DE112006002069T5 - Elektrisch verstellbares Getriebe mit drei Planetenradsätzen und gekuppeltem Antrieb - Google Patents

Elektrisch verstellbares Getriebe mit drei Planetenradsätzen und gekuppeltem Antrieb Download PDF

Info

Publication number
DE112006002069T5
DE112006002069T5 DE112006002069T DE112006002069T DE112006002069T5 DE 112006002069 T5 DE112006002069 T5 DE 112006002069T5 DE 112006002069 T DE112006002069 T DE 112006002069T DE 112006002069 T DE112006002069 T DE 112006002069T DE 112006002069 T5 DE112006002069 T5 DE 112006002069T5
Authority
DE
Germany
Prior art keywords
gear set
motor
generator
planetary gear
selectively
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE112006002069T
Other languages
English (en)
Other versions
DE112006002069B4 (de
Inventor
Madhusudan West Bloomfield Raghavan
Norman K. Troy Bucknor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of DE112006002069T5 publication Critical patent/DE112006002069T5/de
Application granted granted Critical
Publication of DE112006002069B4 publication Critical patent/DE112006002069B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/727Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
    • F16H3/728Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path with means to change ratio in the mechanical gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/088Power split variators with summing differentials, with the input of the CVT connected or connectable to the input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/10Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
    • F16H2037/102Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts the input or output shaft of the transmission is connected or connectable to two or more differentials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/10Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
    • F16H2037/104Power split variators with one end of the CVT connected or connectable to two or more differentials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/10Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
    • F16H2037/105Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts characterised by number of modes or ranges, e.g. for compound gearing
    • F16H2037/106Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts characterised by number of modes or ranges, e.g. for compound gearing with switching means to provide two variator modes or ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0034Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising two forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0043Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising four forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/201Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with three sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2041Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with four engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2043Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with five engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2046Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with six engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2097Transmissions using gears with orbital motion comprising an orbital gear set member permanently connected to the housing, e.g. a sun wheel permanently connected to the housing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Structure Of Transmissions (AREA)

Abstract

Elektrisch verstellbares Getriebe, umfassend:
ein Antriebselement zur Aufnahme von Leistung von einer Maschine;
ein Abtriebselement;
einen ersten und zweiten Motor/Generator;
einen ersten, zweiten und dritten Differenzialzahnradsatz, die jeweils ein erstes, zweites und drittes Element aufweisen;
wobei das Antriebselement selektiv mit mindestens einem Element der Zahnradsätze verbunden ist, und das Abtriebselement ständig mit mindestens einem Element der Zahnradsätze verbunden ist;
ein erstes Verbindungselement, das das erste Element des ersten Zahnradsatzes ständig mit dem ersten Element des zweiten Zahnradsatzes verbindet;
ein zweites Verbindungselement, das das zweite Element des zweiten Zahnradsatzes ständig mit dem ersten Element des dritten Zahnradsatzes verbindet;
ein drittes Verbindungselement, das das zweite Element des ersten Zahnradsatzes ständig mit dem zweiten Element des dritten Zahnradsatzes oder mit einem feststehenden Element verbindet;
wobei der erste Motor/Generator ständig mit einem Element des ersten oder zweiten Zahnradsatzes verbunden ist;
wobei der zweite Motor/Generator...

