7833175B2 (en) * 2003-09-05 2010-11-16 Boston Scientific Scimed, Inc. Medical device coil
US20050059963A1 (en) * 2003-09-12 2005-03-17 Scimed Life Systems, Inc. Systems and method for creating transmural lesions
US7785273B2 (en) 2003-09-22 2010-08-31 Boston Scientific Scimed, Inc. Guidewire with reinforcing member
US7329383B2 (en) * 2003-10-22 2008-02-12 Boston Scientific Scimed, Inc. Alloy compositions and devices including the compositions
US7586828B1 (en) 2003-10-23 2009-09-08 Tini Alloy Company Magnetic data storage system
US7422403B1 (en) 2003-10-23 2008-09-09 Tini Alloy Company Non-explosive releasable coupling device
US20050090856A1 (en) * 2003-10-27 2005-04-28 Scimed Life Systems, Inc. Vasco-occlusive devices with bioactive elements
US7645292B2 (en) * 2003-10-27 2010-01-12 Boston Scientific Scimed, Inc. Vaso-occlusive devices with in-situ stiffening elements
US7237313B2 (en) * 2003-12-05 2007-07-03 Boston Scientific Scimed, Inc. Elongated medical device for intracorporal use
US20050149109A1 (en) * 2003-12-23 2005-07-07 Wallace Michael P. Expanding filler coil
US7747314B2 (en) * 2003-12-30 2010-06-29 Boston Scientific Scimed, Inc. Distal assembly for a medical device
US7243408B2 (en) * 2004-02-09 2007-07-17 Boston Scientific Scimed, Inc. Process method for attaching radio opaque markers to shape memory stent
US7967605B2 (en) 2004-03-16 2011-06-28 Guidance Endodontics, Llc Endodontic files and obturator devices and methods of manufacturing same
US7754047B2 (en) * 2004-04-08 2010-07-13 Boston Scientific Scimed, Inc. Cutting balloon catheter and method for blade mounting
US7566319B2 (en) 2004-04-21 2009-07-28 Boston Scientific Scimed, Inc. Traction balloon
US7632361B2 (en) 2004-05-06 2009-12-15 Tini Alloy Company Single crystal shape memory alloy devices and methods
US7749242B2 (en) * 2004-06-21 2010-07-06 Boston Scientific Scimed, Inc. Expanding vaso-occlusive device
US7416534B2 (en) * 2004-06-22 2008-08-26 Boston Scientific Scimed, Inc. Medical device including actuator
US7296442B2 (en) * 2004-07-15 2007-11-20 Owens-Brockway Glass Container Inc. Neck ring cooling
US8409167B2 (en) 2004-07-19 2013-04-02 Broncus Medical Inc Devices for delivering substances through an extra-anatomic opening created in an airway
US7229438B2 (en) 2004-10-14 2007-06-12 Boston Scientific Scimed, Inc. Ablation probe with distal inverted electrode array
US7524318B2 (en) * 2004-10-28 2009-04-28 Boston Scientific Scimed, Inc. Ablation probe with flared electrodes
EP1827251B8 (en) * 2004-11-09 2013-12-11 Stryker Corporation Vaso-occlusive devices comprising complex-shape proximal portion and smaller diameter distal portion
US7291158B2 (en) 2004-11-12 2007-11-06 Boston Scientific Scimed, Inc. Cutting balloon catheter having a segmented blade
US8038691B2 (en) 2004-11-12 2011-10-18 Boston Scientific Scimed, Inc. Cutting balloon catheter having flexible atherotomes
US7989042B2 (en) 2004-11-24 2011-08-02 Boston Scientific Scimed, Inc. Medical devices with highly flexible coated hypotube
US7815599B2 (en) 2004-12-10 2010-10-19 Boston Scientific Scimed, Inc. Catheter having an ultra soft tip and methods for making the same
US20060155323A1 (en) * 2005-01-07 2006-07-13 Porter Stephen C Intra-aneurysm devices
US20060155324A1 (en) * 2005-01-12 2006-07-13 Porter Stephen C Vaso-occlusive devices with attached polymer structures
US20060178696A1 (en) * 2005-02-04 2006-08-10 Porter Stephen C Macroporous materials for use in aneurysms
US20060178697A1 (en) * 2005-02-04 2006-08-10 Carr-Brendel Victoria E Vaso-occlusive devices including non-biodegradable biomaterials
US20060184191A1 (en) 2005-02-11 2006-08-17 Boston Scientific Scimed, Inc. Cutting balloon catheter having increased flexibility regions
US7431687B2 (en) * 2005-03-07 2008-10-07 Boston Scientific Scimed, Inc. Percutaneous array delivery system
US7678107B2 (en) * 2005-03-10 2010-03-16 Boston Scientific Scimed, Inc. Medical needles and electrodes with improved bending stiffness
US7670337B2 (en) 2005-03-25 2010-03-02 Boston Scientific Scimed, Inc. Ablation probe having a plurality of arrays of electrodes
US7763342B2 (en) 2005-03-31 2010-07-27 Tini Alloy Company Tear-resistant thin film methods of fabrication
USRE47376E1 (en) 2005-04-01 2019-05-07 Nexgen Medical Systems, Incorporated Thrombus removal system and process
