DE1033335B - Process for the production of thin semiconducting layers from semiconducting compounds - Google Patents

Process for the production of thin semiconducting layers from semiconducting compounds

Info

Publication number
DE1033335B
DE1033335B DES53828A DES0053828A DE1033335B DE 1033335 B DE1033335 B DE 1033335B DE S53828 A DES53828 A DE S53828A DE S0053828 A DES0053828 A DE S0053828A DE 1033335 B DE1033335 B DE 1033335B
Authority
DE
Germany
Prior art keywords
vapor
volatile component
component
temperature
vapor pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DES53828A
Other languages
German (de)
Inventor
Dr Rer Nat Karl-Georg Guenther
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to NL224894D priority Critical patent/NL224894A/xx
Priority to NL103088D priority patent/NL103088C/xx
Application filed by Siemens AG filed Critical Siemens AG
Priority to DES53828A priority patent/DE1033335B/en
Priority to FR1194877D priority patent/FR1194877A/en
Priority to GB17370/58A priority patent/GB852598A/en
Priority to US739577A priority patent/US2938816A/en
Publication of DE1033335B publication Critical patent/DE1033335B/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/049Equivalence and options
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/065Gp III-V generic compounds-processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/158Sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/169Vacuum deposition, e.g. including molecular beam epitaxy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/971Stoichiometric control of host substrate composition

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Physical Vapour Deposition (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

DEUTSCHESGERMAN

In der Halbleitertechnik werden oft dünne halbleitende Schichten benötigt. Bei Verwendung von halbierenden Elementen können solche Schichten in einfacher Weise durch Aufdampfen im Vakuum hergestellt werden. Bei halbleitenden Verbindungen, insbesondere bei solchen, deren Komponenten über der Schmelze einen wesentlich verschiedenen Dampfdruck aufweisen, bereitet das Auf dampf verfahren Schwierigkeiten. Dies trifft vor allem zu für einige AijtBv-Verbindungen. In semiconductor technology, thin semiconducting layers are often required. When using bisecting elements, such layers can be produced in a simple manner by vapor deposition in a vacuum. In the case of semiconducting compounds, especially those whose components have a significantly different vapor pressure above the melt, the process on vapor causes difficulties. This is especially true for some Aij t B v compounds.

Gegenstand der Erfindung ist ein Verfahren, das es erlaubt, dünne halbleitende Schichten auch aus solchen halbleitenden Verbindungen durch Aufdampfen herzustellen, deren Komponenten über der Schmelze einen wesentlich verschiedenen Dampfdruck aufweisen. Gemäß der Erfindung wird die Temperatur des Auffängers zwischen den Kondensationstemperaturen der leichtflüchtigen Komponente einerseits und der schwerflüchtigen Komponente andererseits gewählt und die Einfall-dichte des Dampfstrahles der leichtflüchtigen Komponente so bemessen, daß über dem Auffänger ein Überschuß an der leichtflüchtigen Komponente vorliegt.The invention relates to a method which allows thin semiconducting layers to be produced from such layers produce semiconducting compounds by vapor deposition, their components over the melt have a significantly different vapor pressure. According to the invention, the temperature of the Catcher between the condensation temperatures of the volatile component on the one hand and the On the other hand, the low-volatility component is selected and the density of incidence of the steam jet for the highly volatile Component dimensioned so that an excess of the volatile Component is present.

Eine Einrichtung zur Durchführung des Verfahrens gemäß der Erfindung ist in der Zeichnung dargestellt.A device for carrying out the method according to the invention is shown in the drawing.

Mit 1 und 2 sind zwei Verdampfergefäße bezeichnet, aus denen die Komponenten A bzw. B zur Bildung der Verbindung AB auf den Auffänger 3 aufgedampft werden·. Die gesamte Einrichtung ist in einem Vakuumgefäß angeordnet, das in der schematischen Darstellung der Zeichnung nicht angegeben ist. Die effektive Auffängerfläche liegt im Einfallsbereich beider Komponentenstrahlen; sie ist in der Zeichnung durch einen Doppelpfeil angegeben. Will man z. B. eine In-As-Halbleiterschicht aufdämpfen, so enthalten die Gefäße 1 und 2 die Komponenten As bzw In. Der Aufträger wird auf eine Temperatur von etwa 200° C aufgeheizt. Diese Temperatur liegt unter der Kondensationstemperatur der In-Komponente und der Verbindung In —As, jedoch über der Kondensationstemperatur der As-Komponente, wenn man eine Einfallsdichte des As-Dampfstrahles von 1017 bis 1018 Molekülen/cm2/sec zugrunde legt. Diese Bemessung hat zur Folge, daß der gesamte In-Dampfstrom auf dem Auffänger kondensiert. Bei der genannten Dimensionierung würde ohne In-Dampfstrom der As-Dampfstrom vollständig reflektiert werden. Im vorliegenden Falle jedoch bilden die einfallenden As-Moleküle mit den In-Molekülen die Verbindung In —As, die ebenfalls auf dem Auffänger kondensiert, und zwar in einem Umfang, wie er durch die Zahl der vorhandenen In-Moleküle vorgegeben ist. Die überschüssigen As-Moleküle werden in den Dampfraum reflektiert.With 1 and 2 two evaporation vessels are designated, from which the components A and B are evaporated to the formation of the connection AB on the collector 3 ·. The entire device is arranged in a vacuum vessel, which is not indicated in the schematic representation of the drawing. The effective interceptor area lies in the area of incidence of both component beams; it is indicated in the drawing by a double arrow. Do you want to z. B. vaporize an In-As semiconductor layer, the vessels 1 and 2 contain the components As and In. The applicator is heated to a temperature of around 200 ° C. This temperature is below the condensation temperature of the In component and the In — As compound, but above the condensation temperature of the As component, assuming an incidence density of the As vapor jet of 10 17 to 10 18 molecules / cm 2 / sec. This dimensioning has the consequence that the entire In vapor flow condenses on the collector. With the dimensioning mentioned, the As vapor flow would be completely reflected without the In vapor flow. In the present case, however, the incident As molecules with the In molecules form the compound In — As, which also condenses on the receiver, to the extent that is determined by the number of In molecules present. The excess As molecules are reflected into the vapor space.