Description

  • TECHNISCHES GEBIET
  • Die vorliegende Erfindung betrifft elektrisch verstellbare Getriebe mit einem selektiven Betrieb in Leistungsverzweigungsbereichen mit variablem Drehzahlverhältnis sowie in festen Drehzahlverhältnissen, das drei Planetenradsätze, zwei Motoren/Generatoren und fünf Drehmomentübertragungseinrichtungen aufweist.
  • HINTERGRUND DER ERFINDUNG
  • Brennkraftmaschinen, insbesondere jene von der Art mit hin- und hergehendem Kolben, treiben gegenwärtig die meisten Fahrzeuge an. Derartige Maschinen sind relativ effiziente, kompakte, leichte und kostengünstige Mechanismen, durch die hochkonzentrierte Energie in der Form von Kraftstoff in mechanische Nutzleistung umgewandelt wird. Ein neuartiges Getriebesystem, das mit Brennkraftmaschinen verwendet werden kann und das den Kraftstoffverbrauch und die Emissionen von Verunreinigungen vermindern kann, kann für die Allgemeinheit von großem Nutzen sein.
  • Die breite Vielfalt in den Anforderungen, die Fahrzeuge typischerweise an Brennkraftmaschinen stellen, erhöht den Kraftstoffverbrauch und die Emissionen über den Idealfall für derartige Maschinen hinaus. Typischerweise wird ein Fahrzeug von solch einer Maschine angetrieben, die durch einen kleinen Elektromotor und relativ kleine elektrische Speicherbatterien aus einem kalten Zustand gestartet wird, und die dann schnell unter die Lasten von Antriebs- und Zusatzausrüstung gesetzt wird. Eine derartige Maschine wird auch durch einen breiten Bereich von Drehzahlen und einen breiten Bereich von Lasten und typischerweise mit einem Durchschnitt von ungefähr einem Fünftel ihrer maximalen Ausgangsleistung betrieben.
  • Ein Fahrzeuggetriebe liefert typischerweise mechanische Leistung von einer Maschine an den Rest eines Antriebssystems, wie ein festes Achsantriebsgetriebe, Achsen und Räder. Ein typisches mechanisches Getriebe erlaubt eine gewisse Freiheit im Maschinenbetrieb, und zwar gewöhnlich durch alternative Auswahl von fünf oder sechs unterschiedlichen Antriebsübersetzungsverhältnissen, eine Neutralauswahl, die zulässt, dass die Maschine Nebenaggregate bei stehendem Fahrzeug betreiben kann, und Kupplungen oder einen Drehmomentwandler für glatte Übergänge zwischen Antriebsübersetzungsverhältnissen und um das Fahrzeug aus der Ruhe bei drehender Maschine zu starten. Die Getriebegangauswahl lässt typischerweise zu, dass Leistung von der Maschine an den Rest des Antriebssystems mit einem Verhältnis von Drehmomentvervielfachung und Drehzahlreduktion, mit einem Verhältnis von Drehmomentreduktion und Drehzahlvervielfachung, das als Overdrive bekannt ist, oder mit einem Rückwärtsübersetzungsverhältnis abgegeben werden kann.
  • Ein elektrischer Generator kann mechanische Leistung von der Maschine in elektrische Leistung umwandeln, und ein Elektromotor kann diese elektrische Leistung zurück in mechanische Leistung mit unterschiedlichen Drehmomenten und Drehzahlen für den Rest des Fahrzeugantriebssystems umwandeln. Diese Anordnung erlaubt eine kontinuierliche Veränderung im Verhältnis von Drehmoment und Drehzahl zwischen der Maschine und dem Rest des Antriebssystems innerhalb der Grenzen der elektrischen Maschinerie. Eine elektrische Speicherbatterie, die als Leis tungsquelle für den Antrieb verwendet wird, kann dieser Anordnung hinzugefügt werden, wodurch ein Reihenhybrid-Elektroantriebssystem gebildet wird.
  • Das Reihenhybridsystem lässt zu, dass die Maschine mit einer gewissen Unabhängigkeit von dem Drehmoment, der Drehzahl und der Leistung, die erforderlich sind, um ein Fahrzeug anzutreiben, arbeiten kann, so dass die Maschine auf verbesserte Emissionen und einen verbesserten Wirkungsgrad hin gesteuert werden kann. Dieses System lässt zu, dass der Elektromotor, der an der Brennkraftmaschine angebracht ist, als Motor zum Anlassen der Maschine wirken kann. Dieses System lässt auch zu, dass der Elektromotor, der an dem Rest des Antriebsstrangs angebracht ist, als Generator wirken kann, wobei Energie aus dem Verlangsamen des Fahrzeugs in der Batterie durch regeneratives Bremsen zurückgewonnen wird. Ein Reihenelektroantrieb hat Probleme hinsichtlich des Gewichts und der Kosten einer ausreichenden elektrischen Maschinerie, um die gesamte Leistung der Maschine von mechanisch in elektrisch in dem Generator und von elektrisch in mechanisch in dem Antriebsmotor umzuwandeln, und des Nutzenergieverlustes bei diesen Umwandlungen.
  • Ein Getriebe mit Leistungsverzweigung kann eine sogenannte "Differenzialzahnradanordnung" verwenden, um ein stufenlos verstellbares Drehmoment- und Drehzahlverhältnis zwischen Antrieb und Abtrieb zu erreichen. Ein elektrisch verstellbares Getriebe kann eine Differenzialzahnradanordnung verwenden, um einen Bruchteil seiner übertragenen Leistung durch ein Paar Elektromotoren/Generatoren zu schicken. Der Rest seiner Leistung fließt durch einen anderen parallelen Weg, der vollständig mechanisch und direkt, mit einem festen Übersetzungsverhältnis oder alternativ wählbar ist.
  • Ein Planetenradsatz kann, wie Fachleuten bekannt ist, eine Form einer Differenzialzahnradanordnung bilden. Eine Planetenradanordnung ist gewöhnlich die bevorzugte Ausführungsform, die in mit differenziellen Zahnradanordnungen ausgestatteten Erfindungen angewandt wird, mit den Vorteilen einer Kompaktheit und unterschiedlicher Drehmoment- und Drehzahlverhältnisse zwischen allen Elementen des Planetenradsatzes. Es ist jedoch möglich, diese Erfindung ohne Planetenräder aufzubauen, wie etwa durch die Verwendung von Kegelrädern oder anderen Zahnrädern in einer Anordnung, bei der die Drehzahl von mindestens einem Element eines Zahnradsatzes immer ein gewichteter Mittelwert von Drehzahlen der beiden anderen Elemente ist.
  • Ein Getriebesystem für ein Hybridelektrofahrzeug umfasst auch eine oder mehrere Speichereinrichtungen für elektrische Energie. Die typische Einrichtung ist eine chemisch-elektrische Speicherbatterie, es können aber auch kapazitive oder mechanische Einrichtungen, wie etwa ein elektrisch angetriebenes Schwungrad, enthalten sein. Ein Speicher für elektrische Energie lässt zu, dass die mechanische Ausgangsleistung von dem Getriebesystem zu dem Fahrzeug von der mechanischen Eingangsleistung von der Maschine zu dem Getriebesystem abweichen kann. Die Batterie oder andere Einrichtung erlaubt auch das Starten der Maschine mit dem Getriebesystem und ein regeneratives Bremsen des Fahrzeugs.
  • Ein elektrisch verstellbares Getriebe in einem Fahrzeug kann einfach mechanische Leistung von einem Maschinenantrieb zu einem Achsantriebsausgang übertragen. Dazu gleicht die elektrische Leistung, die von einem Motor/Generator erzeugt wird, die elektrischen Verluste und die elektrische Leistung, die von dem anderen Motor/Generator verbraucht wird, aus. Durch die Verwendung der oben genannten elektrischen Speicherbatterie kann die elektrische Leistung, die von einem Motor/Gene rator erzeugt wird, größer oder kleiner sein als die elektrische Leistung, die von dem anderen verbraucht wird. Elektrische Leistung von der Batterie kann manchmal zulassen, dass beide Motoren/Generatoren als Motoren wirken, insbesondere um die Maschine bei der Fahrzeugbeschleunigung zu unterstützen. Beide Motoren können manchmal als Generatoren wirken, um die Batterie wieder aufzuladen, insbesondere beim regenerativen Bremsen des Fahrzeugs.
  • Ein erfolgreicher Ersatz für das Reihenhybridgetriebe ist das elektrisch verstellbare Getriebe mit zwei Bereichen, Eingangsleistungsverzweigung und kombinierter Leistungsverzweigung (two-range, input-split and compound-split electrically variable transmission), das nun für Linienbusse hergestellt wird, wie es offenbart ist in U.S. Patent Nummer 5,931,757, erteilt am 3. August 1999 für Michael Roland Schmidt, das gemeinsam mit der vorliegenden Anmeldung übertragen wurde und dessen Offenbarungsgehalt hierin durch Bezugnahme vollständig mit eingeschlossen ist. Ein derartiges Getriebe benutzt ein Antriebsmittel, um Leistung von der Fahrzeugmaschine aufzunehmen, und ein Leistungsausgabemittel, um Leistung zum Antreiben des Fahrzeugs abzugeben. Ein erster und zweiter Motor/Generator sind mit einer Energiespeichereinrichtung, wie einer Batterie, verbunden, so dass die Energiespeichereinrichtung Leistung von dem ersten und zweiten Motor/Generator aufnehmen und diesen Leistung zuführen kann. Eine Steuereinheit regelt den Leistungsfluss zwischen der Energiespeichereinrichtung und den Motoren/Generatoren sowie zwischen dem ersten und zweiten Motor/Generator.
  • Ein Betrieb in dem ersten oder zweiten Betriebsmodus mit variablem Drehzahlverhältnis kann selektiv unter Verwendung von Kupplungen in der Natur einer ersten und zweiten Drehmomentübertragungseinrichtung erreicht werden. In dem ersten Modus wird ein Drehzahlverhältnisbereich mit Eingangsleistungsverzweigung durch Einrücken der ersten Kupplung gebildet, und die Abtriebsdrehzahl des Getriebes ist proportional zu der Drehzahl von einem Motor/Generator. In dem zweiten Modus wird ein Drehzahlverhältnisbereich mit kombinierter Leistungsverzweigung durch das Einrücken der zweiten Kupplung gebildet, und die Abtriebsdrehzahl des Getriebes ist nicht proportional zu den Drehzahlen von einem der Motoren/Generatoren, sondern ist eine algebraische Linearkombination der Drehzahlen der beiden Motoren/Generatoren. Ein Betrieb mit einem festen Getriebedrehzahlverhältnis kann selektiv durch das Einrücken beider Kupplungen erreicht werden. Ein Betrieb des Getriebes in einem neutralen Modus kann selektiv erreicht werden, indem beide Kupplungen gelöst werden, wobei die Maschine und beide Elektromotoren/Generatoren von dem Getriebeabtrieb entkoppelt werden. Das Getriebe umfasst mindestens einen mechanischen Punkt in seinem ersten Betriebsmodus und mindestens zwei mechanische Punkte in seinem zweiten Betriebsmodus.
  • U.S. Patent Nr. 6,527,658, das am 4. März 2003 für Holmes et al. erteilt wurde, gemeinsam mit der vorliegenden Anmeldung übertragen wurde und dessen Offenbarungsgehalt hierin durch Bezugnahme vollständig mit eingeschlossen ist, offenbart ein elektrisch verstellbares Getriebe, das zwei Planetenradsätze, zwei Motoren/Generatoren und zwei Kupplungen benutzt, um Betriebsmodi mit Eingangsleistungsverzweigung (input-split), kombinierter Leistungsverzweigung (compound-split) sowie Neutral- und Rückwärtsbetriebsmodi bereitzustellen. Beide Planetenradsätze können einfach sein oder einer kann einzeln zusammengesetzt sein. Ein elektrisches Steuerelement reguliert den Leistungsfluss zwischen einer Energiespeichereinrichtung und den beiden Motoren/Generatoren. Dieses Getriebe bietet zwei Bereiche oder Modi eines Betriebes eines elektrisch verstellbaren Getriebes (EVT), wobei es selektiv einen Drehzahlverhältnisbereich mit Eingangsleistungsverzweigung und einen Drehzahlverhältnisbereich mit kombinierter Leistungsverzweigung bereitstellt. Es kann auch selektiv ein festes Drehzahlverhältnis erreicht werden.
  • ZUSAMMENFASSUNG DER ERFINDUNG
  • Die vorliegende Erfindung stellt eine Familie von elektrisch verstellbaren Getrieben bereit, die mehrere Vorteile gegenüber herkömmlichen Automatikgetrieben zur Verwendung in Hybridfahrzeugen bietet, die ein verbessertes Leistungsvermögen der Fahrzeugbeschleunigung, eine verbesserte Kraftstoffwirtschaftlichkeit über ein regeneratives Bremsen und einen nur elektrischen Leerlauf und ein nur elektrisches Anfahren und ein attraktives Vermarktungsmerkmal umfassen. Es ist eine Aufgabe der Erfindung, den bestmöglichen Energiewirkungsgrad und die bestmöglichen Emissionen für eine gegebene Maschine bereitzustellen. Zusätzlich werden ein optimales Leistungsvermögen, eine optimale Kapazität, eine optimale Packungsgröße und eine optimale Übersetzungsverhältnisabdeckung für das Getriebe angestrebt.
  • Die elektrisch verstellbare Getriebefamilie der vorliegenden Erfindung stellt kostengünstige elektrisch verstellbare Getriebemechanismen mit geringem Inhalt bereit, die einen ersten, zweiten und dritten Differenzialzahnradsatz, eine Batterie, zwei Elektromotoren, die austauschbar als Motoren oder Generatoren dienen, und fünf auswählbare Drehmomentübertragungseinrichtungen (zwei Kupplungen und drei Bremsen) umfassen. Zusätzlich kann eine Klauenkupplung vorgesehen sein. Die Differenzialzahnradsätze sind vorzugsweise Planetenradsätze, es können aber andere Zahnradanordnungen eingesetzt werden, wie etwa Kegelräder oder eine Differenzialzahnradanordnung an einer versetzten Achse.
  • In dieser Beschreibung können der erste, zweite oder dritte Planetenradsatz in beliebiger Reihenfolge mit "erster" bis "dritter" gezählt werden (d. h. von links nach rechts, von rechts nach links usw.).
  • Jeder der drei Planetenradsätze weist drei Elemente auf. Das erste, zweite oder dritte Element jedes Planetenradsatzes kann irgendeines von einem Sonnenrad, einem Hohlrad oder einem Träger oder alternativ ein Planet sein.
  • Jeder Träger kann entweder ein Einzelplanetenträger (einfach) oder ein Doppelplanetenträger (zusammengesetzt) sein.
  • Die Antriebswelle ist selektiv mit mindestens einem Element der Planetenradsätze verbunden. Die Abtriebswelle ist ständig mit mindestens einem Element der Planetenradsätze verbunden.
  • Ein erstes Verbindungselement verbindet ein erstes Element des ersten Planetenradsatzes ständig mit dem ersten Element des zweiten Planetenradsatzes.
  • Ein zweites Verbindungselement verbindet das zweite Element des zweiten Planetenradsatzes ständig mit einem ersten Element des dritten Planetenradsatzes.
  • Ein drittes Verbindungselement verbindet ein zweites Element des ersten Planetenradsatzes ständig mit einem zweiten Element des dritten Planetenradsatzes oder mit einem feststehenden Element (Masse/Getriebekasten).
  • Eine erste Drehmomentübertragungseinrichtung verbindet ein Element des ersten, zweiten oder dritten Planetenradsatzes selektiv mit dem Antriebselement.
  • Eine zweite Drehmomentübertragungseinrichtung verbindet ein anderes Element des ersten, zweiten oder dritten Planetenradsatzes selektiv mit dem Antriebselement.
  • Eine dritte Drehmomentübertragungseinrichtung verbindet ein Element des ersten, zweiten oder dritten Planetenradsatzes selektiv mit einem feststehenden Element (Masse/Getriebekasten).
  • Eine vierte Drehmomentübertragungseinrichtung ist parallel zu einem der Motoren/Generatoren geschaltet, um eine Rotation des Motors/Generators selektiv zu verhindern.
  • Eine fünfte Drehmomentübertragungseinrichtung ist parallel zu dem anderen der Motoren/Generatoren geschaltet, um dessen Rotation selektiv zu verhindern.
  • Der erste Motor/Generator ist an dem Getriebekasten (oder Masse) montiert und ist ständig mit einem Element des ersten oder zweiten Planetenradsatzes verbunden. Der erste Motor/Generator kann eine versetzte Zahnradanordnung umfassen.
  • Der zweite Motor/Generator ist an dem Getriebekasten montiert und entweder ständig oder über eine Klauenkupplung mit einem Element des ersten, zweiten oder dritten Planetenradsatzes verbunden, wobei dieses Element verschieden ist von dem einen, das ständig mit dem ersten Motor/Generator verbunden ist. Der zweite Motor/Generator kann auch eine versetzte Zahnradanordnung umfassen. Die Klauenkupplung, falls vorhanden, lässt zu, dass der zweite Motor/Generator zwischen einem Paar Elementen an dem zweiten und dritten Planetenradsatz umgeschaltet werden kann. Die Klauenkupplung kann Kupplungsrutschverluste vermindern und lässt einen Motor/Generator-Betrieb bei niedrigen Drehzahlen während des gesamten Betriebsbereiches des Getriebes zu.
  • Die fünf auswählbaren Drehmomentübertragungseinrichtungen (zwei Kupplungen und drei Bremsen) werden einzeln oder in Zweier- oder Dreierkombinationen eingerückt, um ein EVT mit einem stufenlos verstellbaren Bereich von Drehzahlen (einschließlich rückwärts) und bis zu vier mechanisch festen Vorwärtsdrehzahlverhältnissen zu erhalten. Ein "festes Drehzahlverhältnis" ist eine Betriebsbedingung, unter der die mechanische Antriebsleistung für das Getriebe mechanisch auf den Abtrieb übertragen wird und kein Leistungsfluss in den Motoren/Generatoren vorhanden ist (d. h. beinahe null beträgt). Ein elektrisch verstellbares Getriebe, das selektiv mehrere feste Drehzahlverhältnisse für einen Betrieb in der Nähe voller Maschinenleistung erzielen kann, kann für eine gegebene maximale Kapazität kleiner und leichter sein. Ein Betrieb mit festem Verhältnis kann auch zu einem niedrigeren Kraftstoffverbrauch führen, wenn unter Bedingungen gearbeitet wird, unter denen die Maschinendrehzahl sich ihrem Optimum nähern kann, ohne die Motoren/Generatoren zu verwenden. Eine Vielfalt von festen Drehzahlverhältnissen und variable Verhältnisspreizungen können durch geeignetes Wählen der Zähneverhältnisse der Planetenradsätze realisiert werden.
  • Jede Ausführungsform der offenbarten elektrisch verstellbaren Getriebefamilie weist eine Architektur auf, in der weder der Getriebeantrieb noch der Getriebeabtrieb direkt mit einem Motor/Generator verbunden ist. Dies erlaubt eine Verringerung der Größe und Kosten der Elektromotoren/Ge neratoren, die erforderlich sind, um das gewünschte Fahrzeugleistungsvermögen zu erreichen.
  • Die Drehmomentübertragungseinrichtungen und der erste und zweite Motor/Generator sind betreibbar, um in dem elektrisch verstellbaren Getriebe fünf Betriebsmodi bereitzustellen, die einen Batterie-Rückwärtsmodus, einen EVT Rückwärtsmodus, Rückwärts- und Vorwärtsanfahrmodi, einen Modus mit stufenlos verstellbarem Getriebebereich und einen Modus mit festem Verhältnis umfassen.
  • Die obigen Merkmale und Vorteile und weitere Merkmale und Vorteile der vorliegenden Erfindung werden aus der folgenden ausführlichen Beschreibung der besten Ausführungsarten der Erfindung leicht deutlich werden, wenn diese in Verbindung mit den begleitenden Zeichnungen genommen wird.
  • KURZBESCHREIBUNG DER ZEICHNUNGEN
  • 1a ist eine schematische Darstellung eines Antriebsstrangs, der ein elektrisch verstellbares Getriebe umfasst und ein Familienmitglied der vorliegenden Erfindung enthält;
  • 1b ist eine Tabelle für Betriebsmodi und eine Tabelle für Modi mit festem Verhältnis, die einige der Betriebseigenschaften des in 1a gezeigten Antriebsstrangs darstellen;
  • 2a ist eine schematische Darstellung eines Antriebsstrangs mit einem elektrisch verstellbaren Getriebe, der ein anderes Familienmitglied der vorliegenden Erfindung enthält;
  • 2b ist eine Tabelle für Betriebsmodi und eine Tabelle für Modi mit festem Verhältnis, die einige der Betriebseigenschaften des in 2a gezeigten Antriebsstrangs darstellen;
  • 3a ist eine schematische Darstellung eines Antriebsstrangs mit einem elektrisch verstellbaren Getriebe, der ein anderes Familienmitglied der vorliegenden Erfindung enthält;
  • 3b ist eine Tabelle für Betriebsmodi und eine Tabelle für Modi mit festem Verhältnis, die einige der Betriebseigenschaften des in 3a gezeigten Antriebsstrangs darstellen;
  • 4a ist eine schematische Darstellung eines Antriebsstrangs mit einem elektrisch verstellbaren Getriebe, der ein anderes Familienmitglied der vorliegenden Erfindung enthält;
  • 4b ist eine Tabelle für Betriebsmodi und eine Tabelle für Modi mit festem Verhältnis, die einige der Betriebseigenschaften des in 4a gezeigten Antriebsstrangs darstellen;
  • 5a ist eine schematische Darstellung eines Antriebsstrangs mit einem elektrisch verstellbaren Getriebe, der ein anderes Familienmitglied der vorliegenden Erfindung enthält;
  • 5b ist eine Tabelle für Betriebsmodi und eine Tabelle für Modi mit festem Verhältnis, die einige der Betriebseigenschaften des in 5a gezeigten Antriebsstrangs darstellen;
  • 6a ist eine schematische Darstellung eines Antriebsstrangs mit einem elektrisch verstellbaren Getriebe, der ein anderes Familienmitglied der vorliegenden Erfindung enthält;
  • 6b ist eine Tabelle für Betriebsmodi und eine Tabelle für Modi mit festem Verhältnis, die einige der Betriebseigenschaften des in 6a gezeigten Antriebsstrangs darstellen;
  • 7a ist eine schematische Darstellung eines Antriebsstrangs mit einem elektrisch verstellbaren Getriebe, der ein anderes Familienmitglied der vorliegenden Erfindung enthält;
  • 7b ist eine Tabelle für Betriebsmodi und eine Tabelle für Modi mit festem Verhältnis, die einige der Betriebseigenschaften des in 7a gezeigten Antriebsstrangs darstellen;
  • 8a ist eine schematische Darstellung eines Antriebsstrangs mit einem elektrisch verstellbaren Getriebe, der ein anderes Familienmitglied der vorliegenden Erfindung enthält;
  • 8b ist eine Tabelle für Betriebsmodi und eine Tabelle für Modi mit festem Verhältnis, die einige der Betriebseigenschaften des in 8a gezeigten Antriebsstrangs darstellen;
  • 9a ist eine schematische Darstellung eines Antriebsstrangs mit einem elektrisch verstellbaren Getriebe, der ein anderes Familienmitglied der vorliegenden Erfindung enthält;
  • 9b ist eine Tabelle für Betriebsmodi und eine Tabelle für Modi mit festem Verhältnis, die einige der Betriebseigenschaften des in 9a gezeigten Antriebsstrangs darstellen;
  • 10a ist eine schematische Darstellung eines Antriebsstrangs mit einem elektrisch verstellbaren Getriebe, der ein anderes Familienmitglied der vorliegenden Erfindung enthält;
  • 10b ist eine Tabelle für Betriebsmodi und eine Tabelle für Modi mit festem Verhältnis, die einige der Betriebseigenschaften des in 10a gezeigten Antriebsstrangs darstellen;
  • 11a ist eine schematische Darstellung eines Antriebsstrangs mit einem elektrisch verstellbaren Getriebe, der ein anderes Familienmitglied der vorliegenden Erfindung enthält; und