US8603122B2 (en) 2005-04-01 2013-12-10 Nexgen Medical Systems, Incorporated Thrombus removal system and process
US7955344B2 (en) * 2005-04-01 2011-06-07 Nexgen Medical Systems, Inc. Thrombus removal system and process
US7955345B2 (en) * 2005-04-01 2011-06-07 Nexgen Medical Systems, Inc. Thrombus removal system and process
US7441888B1 (en) 2005-05-09 2008-10-28 Tini Alloy Company Eyeglass frame
US7540899B1 (en) 2005-05-25 2009-06-02 Tini Alloy Company Shape memory alloy thin film, method of fabrication, and articles of manufacture
US20070073374A1 (en) * 2005-09-29 2007-03-29 Anderl Steven F Endoprostheses including nickel-titanium alloys
US20070078479A1 (en) * 2005-10-04 2007-04-05 Boston Scientific Scimed, Inc. Self-expanding vaso-occlusive devices with regulated expansion
US20070078480A1 (en) * 2005-10-04 2007-04-05 Boston Scientific Scimed, Inc. Self-expanding biodegradable or water-soluble vaso-occlusive devices
US7704248B2 (en) * 2005-12-21 2010-04-27 Boston Scientific Scimed, Inc. Ablation device with compression balloon
EP2446919B1 (en) 2006-02-14 2016-08-31 C.R. Bard Inc. Coaxial PTA balloon
US20070239194A1 (en) * 2006-04-05 2007-10-11 Boston Scientific Scimed, Inc. Vaso-occlusive devices having expandable fibers
US20070239193A1 (en) * 2006-04-05 2007-10-11 Boston Scientific Scimed, Inc. Stretch-resistant vaso-occlusive devices with distal anchor link
US20080097139A1 (en) * 2006-07-14 2008-04-24 Boston Scientific Scimed, Inc. Systems and methods for treating lung tissue
US8068921B2 (en) 2006-09-29 2011-11-29 Vivant Medical, Inc. Microwave antenna assembly and method of using the same
US7780798B2 (en) * 2006-10-13 2010-08-24 Boston Scientific Scimed, Inc. Medical devices including hardened alloys
WO2008133738A2 (en) 2006-12-01 2008-11-06 Tini Alloy Company Method of alloying reactive components
WO2008092028A1 (en) 2007-01-25 2008-07-31 Tini Alloy Company Frangible shape memory alloy fire sprinkler valve actuator
US8584767B2 (en) 2007-01-25 2013-11-19 Tini Alloy Company Sprinkler valve with active actuation
US7972375B2 (en) * 2007-02-05 2011-07-05 Boston Scientific Scimed, Inc. Endoprostheses including metal matrix composite structures
CA2681663A1 (en) * 2007-04-12 2008-10-23 Boston Scientific Limited Instantaneous mechanical detachment mechanism for vaso-occlusive devices
US8216226B2 (en) * 2007-04-13 2012-07-10 Boston Scientific Scimed, Inc. Radiofrequency ablation device
US20080287982A1 (en) * 2007-05-16 2008-11-20 Boston Scientific Scimed, Inc. Catheters for electrolytically detachable embolic devices
WO2009018289A2 (en) 2007-07-30 2009-02-05 Tini Alloy Company Method and devices for preventing restenosis in cardiovascular stents
US9220522B2 (en) 2007-10-17 2015-12-29 Covidien Lp Embolus removal systems with baskets
US11337714B2 (en) 2007-10-17 2022-05-24 Covidien Lp Restoring blood flow and clot removal during acute ischemic stroke
US8088140B2 (en) 2008-05-19 2012-01-03 Mindframe, Inc. Blood flow restorative and embolus removal methods
US10123803B2 (en) 2007-10-17 2018-11-13 Covidien Lp Methods of managing neurovascular obstructions
US9198687B2 (en) 2007-10-17 2015-12-01 Covidien Lp Acute stroke revascularization/recanalization systems processes and products thereby
US8926680B2 (en) 2007-11-12 2015-01-06 Covidien Lp Aneurysm neck bridging processes with revascularization systems methods and products thereby
US8066757B2 (en) 2007-10-17 2011-11-29 Mindframe, Inc. Blood flow restoration and thrombus management methods
US8585713B2 (en) 2007-10-17 2013-11-19 Covidien Lp Expandable tip assembly for thrombus management
US8518037B2 (en) * 2007-10-30 2013-08-27 Boston Scientific Scimed, Inc. Radiofrequency ablation device
US8292880B2 (en) 2007-11-27 2012-10-23 Vivant Medical, Inc. Targeted cooling of deployable microwave antenna
US8556969B2 (en) 2007-11-30 2013-10-15 Ormco Corporation Biocompatible copper-based single-crystal shape memory alloys
US7842143B2 (en) 2007-12-03 2010-11-30 Tini Alloy Company Hyperelastic shape setting devices and fabrication methods
US8382917B2 (en) 2007-12-03 2013-02-26 Ormco Corporation Hyperelastic shape setting devices and fabrication methods
EP2240093B1 (en) * 2008-01-04 2013-04-24 Boston Scientific Scimed, Inc. Detachment mechanisms for implantable devices