  • 11b ist eine Tabelle für Betriebsmodi und eine Tabelle für Modi mit festem Verhältnis, die einige der Betriebseigenschaften des in 11a gezeigten Antriebsstrangs darstellen.
  • BESCHREIBUNG DER BEVORZUGTEN AUSFÜHRUNGSFORMEN
  • In 1a ist ein Antriebsstrang 10 gezeigt, der eine Maschine 12 umfasst, die mit einer bevorzugten Ausführungsform des verbesserten elektrisch verstellbaren Getriebes (EVT) verbunden ist, das allgemein mit dem Bezugszeichen 14 bezeichnet ist. Das Getriebe 14 ist konstruiert, um mindestens einen Teil seiner Antriebsleistung von der Maschine 12 aufzunehmen. Wie es gezeigt ist, weist die Maschine 12 eine Abtriebswelle auf, die als das Antriebselement 17 des Getriebes 14 dient. Es kann auch ein Dämpfer für transientes Drehmoment (der nicht gezeigt ist) zwischen der Maschine 12 und dem Antriebselement 17 des Getriebes eingesetzt werden.
  • In der gezeigten Ausführungsform kann die Maschine 12 eine Maschine für fossilen Brennstoff sein, wie etwa ein Dieselmotor, der einfach angepasst ist, um seine verfügbare Ausgangsleistung typischerweise mit einer konstanten Anzahl von Umdrehungen pro Minute (U/min) abzugeben.
  • Ungeachtet des Mittels, durch das die Maschine 12 mit dem Getriebeantriebselement 17 verbunden ist, ist das Getriebeantriebselement 17 funktional mit einem Planetenradsatz in dem Getriebe 14 verbunden. Ein Abtriebselement 19 des Getriebes 14 ist mit einem Achsantrieb 16 verbunden.
  • Das Getriebe 14 benutzt drei Differenzialzahnradsätze, vorzugsweise in der Natur von Planetenradsätzen 20, 30 und 40. Der Planetenradsatz 20 wendet ein äußeres Zahnradelement 24 an, das typischerweise als das Hohlrad bezeichnet wird. Das Hohlrad 24 umgibt ein inneres Zahnradelement 22, das typischerweise als das Sonnenrad bezeichnet wird. Ein Träger 26 lagert drehbar mehrere Planetenräder 27, so dass jedes Planetenrad 27 kämmend mit sowohl dem äußeren Hohlrad 24 als auch dem inneren Sonnenrad 22 des ersten Planetenradsatzes 20 in Eingriff steht.
  • Der Planetenradsatz 30 weist auch ein äußeres Zahnradelement 34 auf, das häufig auch als das Hohlrad bezeichnet wird, welches ein inneres Zahnradelement 32 umgibt, das auch häufig als das Sonnenrad bezeichnet wird. Mehrere Planetenräder 37 sind auch drehbar in einem Träger 36 montiert, so dass jedes Planetenrad 37 gleichzeitig und kämmend mit sowohl dem äußeren Hohlrad 34 als auch dem inneren Sonnenrad 32 des Planetenradsatzes 30 in Eingriff steht.
  • Der Planetenradsatz 40 weist auch ein äußeres Zahnradelement 44 auf, das häufig auch als das Hohlrad bezeichnet wird, welches ein inneres Zahnradelement 42 umgibt, das auch häufig als das Sonnenrad bezeichnet wird. Mehrere Planetenräder 47 sind auch drehbar in einem Träger 46 montiert, so dass jedes Planetenrad 47 gleichzeitig und kämmend mit sowohl dem äußeren Hohlrad 44 als auch dem inneren Sonnenrad 42 des Planetenradsatzes 40 in Eingriff steht.
  • Ein erstes Verbindungselement 70 verbindet das Hohlrad 24 des Planetenradsatzes 20 ständig mit dem Sonnenrad 32 des Planetenradsatzes 30. Ein zweites Verbindungselement 72 verbindet den Träger 36 des Planetenradsatzes 30 ständig mit dem Träger 46 des Planetenradsatzes 40. Ein drittes Verbindungselement 74 verbindet den Träger 26 des Planetenradsatzes 20 ständig mit dem Hohlrad 44 des Planetenradsatzes 40.
  • Die erste bevorzugte Ausführungsform 10 umfasst auch einen ersten und zweiten Motor/Generator 80 bzw. 82. Der Stator des ersten Motors/Generators 80 ist an dem Getriebegehäuse 60 befestigt. Der Rotor des ersten Motors/Generators 80 ist an dem Hohlrad 24 des Planetenradsatzes 20 befestigt.
  • Der Stator des zweiten Motors/Generators 82 ist auch an dem Getriebegehäuse 60 befestigt. Der Rotor des zweiten Motors/Generators 82 ist an dem Sonnenrad 42 des Planetenradsatzes 40 befestigt.
  • Eine erste Drehmomentübertragungseinrichtung, wie Antriebskupplung 50, verbindet den Träger 46 des Planetenradsatzes 40 selektiv mit dem Antriebselement 17. Eine zweite Drehmomentübertragungseinrichtung, wie Antriebskupplung 52, verbindet das Sonnenrad 42 des Planetenrad satzes 40 selektiv mit dem Antriebselement 17. Eine dritte Drehmomentübertragungseinrichtung, wie Bremse 54, verbindet das Sonnenrad 22 des Planetenradsatzes 20 selektiv mit dem Getriebegehäuse 60. D. h. das Sonnenrad 22 wird durch eine Wirkverbindung mit dem nicht drehbaren Gehäuse 60 selektiv an einer Drehung gehindert. Eine vierte Drehmomentübertragungseinrichtung, wie die Bremse 55, ist parallel zu dem Motor/Generator 80 geschaltet, um dessen Rotation selektiv zu bremsen. Eine fünfte Drehmomentübertragungseinrichtung, wie Bremse 57, ist parallel zu dem Motor/Generator 82 geschaltet, um dessen Rotation selektiv zu bremsen. Die erste, zweite, dritte, vierte und fünfte Drehmomentübertragungseinrichtung 50, 52, 54, 55 und 57 werden angewandt, um bei der Auswahl der Betriebsmodi des Hybridgetriebes 14 zu helfen, wie es nachstehend ausführlicher erläutert wird.
  • Das Ausgangsabtriebselement 19 des Getriebes 14 ist an dem Hohlrad 34 des Planetenradsatzes 30 befestigt.
  • Kehren wir nun zu der Beschreibung der Leistungsquellen zurück, ist aus der vorstehenden Beschreibung und mit besonderem Bezug auf 1a ersichtlich, dass das Getriebe 14 selektiv Leistung von der Maschine 12 aufnimmt. Das Hybridgetriebe nimmt auch Leistung von einer elektrischen Leistungsquelle 86 auf, die funktional mit einem Controller 88 verbunden ist. Die elektrische Leistungsquelle 86 kann eine oder mehrere Batterien sein. Andere elektrische Leistungsquellen, wie Brennstoffzellen, die die Fähigkeit haben, elektrische Leistung bereitzustellen oder zu speichern und abzugeben, können anstelle von Batterien verwendet werden, ohne die Konzepte der vorliegenden Erfindung zu verändern.
  • Allgemeine Betriebserwägungen
  • Eine der primären Steuereinrichtungen ist eine allgemein bekannte Fahrbereichswähleinrichtung (die nicht gezeigt ist), die eine elektronische Steuereinheit (die ECU 88) anweist, das Getriebe für die Bereiche Parken, Rückwärts, Neutral oder Vorwärtsfahrt zu konfigurieren. Die zweite und dritte primäre Steuereinrichtung bilden ein Gaspedal (das nicht gezeigt ist) und ein Bremspedal (das ebenfalls nicht gezeigt ist). Die Informationen, die von der ECU von diesen drei primären Steuerquellen erhalten werden, werden als die "Bedieneranforderung" bezeichnet. Die ECU erhält auch Informationen von mehreren Sensoren (Antrieb sowie Abtrieb) im Hinblick auf den Zustand der Drehmomentübertragungseinrichtungen (entweder eingerückt oder ausgerückt); das Maschinenabtriebsdrehmoment; das vereinigte Kapazitätsniveau der Batterie oder Batterien; und die Temperaturen von ausgewählten Fahrzeugkomponenten. Die ECU stellt fest, was erforderlich ist, und betätigt dann die selektiv betriebenen Komponenten des Getriebes, oder die diesem zugeordneten Komponenten geeignet, um auf die Bedieneranforderung zu antworten.
  • Die Erfindung kann einfache oder zusammengesetzte Planetenradsätze verwenden. In einem einfachen Planetenradsatz ist ein einzelner Satz von Planetenrädern normal zur Drehung an einem Träger gelagert, der selbst drehbar ist.
  • Wenn in einem einfachen Planetenradsatz das Sonnenrad feststehend gehalten wird und Leistung auf das Hohlrad eines einfachen Planetenradsatzes aufgebracht wird, rotieren die Planetenräder in Ansprechen auf die auf das Hohlrad aufgebrachte Leistung und "laufen" somit in Umfangsrichtung um das festgelegte Sonnenrad um, um eine Drehung des Trägers in der gleichen Richtung wie die Richtung, in der das Hohlrad rotiert wird, zu bewirken.
  • Wenn irgendwelche zwei Elemente eines einfachen Planetenradsatzes in der gleichen Richtung und mit der gleichen Drehzahl rotieren, wird das dritte Element gezwungen, mit der gleichen Drehzahl und in der gleichen Richtung zu rotieren. Wenn beispielsweise das Sonnenrad und das Hohlrad in der gleichen Richtung und mit der gleichen Drehzahl rotieren, rotieren die Planetenräder nicht um ihre eigenen Achsen, sondern wirken vielmehr als Keile, um die gesamte Einheit miteinander zu sperren und somit einen sogenannten direkten Antrieb zu bewirken. Das heißt der Träger rotiert mit den Sonnen- und Hohlrädern.
  • Wenn jedoch die beiden Zahnradelemente in der gleichen Richtung aber mit unterschiedlichen Drehzahlen rotieren, kann die Richtung, in der das dritte Zahnradelement rotiert, häufig einfach durch Sichtanalyse bestimmt werden, aber in vielen Situationen wird die Richtung nicht offensichtlich sein und kann nur durch die Kenntnis der Anzahl von Zähnen, die an allen Zahnradelementen des Planetenradsatzes vorhanden ist, genau bestimmt werden.
  • Jedes Mal dann, wenn der Träger daran gehindert wird, frei umzulaufen, und Leistung auf entweder das Sonnenrad oder das Hohlrad aufgebracht wird, wirken die Planetenräder als Zwischenräder. Auf diese Weise wird das angetriebene Element in der dem treibenden Element entgegengesetzten Richtung rotiert. In vielen Getriebeanordnungen wird somit, wenn der Rückwärtsfahrbereich ausgewählt ist, eine Drehmomentübertragungseinrichtung, die als Bremse dient, über Reibung betätigt, um mit dem Träger in Eingriff zu gelangen und diesen dadurch an einer Drehung zu hindern, so dass Leistung, die auf das Sonnenrad aufgebracht wird, das Hohlrad in der entgegengesetzten Richtung drehen wird. Wenn somit das Hohlrad funktional mit den Antriebsrädern eines Fahrzeuges verbunden ist, ist eine solche Anordnung in der Lage, die Drehrichtung der Antriebsräder und dadurch die Richtung des Fahrzeugs selbst umzukehren.
  • In einem einfachen Satz von Planetenrädern kann, wenn irgendwelche zwei Drehzahlen des Sonnenrads, des Planetenträgers und des Hohlrads bekannt sind, dann die Drehzahl des dritten Elementes unter Anwendung einer einfachen Regel festgestellt werden. Die Drehzahl des Trägers ist immer proportional zu den Drehzahlen der Sonne und des Ringes, gewichtet mit deren jeweiligen Zähnezahlen. Beispielsweise kann ein Hohlrad doppelt so viele Zähne wie das Sonnenrad in dem gleichen Satz aufweisen. Die Drehzahl des Trägers ist dann die Summe von zwei Dritteln der Drehzahl des Hohlrades und einem Drittel der Drehzahl des Sonnenrades. Wenn eines dieser drei Elemente in einer entgegengesetzten Richtung rotiert, ist das arithmetische Vorzeichen für die Drehzahl dieses Elements bei den mathematischen Berechnungen negativ.
  • Das Drehmoment an dem Sonnenrad, dem Träger und dem Hohlrad kann auch einfach miteinander in Beziehung gebracht werden, wenn dies ohne Berücksichtigung der Massen der Zahnräder, der Beschleunigung der Zahnräder oder der Reibung innerhalb des Zahnradsatzes vorgenommen wird, die alle einen relativ geringfügigen Einfluss in einem gut konstruierten Getriebe haben. Das Drehmoment, das auf das Sonnenrad eines einfachen Planetenradsatzes aufgebracht wird, muss das Drehmoment, das auf das Hohlrad aufgebracht wird, proportional zu der Zähnezahl an diesen Zahnrädern ausgleichen. Beispielsweise muss das Drehmoment, das auf ein Hohlrad mit doppelt so viel Zähnen wie an dem Sonnenrad in diesem Satz aufgebracht wird, das Doppelte von dem auf das Sonnenrad aufgebrachten betragen, und es muss in der gleichen Richtung aufge bracht werden. Das auf den Träger aufgebrachte Drehmoment muss die gleiche Größe und die entgegengesetzte Richtung zu der Summe aus dem Drehmoment an dem Sonnenrad und dem Drehmoment an dem Hohlrad betragen.
  • In einem zusammengesetzten Planetenradsatz bewirkt die Benutzung von inneren und äußeren Sätzen von Planetenrädern einen Austausch der Rollen von Hohlrad und Planetenträger im Vergleich mit einem einfachen Planetenradsatz. Wenn beispielsweise das Sonnenrad feststehend gehalten wird, wird der Planetenträger in der gleichen Richtung wie das Hohlrad rotieren, aber der Planetenträger wird sich mit inneren und äußeren Sätzen von Planetenrädern schneller als das Hohlrad statt langsamer bewegen.
  • In einem zusammengesetzten Planetenradsatz, der kämmende innere und äußere Sätze von Planetenrädern aufweist, ist die Drehzahl des Hohlrads proportional zu den Drehzahlen des Sonnenrads und des Planetenträgers, gewichtet mit der Zähnezahl an dem Sonnenrad bzw. der Zähnezahl, die durch die Planetenräder gefüllt wird. Beispielsweise könnte die Differenz zwischen dem Hohlrad und dem Sonnenrad, die durch die Planetenräder gefüllt wird, genauso viel Zähne sein, wie sich an dem Sonnenrad in dem gleichen Satz befinden. In dieser Situation wäre die Drehzahl des Hohlrades die Summe aus zwei Dritteln der Drehzahl des Trägers und einem Drittel der Drehzahl der Sonne. Wenn das Sonnenrad oder der Planetenträger in einer entgegengesetzten Richtung rotiert, ist das arithmetische Vorzeichen für diese Drehzahl bei den mathematischen Berechnungen negativ.
  • Wenn das Sonnenrad feststehend gehalten wird, dann wird ein Träger mit inneren und äußeren Sätzen von Planetenrädern in der gleichen Richtung wie das rotierende Hohlrad dieses Satzes drehen. Wenn andererseits das Sonnenrad feststehend gehalten wird und der Träger angetrieben wird, dann rollen Planetenräder in dem inneren Satz, die mit dem Sonnenrad in Eingriff stehen, entlang des Sonnenrads oder "laufen" um dieses um, wobei sie sich in der gleichen Richtung drehen, in der der Träger rotiert. Planetenräder in dem äußeren Satz, die mit Planetenrädern in dem inneren Satz kämmen, werden sich in der entgegengesetzten Richtung drehen, wodurch ein kämmendes Hohlrad in die entgegengesetzte Richtung gezwungen wird, aber nur in Bezug auf die Planetenräder, mit denen das Hohlrad kämmend in Eingriff steht. Die Planetenräder in dem äußeren Satz werden in der Richtung des Trägers entlang transportiert. Die Wirkung der Drehung der Planetenräder in dem äußeren Satz auf ihren eigenen Achsen und die größere Wirkung der Orbitalbewegung der Planetenräder in dem äußeren Satz aufgrund der Bewegung des Trägers sind kombiniert, so dass das Hohlrad in der gleichen Richtung wie der Träger aber nicht so schnell wie der Träger rotiert.
  • Wenn der Träger in einem derartigen zusammengesetzten Planetenradsatz feststehend gehalten wird und das Sonnenrad gedreht wird, dann wird das Hohlrad mit weniger Drehzahl und in der gleichen Richtung wie das Sonnenrad rotieren. Wenn das Hohlrad eines einfachen Planetenradsatzes feststehend gehalten wird und das Sonnenrad gedreht wird, dann wird der Träger, der einen einzigen Satz von Planetenrädern trägt, mit weniger Drehzahl und in der gleichen Richtung wie das Sonnenrad rotieren. Somit kann man leicht den Austausch der Rollen zwischen dem Träger und dem Hohlrad beobachten, der durch die Verwendung von inneren und äußeren Sätzen von Planetenrädern, die miteinander kämmen, im Vergleich mit der Verwendung eines einzigen Satzes von Planetenrädern in einem einfachen Planetenradsatz hervorgerufen wird.
  • Die normale Wirkung eines elektrisch verstellbaren Getriebes ist, mechanische Leistung von dem Antrieb auf den Abtrieb zu übertragen. Als Teil dieser Übertragungswirkung wirkt einer von seinen beiden Motoren/Generatoren als Generator für elektrische Leistung. Der andere Motor/Generator wirkt als Motor und verwendet diese elektrische Leistung. Da die Drehzahl des Abtriebs von null bis auf eine hohe Drehzahl zunimmt, tauschen die beiden Motoren/Generatoren 80, 82 allmählich die Rollen von Generator und Motor, und können dies mehr als einmal vornehmen. Diese Austausche finden um mechanische Punkte herum statt, an denen im Wesentlichen die gesamte Leistung von dem Antrieb auf den Abtrieb mechanisch übertragen wird und keine wesentliche Leistung elektrisch übertragen wird.
  • In einem hybriden elektrisch verstellbaren Getriebesystem kann die Batterie 86 dem Getriebe auch Leistung zuführen, oder das Getriebe kann der Batterie Leistung zuführen. Wenn die Batterie dem Getriebe wesentlich elektrische Leistung zuführt, wie etwa zur Fahrzeugbeschleunigung, dann wirken beide Motoren/Generatoren als Motoren. Wenn das Getriebe der Batterie elektrische Leistung zuführt, wie etwa für ein regeneratives Bremsen, können beide Motoren/Generatoren als Generatoren wirken. Sehr nahe bei den mechanischen Arbeitspunkten können beide Motoren/Generatoren auch als Generatoren mit kleinen elektrischen Ausgangsleistungen wegen der elektrischen Verluste in dem System wirken.
  • Im Gegensatz zu der normalen Wirkung des Getriebes kann das Getriebe tatsächlich verwendet werden, um mechanische Leistung von dem Abtrieb auf den Antrieb zu übertragen. Dies kann in einem Fahrzeug vorgenommen werden, um die Fahrzeugbremsen zu unterstützen und das regenerative Bremsen des Fahrzeugs zu verbessern oder zu unterstützen, insbesondere auf langen Gefällen. Wenn der Leistungsfluss durch das Getriebe auf diese Weise umgekehrt wird, dann werden die Rollen der Motoren/Generatoren von jenen bei normaler Wirkung umgekehrt.
  • Spezifische Betriebserwägungen
  • Jede der hierin beschriebenen Ausführungsformen weist vierzehn oder sechzehn Funktionsanforderungen auf (die den 14 oder 16 Zeilen jeder in den Figuren gezeigten Tabelle für Betriebsmodi entsprechen), die zu fünf Betriebsmodi gruppiert werden können. Diese fünf Betriebsmodi werden nachstehend beschrieben und können am besten durch Bezugnahme auf die jeweilige Tabelle für Betriebsmodi verstanden werden, die jedes Getriebestickdiagramm begleitet, wie die Tabellen für Betriebsmodi der 1b, 2b, 3b und so weiter.
  • Der erste Betriebsmodus ist der "Batterie-Rückwärtsmodus", der der ersten Zeile (BATT RW) jeder Tabelle für Betriebsmodi, wie etwa jener von 1b, entspricht. In diesem Modus ist die Maschine aus und das Getriebeelement, das mit der Maschine verbunden ist, wird nicht von dem Maschinendrehmoment gesteuert, obwohl es ein gewisses Restdrehmoment aufgrund von Rotationsträgheit der Maschine geben kann. Das EVT wird von einem der Motoren/Generatoren unter Verwendung von Energie von der Batterie angetrieben, was bewirkt, dass sich das Fahrzeug rückwärts bewegt. Abhängig von der kinematischen Konfiguration kann der andere Motor/Generator in diesem Modus rotieren oder nicht rotieren und kann Drehmoment übertragen oder nicht übertragen. Wenn er rotiert, wird er dazu verwendet, Energie zu erzeugen, die in der Batterie gespeichert wird. In der Ausführungsform von 1b ist in dem Batterie-Rückwärtsmodus beispielsweise die Bremse 54 eingerückt, der Motor 80 weist ein Drehmoment von –1,00 auf, der Generator 82 weist ein Drehmoment von –1,34 auf, und es wird ein Drehmomentverhältnis von –3,65 erreicht. In jeder Tabelle für Betriebsmodi gibt ein (M) neben einem Drehmomentwert in den Motor/Generator-Spalten 80 und 82 an, dass der Motor/Generator als Motor wirkt, und das Fehlen eines (M) gibt an, dass der Motor/Generator als Generator wirkt.
  • Der zweite Betriebsmodus ist der "EVT Rückwärtsmodus" (oder der mechanische Rückwärtsmodus), der der zweiten Zeile (EVT RW) jeder Tabelle für Betriebsmodi, wie etwa jener in 1b, entspricht. In diesem Modus wird das EVT von der Maschine und von einem der Motoren/Generatoren angetrieben. Der andere Motor/Generator arbeitet im Generatormodus und überträgt 100% der erzeugten Energie zurück zu dem antreibenden Motor. Der Nettoeffekt ist, dass das Fahrzeug rückwärts angetrieben wird. Nach 1b sind beispielsweise in dem EVT Rückwärtsmodus die Kupplung 52 und die Bremse 54 eingerückt, der Motor 80 weist ein Drehmoment von –2,28 Einheiten auf, der Generator 82 weist ein Drehmoment von –4,05 Einheiten auf, und es wird ein Abtriebsdrehmoment von –8,33 erreicht, das einem Maschinendrehmoment von 1 Einheit entspricht.
  • Der dritte Betriebsmodus umfasst die "Rückwärts- und Vorwärtsanfahrmodi" (auch bezeichnet als "Drehmomentwandler-Rückwärts- und -Vorwärtsmodi"), die den dritten und vierten Zeilen (DW RW und DW VW) jeder Tabelle für Betriebsmodi, wie etwa jener von 1b, entsprechen. In diesem Modus wird das EVT von der Maschine und von einem der Motoren/Generatoren angetrieben. Ein auswählbarer Bruchteil der Energie, die in der Generatoreinheit erzeugt wird, wird in der Batterie gespeichert, wobei die verbleibende Energie auf den Motor übertragen wird. In 1 beträgt dieser Bruchteil etwa 99%. Das Verhältnis von Getriebeabtriebsdrehzahl zu Maschinendrehzahl (Getriebedrehzahlverhältnis) beträgt etwa +/–0,001 (das positive Vorzeichen gibt an, dass das Fahrzeug vorwärts kriecht, und das negative Vorzeichen gibt an, dass das Fahrzeug rück wärts kriecht). Nach 1b sind in den Rückwärts- und Vorwärtsanfahrmodi die Kupplung 52 und die Bremse 54 eingerückt. In dem Modus DW Rückwärts wirkt der Motor/Generator 80 als Motor mit –1,92 Einheiten Drehmoment, der Motor/Generator 82 wirkt als Generator mit –3,56 Einheiten Drehmoment, und es wird ein Drehmomentverhältnis von –7,00 erreicht. In dem Modus DW Vorwärts wirkt der Motor/Generator 80 als Generator mit 1,28 Einheiten Drehmoment, der Motor/Generator 82 wirkt als Motor mit 0,72 Einheiten Drehmoment, und es wird ein Drehmomentverhältnis von 4,69 erzielt.
  • Der vierte Betriebsmodus ist ein "Modus mit stufenlos verstellbarem Getriebebereich", der die Arbeitspunkte Bereich 1.1, Bereich 1.2, Bereich 1.3, Bereich 1.4, Bereich 2.1, Bereich 2.2, Bereich 2.3 und Bereich 2.4 umfasst, die den Zeilen 5–12 jeder Arbeitspunkttabelle, wie etwa jener von 1b, entsprechen. In diesem Modus wird das EVT von dem Motor sowie von einem der Motoren/Generatoren, der als Motor arbeitet, angetrieben. Der andere Motor/Generator arbeitet als Generator und überträgt 100% der erzeugten Energie zurück zu dem Motor. Die Arbeitspunkte, die durch Bereich 1.1, 1.2, ... usw. dargestellt sind, sind diskrete Punkte in dem Kontinuum von Vorwärtsdrehzahlverhältnissen, die von dem EVT bereitgestellt werden. Beispielsweise wird in 1b bei eingerückter Kupplung 52 und Bremse 54 ein Bereich von Drehmomentverhältnissen von 4,69 bis 1,86 erreicht, und bei eingerückten Kupplungen 50 und 52 wird ein Bereich von Verhältnissen von 1,36 bis 0,54 erreicht.
  • Der fünfte Betriebsmodus umfasst die Modi mit "festem Verhältnis" (F1, F2, F3 und F4), die Zeilen 13–16 jeder Tabelle für Betriebsmodi (d. h. Betriebsmodustabelle), wie jener von 1b entsprechen. In diesem Modus arbeitet das Getriebe wie ein herkömmliches Automatikgetriebe, wobei drei Drehmomentübertragungseinrichtungen eingerückt sind, um ein diskretes Getriebeübersetzungsverhältnis zu schaffen. Die Kuppeltabelle, die jede Figur begleitet, zeigt nur vier Vorwärtsgänge mit festem Verhältnis, aber es können zusätzliche feste Verhältnisse erreicht werden. Nach 1b sind in dem festen Verhältnis F1 die Kupplung 52 und die Bremsen 54, 55 eingerückt, um ein festes Drehmomentverhältnis von 2,74 zu erreichen. Dementsprechend gibt jedes "X" in der Spalte von Motor/Generator 80, 82 in 1b an, dass jeweils die Bremse 55 oder 57 eingerückt ist und der Motor/Generator 80 oder 82 nicht rotiert. In dem festen Verhältnis F2 sind die Kupplung 50 und die Bremsen 55, 57 eingerückt, um ein festes Verhältnis von 1,56 zu erreichen. In dem festen Verhältnis F3 sind die Kupplungen 50, 52 und die Bremse 55 eingerückt, um ein festes Verhältnis von 1,18 zu erreichen. In dem festen Verhältnis F4 sind die Kupplung 50 und die Bremsen 54, 55 eingerückt, um ein festes Verhältnis von 0,68 zu erreichen.
  • Das Getriebe 14 ist in der Lage, in sogenannten Einzel- oder Doppelmodi zu arbeiten. Im Einzelmodus bleibt die eingerückte Drehmomentübertragungseinrichtung für das vollständige Kontinuum von Vorwärtsdrehzahlverhältnissen (die durch die diskreten Punkte: Bereiche 1.1, 1.2, 1.3 und 1.4 dargestellt sind) die gleiche. Im Doppelmodus wird die eingerückte Drehmomentübertragungseinrichtung bei irgendeinem Zwischendrehzahlverhältnis umgeschaltet (z. B. Bereich 2.1 in 1). Abhängig von der mechanischen Konfiguration hat diese Änderung in der Einrückung der Drehmomentübertragungseinrichtung Vorteile bei der Verringerung der Elementdrehzahlen in dem Getriebe.
  • Wie es oben ausgeführt wurde, ist der Einrückplan für die Drehmomentübertragungseinrichtungen in der Tabelle für Betriebsmodi und der Tabelle für Modi mit festem Verhältnis der 1b gezeigt. 1b liefert auch ein Beispiel von Drehmomentverhältnissen, die unter Verwendung der beispielhaft in 1b angegebenen Hohlrad/Sonnenrad-Zähneverhältnisse verfügbar sind. Der NR1/NS1-Wert ist das Zähneverhältnis des Planetenradsatzes 20, der NR2/NS2-Wert ist das Zähneverhältnis des Planetenradsatzes 30, und der NR3/NS3-Wert ist das Zähneverhältnis des Planetenradsatzes 40. Das Schaubild von 1b beschreibt auch die Verhältnisstufen, die unter Verwendung des angegebenen Beispiels von Zähneverhältnissen erzielt werden. Beispielsweise beträgt das Stufenverhältnis zwischen dem ersten und zweiten festen Vorwärtsdrehmomentverhältnis 1,76, das Stufenverhältnis zwischen dem zweiten und dritten festen Vorwärtsdrehmomentverhältnis beträgt 1,32, das Stufenverhältnis zwischen dem dritten und vierten festen Vorwärtsdrehmomentverhältnis beträgt 1,74, und die Verhältnisspreizung beträgt 4,03.
  • BESCHREIBUNG EINER ZWEITEN BEISPIELHAFTEN AUSFÜHRUNGSFORM
  • In 2a ist ein Antriebsstrang 110 gezeigt, der eine Maschine 12 umfasst, die mit einer bevorzugten Ausführungsform des verbesserten elektrisch verstellbaren Getriebes verbunden ist, das allgemein mit dem Bezugszeichen 114 bezeichnet ist. Das Getriebe 114 ist konstruiert, um mindestens einen Teil seiner Antriebsleistung von der Maschine 12 aufzunehmen.
  • In der gezeigten Ausführungsform kann die Maschine 12 auch eine Maschine für fossilen Brennstoff sein, wie etwa ein Dieselmotor, der einfach angepasst ist, um seine verfügbare Ausgangsleistung typischerweise mit einer konstanten Anzahl von Umdrehungen pro Minute (U/min) abzugeben. Wie es gezeigt ist, weist die Maschine 12 eine Abtriebswelle auf, die als das Antriebselement 17 des Getriebes 14 dient. Es kann auch ein Dämpfer für transientes Drehmoment (der nicht gezeigt ist) zwischen der Maschine 12 und dem Antriebselement 17 des Getriebes eingesetzt werden.
  • Ungeachtet des Mittels, durch das die Maschine 12 mit dem Getriebeantriebselement 17 verbunden ist, ist das Getriebeantriebselement 17 funktional mit einem Planetenradsatz in dem Getriebe 114 verbunden. Ein Abtriebselement 19 des Getriebes 114 ist mit einem Achsantrieb 16 verbunden.
  • Das Getriebe 114 benutzt drei Differenzialzahnradsätze, vorzugsweise in der Natur von Planetenradsätzen 120, 130 und 140. Der Planetenradsatz 120 wendet ein äußeres Zahnradelement 124 an, das typischerweise als das Hohlrad bezeichnet wird. Das Hohlrad 124 umgibt ein inneres Zahnradelement 122, das typischerweise als das Sonnenrad bezeichnet wird. Ein Träger 126 lagert drehbar mehrere Planetenräder 127, so dass jedes Planetenrad 127 kämmend mit sowohl dem äußeren Hohlrad 124 als auch dem inneren Sonnenrad 122 des ersten Planetenradsatzes 120 in Eingriff steht.
  • Der Planetenradsatz 130 weist auch ein äußeres Zahnradelement 134 auf, das häufig auch als das Hohlrad bezeichnet wird, welches ein inneres Zahnradelement 132 umgibt, das auch häufig als das Sonnenrad bezeichnet wird. Mehrere Planetenräder 137 sind auch drehbar in einem Träger 136 montiert, so dass jedes Planetenrad 137 gleichzeitig und kämmend mit sowohl dem äußeren Hohlrad 134 als auch dem inneren Sonnenrad 132 des Planetenradsatzes 130 in Eingriff steht.
  • Der Planetenradsatz 140 weist auch ein äußeres Zahnradelement 144 auf, das häufig auch als das Hohlrad bezeichnet wird, welches ein inneres Zahnradelement 142 umgibt, das auch häufig als das Sonnenrad bezeich net wird. Mehrere Planetenräder 147 sind auch drehbar in einem Träger 146 montiert, so dass jedes Planetenrad 147 gleichzeitig und kämmend mit sowohl dem äußeren Hohlrad 144 als auch dem inneren Sonnenrad 142 des Planetenradsatzes 140 in Eingriff steht.
  • Das Getriebeabtriebselement 19 ist mit dem Träger 146 des Planetenradsatzes 140 verbunden. Ein erstes Verbindungselement 170 verbindet das Sonnenrad 122 des Planetenradsatzes 120 ständig mit dem Träger 136 des Planetenradsatzes 130. Ein zweites Verbindungselement 172 verbindet das Hohlrad 134 des Planetenradsatzes 130 ständig mit dem Träger 146 des Planetenradsatzes 140. Ein drittes Verbindungselement 174 verbindet den Träger 126 des Planetenradsatzes 120 ständig mit dem Hohlrad 144 des Planetenradsatzes 140.
  • Das Getriebe 114 umfasst auch einen ersten und zweiten Motor/Generator 180 bzw. 182. Der Stator des ersten Motors/Generators 180 ist an dem Getriebegehäuse 160 befestigt. Der Rotor des ersten Motors/Generators 180 ist an dem Sonnenrad 132 des Planetenradsatzes 130 befestigt.
  • Der Stator des zweiten Motors/Generators 182 ist auch an dem Getriebegehäuse 160 befestigt. Der Rotor des zweiten Motors/Generators 182 ist an dem Sonnenrad 142 des Planetenradsatzes 140 befestigt.
  • Eine erste Drehmomentübertragungseinrichtung, wie Antriebskupplung 150, verbindet das Sonnenrad 122 des Planetenradsatzes 120 selektiv mit dem Antriebselement 17. Eine zweite Drehmomentübertragungseinrichtung, wie Antriebskupplung 152, verbindet das Hohlrad 124 des Planetenradsatzes 120 selektiv mit dem Antriebselement 17. Eine dritte Drehmomentübertragungseinrichtung, wie Bremse 154, verbindet das Hohlrad 124 des Planetenradsatzes 120 selektiv mit dem Getriebegehäuse 160.
  • D. h. das Hohlrad 124 wird durch eine Wirkverbindung mit dem nicht drehbaren Gehäuse 160 selektiv an einer Drehung gehindert. Eine vierte Drehmomentübertragungseinrichtung, wie die Bremse 155, ist parallel zu dem Motor/Generator 180 angeordnet, um dessen Rotation selektiv zu bremsen. Eine fünfte Drehmomentübertragungseinrichtung, wie Bremse 157, ist parallel zu dem Motor/Generator 182 geschaltet, um dessen Rotation selektiv zu bremsen. Die erste, zweite, dritte, vierte und fünfte Drehmomentübertragungseinrichtung 150, 152, 154, 155 und 157 werden angewandt, um bei der Auswahl der Betriebsmodi des Hybridgetriebes 114 zu helfen.
  • Kehren wir nun zu der Beschreibung der Leistungsquellen zurück, ist aus der vorstehenden Beschreibung und mit besonderem Bezug auf 2a ersichtlich, dass das Getriebe 114 selektiv Leistung von der Maschine 12 aufnimmt. Das Hybridgetriebe tauscht auch Leistung mit an elektrische Leistungsquelle 186 aus, die funktional mit einem Controller 188 verbunden ist. Die elektrische Leistungsquelle 186 kann eine oder mehrere Batterien sein. Andere elektrische Leistungsquellen, wie Brennstoffzellen, die die Fähigkeit haben, elektrische Leistung bereitzustellen oder zu speichern und abzugeben, können anstelle von Batterien verwendet werden, ohne die Konzepte der vorliegenden Erfindung zu verändern.
  • Wie es zuvor beschrieben wurde, weist jede Ausführungsform vierzehn oder sechzehn Funktionsanforderungen auf (die den 14 oder 16 Zeilen jeder in den Figuren gezeigten Tabelle für Betriebsmodi entsprechen), die in fünf Betriebsmodi gruppiert sein können. Der erste Betriebsmodus ist der "Batterie-Rückwärtsmodus", der der ersten Zeile (BATT RW) der Tabelle für Betriebsmodi von 2b entspricht. In diesem Modus ist die Maschine aus und das Getriebeelement, das mit der Maschine verbunden ist, kann effektiv freilaufen, wobei es dem Trägheitsmoment der Maschine ausgesetzt ist. Das EVT wird von einem der Motoren/Generatoren unter Verwendung von Energie von der Batterie angetrieben, was bewirkt, dass sich das Fahrzeug rückwärts bewegt. Der andere Motor/Generator kann in diesem Modus rotieren oder nicht rotieren. Wie es in 2b gezeigt ist, ist beispielsweise in diesem Modus die Bremse 154 eingerückt, der Motor 180 weist ein Drehmoment von –1,00 Einheiten auf, der Generator 182 weist ein Drehmoment von –3,30 Einheiten auf, und es wird ein Abtriebsdrehmoment von –10,25 erreicht.
  • Der zweite Betriebsmodus ist der "EVT Rückwärtsmodus" (oder der mechanische Rückwärtsmodus), der der zweiten Zeile (EVT RW) der Tabelle für Betriebsmodi von 2b entspricht. In diesem Modus wird das EVT von der Maschine und von einem der Motoren/Generatoren angetrieben. Der andere Motor/Generator arbeitet im Generatormodus und überträgt 100% der erzeugten Energie zurück zu dem antreibenden Motor. Der Nettoeffekt ist, dass das Fahrzeug rückwärts angetrieben wird. In diesem Modus sind die Kupplung 150 und die Bremse 154 eingerückt, der Generator 180 weist ein Drehmoment von –1,14 Einheiten auf, der Motor 182 weist ein Drehmoment von –2,93 Einheiten auf, und es wird ein Abtriebsdrehmoment von –8,33 erreicht, das einem Antriebsdrehmoment von 1 Einheit entspricht.
  • Der dritte Betriebsmodus umfasst die "Rückwärts- und Vorwärtsanfahrmodi", die der dritten und vierten Zeile (DW RW und DW VW) jeder Tabelle für Betriebsmodi, wie etwa jener von 2b, entsprechen. In diesem Modus wird das EVT von der Maschine und von einem der Motoren/Generatoren angetrieben. Ein auswählbarer Bruchteil der Energie, die in der Generatoreinheit erzeugt wird, wird in der Batterie gespeichert, wobei die verbleibende Energie auf den Motor übertragen wird. In DW RW sind die Kupplung 150 und die Bremse 154 eingerückt, der Motor/ Generator 180 wirkt als Generator mit –1,01 Einheiten Drehmoment, der Motor/Generator 182 wirkt als Motor mit –2,50 Einheiten Drehmoment und es wird ein Drehmomentverhältnis von –7,00 erreicht. In DW VW sind die Kupplung 150 und die Bremse 154 eingerückt, der Motor/Generator 180 wirkt als Motor mit 0,13 Einheiten Drehmoment, der Motor/Generator 182 wirkt als Generator mit 1,27 Einheiten Drehmoment, und es wird ein Drehmomentverhältnis von 4,69 erreicht. Für diese Drehmomentverhältnisse werden ungefähr 99% der Generatorenergie in der Batterie gespeichert.
  • Der vierte Betriebsmodus umfasst die Modi "Bereich 1.1, Bereich 1.2, Bereich 1.3, Bereich 1.4, Bereich 1.5, Bereich 1.6, Bereich 1.7 und Bereich 1.8", die den Zeilen 5–12 der Tabelle für Betriebsmodi von 2b entsprechen. In diesem Modus wird das EVT von dem Motor sowie von einem der Motoren/Generatoren, der als Motor arbeitet, angetrieben. Der andere Motor/Generator arbeitet als Generator und überträgt 100% der erzeugten Energie zurück zu dem Motor. Die Arbeitspunkte, die durch Bereich 1.1, 1.2, ... usw. dargestellt sind, sind diskrete Punkte in dem Kontinuum von Vorwärtsdrehzahlverhältnissen, die von dem EVT bereitgestellt werden. Beispielsweise wird in 2b bei eingerückter Kupplung 150 und Bremse 154 ein Bereich von Verhältnissen von 4,69 bis 0,54 erreicht.
  • Der fünfte Betriebsmodus umfasst die Modi mit festem "Verhältnis" (F1, F2, F3 und F4), die Zeilen 13–16 der Tabelle für Betriebsmodi von 2b entsprechen. In diesem Modus arbeitet das Getriebe wie ein herkömmliches Automatikgetriebe, wobei drei Drehmomentübertragungseinrichtungen eingerückt sind, um ein diskretes Getriebeübersetzungsverhältnis zu schaffen. In dem festen Verhältnis F1 sind die Kupplung 150 und die Bremsen 154, 157 eingerückt, um ein festes Verhältnis von 3,34 zu errei chen. In dem festen Verhältnis F2 sind die Kupplung 152 und die Bremsen 155, 157 eingerückt, um ein festes Verhältnis von 1,72 zu erreichen. In dem festen Verhältnis F3 sind die Kupplungen 150, 152 und die Bremse 157 eingerückt, um ein festes Verhältnis von 1,43 zu erreichen. In dem festen Verhältnis F4 sind die Kupplung 150 und die Bremsen 154, 155 eingerückt, um ein festes Verhältnis von 0,75 zu erreichen.
  • Wie es oben ausgeführt wurde, ist der Einrückplan für die Drehmomentübertragungseinrichtungen in der Tabelle für Betriebsmodi und der Tabelle für Modi mit festem Verhältnis der 2b gezeigt. 2b liefert auch ein Beispiel von Drehmomentverhältnissen, die unter Verwendung der beispielhaft in 2b angegebenen Hohlrad/Sonnenrad-Zähneverhältnisse verfügbar sind. Der NR1/NS1-Wert ist das Zähneverhältnis des Planetenradsatzes 120; Der NR2/NS2-Wert ist das Zähneverhältnis des Planetenradsatzes 130; und der NR3/NS3-Wert ist das Zähneverhältnis des Planetenradsatzes 140. Das Schaubild von 2b beschreibt auch die Verhältnisstufen, die unter Verwendung des angegebenen Beispiels von Zähneverhältnissen erzielt werden. Beispielsweise beträgt das Stufenverhältnis zwischen dem ersten und zweiten festen Vorwärtsdrehmomentverhältnis 1,94, und die Verhältnisspreizung beträgt 4,45.
  • BESCHREIBUNG EINER DRITTEN BEISPIELHAFTEN AUSFÜHRUNGSFORM
  • In 3a ist ein Antriebsstrang 210 gezeigt, der eine Maschine 12 umfasst, die mit einer bevorzugten Ausführungsform des verbesserten elektrisch verstellbaren Getriebes verbunden ist, das allgemein mit dem Bezugszeichen 214 bezeichnet ist. Das Getriebe 214 ist konstruiert, um mindestens einen Teil seiner Antriebsleistung von der Maschine 12 aufzunehmen. Wie es gezeigt ist, weist die Maschine 12 eine Abtriebswelle auf, die als das Antriebselement 17 des Getriebes 214 dient. Es kann auch ein Dämpfer für transientes Drehmoment (der nicht gezeigt ist) zwischen der Maschine 12 und dem Antriebselement 17 des Getriebes 214 eingesetzt werden.
  • Ungeachtet des Mittels, durch das die Maschine 12 mit dem Getriebeantriebselement 17 verbunden ist, ist das Getriebeantriebselement funktional mit einem Planetenradsatz in dem Getriebe 214 verbunden. Ein Abtriebselement 19 des Getriebes 214 ist mit einem Achsantrieb 16 verbunden.
  • Das Getriebe 214 benutzt drei Differenzialzahnradsätze, vorzugsweise in der Natur von Planetenradsätzen 220, 230 und 240. Der Planetenradsatz 220 wendet ein äußeres Zahnradelement 224 an, das typischerweise als das Hohlrad bezeichnet wird. Das Hohlrad 224 umgibt ein inneres Zahnradelement 222, das typischerweise als das Sonnenrad bezeichnet wird. Ein Träger 226 lagert drehbar mehrere Planetenräder 227, so dass jedes Planetenrad 227 kämmend mit sowohl dem äußeren Hohlrad 224 als auch dem inneren Sonnenrad 222 des ersten Planetenradsatzes 220 in Eingriff steht.
  • Der Planetenradsatz 230 weist auch ein äußeres Hohlrad 234 auf, das ein inneres Sonnenrad 232 umgibt. Mehrere Planetenräder 237 sind auch drehbar in einem Träger 236 montiert, so dass jedes Planetenrad 237 gleichzeitig und kämmend mit sowohl dem äußeren Hohlrad 234 als auch dem inneren Sonnenrad 232 des Planetenradsatzes 230 in Eingriff steht.
  • Der Planetenradsatz 240 weist auch ein äußeres Hohlrad 244 auf, das ein inneres Sonnenrad 242 umgibt. Mehrere Planetenräder 247 sind drehbar in einem Träger 246 montiert, so dass jedes Planetenrad 247 gleichzeitig und kämmend mit sowohl dem äußeren Hohlrad 244 als auch dem inneren Sonnenrad 242 des Planetenradsatzes 240 in Eingriff steht.
  • Das Getriebeabtriebselement 19 ist mit dem Hohlrad 244 verbunden. Ein erstes Verbindungselement 270 verbindet das Hohlrad 224 ständig mit dem Träger 236. Ein zweites Verbindungselement 272 verbindet das Hohlrad 234 mit dem Sonnenrad 242. Ein drittes Verbindungselement 274 verbindet den Träger 226 ständig mit dem Träger 246.
  • Das Getriebe 214 umfasst auch einen ersten und zweiten Motor/Generator 280 bzw. 282. Der Stator des ersten Motors/Generators 280 ist an dem Getriebegehäuse 260 befestigt. Der Rotor des ersten Motors/Generators 280 ist an dem Träger 236 befestigt. Der Stator des zweiten Motors/Generators 282 ist auch an dem Getriebegehäuse 260 befestigt. Der Rotor des zweiten Motors/Generators 282 ist an dem Sonnenrad 222 befestigt.
  • Eine erste Drehmomentübertragungseinrichtung, wie Antriebskupplung 250, verbindet den Träger 246 selektiv mit dem Antriebselement. Eine zweite Drehmomentübertragungseinrichtung, wie Antriebskupplung 252, verbindet das Hohlrad 234 selektiv mit dem Antriebselement 17. Eine dritte Drehmomentübertragungseinrichtung, wie eine Bremse 254, verbindet das Sonnenrad 232 selektiv mit dem Getriebegehäuse 260. Eine vierte Drehmomentübertragungseinrichtung, wie die Bremse 255, ist parallel zu dem Motor/Generator 280 geschaltet, um dessen Rotation selektiv zu bremsen. Eine fünfte Drehmomentübertragungseinrichtung, wie Bremse 257, ist parallel zu dem Motor/Generator 282 geschaltet, um dessen Rotation selektiv zu bremsen. Die erste, zweite, dritte, vierte und fünfte Drehmomentübertragungseinrichtung 250, 252, 254, 255 und 257 werden angewandt, um bei der Auswahl der Betriebsmodi des Hybridgetriebes 214 zu helfen.
  • Das Hybridgetriebe 214 nimmt Leistung von der Maschine 12 und auch von einer elektrischen Leistungsquelle 286 auf, die funktional mit einem Controller 288 verbunden ist.
  • Die Tabelle für Betriebsmodi von 3b veranschaulicht die Kupplungseinrückungen, die Motor/Generator-Bedingungen und die Abtrieb/Antrieb-Verhältnisse für die fünf Betriebsmodi des Getriebes 214. Diese Modi umfassen den "Batterie Rückwärtsmodus" (BATT RW), den "EVT Rückwärtsmodus" (EVT RW), "Rückwärts- und Vorwärtsanfahrmodi" (DW RW und DW VW), "Modi Bereich 1.1, 1.2, 1.3 und "Modi mit festem Verhältnis" (F1, F2, F3 und F4), wie es zuvor beschrieben wurde.
  • Wie es oben ausgeführt wurde, ist der Einrückplan für die Drehmomentübertragungseinrichtungen in der Tabelle für Betriebsmodi und der Tabelle für Modi mit festem Verhältnis von 3b gezeigt. 3b liefert auch ein Beispiel von Drehmomentverhältnissen, die unter Verwendung der beispielhaft in 3b angegebenen Hohlrad/Sonnenrad-Zähneverhältnisse verfügbar sind. Der NR1/NS1-Wert ist das Zähneverhältnis des Planetenradsatzes 220; Der NR2/NS2-Wert ist das Zähneverhältnis des Planetenradsatzes 230; und der NR3/NS3-Wert ist das Zähneverhältnis des Planetenradsatzes 240. Das Schaubild von 3b beschreibt auch die Verhältnisstufen, die unter Verwendung des angegebenen Beispiels von Zähneverhältnissen erzielt werden. Beispielsweise beträgt das Stufenverhältnis zwischen dem ersten und zweiten festen Vorwärtsdrehmomentverhältnis 1,79, und die Verhältnisspreizung beträgt 4,55.
  • BESCHREIBUNG EINER VIERTEN BEISPIELHAFTEN AUSFÜHRUNGSFORM
  • In 4a ist ein Antriebsstrang 310 gezeigt, der eine Maschine 12 umfasst, die mit einer bevorzugten Ausführungsform des verbesserten elektrisch verstellbaren Getriebes verbunden ist, das allgemein mit dem Bezugszeichen 314 bezeichnet ist. Das Getriebe 314 ist konstruiert, um mindestens einen Teil seiner Antriebsleistung von der Maschine 12 aufzunehmen.
  • Wie es gezeigt ist, weist die Maschine 12 eine Abtriebswelle auf, die als das Antriebselement 17 des Getriebes 314 dient. Es kann auch ein Dämpfer für transientes Drehmoment (der nicht gezeigt ist) zwischen der Maschine 12 und dem Antriebselement 17 des Getriebes eingesetzt werden.
  • Ungeachtet des Mittels, durch das die Maschine 12 mit dem Getriebeantriebselement 17 verbunden ist, ist das Getriebeantriebselement 17 funktional mit einem Planetenradsatz in dem Getriebe 314 verbunden. Ein Abtriebselement 19 des Getriebes 314 ist mit einem Achsantrieb 16 verbunden.
  • Das Getriebe 314 benutzt drei Planetenradsätze 320, 330 und 340. Der Planetenradsatz 320 wendet ein äußeres Hohlrad 324 an, das ein inneres Sonnenrad 322 umgibt. Ein Träger 326 lagert drehbar mehrere Planetenräder 327, so dass jedes Planetenrad 327 kämmend mit sowohl dem äußeren Hohlrad 324 als auch dem inneren Sonnenrad 322 des ersten Planetenradsatzes 320 in Eingriff steht.
  • Der Planetenradsatz 330 weist auch ein äußeres Hohlrad 334 auf, das ein inneres Sonnenrad 332 umgibt. Mehrere Planetenräder 337 sind auch drehbar in einem Träger 336 montiert, so dass jedes Planetenrad 337 gleichzeitig und kämmend mit sowohl dem äußeren Hohlrad 334 als auch dem inneren Sonnenrad 332 des Planetenradsatzes 330 in Eingriff steht.
  • Der Planetenradsatz 340 weist auch ein äußeres Hohlrad 344 auf, das ein inneres Sonnenrad 342 umgibt. Mehrere Planetenräder 347 sind auch drehbar in einem Träger 346 montiert, so dass jedes Planetenrad 347 gleichzeitig und kämmend mit sowohl dem äußeren Hohlrad 344 als auch dem inneren Sonnenrad 342 des Planetenradsatzes 340 in Eingriff steht.