EP2254485B1 (en) 2008-02-22 2017-08-30 Covidien LP Apparatus for flow restoration
CN101977650A (en) 2008-04-11 2011-02-16 曼德弗雷姆公司 Monorail neuro-microcatheter for delivery of medical devices to treat stroke, processes and products thereby
US20090306701A1 (en) * 2008-06-10 2009-12-10 Boston Scientific Scimed, Inc. Vascular access sheath with integrated return electrode
WO2010016923A1 (en) 2008-08-06 2010-02-11 Boston Scientific Scimed, Inc. Vaso-occlusive devices with textured surfaces
US8940011B2 (en) * 2008-09-09 2015-01-27 Boston Scientific Scimed, Inc. Composite detachment mechanisms
US20100137898A1 (en) * 2008-12-02 2010-06-03 Boston Scientific Scimed, Inc. Vaso-occlusive devices with attachment assemblies for stretch-resistant members
US8500688B2 (en) 2009-04-16 2013-08-06 Medtronic, Inc. Retrograde coronary sinus perfusion cannula and methods of using same
US20110087318A1 (en) 2009-10-09 2011-04-14 Daugherty John R Bifurcated highly conformable medical device branch access
WO2011119872A1 (en) 2010-03-24 2011-09-29 Nexgen Medical Systems, Inc. Thrombus removal system and process
US9017246B2 (en) 2010-11-19 2015-04-28 Boston Scientific Scimed, Inc. Biliary catheter systems including stabilizing members
US9345532B2 (en) 2011-05-13 2016-05-24 Broncus Medical Inc. Methods and devices for ablation of tissue
US8709034B2 (en) 2011-05-13 2014-04-29 Broncus Medical Inc. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
WO2013078235A1 (en) 2011-11-23 2013-05-30 Broncus Medical Inc Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
US10342548B2 (en) 2012-01-13 2019-07-09 W. L. Gore & Associates, Inc. Occlusion devices and methods of their manufacture and use
US11040230B2 (en) 2012-08-31 2021-06-22 Tini Alloy Company Fire sprinkler valve actuator
US10124197B2 (en) 2012-08-31 2018-11-13 TiNi Allot Company Fire sprinkler valve actuator
US9435107B2 (en) * 2012-09-07 2016-09-06 Kohler Co. Shape memory faucet
US10194914B2 (en) 2014-08-14 2019-02-05 W. L. Gore & Associates, Inc. Anastomosis devices
CN115433892B (en) * 2022-09-14 2023-03-21 贵州大学 Method for simultaneously improving strength and plasticity of GH4169 high-temperature alloy plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3174851A (en) * 1961-12-01 1965-03-23 William J Buehler Nickel-base alloys

Also Published As

Publication number Publication date
BE685751A (en) 1967-02-01
US3351463A (en) 1967-11-07
GB1161225A (en) 1969-08-13
NL6611720A (en) 1967-02-21
DE1533360B1 (en) 1971-01-07
CH504538A (en) 1971-03-15
ES330445A1 (en) 1967-07-01
AT281446B (en) 1970-05-25

Similar Documents

Publication Publication Date Title
NO115605B (en)
NO164358B (en) PROCEDURE AND APPARATUS FOR THE MANUFACTURE OF NON-SENSITIVE ARTICLES OF PRECIOUS METAL.
RU2277134C2 (en) Titanium-based high-strength alpha-beta alloy
US8771590B2 (en) Titanium base alloy
EP0683242B1 (en) Method for making titanium alloy products
US20150354031A1 (en) Nickel-cobalt alloy
GB1564771A (en) Method for fatique properties of titanium alloy articles
US3592639A (en) Tantalum-tungsten alloy
CN111826550B (en) Moderate-strength nitric acid corrosion resistant titanium alloy
US3366471A (en) High strength alloy steel compositions and process of producing high strength steel including hot-cold working
US4671827A (en) Method of forming high-strength, tough, corrosion-resistant steel
US3556776A (en) Stainless steel
CN113174551B (en) Dual-phase high-strength high-plasticity titanium alloy with heterogeneous laminated structure and preparation method thereof
US2892706A (en) Titanium base alloys
US3093518A (en) Nickel alloy
RU2690257C1 (en) Titanium-based alloy
JPS61250138A (en) Titanium alloy excelling in cold workability
Rajagopal et al. Investigation of physical and mechanical properties of ti alloy (Ti-6Al-4V) under precisely controlled heat treatment processes
US3258335A (en) Titanium alloy
US4935069A (en) Method for working nickel-base alloy
US3649376A (en) Process for preparing and treating austenitic stainless steels
US3316129A (en) Metallurgical conditioning process for precipitation-hardening stainless steels
US2319538A (en) Heat treatment of copper-chromium alloy steels
US3510295A (en) Titanium base alloy
Wood et al. The all-beta titanium alloy (Ti-13V-11Cr-3Al)