  • Das Getriebeabtriebselement 19 ist mit dem Hohlrad 324 verbunden. Ein erstes Verbindungselement 370 verbindet den Träger 326 ständig mit dem Träger 336. Ein zweites Verbindungselement 372 verbindet das Hohlrad 334 ständig mit dem Sonnenrad 342. Ein drittes Verbindungselement 374 verbindet das Hohlrad 324 ständig mit dem Träger 346.
  • Das Getriebe 314 umfasst auch einen ersten und zweiten Motor/Generator 380 bzw. 382. Der Stator des ersten Motors/Generators 380 ist an dem Getriebegehäuse 360 befestigt. Der Rotor des ersten Motors/Generators 380 ist an dem Sonnenrad 322 des Planetenradsatzes 320 befestigt. Der Stator des zweiten Motors/Generators 382 ist auch an dem Getriebegehäuse 360 befestigt. Der Rotor des zweiten Motors/Generators 382 ist an dem Sonnenrad 332 des Planetenradsatzes 330 befestigt.
  • Eine erste Drehmomentübertragungseinrichtung, wie Antriebskupplung 350, verbindet den Träger 326 selektiv mit dem Antriebselement 17. Eine zweite Drehmomentübertragungseinrichtung, wie Antriebskupplung 352, verbindet das Sonnenrad 322 selektiv mit dem Antriebselement 17. Eine dritte Drehmomentübertragungseinrichtung, wie Bremse 354, verbindet das Hohlrad 344 selektiv mit dem Getriebegehäuse 360. Eine vierte Drehmomentübertragungseinrichtung, wie die Bremse 355, ist parallel zu dem Motor/Generator 380 geschaltet, um dessen Rotation selektiv zu bremsen. Eine fünfte Drehmomentübertragungseinrichtung, wie die Bremse 357, ist parallel zu dem Motor/Generator 382 geschaltet, um dessen Rotation selektiv zu bremsen. Die erste, zweite, dritte, vierte und fünfte Drehmomentübertragungseinrichtung 350, 352, 354, 355 und 357 werden angewandt, um bei der Auswahl der Betriebsmodi des Getriebes 314 zu helfen.
  • Das Hybridgetriebe 314 nimmt Leistung von der Maschine 12 auf und tauscht auch Leistung mit einer elektrischen Leistungsquelle 386 aus, die funktional mit einem Controller 388 verbunden ist.
  • Die Tabelle für Betriebsmodi von 4b veranschaulicht die Kupplungseinrückungen, die Motor/Generator-Bedingungen und die Abtrieb/Antrieb-Verhältnisse für die fünf Betriebsmodi des Getriebes 314. Diese Modi umfassen den "Batterie-Rückwärtsmodus" (BATT RW), den "EVT Rückwärtsmodus" (EVT RW), "Rückwärts- und Vorwärtsanfahrmodi" (DW RW und DW VW), "Modi mit stufenlos verstellbarem Getriebebereich" (Bereich 1.1, 1.2, 1.3, ...) und "Modi mit festem Verhältnis" (F1, F2, F3 und F4), wie es zuvor beschrieben wurde.
  • Wie es oben ausgeführt wurde, ist der Einrückplan für die Drehmomentübertragungseinrichtungen in der Tabelle für Betriebsmodi und der Tabelle für Modi mit festem Verhältnis der 4b gezeigt. 4b liefert auch ein Beispiel von Drehmomentverhältnissen, die unter Verwendung der beispielhaft in 4b angegebenen Hohlrad/Sonnenrad-Zähneverhältnisse verfügbar sind. Der NR1/NS1-Wert ist das Zähneverhältnis des Planetenradsatzes 320; der NR2/NS2-Wert ist das Zähneverhältnis des Planetenradsatzes 330; und der NR3/NS3-Wert ist das Zähneverhältnis des Plane tenradsatzes 340. Das Schaubild von 4b beschreibt auch die Verhältnisstufen, die unter Verwendung des angegebenen Beispiels von Zähneverhältnissen erzielt werden. Beispielsweise beträgt das Stufenverhältnis zwischen dem ersten und zweiten festen Vorwärtsdrehmomentverhältnis 1,82, und die Verhältnisspreizung beträgt 6,65.
  • BESCHREIBUNG EINER FÜNFTEN BEISPIELHAFTEN AUSFÜHRUNGSFORM
  • In 5a ist ein Antriebsstrang 410 gezeigt, der eine Maschine 12 umfasst, die mit einer bevorzugten Ausführungsform des verbesserten elektrisch verstellbaren Getriebes verbunden ist, das allgemein mit dem Bezugszeichen 414 bezeichnet ist. Das Getriebe 414 ist konstruiert, um mindestens einen Teil seiner Antriebsleistung von der Maschine 12 aufzunehmen.
  • Wie es gezeigt ist, weist die Maschine 12 eine Abtriebswelle auf, die als das Antriebselement 17 des Getriebes 414 dient. Es kann auch ein Dämpfer für transientes Drehmoment (der nicht gezeigt ist) zwischen der Maschine 12 und dem Antriebselement 17 des Getriebes eingesetzt werden.
  • Ungeachtet des Mittels, durch das die Maschine 12 mit dem Getriebeantriebselement 17 verbunden ist, ist das Getriebeantriebselement 17 funktional mit einem Planetenradsatz in dem Getriebe 414 verbunden. Ein Abtriebselement 19 des Getriebes 414 ist mit einem Achsantrieb 16 verbunden.
  • Das Getriebe 414 benutzt drei Planetenradsätze 420, 430 und 440. Der Planetenradsatz 420 wendet ein äußeres Hohlrad 424 an, das ein inneres Sonnenrad 422 umgibt. Ein Träger 426 lagert drehbar mehrere Planeten räder 427, so dass jedes Planetenrad 427 kämmend mit sowohl dem äußeren Hohlrad 424 als auch dem inneren Sonnenrad 422 des ersten Planetenradsatzes 420 in Eingriff steht.
  • Der Planetenradsatz 430 weist auch ein äußeres Hohlrad 434 auf, das ein inneres Sonnenrad 432 umgibt. Mehrere Planetenräder 437 sind auch drehbar in einem Träger 436 montiert, so dass jedes Planetenrad 437 gleichzeitig und kämmend mit sowohl dem äußeren Hohlrad 434 als auch dem inneren Sonnenrad 432 des Planetenradsatzes 430 in Eingriff steht.
  • Der Planetenradsatz 440 weist auch ein äußeres Hohlrad 444 auf, das ein inneres Sonnenrad 442 umgibt. Mehrere Planetenräder 447 sind auch drehbar in einem Träger 446 montiert, so dass jedes Planetenrad 447 gleichzeitig und kämmend mit sowohl dem äußeren Hohlrad 444 als auch dem inneren Sonnenrad 442 des Planetenradsatzes 440 in Eingriff steht.
  • Das Getriebeabtriebselement 19 ist ständig mit dem Träger 436 verbunden. Ein erstes Verbindungselement 470 verbindet das Hohlrad 424 ständig mit dem Hohlrad 434. Ein zweites Verbindungselement 472 verbindet das Sonnenrad 432 ständig mit dem Hohlrad 444. Ein drittes Verbindungselement verbindet den Träger 426 ständig mit dem Träger 446.
  • Das Getriebe 414 umfasst auch einen ersten und zweiten Motor/Generator 480 bzw. 482. Der Stator des ersten Motors/Generators 480 ist an dem Getriebegehäuse 460 befestigt. Der Rotor des ersten Motors/Generators 480 ist an dem Sonnenrad 422 befestigt. Der Stator des zweiten Motors/Generators 482 ist auch an dem Getriebegehäuse 460 befestigt. Der Rotor des zweiten Motors/Generators 482 ist an dem Sonnenrad 442 befestigt.
  • Eine erste Drehmomentübertragungseinrichtung, wie Antriebskupplung 450, verbindet den Träger 446 selektiv mit dem Antriebselement 17. Eine zweite Drehmomentübertragungseinrichtung, wie Antriebskupplung 452, verbindet das Sonnenrad 432 selektiv mit dem Antriebselement 17. Eine dritte Drehmomentübertragungseinrichtung, wie Bremse 454, verbindet das Hohlrad 424 selektiv mit dem Getriebegehäuse 460. Eine vierte Drehmomentübertragungseinrichtung, wie die Bremse 455, ist parallel zu dem Motor/Generator 480 angeordnet, um dessen Rotation selektiv zu bremsen. Eine fünfte Drehmomentübertragungseinrichtung, wie Bremse 457, ist parallel zu dem Motor/Generator 482 geschaltet, um dessen Rotation selektiv zu bremsen. Die erste, zweite, dritte, vierte und fünfte Drehmomentübertragungseinrichtung 450, 452, 454, 455 und 457 werden angewandt, um bei der Auswahl der Betriebsmodi des Getriebes 414 zu helfen. Das Hybridgetriebe 414 nimmt Leistung von der Maschine 12 und auch von einer elektrischen Leistungsquelle 486 auf, die funktional mit einem Controller 488 verbunden ist.
  • Die Tabelle für Betriebsmodi von 5b veranschaulicht die Kupplungseinrückungen, die Motor/Generator-Bedingungen und die Abtrieb/Antrieb-Verhältnisse für die fünf Betriebsmodi des Getriebes 414. Diese Modi umfassen den "Batterie-Rückwärtsmodus" (BATT RW), den "EVT Rückwärtsmodus" (EVT RW), "Rückwärts- und Vorwärtsanfahrmodi" (DW RW und DW VW), "Modi mit stufenlos verstellbarem Getriebebereich" (Bereich 1.1, 1.2, 1.3, ...) und "Modi mit festem Verhältnis" (F1, F2, F3 und F4), wie es zuvor beschrieben wurde.
  • Wie es oben ausgeführt wurde, ist der Einrückplan für die Drehmomentübertragungseinrichtungen in der Tabelle für Betriebsmodi und der Tabelle für Modi mit festem Verhältnis der 5b gezeigt. 5b liefert auch ein Beispiel von Drehmomentverhältnissen, die unter Verwendung der beispielhaft in 5b angegebenen Hohlrad/Sonnenrad-Zähneverhältnisse verfügbar sind. Der NR1/NS1-Wert ist das Zähneverhältnis des Planetenradsatzes 420; Der NR2/NS2-Wert ist das Zähneverhältnis des Planetenradsatzes 430; und der NR3/NS3-Wert ist das Zähneverhältnis des Planetenradsatzes 440. Das Schaubild von 5b beschreibt auch die Verhältnisstufen, die unter Verwendung des angegebenen Beispiels von Zähneverhältnissen erzielt werden. Beispielsweise beträgt das Stufenverhältnis zwischen dem ersten und zweiten festen Vorwärtsdrehmomentverhältnis 1,82, und die Verhältnisspreizung beträgt 6,65.
  • BESCHREIBUNG EINER SECHSTEN BEISPIELHAFTEN AUSFÜHRUNGSFORM
  • In 6a ist ein Antriebsstrang 510 gezeigt, der eine Maschine 12 umfasst, die mit einer bevorzugten Ausführungsform des verbesserten elektrisch verstellbaren Getriebes verbunden ist, das allgemein mit dem Bezugszeichen 514 bezeichnet ist. Das Getriebe 514 ist konstruiert, um mindestens einen Teil seiner Antriebsleistung von der Maschine 12 aufzunehmen.
  • Wie es gezeigt ist, weist die Maschine 12 eine Abtriebswelle auf, die als das Antriebselement 17 des Getriebes 514 dient. Es kann auch ein Dämpfer für transientes Drehmoment (der nicht gezeigt ist) zwischen der Maschine 12 und dem Antriebselement 17 des Getriebes eingesetzt werden.
  • Ungeachtet des Mittels, durch das die Maschine 12 mit dem Getriebeantriebselement 17 verbunden ist, ist das Getriebeantriebselement 17 funktional mit einem Planetenradsatz in dem Getriebe 514 verbunden. Ein Abtriebselement 19 des Getriebes 514 ist mit einem Achsantrieb 16 verbunden.
  • Das Getriebe 514 benutzt drei Planetenradsätze 520, 530 und 540. Der Planetenradsatz 520 wendet ein äußeres Hohlrad 524 an, das ein inneres Sonnenrad 522 umgibt. Ein Träger 526 lagert drehbar mehrere Planetenräder 527, so dass jedes Planetenrad 527 kämmend mit sowohl dem äußeren Hohlrad 524 als auch dem inneren Sonnenrad 522 des ersten Planetenradsatzes 520 in Eingriff steht.
  • Der Planetenradsatz 530 weist auch ein äußeres Hohlrad 534 auf, das ein inneres Sonnenrad 532 umgibt. Mehrere Planetenräder 537 sind auch drehbar in einem Träger 536 montiert, so dass jedes Planetenrad 537 gleichzeitig und kämmend mit sowohl dem äußeren Hohlrad 534 als auch dem inneren Sonnenrad 532 des Planetenradsatzes 530 in Eingriff steht.
  • Der Planetenradsatz 540 weist auch ein äußeres Hohlrad 544 auf, das ein inneres Sonnenrad 542 umgibt. Mehrere Planetenräder 547 sind auch drehbar in einem Träger 546 montiert, so dass jedes Planetenrad 547 gleichzeitig und kämmend mit sowohl dem inneren Sonnenrad 542 als auch dem äußeren Hohlrad 544 des Planetenradsatzes 540 in Eingriff steht.
  • Das Getriebeabtriebselement 19 ist ständig mit dem Hohlrad 544 verbunden. Das erste Verbindungselement 570 verbindet den Träger 526 ständig mit dem Träger 536. Ein zweites Verbindungselement 572 verbindet das Hohlrad 534 ständig mit dem Träger 546. Ein drittes Verbindungselement 574 verbindet das Sonnenrad 522 ständig mit dem Getriebegehäuse 560.
  • Das Getriebe 514 umfasst auch einen ersten und zweiten Motor/Generator 580 bzw. 582. Der Stator des ersten Motors/Generators 580 ist an dem Getriebegehäuse 560 befestigt. Der Rotor des ersten Motors/Genera tors 580 ist an dem Sonnenrad 532 befestigt. Der Stator des zweiten Motors/Generators 582 ist auch an dem Getriebegehäuse 560 befestigt. Der Rotor des zweiten Motors/Generators 582 ist an dem Sonnenrad 542 befestigt.
  • Eine erste Drehmomentübertragungseinrichtung, wie Antriebskupplung 550, verbindet das Hohlrad 524 selektiv mit dem Antriebselement 17. Eine zweite Drehmomentübertragungseinrichtung, wie Antriebskupplung 552, verbindet den Träger 526 selektiv mit dem Antriebselement 17. Eine dritte Drehmomentübertragungseinrichtung, wie eine Bremse 554, verbindet das Hohlrad 534 selektiv mit dem Getriebegehäuse 560. Eine vierte Drehmomentübertragungseinrichtung, wie die Bremse 555, ist parallel zu dem Motor/Generator 580 geschaltet, um dessen Rotation selektiv zu bremsen. Eine fünfte Drehmomentübertragungseinrichtung, wie die Bremse 557, ist parallel zu dem Motor/Generator 582 geschaltet, um dessen Rotation selektiv zu bremsen. Die erste, zweite, dritte, vierte und fünfte Drehmomentübertragungseinrichtung 550, 552, 554, 555 und 557 werden angewandt, um bei der Auswahl der Betriebsmodi des Hybridgetriebes 514 zu helfen.
  • Das Hybridgetriebe 514 nimmt Leistung von der Maschine 12 auf und tauscht auch Leistung mit einer elektrischen Leistungsquelle 586 aus, die funktional mit einem Controller 588 verbunden ist.
  • Die Tabelle für Betriebsmodi von 6b veranschaulicht die Kupplungseinrückungen, die Motor/Generator-Bedingungen und die Abtrieb/Antrieb-Verhältnisse für die fünf Betriebsmodi des Getriebes 514. Diese Modi umfassen den "Batterie-Rückwärtsmodus" (BATT RW), den "EVT Rückwärtsmodus" (EVT RW), "Rückwärts- und Vorwärtsanfahrmodi" (DW RW und DW VW), "Modi mit stufenlos verstellbarem Getriebebereich" (Bereich 1.1, 1.2, 1.3, ...) und "Modi mit festem Verhältnis" (F1, F2), wie es zuvor beschrieben wurde.
  • Wie es oben ausgeführt wurde, ist der Einrückplan für die Drehmomentübertragungseinrichtungen in der Tabelle für Betriebsmodi und der Tabelle für Modi mit festem Verhältnis der 6b gezeigt. 6b liefert auch ein Beispiel von Drehmomentverhältnissen, die unter Verwendung der beispielhaft in 6b angegebenen Hohlrad/ Sonnenrad-Zähneverhältnisse verfügbar sind. Der NR1/NS1-Wert ist das Zähneverhältnis des Planetenradsatzes 520; Der NR2/NS2-Wert ist das Zähneverhältnis des Planetenradsatzes 530; und der NR3/NS3-Wert ist das Zähneverhältnis des Planetenradsatzes 540. Das Schaubild von 4b beschreibt auch die Verhältnisstufen, die unter Verwendung des angegebenen Beispiels von Zähneverhältnissen erzielt werden. Beispielsweise beträgt das Stufenverhältnis zwischen dem ersten und zweiten festen Vorwärtsdrehmomentverhältnis 1,48.
  • BESCHREIBUNG EINER SIEBTEN BEISPIELHAFTEN AUSFÜHRUNGSFORM
  • In 7a ist ein Antriebsstrang 610 gezeigt, der eine Maschine 12 umfasst, die mit einer bevorzugten Ausführungsform des verbesserten elektrisch verstellbaren Getriebes verbunden ist, das allgemein mit dem Bezugszeichen 614 bezeichnet ist. Das Getriebe 614 ist konstruiert, um mindestens einen Teil seiner Antriebsleistung von der Maschine 12 aufzunehmen.
  • Wie es gezeigt ist, weist die Maschine 12 eine Abtriebswelle auf, die als das Antriebselement 17 des Getriebes 614 dient. Es kann auch ein Dämpfer für transientes Drehmoment (der nicht gezeigt ist) zwischen der Maschine 12 und dem Antriebselement 17 des Getriebes eingesetzt werden.
  • Ungeachtet des Mittels, durch das die Maschine 12 mit dem Getriebeantriebselement 17 verbunden ist, ist das Getriebeantriebselement 17 funktional mit einem Planetenradsatz in dem Getriebe 614 verbunden. Ein Abtriebselement 19 des Getriebes 614 ist mit einem Achsantrieb 16 verbunden.
  • Das Getriebe 614 benutzt drei Planetenradsätze 620, 630 und 640. Der Planetenradsatz 620 wendet ein äußeres Hohlrad 624 an, das ein inneres Sonnenrad 622 umgibt. Ein Träger 626 lagert drehbar mehrere Planetenräder 627, so dass jedes Planetenrad 627 kämmend mit sowohl dem äußeren Hohlrad 624 als auch dem inneren Sonnenrad 622 des ersten Planetenradsatzes 620 in Eingriff steht.
  • Der Planetenradsatz 630 weist auch ein äußeres Hohlrad 634 auf, das ein inneres Sonnenrad 632 umgibt. Mehrere Planetenräder 637 sind auch drehbar in einem Träger 636 montiert, so dass jedes Planetenrad 637 gleichzeitig und kämmend mit sowohl dem äußeren Hohlrad 634 als auch dem inneren Sonnenrad 632 des Planetenradsatzes 630 in Eingriff steht.
  • Der Planetenradsatz 640 weist auch ein äußeres Hohlrad 644 auf, das ein inneres Sonnenrad 642 umgibt. Mehrere Planetenräder 647 sind auch drehbar in einem Träger 646 montiert, so dass jedes Planetenrad 647 gleichzeitig und kämmend mit sowohl dem äußeren Hohlrad 644 als auch dem inneren Sonnenrad 642 des Planetenradsatzes 640 in Eingriff steht.
  • Das Getriebeabtriebselement 19 ist mit dem Hohlrad 644 verbunden. Ein erstes Verbindungselement 670 verbindet den Träger 626 ständig mit dem Träger 636. Ein zweites Verbindungselement 672 verbindet das Hohlrad 634 ständig mit dem Träger 646. Ein drittes Verbindungselement 674 verbindet das Hohlrad 624 ständig mit dem Getriebegehäuse 660.
  • Das Getriebe 614 umfasst auch einen ersten und zweiten Motor/Generator 680 bzw. 682. Der Stator des ersten Motors/Generators 680 ist an dem Getriebegehäuse 660 befestigt. Der Rotor des ersten Motors/Generators 680 ist an dem Sonnenrad 632 befestigt. Der Stator des zweiten Motors/Generators 682 ist auch an dem Getriebegehäuse 660 befestigt. Der Rotor des zweiten Motors/Generators 682 ist an dem Sonnenrad 642 befestigt.
  • Eine erste Drehmomentübertragungseinrichtung, wie Antriebskupplung 650, verbindet das Sonnenrad 622 selektiv mit dem Antriebselement 17. Eine zweite Drehmomentübertragungseinrichtung, wie Antriebskupplung 652, verbindet den Träger 626 selektiv mit dem Antriebselement 17. Eine dritte Drehmomentübertragungseinrichtung, wie Bremse 654, verbindet das Hohlrad 634 selektiv mit dem Getriebegehäuse 660. Eine vierte Drehmomentübertragungseinrichtung, wie die Bremse 655, ist parallel zu dem Motor/Generator 680 geschaltet, um dessen Rotation selektiv zu bremsen. Eine fünfte Drehmomentübertragungseinrichtung, wie Bremse 657, ist parallel zu dem Motor/Generator 682 geschaltet, um dessen Rotation selektiv zu bremsen. Die erste, zweite, dritte, vierte und fünfte Drehmomentübertragungseinrichtung 650, 652, 654, 655 und 657 werden angewandt, um bei der Auswahl der Betriebsmodi des Getriebes 614 zu helfen.
  • Das Hybridgetriebe 614 nimmt Leistung von der Maschine 12 auf und tauscht auch Leistung mit einer elektrischen Leistungsquelle 686 aus, die funktional mit einem Controller 688 verbunden ist.
  • Die Tabelle für Betriebsmodi von 7b veranschaulicht die Kupplungseinrückungen, die Motor/Generator-Bedingungen und die Abtrieb/Antrieb-Verhältnisse für die fünf Betriebsmodi des Getriebes 614. Diese Modi umfassen den "Batterie-Rückwärtsmodus" (BATT RW), den "EVT Rückwärtsmodus" (EVT RW), "Rückwärts- und Vorwärtsanfahrmodi" (DW RW und DW VW), "Modi mit stufenlos verstellbarem Getriebebereich" (Bereich 1.1, 1.2, 1.3, ...) und "Modi mit festem Verhältnis" (F1, F2), wie es zuvor beschrieben wurde.
  • Wie es oben ausgeführt wurde, ist der Einrückplan für die Drehmomentübertragungseinrichtungen in der Tabelle für Betriebsmodi und der Tabelle für Modi mit festem Verhältnis der 7b gezeigt. 7b liefert auch ein Beispiel von Drehmomentverhältnissen, die unter Verwendung der beispielhaft in 7b angegebenen Hohlrad/Sonnenrad-Zähneverhältnisse verfügbar sind. Der NR1/NS1-Wert ist das Zähneverhältnis des Planetenradsatzes 620; der NR2/NS2-Wert ist das Zähneverhältnis des Planetenradsatzes 630; und der NR3/NS3-Wert ist das Zähneverhältnis des Planetenradsatzes 640. Das Schaubild von 7b beschreibt auch die Verhältnisstufen, die unter Verwendung des angegebenen Beispiels von Zähneverhältnissen erzielt werden. Beispielsweise beträgt das Stufenverhältnis zwischen dem ersten und zweiten festen Vorwärtsdrehmomentverhältnis 2,50.
  • BESCHREIBUNG EINER ACHTEN BEISPIELHAFTEN AUSFÜHRUNGSFORM
  • In 8a ist ein Antriebsstrang 710 gezeigt, der eine Maschine 12 umfasst, die mit einer bevorzugten Ausführungsform des verbesserten elektrisch verstellbaren Getriebes verbunden ist, das allgemein mit dem Bezugszeichen 714 bezeichnet ist. Das Getriebe 714 ist konstruiert, um mindestens einen Teil seiner Antriebsleistung von der Maschine 12 aufzunehmen.
  • Wie es gezeigt ist, weist die Maschine 12 eine Abtriebswelle auf, die als das Antriebselement 17 des Getriebes 714 dient. Es kann auch ein Dämpfer für transientes Drehmoment (der nicht gezeigt ist) zwischen der Maschine 12 und dem Antriebselement 17 des Getriebes eingesetzt werden.
  • Ungeachtet des Mittels, durch das die Maschine 12 mit dem Getriebeantriebselement 17 verbunden ist, ist das Getriebeantriebselement 17 funktional mit einem Planetenradsatz in dem Getriebe 714 verbunden. Ein Abtriebselement 19 des Getriebes 714 ist mit einem Achsantrieb 16 verbunden.
  • Das Getriebe 714 benutzt drei Planetenradsätze 720, 730 und 740. Der Planetenradsatz 720 wendet ein äußeres Hohlrad 724 an, das ein inneres Sonnenrad 722 umgibt. Ein Träger 726 lagert drehbar mehrere Planetenräder 727, so dass jedes Planetenrad 727 kämmend mit sowohl dem äußeren Hohlrad 724 als auch dem inneren Sonnenrad 722 des ersten Planetenradsatzes 720 in Eingriff steht.
  • Der Planetenradsatz 730 weist auch ein äußeres Hohlrad 734 auf, das ein inneres Sonnenrad 732 umgibt. Mehrere Planetenräder 737 sind auch drehbar in einem Träger 736 montiert, so dass jedes Planetenrad 737 gleichzeitig und kämmend mit sowohl dem äußeren Hohlrad 734 als auch dem inneren Sonnenrad 732 des Planetenradsatzes 730 in Eingriff steht.
  • Der Planetenradsatz 740 weist auch ein äußeres Hohlrad 744 auf, das ein inneres Sonnenrad 742 umgibt. Mehrere Planetenräder 747 sind auch drehbar in einem Träger 746 montiert, so dass jedes Planetenrad 747 gleichzeitig und kämmend mit sowohl dem äußeren Hohlrad 744 als auch dem inneren Sonnenrad 742 des Planetenradsatzes 740 in Eingriff steht.
  • Das Getriebeabtriebselement 19 ist ständig mit dem Träger 746 verbunden. Ein erstes Verbindungselement 770 verbindet den Träger 726 ständig mit dem Träger 736. Ein zweites Verbindungselement 772 verbindet das Sonnenrad 732 ständig mit dem Hohlrad 744. Ein drittes Verbindungselement 774 verbindet das Sonnenrad 722 ständig mit dem Getriebegehäuse 760.
  • Das Getriebe 714 umfasst auch einen ersten und zweiten Motor/Generator 780 bzw. 782. Der Stator des ersten Motors/Generators 780 ist an dem Getriebegehäuse 760 befestigt. Der Rotor des ersten Motors/Generators 780 ist an dem Hohlrad 734 befestigt. Der Stator des zweiten Motors/Generators 782 ist auch an dem Getriebegehäuse 760 befestigt. Der Rotor des zweiten Motors/Generators 782 ist an dem Sonnenrad 742 befestigt.
  • Eine erste Drehmomentübertragungseinrichtung, wie Antriebskupplung 750, verbindet das Hohlrad 724 selektiv mit dem Antriebselement 17. Eine zweite Drehmomentübertragungseinrichtung, wie Antriebskupplung 752, verbindet den Träger 726 selektiv mit dem Antriebselement 17. Eine dritte Drehmomentübertragungseinrichtung, wie Bremse 754, verbindet das Hohlrad 744 selektiv mit dem Getriebegehäuse 760. Eine vierte Drehmomentübertragungseinrichtung, wie die Bremse 755, ist parallel zu dem Motor/Generator 780 angeordnet, um dessen Rotation selektiv zu bremsen. Eine fünfte Drehmomentübertragungseinrichtung, wie Bremse 757, ist parallel zu dem Motor/Generator 782 geschaltet, um dessen Rotation selektiv zu bremsen. Die erste, zweite, dritte, vierte und fünfte Drehmo mentübertragungseinrichtung 750, 752, 754, 755 und 757 werden angewandt, um bei der Auswahl der Betriebsmodi des Getriebes 714 zu helfen.
  • Das Hybridgetriebe 714 nimmt Leistung von der Maschine 12 und auch von einer elektrischen Leistungsquelle 786 auf, die funktional mit einem Controller 788 verbunden ist.
  • Die Tabelle für Betriebsmodi von 8b veranschaulicht die Kupplungseinrückungen, die Motor/Generator-Bedingungen und die Abtrieb/Antrieb-Verhältnisse für die fünf Betriebsmodi des Getriebes 714. Diese Modi umfassen den "Batterie-Rückwärtsmodus" (BATT RW), den "EVT Rückwärtsmodus" (EVT RW), "Rückwärts- und Vorwärtsanfahrmodi" (DW RW und DW VW), "Modi mit stufenlos verstellbarem Getriebebereich" (Bereich 1.1, 1.2, 1.3, ...) und "Modi mit festem Verhältnis" (F1, F2), wie es zuvor beschrieben wurde.
  • Wie es oben ausgeführt wurde, ist der Einrückplan für die Drehmomentübertragungseinrichtungen in der Tabelle für Betriebsmodi und der Tabelle für Modi mit festem Verhältnis der 8b gezeigt. 8b liefert auch ein Beispiel von Drehmomentverhältnissen, die unter Verwendung der beispielhaft in 8b angegebenen Hohlrad/Sonnenrad-Zähneverhältnisse verfügbar sind. Der NR1/NS1-Wert ist das Zähneverhältnis des Planetenradsatzes 720; der NR2/NS2-Wert ist das Zähneverhältnis des Planetenradsatzes 730; und der NR3/NS3-Wert ist das Zähneverhältnis des Planetenradsatzes 740. Das Schaubild von 8b beschreibt auch die Verhältnisstufen, die unter Verwendung des angegebenen Beispiels von Zähneverhältnissen erzielt werden. Beispielsweise beträgt das Stufenverhältnis zwischen dem ersten und zweiten festen Vorwärtsdrehmomentverhältnis 1,33.
  • BESCHREIBUNG EINER NEUNTEN BEISPIELHAFTEN AUSFÜHRUNGSFORM
  • In 9a ist ein Antriebsstrang 810 gezeigt, der eine Maschine 12 umfasst, die mit einer bevorzugten Ausführungsform des verbesserten elektrisch verstellbaren Getriebes verbunden ist, das allgemein mit dem Bezugszeichen 814 bezeichnet ist. Das Getriebe 814 ist konstruiert, um mindestens einen Teil seiner Antriebsleistung von der Maschine 12 aufzunehmen.
  • Wie es gezeigt ist, weist die Maschine 12 eine Abtriebswelle auf, die als das Antriebselement 17 des Getriebes 814 dient. Es kann auch ein Dämpfer für transientes Drehmoment (der nicht gezeigt ist) zwischen der Maschine 12 und dem Antriebselement 17 des Getriebes eingesetzt werden.
  • Ungeachtet des Mittels, durch das die Maschine 12 mit dem Getriebeantriebselement 17 verbunden ist, ist das Getriebeantriebselement 17 funktional mit einem Planetenradsatz in dem Getriebe 814 verbunden. Ein Abtriebselement 19 des Getriebes 814 ist mit einem Achsantrieb 16 verbunden.
  • Das Getriebe 814 benutzt drei Planetenradsätze 820, 830 und 840. Der Planetenradsatz 820 wendet ein äußeres Hohlrad 824 an, das ein inneres Sonnenrad 822 umgibt. Mehrere Planetenräder 827 sind auch drehbar in einem Träger 826 montiert, so dass jedes Planetenrad 827 gleichzeitig und kämmend mit sowohl dem äußeren Hohlrad 824 als auch dem inneren Sonnenrad 822 des Planetenradsatzes 820 in Eingriff steht.
  • Der Planetenradsatz 830 weist auch ein äußeres Hohlrad 834 auf, das ein inneres Sonnenrad 832 umgibt. Mehrere Planetenräder 837 sind auch drehbar in einem Träger 836 montiert, so dass jedes Planetenrad 837 gleichzeitig und kämmend mit sowohl dem äußeren Hohlrad 834 als auch dem inneren Sonnenrad 832 des Planetenradsatzes 830 in Eingriff steht.
  • Der Planetenradsatz 840 weist auch ein äußeres Hohlrad 844 auf, das ein inneres Sonnenrad 842 umgibt. Mehrere Planetenräder 847 sind auch drehbar in einem Träger 846 montiert, so dass jedes Planetenrad 847 gleichzeitig und kämmend mit sowohl dem äußeren Hohlrad 844 als auch dem inneren Sonnenrad 842 des Planetenradsatzes 840 in Eingriff steht.
  • Das Getriebeabtriebselement 19 ist ständig mit dem Träger 846 verbunden. Das erste Verbindungselement 870 verbindet das Hohlrad 824 ständig mit dem Träger 836. Ein zweites Verbindungselement 872 verbindet das Hohlrad 834 ständig mit dem Hohlrad 844. Ein drittes Verbindungselement 874 verbindet das Sonnenrad 822 ständig mit dem Getriebegehäuse 860.
  • Das Getriebe 814 umfasst auch einen ersten und zweiten Motor/Generator 880 bzw. 882. Der Stator des ersten Motors/Generators 880 ist an dem Getriebegehäuse 860 befestigt. Der Rotor des ersten Motors/Generators 880 ist an dem Sonnenrad 832 befestigt. Der Stator des zweiten Motors/Generators 882 ist auch an dem Getriebegehäuse 860 befestigt. Der Rotor des zweiten Motors/Generators 882 ist an dem Sonnenrad 842 befestigt.
  • Eine erste Drehmomentübertragungseinrichtung, wie Antriebskupplung 850, verbindet den Träger 826 selektiv mit dem Antriebselement 17. Eine zweite Drehmomentübertragungseinrichtung, wie Antriebskupplung 852, verbindet das Hohlrad 824 selektiv mit dem Antriebselement 17. Eine dritte Drehmomentübertragungseinrichtung, wie eine Bremse 854, ver bindet das Hohlrad 844 selektiv mit dem Getriebegehäuse 860. Eine vierte Drehmomentübertragungseinrichtung, wie die Bremse 855, ist parallel zu dem Motor/Generator 880 geschaltet, um dessen Rotation selektiv zu bremsen. Eine fünfte Drehmomentübertragungseinrichtung, wie Bremse 857, ist parallel zu dem Motor/Generator 882 geschaltet, um dessen Rotation selektiv zu bremsen. Die erste, zweite, dritte, vierte und fünfte Drehmomentübertragungseinrichtung 850, 852, 854, 855 und 857 werden angewandt, um bei der Auswahl der Betriebsmodi des Hybridgetriebes 814 zu helfen.
  • Das Hybridgetriebe 814 nimmt Leistung von der Maschine 12 auf und tauscht auch Leistung mit einer elektrischen Leistungsquelle 886 aus, die funktional mit einem Controller 888 verbunden ist.
  • Die Tabelle für Betriebsmodi von 9b veranschaulicht die Kupplungseinrückungen, die Motor/Generator-Bedingungen und die Abtrieb/Antrieb-Verhältnisse für die fünf Betriebsmodi des Getriebes 814. Diese Modi umfassen den "Batterie-Rückwärtsmodus" (BATT RW), den "EVT Rückwärtsmodus" (EVT RW), "Rückwärts- und Vorwärtsanfahrmodi" (DW RW und DW VW), "Modi mit stufenlos verstellbarem Getriebebereich" (Bereich 1.1, 1.2, 1.3, ...) und "Modi mit festem Verhältnis" (F1, F2), wie es zuvor beschrieben wurde.
  • Wie es oben ausgeführt wurde, ist der Einrückplan für die Drehmomentübertragungseinrichtungen in der Tabelle für Betriebsmodi und der Tabelle für Modi mit festem Verhältnis der 9b gezeigt. 9b liefert auch ein Beispiel von Drehmomentverhältnissen, die unter Verwendung der beispielhaft in 9b angegebenen Hohlrad/Sonnenrad-Zähneverhältnisse verfügbar sind. Der NR1/NS1-Wert ist das Zähneverhältnis des Planetenradsatzes 820; der NR2/NS2-Wert ist das Zähneverhältnis des Planeten radsatzes 830; und der NR3/NS3-Wert ist das Zähneverhältnis des Planetenradsatzes 840. Das Schaubild von 9b beschreibt auch die Verhältnisstufen, die unter Verwendung des angegebenen Beispiels von Zähneverhältnissen erzielt werden. Beispielsweise beträgt das Stufenverhältnis zwischen dem ersten und zweiten festen Vorwärtsdrehmomentverhältnis 1,67.
  • BESCHREIBUNG EINER ZEHNTEN BEISPIELHAFTEN AUSFÜHRUNGSFORM
  • In 10a ist ein Antriebsstrang 910 gezeigt, der eine Maschine 12 umfasst, die mit einer bevorzugten Ausführungsform des verbesserten elektrisch verstellbaren Getriebes verbunden ist, das allgemein mit dem Bezugszeichen 914 bezeichnet ist. Das Getriebe 914 ist konstruiert, um mindestens einen Teil seiner Antriebsleistung von der Maschine 12 aufzunehmen.
  • Wie es gezeigt ist, weist die Maschine 12 eine Abtriebswelle auf, die als das Antriebselement 17 des Getriebes 914 dient. Es kann auch ein Dämpfer für transientes Drehmoment (der nicht gezeigt ist) zwischen der Maschine 12 und dem Antriebselement 17 des Getriebes eingesetzt werden.
  • Ungeachtet des Mittels, durch das die Maschine 12 mit dem Getriebeantriebselement 17 verbunden ist, ist das Getriebeantriebselement 17 funktional mit einem Planetenradsatz in dem Getriebe 914 verbunden. Ein Abtriebselement 19 des Getriebes 914 ist mit einem Achsantrieb 16 verbunden.
  • Das Getriebe 914 benutzt drei Planetenradsätze 920, 930 und 940. Der Planetenradsatz 920 wendet ein äußeres Hohlrad 924 an, das ein inneres Sonnenrad 922 umgibt. Ein Träger 926 lagert drehbar mehrere Planetenräder 927, so dass jedes Planetenrad 927 kämmend mit sowohl dem äußeren Hohlrad 924 als auch dem inneren Sonnenrad 922 des ersten Planetenradsatzes 920 in Eingriff steht.
  • Der Planetenradsatz 930 weist auch ein äußeres Hohlrad 934 auf, das ein inneres Sonnenrad 932 umgibt. Mehrere Planetenräder 937, 938 sind auch drehbar in einem Träger 936 montiert, so dass jedes Planetenrad 938 kämmend mit dem Sonnenrad 932 in Eingriff steht und jedes Planetenrad 937 kämmend mit dem Hohlrad 934 in Eingriff steht, während die Planetenräder 937 und 938 kämmend miteinander in Eingriff stehen.
  • Der Planetenradsatz 940 weist auch ein äußeres Hohlrad 944 auf, das ein inneres Sonnenrad 942 umgibt. Mehrere Planetenräder 947 sind auch drehbar in einem Träger 946 montiert, so dass jedes Planetenrad 947 gleichzeitig und kämmend mit sowohl dem äußeren Hohlrad 944 als auch dem inneren Sonnenrad 942 des Planetenradsatzes 940 in Eingriff steht.
  • Das Getriebeabtriebselement 19 ist ständig mit dem Träger 936 verbunden. Das erste Verbindungselement 970 verbindet das Hohlrad 924 ständig mit dem Sonnenrad 932. Ein zweites Verbindungselement 972 verbindet das Hohlrad 934 ständig mit dem Träger 946. Ein drittes Verbindungselement 974 verbindet den Träger 926 ständig mit dem Hohlrad 944.
  • Das Getriebe 914 umfasst auch einen ersten und zweiten Motor/Generator 980 bzw. 982. Der Stator des ersten Motors/Generators 980 ist an dem Getriebegehäuse 960 befestigt. Der Rotor des ersten Motors/Generators 980 ist an dem Hohlrad 924 befestigt. Der Stator des zweiten Motors/Generators 982 ist auch an dem Getriebegehäuse 960 befestigt. Der Rotor des zweiten Motors/Generators 982 ist an dem Sonnenrad 942 befestigt.
  • Eine erste Drehmomentübertragungseinrichtung, wie Antriebskupplung 950, verbindet den Träger 946 selektiv mit dem Antriebselement 17. Eine zweite Drehmomentübertragungseinrichtung, wie Antriebskupplung 952, verbindet das Sonnenrad 942 selektiv mit dem Antriebselement 17. Eine dritte Drehmomentübertragungseinrichtung, wie eine Bremse 954, verbindet das Sonnenrad 922 selektiv mit dem Getriebegehäuse 960. Eine vierte Drehmomentübertragungseinrichtung, wie die Bremse 955, ist parallel zu dem Motor/Generator 980 angeordnet, um dessen Rotation selektiv zu bremsen. Eine fünfte Drehmomentübertragungseinrichtung, wie Bremse 957, ist parallel zu dem Motor/Generator 982 geschaltet, um dessen Rotation selektiv zu bremsen. Die erste, zweite, dritte, vierte und fünfte Drehmomentübertragungseinrichtung 950, 952, 954, 955 und 957 werden angewandt, um bei der Auswahl der Betriebsmodi des Hybridgetriebes 914 zu helfen.
  • Das Hybridgetriebe 914 nimmt Leistung von der Maschine 12 auf und tauscht auch Leistung mit einer elektrischen Leistungsquelle 986 aus, die funktional mit einem Controller 988 verbunden ist.
  • Die Tabelle für Betriebsmodi von 10b veranschaulicht die Kupplungseinrückungen, die Motor/Generator-Bedingungen und die Abtrieb/Antrieb-Verhältnisse für die fünf Betriebsmodi des Getriebes 914. Diese Modi umfassen den "Batterie-Rückwärtsmodus" (BATT RW), den "EVT Rückwärtsmodus" (EVT RW), "Rückwärts- und Vorwärtsanfahrmodi" (DW RW und DW VW), "Modi mit stufenlos verstellbarem Getriebebereich" (Bereich 1.1, 1.2, 1.3, ...) und "Modi mit festem Verhältnis" (F1, F2, F3 und F4), wie es zuvor beschrieben wurde.
  • Wie es oben ausgeführt wurde, ist der Einrückplan für die Drehmomentübertragungseinrichtungen in der Tabelle für Betriebsmodi und der Tabelle für Modi mit festem Verhältnis der 10b gezeigt. 10b liefert auch ein Beispiel von Drehmomentverhältnissen, die unter Verwendung der beispielhaft in 10b angegebenen Hohlrad/Sonnenrad-Zähneverhältnisse verfügbar sind. Der NR1/NS1-Wert ist das Zähneverhältnis des Planetenradsatzes 920; der NR2/NS2-Wert ist das Zähneverhältnis des Planetenradsatzes 930; und der NR3/NS3-Wert ist das Zähneverhältnis des Planetenradsatzes 940. Das Schaubild von 10b beschreibt auch die Verhältnisstufen, die unter Verwendung des angegebenen Beispiels von Zähneverhältnissen erzielt werden. Beispielsweise beträgt das Stufenverhältnis zwischen dem ersten und zweiten festen Vorwärtsdrehmomentverhältnis 1,76, und die Verhältnisspreizung beträgt 4,03.
  • BESCHREIBUNG EINER ELFTEN BEISPIELHAFTEN AUSFÜHRUNGSFORM
  • In 11a ist ein Antriebsstrang 1010 gezeigt, der eine Maschine 12 umfasst, die mit einer bevorzugten Ausführungsform des verbesserten elektrisch verstellbaren Getriebes verbunden ist, das allgemein mit dem Bezugszeichen 1014 bezeichnet ist. Das Getriebe 1014 ist konstruiert, um mindestens einen Teil seiner Antriebsleistung von der Maschine 12 aufzunehmen.
  • Wie es gezeigt ist, weist die Maschine 12 eine Abtriebswelle auf, die als das Antriebselement 17 des Getriebes 1014 dient. Es kann auch ein Dämpfer für transientes Drehmoment (der nicht gezeigt ist) zwischen der Maschine 12 und dem Antriebselement 17 des Getriebes eingesetzt werden.
  • Ungeachtet des Mittels, durch das die Maschine 12 mit dem Getriebeantriebselement 17 verbunden ist, ist das Getriebeantriebselement 17 funktional mit einem Planetenradsatz in dem Getriebe 1014 verbunden. Ein Abtriebselement 19 des Getriebes 1014 ist mit einem Achsantrieb 16 verbunden.
  • Das Getriebe 1014 benutzt drei Planetenradsätze 1020, 1030 und 1040. Der Planetenradsatz 1020 wendet ein äußeres Hohlrad 1024 an, das ein inneres Sonnenrad 1022 umgibt. Ein Träger 1026 lagert drehbar mehrere Planetenräder 1027, so dass jedes Planetenrad 1027 kämmend mit sowohl dem äußeren Hohlrad 1024 als auch dem inneren Sonnenrad 1022 des ersten Planetenradsatzes 1020 in Eingriff steht.
  • Der Planetenradsatz 1030 weist auch ein äußeres Hohlrad 1034 auf, das ein inneres Sonnenrad 1032 umgibt. Ein Träger 1036 lagert drehbar mehrere Planetenräder 1037, so dass jedes Planetenrad 1037 kämmend mit sowohl dem äußeren Hohlrad 1034 als auch dem inneren Sonnenrad 1032 des ersten Planetenradsatzes 1030 in Eingriff steht.
  • Der Planetenradsatz 1040 weist auch ein äußeres Hohlrad 1044 auf, das ein inneres Sonnenrad 1042 umgibt. Mehrere Planetenräder 1047 sind auch drehbar in einem Träger 1046 montiert, so dass jedes Planetenrad 1047 gleichzeitig und kämmend mit sowohl dem äußeren Hohlrad 1044 als auch dem inneren Sonnenrad 1042 des Planetenradsatzes 1040 in Eingriff steht.
  • Das Getriebeabtriebselement 19 ist ständig mit dem Hohlrad 1034 verbunden. Das erste Verbindungselement 1070 verbindet das Hohlrad 1024 ständig mit dem Sonnenrad 1032. Ein zweites Verbindungselement 1072 verbindet den Träger 1036 ständig mit dem Träger 1046. Ein drittes Ver bindungselement 1074 verbindet den Träger 1026 ständig mit dem Hohlrad 1044.
  • Das Getriebe 1014 umfasst auch einen ersten und zweiten Motor/Generator 1080 bzw. 1082. Der Stator des ersten Motors/Generators 1080 ist an dem Getriebegehäuse 1060 befestigt. Der Rotor des ersten Motors/Generators 1080 ist an dem Hohlrad 1024 befestigt.
  • Der Stator des zweiten Motors/Generators 1082 ist auch an dem Getriebegehäuse 1060 befestigt. Der Rotor des zweiten Motors/Generators 1082 ist selektiv alternativ mit dem Hohlrad 1034 oder dem Träger 1036 über die Klauenkupplung 1092 verbindbar, die zwischen Positionen "A" und "B" abwechselt. Der Rotor des zweiten Motors/Generators 1082 ist mit der Klauenkupplung 1092 verbunden.
  • Eine erste Drehmomentübertragungseinrichtung, wie Antriebskupplung 1050, verbindet das Sonnenrad 1042 selektiv mit dem Antriebselement 17. Eine zweite Drehmomentübertragungseinrichtung, wie Antriebskupplung 1052, verbindet den Träger 1046 selektiv mit dem Antriebselement 17. Eine dritte Drehmomentübertragungseinrichtung, wie eine Bremse 1054, verbindet das Sonnenrad 1022 selektiv mit dem Getriebegehäuse 1060. Eine vierte Drehmomentübertragungseinrichtung, wie die Bremse 1055, ist parallel zu dem Motor/Generator 1080 geschaltet, um dessen Rotation selektiv zu bremsen. Eine fünfte Drehmomentübertragungseinrichtung, wie Bremse 1057, ist parallel zu dem Motor/Generator 1082 geschaltet, um dessen Rotation selektiv zu bremsen. Die erste, zweite, dritte, vierte und fünfte Drehmomentübertragungseinrichtung 1050, 1052, 1054, 1055 und 1057 und die Klauenkupplung 1092 werden angewandt, um bei der Auswahl der Betriebsmodi des Hybridgetriebes 1014 zu helfen.
  • Das Hybridgetriebe 1014 nimmt Leistung von der Maschine 12 auf und tauscht auch Leistung mit einer elektrischen Leistungsquelle 1086 aus, die funktional mit einem Controller 1088 verbunden ist.
  • Die Tabelle für Betriebsmodi von 11b veranschaulicht die Kupplungseinrückungen, die Motor/Generator-Bedingungen und die Abtrieb/Antrieb-Verhältnisse für die fünf Betriebsmodi des Getriebes 1014. Diese Modi umfassen den "Batterie-Rückwärtsmodus" (BATT RW), den "EVT Rückwärtsmodus" (EVT RW), "Rückwärts- und Vorwärtsanfahrmodi" (DW RW und DW VW), "Modi mit stufenlos verstellbarem Getriebebereich" (Bereich 1.1, 1.2, 1.3, ...) und "Modi mit festem Verhältnis" (F1, F2, F3 und F4), wie es zuvor beschrieben wurde.
  • Wie es oben ausgeführt wurde, ist der Einrückplan für die Drehmomentübertragungseinrichtungen in der Tabelle für Betriebsmodi und der Tabelle für Modi mit festem Verhältnis der 11b gezeigt. 11b liefert auch ein Beispiel von Drehmomentverhältnissen, die unter Verwendung der beispielhaft in 11b angegebenen Hohlrad/ Sonnenrad-Zähneverhältnisse verfügbar sind. Der NR1/NS1-Wert ist das Zähneverhältnis des Planetenradsatzes 1020; der NR2/NS2-Wert ist das Zähneverhältnis des Planetenradsatzes 1030; und der NR3/NS3-Wert ist das Zähneverhältnis des Planetenradsatzes 1040. Das Schaubild von 11b beschreibt auch die Verhältnisstufen, die unter Verwendung des angegebenen Beispiels von Zähneverhältnissen erzielt werden. Beispielsweise beträgt das Stufenverhältnis zwischen dem ersten und zweiten festen Vorwärtsdrehmomentverhältnis 1,76, und die Verhältnisspreizung beträgt 4,03.
  • In den Ansprüchen bezieht sich der Wortlaut "ständig verbunden" oder "verbindet ständig" auf eine direkte Verbindung oder eine proportional übersetzte Verbindung, wie etwa eine Zahnradanordnung an einer versetzten Achse. Auch kann das "feststehende Element" oder "Masse" das Getriebegehäuse (Kasten) oder irgendeine andere nicht rotierende Komponente oder Komponenten umfassen. Auch wenn gesagt wird, dass ein Drehmomentübertragungsmechanismus etwas mit einem Element eines Zahnradsatzes verbindet, kann er auch mit einem Verbindungselement verbunden sein, das es mit diesem Element verbindet. Es ist darüber hinaus zu verstehen, dass unterschiedliche Merkmale unterschiedlicher Ausführungsformen der Erfindung im Schutzumfang der beigefügten Ansprüche kombinier werden können.
  • Obgleich verschiedene bevorzugte Ausführungsformen der vorliegenden Erfindung offenbart sind, ist zu verstehen, dass die Konzepte der vorliegenden Erfindung Gegenstand zahlreicher, dem Fachmann deutlicher Veränderungen sind. Daher soll der Schutzumfang der vorliegenden Erfindung nicht auf die gezeigten und beschriebenen Details beschränkt sein, sondern soll alle Veränderungen und Abwandlungen umfassen, die in den Schutzumfang der beigefügten Ansprüche fallen.
  • Zusammenfassung
  • Die elektrisch verstellbare Getriebefamilie der vorliegenden Erfindung stellt kostengünstige elektrisch verstellbare Getriebemechanismen mit geringem Inhalt bereit, die einen ersten, zweiten und dritten Differenzialzahnradsatz, eine Batterie, zwei Elektromotoren, die austauschbar als Motoren oder Generatoren dienen, fünf auswählbare Drehmomentübertragungseinrichtungen (zwei Kupplungen und drei Bremsen) und möglicherweise eine Klauenkupplung umfassen. Die auswählbaren Drehmomentübertragungseinrichtungen werden einzeln oder in Zweier-, Dreier- oder Viererkombinationen eingerückt, um ein EVT mit einem stufenlos verstellbaren Bereich von Drehzahlen (einschließlich rückwärts) und bis zu vier mechanisch festen Vorwärtsdrehzahlverhältnissen zu ergeben. Die Drehmomentübertragungseinrichtungen und der erste und zweite Motor/ Generator sind betreibbar, um in dem elektrisch verstellbaren Getriebe fünf Betriebsmodi bereitzustellen, die einen Batterie-Rückwärtsmodus, einen EVT Rückwärtsmodus, Rückwärts- und Vorwärtsanfahrmodi, einen Modus mit stufenlos verstellbarem Getriebebereich und einen Modus mit festem Verhältnis umfassen.

Claims (14)

  1. Elektrisch verstellbares Getriebe, umfassend: ein Antriebselement zur Aufnahme von Leistung von einer Maschine; ein Abtriebselement; einen ersten und zweiten Motor/Generator; einen ersten, zweiten und dritten Differenzialzahnradsatz, die jeweils ein erstes, zweites und drittes Element aufweisen; wobei das Antriebselement selektiv mit mindestens einem Element der Zahnradsätze verbunden ist, und das Abtriebselement ständig mit mindestens einem Element der Zahnradsätze verbunden ist; ein erstes Verbindungselement, das das erste Element des ersten Zahnradsatzes ständig mit dem ersten Element des zweiten Zahnradsatzes verbindet; ein zweites Verbindungselement, das das zweite Element des zweiten Zahnradsatzes ständig mit dem ersten Element des dritten Zahnradsatzes verbindet; ein drittes Verbindungselement, das das zweite Element des ersten Zahnradsatzes ständig mit dem zweiten Element des dritten Zahnradsatzes oder mit einem feststehenden Element verbindet; wobei der erste Motor/Generator ständig mit einem Element des ersten oder zweiten Zahnradsatzes verbunden ist; wobei der zweite Motor/Generator ständig mit einem Element des ersten, zweiten oder dritten Zahnradsatzes verbunden ist, wobei dieses Element verschieden ist von dem Element, das ständig mit dem ersten Motor/Generator verbunden ist; eine erste Drehmomentübertragungseinrichtung, die ein Element des ersten, zweiten oder dritten Zahnradsatzes selektiv mit dem Antriebselement verbindet; eine zweite Drehmomentübertragungseinrichtung, die ein anderes Element des ersten, zweiten oder dritten Zahnradsatzes selektiv mit dem Antriebselement verbindet; eine dritte Drehmomentübertragungseinrichtung, die ein Element des ersten, zweiten oder dritten Zahnradsatzes selektiv auf Masse festlegt; eine vierte Drehmomentübertragungseinrichtung, die parallel zu einem von dem ersten und zweiten Motor/Generator geschaltet ist, um dessen Rotation selektiv zu verhindern; eine fünfte Drehmomentübertragungseinrichtung, die parallel zu dem anderen von dem ersten und zweiten Motor/Generator geschaltet ist, um dessen Rotation selektiv zu verhindern; und wobei die erste, zweite, dritte, vierte und fünfte Drehmomentübertragungseinrichtung alleine oder in Zweier- oder Dreierkombinationen einrückbar sind, um ein elektrisch verstellbares Getriebe mit einem stufenlos verstellbaren Bereich von Drehzahlverhältnissen und bis zu vier festen Vorwärtsdrehzahlverhältnissen bereitzustellen.
  2. Elektrisch verstellbares Getriebe nach Anspruch 1, wobei der erste, zweite und dritte Differenzialzahnradsatz Planetenradsätze sind.
  3. Elektrisch verstellbares Getriebe nach Anspruch 2, wobei Träger von jedem der Planetenradsätze Einzelplanetenträger sind.
  4. Elektrisch verstellbares Getriebe nach Anspruch 2, wobei mindestens ein Träger der Planetenradsätze ein Doppelplanetenträger ist.
  5. Elektrisch verstellbares Getriebe nach Anspruch 1, wobei die erste, zweite, dritte, vierte und fünfte Drehmomentübertragungseinrichtung und der erste und zweite Motor/Generator betreibbar sind, um in dem elektrisch verstellbaren Getriebe fünf Betriebsmodi bereitzustellen, die einen Batterie-Rückwärtsmodus, einen EVT Rückwärtsmodus, Rückwärts- und Vorwärtsanfahrmodi, einen Modus mit stufenlos verstellbarem Getriebebereich und einen Modus mit festem Verhältnis umfassen.
  6. Elektrisch verstellbares Getriebe, umfassend: ein Antriebselement zur Aufnahme von Leistung von einer Maschine; ein Abtriebselement; einen ersten und zweiten Motor/Generator; einen ersten, zweiten und dritten Differenzialzahnradsatz, die jeweils ein erstes, zweites und drittes Element aufweisen; wobei das Antriebselement selektiv mit mindestens einem Element der Zahnradsätze verbunden ist, und das Abtriebselement ständig mit einem anderen Element der Zahnradsätze verbunden ist; ein erstes Verbindungselement, das das erste Element des ersten Zahnradsatzes ständig mit dem ersten Element des zweiten Zahnradsatzes verbindet; ein zweites Verbindungselement, das das zweite Element des zweiten Zahnradsatzes ständig mit dem ersten Element des dritten Zahnradsatzes verbindet; ein drittes Verbindungselement, das das zweite Element des ersten Zahnradsatzes ständig mit dem zweiten Element des dritten Zahnradsatzes oder mit einem feststehenden Element verbindet; wobei der erste Motor/Generator ständig mit einem Element des ersten oder zweiten Zahnradsatzes verbunden ist; wobei der zweite Motor/Generator ständig, oder selektiv über eine Klauenkupplung, mit einem Element des ersten, zweiten oder dritten Zahnradsatzes verbunden ist; und eine erste, zweite, dritte, vierte und fünfte Drehmomentübertragungseinrichtung zum selektiven Verbinden der Elemente des ersten, zweiten oder dritten Zahnradsatzes mit einem feststehenden Element oder mit dem Antriebselement, wobei die erste, zweite, dritte, vierte und fünfte Drehmomentübertragungseinrichtung einrückbar sind, um ein elektrisch verstellbares Getriebe mit einem stufenlos verstellbaren Bereich von Drehzahlverhältnissen und bis zu vier festen Vorwärtsdrehzahlverhältnissen zwischen dem Antriebselement und dem Abtriebselement bereitzustellen.
  7. Elektrisch verstellbares Getriebe nach Anspruch 6, wobei der erste, zweite und dritte Differenzialzahnradsatz Planetenradsätze sind, und die erste Drehmomentübertragungseinrichtung ein Element des ersten, zweiten oder dritten Zahnradsatzes selektiv mit dem Antriebselement verbindet.
  8. Elektrisch verstellbares Getriebe nach Anspruch 7, wobei die zweite Drehmomentübertragungseinrichtung ein anderes Element des ersten, zweiten oder dritten Zahnradsatzes selektiv mit dem Antriebselement verbindet.
  9. Elektrisch verstellbares Getriebe nach Anspruch 8, wobei die dritte Drehmomentübertragungseinrichtung ein Element des ersten, zweiten oder dritten Zahnradsatzes selektiv mit dem feststehenden Element verbindet.
  10. Elektrisch verstellbares Getriebe nach Anspruch 9, wobei die vierte Drehmomentübertragungseinrichtung parallel zu einem der Motoren/Generatoren geschaltet ist, um dessen Rotation selektiv zu verhindern.
  11. Elektrisch verstellbares Getriebe nach Anspruch 10, wobei die fünfe Drehmomentübertragungseinrichtung parallel zu dem anderen der Motoren/Generatoren geschaltet ist, um dessen Rotation selektiv zu verhindern.
  12. Elektrisch verstellbares Getriebe nach Anspruch 11, wobei Träger von jedem der Planetenradsätze Einzelplanetenträger sind.
  13. Elektrisch verstellbares Getriebe nach Anspruch 11, wobei mindestens ein Träger der Planetenradsätze ein Doppelplanetenträger ist.
  14. Elektrisch verstellbares Getriebe, umfassend: ein Antriebselement zur Aufnahme von Leistung von einer Maschine; ein Abtriebselement; einen ersten und zweiten Motor/Generator; einen ersten, zweiten und dritten Differenzialzahnradsatz, die jeweils ein erstes, zweites und drittes Element aufweisen; wobei das Antriebselement selektiv mit mindestens einem Element der Zahnradsätze verbunden ist, und das Abtriebselement ständig mit einem anderen Element der Zahnradsätze verbunden ist; ein erstes Verbindungselement, das das erste Element des ersten Zahnradsatzes ständig mit dem ersten Element des zweiten Zahnradsatzes verbindet; ein zweites Verbindungselement, das das zweite Element des zweiten Zahnradsatzes ständig mit dem ersten Element des dritten Zahnradsatzes verbindet; ein drittes Verbindungselement, das das zweite Element des ersten Zahnradsatzes ständig mit dem zweiten Element des dritten Zahnradsatzes oder mit dem feststehenden Element verbindet; wobei der erste Motor/Generator ständig mit einem Element des ersten oder zweiten Zahnradsatzes verbunden ist; wobei der zweite Motor/Generator selektiv alternativ mit zweien der Elemente des ersten, zweiten oder dritten Zahnradsatzes durch eine Klauenkupplung verbindbar ist; eine erste Drehmomentübertragungseinrichtung, die ein Element des ersten, zweiten oder dritten Zahnradsatzes selektiv mit dem Antriebselement verbindet; eine zweite Drehmomentübertragungseinrichtung, die ein anderes Element des ersten, zweiten oder dritten Zahnradsatzes selektiv mit dem Antriebselement verbindet; eine dritte Drehmomentübertragungseinrichtung, die ein Element des ersten, zweiten oder dritten Zahnradsatzes selektiv auf Masse festlegt; eine vierte Drehmomentübertragungseinrichtung, die parallel zu einem von dem ersten und zweiten Motor/Generator geschaltet ist, um dessen Rotation selektiv zu verhindern; eine fünfe Drehmomentübertragungseinrichtung, die parallel zu dem anderen von dem ersten und zweiten Motor/Generator geschaltet ist, um dessen Rotation selektiv zu verhindern; und wobei die erste, zweite, dritte, vierte und fünfte Drehmomentübertragungseinrichtung und der erste und zweite Motor/Generator betreibbar sind, um ein elektrisch verstellbares Getriebe bereitzustellen, das fünf Betriebsmodi aufweist, die einen Batterie-Rückwärtsmodus, einen EVT Rückwärtsmodus, Rückwärts- und Vorwärtsanfahrmodi, einen Modus mit stufenlos verstellbarem Getriebebereich, und einen Modus mit festem Verhältnis, der bis zu vier feste Vorwärtsdrehzahlverhältnisse aufweist, umfassen.
DE112006002069.2T 2005-08-05 2006-07-19 Elektrisch verstellbares Getriebe mit drei Planetenradsätzen und gekuppeltem Antrieb Active DE112006002069B4 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/198,211 2005-08-05
US11/198,211 US7252614B2 (en) 2005-08-05 2005-08-05 Electrically variable transmission having three planetary gear sets and clutched input
PCT/US2006/027917 WO2007018986A2 (en) 2005-08-05 2006-07-19 Electrically variable transmission having three planetary gearsets and clutched input

Publications (2)

Publication Number Publication Date
DE112006002069T5 true DE112006002069T5 (de) 2008-06-26
DE112006002069B4 DE112006002069B4 (de) 2021-11-04

Family

ID=37718306

Family Applications (1)

Application Number Title Priority Date Filing Date
DE112006002069.2T Active DE112006002069B4 (de) 2005-08-05 2006-07-19 Elektrisch verstellbares Getriebe mit drei Planetenradsätzen und gekuppeltem Antrieb

Country Status (4)

Country Link
US (1) US7252614B2 (de)
CN (1) CN101273218B (de)
DE (1) DE112006002069B4 (de)
WO (1) WO2007018986A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008061945A1 (de) 2008-12-12 2010-06-17 Schaeffler Kg Elektrische Achsantriebseinheit mit variabler Momentenverteilung
DE102008061946A1 (de) 2008-12-12 2010-06-17 Schaeffler Kg Elektrische Antriebseinheit mit variabler Momentenverteilung
DE102009059903A1 (de) 2009-12-21 2011-06-22 Schaeffler Technologies GmbH & Co. KG, 91074 System zur variablen Momentenverteilung

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2875746B1 (fr) * 2004-09-24 2008-03-21 Peugeot Citroen Automobiles Sa Dispositif de transmission de puissance et procede mettant en oeuvre ce dispositif
US7294079B2 (en) * 2005-08-18 2007-11-13 Gm Global Technology Operations, Inc. Electrically variable transmission having three planetary gear sets and two fixed interconnections and a stationary interconnection
US7354367B2 (en) * 2005-12-02 2008-04-08 Gm Global Technology Operations, Inc. Electrically variable transmission having three planetary gear sets, four fixed interconnections and clutched input
US7387586B2 (en) * 2006-03-24 2008-06-17 Gm Global Technology Operations, Inc. Three planetary electrically variable transmissions with mechanical reverse
CN102261439B (zh) * 2011-07-19 2014-04-16 东风汽车公司 一种基于三离合器的混合动力汽车的驱动系统
KR101427959B1 (ko) * 2012-12-12 2014-08-11 현대자동차 주식회사 하이브리드 자동차의 동력전달장치

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558588A (en) * 1995-02-16 1996-09-24 General Motors Corporation Two-mode, input-split, parallel, hybrid transmission
US5558595A (en) 1995-02-17 1996-09-24 General Motors Corporation One-mode, input-split, parallel, hybrid transmission
US5577973A (en) * 1995-07-20 1996-11-26 General Motors Corporation Two-mode, split power, electro-mechanical transmission
US5603671A (en) * 1995-08-08 1997-02-18 General Motors Corporation Three prime mover bus transmission
US5931757A (en) 1998-06-24 1999-08-03 General Motors Corporation Two-mode, compound-split electro-mechanical vehicular transmission
US6176808B1 (en) * 1999-07-15 2001-01-23 Ford Global Technologies, Inc. Hybrid vehicle powertrain and control therefor
JP3460665B2 (ja) 2000-03-06 2003-10-27 日産自動車株式会社 ハイブリッド車両の自動変速機
US6358173B1 (en) * 2000-06-12 2002-03-19 General Motors Corporation Two-mode, compound-split, electro-mechanical vehicular transmission having significantly reduced vibrations
US6364807B1 (en) 2000-06-30 2002-04-02 Ford Global Technologies, Inc. Control strategy for a hybrid powertrain for an automotive vehicle
DE10115984A1 (de) 2001-03-30 2002-10-10 Zahnradfabrik Friedrichshafen Antriebssystem für ein Kraftfahrzeug
US6527658B2 (en) 2001-04-02 2003-03-04 General Motors Corporation Electrically variable transmission with selective input split, compound split, neutral and reverse modes
US6478705B1 (en) 2001-07-19 2002-11-12 General Motors Corporation Hybrid electric powertrain including a two-mode electrically variable transmission
US6962545B2 (en) 2002-09-23 2005-11-08 Bae Systems Onctrols Multi-range parallel-hybrid continuously variable transmission
JP3858885B2 (ja) 2003-11-18 2006-12-20 日産自動車株式会社 ハイブリッド変速機の変速比制御装置
US6953409B2 (en) * 2003-12-19 2005-10-11 General Motors Corporation Two-mode, compound-split, hybrid electro-mechanical transmission having four fixed ratios
US7822524B2 (en) 2003-12-26 2010-10-26 Toyota Jidosha Kabushiki Kaisha Vehicular drive system
US7179185B2 (en) * 2005-01-04 2007-02-20 General Motors Corporation Electrically variable transmission having three interconnected planetary gear sets, two clutches and at least two brakes
US7179186B2 (en) * 2005-01-04 2007-02-20 General Motors Corporation Electrically variable transmission having three interconnected planetary gear sets
US7214154B2 (en) * 2005-01-11 2007-05-08 General Motors Corporation Electrically variable transmission having six fixed speed ratios
US7169073B2 (en) * 2005-01-13 2007-01-30 General Motors Corporation Powertrain with electrically variable transmission

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008061945A1 (de) 2008-12-12 2010-06-17 Schaeffler Kg Elektrische Achsantriebseinheit mit variabler Momentenverteilung
DE102008061946A1 (de) 2008-12-12 2010-06-17 Schaeffler Kg Elektrische Antriebseinheit mit variabler Momentenverteilung
DE102009059903A1 (de) 2009-12-21 2011-06-22 Schaeffler Technologies GmbH & Co. KG, 91074 System zur variablen Momentenverteilung
WO2011076542A1 (de) 2009-12-21 2011-06-30 Schaeffler Technologies Gmbh & Co. Kg System zur variablen momentenverteilung

Also Published As

Publication number Publication date
WO2007018986A2 (en) 2007-02-15
US7252614B2 (en) 2007-08-07
DE112006002069B4 (de) 2021-11-04
US20070032328A1 (en) 2007-02-08
WO2007018986A3 (en) 2008-01-17
CN101273218A (zh) 2008-09-24
CN101273218B (zh) 2011-10-12

Similar Documents

Publication Publication Date Title
DE112006002068B4 (de) Elektrisch verstellbares Getriebe mit zwei oder drei Planetenradsätzen und zwei oder drei festen Verbindungen
DE112006002557B4 (de) Elektrisch verstellbare Mehrmodusgetriebe, die zwei Planetenradsätze mit einer festen Verbindung und einen gekuppelten Antrieb aufweisen
DE112006002301B4 (de) Elektrisch verstellbares getriebe mit drei miteinander verbundenen planetenradsätzen, einem getriebekasten und einem starren antrieb
DE112006003030B4 (de) Elektrisch verstellbare Mehrmodusgetriebe, die zwei Planetenradsätze mit einer festen Verbindung aufweisen
DE112006002537B4 (de) Elektrisch verstellbare Mehrmodusgetriebe, die zwei Planetenradsätze mit zwei festen Verbindungen und einen gekuppelten Antrieb aufweisen
DE112006001817B4 (de) Elektrisch verstellbares Getriebe mit zwei Planetenradsätzen und einer stationären festen Verbindung
DE112005002846B4 (de) Elektrisch verstellbares Getriebe
DE112006002210B4 (de) Elektrisch verstellbares Getriebe mit drei Planetenradsätzen und zwei festen Verbindungen
DE112007001230B4 (de) Elektrisch verstellbares Getriebe mit zwei Planetenradsätzen und mehreren festen Verhältnissen
DE102007045813B4 (de) Elektrisch verstellbares Mehrmodus-Getriebe mit miteinander verbundenen Zahnradsätzen
DE112006003080B4 (de) Elektrisch verstellbare Getriebe
DE112006000751T5 (de) Elektrisch verstellbares Getriebe mit zwei Planetenradsätzen und zwei festen Verbindungen
DE112007002279B4 (de) Elektrisch verstellbare Mehrmodusgetriebe mit zumindest einer Bremse und drei Kupplungen
DE112007000573B4 (de) Elektrisch verstellbare Getriebe
DE112006000376T5 (de) Elektrisch verstellbares Getriebe mit drei miteinander verbundenen Planetenradsätzen, zwei Kupplungen und zwei Bremsen
DE112005003329T5 (de) Elektrisch verstellbares Getriebe mit drei miteinander verbundenen Planetenradsätzen, zwei Kupplungen und mindestens zwei Bremsen
DE112005003356T5 (de) Elektrisch verstellbares Getriebe mit drei Planetenradsätzen und drei festen Verbindungen
DE112006000917T5 (de) Elektrisch verstellbares Getriebe, das zwei Planetenradsätze mit einer festen Verbindung und einem feststehenden Element aufweist
DE112007001058B4 (de) Elektrisch verstellbares Getriebe
DE112006003286T5 (de) Elektrisch verstellbares Getriebe mit drei Planetenradsätzen, vier festen Verbindungen und gekuppeltem Antrieb
DE112005003331T5 (de) Elektrisch verstellbares Getriebe mit drei miteinander verbundenen Planetenradsätzen
DE112006000401T5 (de) Elektrisch verstellbares Getriebe, das zwei Planetenradsätze mit einem Verbindungselement und einen gekuppelten Antrieb aufweist
DE112006000969T5 (de) Elektrisch verstellbares Getriebe mit zwei Planetenradsätzen
DE112007000551T5 (de) Elektrisch verstellbare Getriebe mit zwei Planetenradsätzen und gekuppeltem Antrieb
DE112007001209B4 (de) Elektrisch verstellbares Getriebe mit drei Planetenradsätzen, zwei festen Verbindungen und gekuppeltem Antrieb

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8125 Change of the main classification

Ipc: B60K 6/445 AFI20060719BHDE

8180 Miscellaneous part 1

Free format text: PFANDRECHT

8180 Miscellaneous part 1

Free format text: PFANDRECHT AUFGEHOBEN

8180 Miscellaneous part 1

Free format text: PFANDRECHT

8127 New person/name/address of the applicant

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC , ( N. D. , US

R081 Change of applicant/patentee

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC (N. D. GES, US

Free format text: FORMER OWNER: GM GLOBAL TECHNOLOGY OPERATIONS, INC., DETROIT, MICH., US

Effective date: 20110323

R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final