Verfahren zum HerstellenMethod of manufacture

dünner halbleitender Schichtenthin semiconducting layers

aus halbleitenden Verbindungenfrom semiconducting compounds

Anmelder:Applicant:

Siemens-SchuckertwerkeSiemens-Schuckertwerke

Aktiengesellschaft,Corporation,

Berlin und Erlangen,Berlin and Erlangen,

Erlangen, Werner-von-Siemens-Str. 50Erlangen, Werner-von-Siemens-Str. 50

Dr. rer. nat. Karl-Georg Günther, Nürnberg,
ist als Erfinder genannt worden
Dr. rer. nat. Karl-Georg Günther, Nuremberg,
has been named as the inventor

Um sicherzustellen, daß sich auf die vorgenannte Weise eine stöchiometrisohe Aufdampfschicht der Verbindung bildet, dürfen die Einfallsdichten der Dampfstrahlen der Komponenten nicht beliebig stark voneinander abweichen. Ist nämlich im vorgenannten Beispiel die Einfallsdichte des As-Dampfstrahles erheblich größer als die Einfallsdichte des In-Dampf-Strahles, so tritt ein Einbau von As ein, und. zwar dadurch, daß As-Moleküle durch das kondensierende In—As zugedeckt werden. Es entstehen somit As-Einschlüsse, die nachteilige Einflüsse auf die Eigenschaften der Aufdampfschicht zur Folge haben können.In order to ensure that there is a stoichiometric vapor-deposition layer of the compound in the aforementioned manner forms, the density of incidence of the steam jets of the components must not be arbitrarily strong from one another differ. In fact, in the above example, the density of incidence of the As vapor jet is considerable greater than the density of incidence of the in-vapor jet, the incorporation of As occurs, and. although by the fact that As molecules through the condensing In — As to be covered. As a result, there are As inclusions, which can have adverse effects on the properties of the vapor deposition layer.

Andererseits ist die Einstellung des günstigen Verhältnisses der Einfallsdichten der Komponenten technisch nicht immer einfach zu beherrschen, insbesondere dann nicht, wenn die Dampfdruckunterschiede der Komponenten wie bei dem obengenannten In — As besonders groß sind. In solchen Fällen wird gemäß weiterer Erfindung die geometrische Anordnung der beiden Verdampfergefäße in bezug auf den Auffänger so gewählt, daß sich die Einfallsdichte der beiden Komponentenstrahlen längs des Auffängers in entgegengesetztem Sinne ändert. Diese Forderung kann ohne besonderen Aufwand, im Prinzip z. B. mit der oben beschrietaien, in der Zeichnung dargestellten Anordnung, realisiert werden. So nimmt z. B. die Einfallsdichte des von dem Gefäß 1 auftreffenden Dampf-Strahles von links nach rechts ab, bezogen auf die durch den Doppelpfeil angegebene effekte Auffängerfläche; umgekehrt sind die Verhältnisse bezüglich des von dem Gefäß 2 auftreffenden Dampfstrahles. Innerhalb des gesamten, vorher als effektive Auffänger-On the other hand is the setting of the favorable ratio the density of incidence of the components is not always technically easy to master, especially then not if the vapor pressure differences of the components are as in the above-mentioned In - As are particularly large. In such cases, the geometric arrangement of the two evaporation vessels with respect to the collector chosen so that the incident density of the two Component rays along the interceptor changes in the opposite sense. This requirement can without special effort, in principle z. B. with the above beschrietaien shown in the drawing Arrangement, can be realized. So takes z. B. the density of incidence of the steam jet impinging on the vessel 1 from left to right, based on the effective catcher area indicated by the double arrow; the opposite is the case with regard to the steam jet impinging on the vessel 2. Within of the whole, previously as an effective catcher

809 559/336809 559/336

fläche bezeichneten Bereiches wird ein Teilbereich sein, in dem ein günstiges Verhältnis der Emfällsdicbten der beiden Dampf strahlen vorliegt; dieser wird für die spätere Verwendung der Aufdampfschicht aus der Gesamtfläche herausgeschnitten.area designated area will be a sub-area in which a favorable ratio of the victims the two steam jets is present; this is for the later use of the vapor deposition from the total area cut out.

In Fällen, bei denen es auf extreme Stöchiometrie ankommt, wird gemäß weiterer Erfindung die aufgedampfte Schicht im Dampf der leichtflüchtigen Komponente bei einer Temperatur dicht unter der Schmelztemperatur der Verbindung getempert und hierzu der Dampfdruck der leichtflüchtigen Komponente so* bemessen, daß er unterhalb des Dampfdruckes der reinen leichtflüchtigen Komponente, aber oberhalb des entsprechenden Dampfdruckes über der stöchiometnschen Verbindung bei der Tempertemperatur liegt. Hierdurch wird erreicht, daß eventuell in der Aufdampffläche mechanisch eingeschlossene Teilchen der leichtflüchtigen Komponente herausdampfen, da deren Dampfdruck dicht unterhalb der Schmelztemperatur der Verbindung wesentlich höher ist als der Partialdampfdruck dieser Komponente über der Verbindung. Wenn die Einschlüsse an der leichtflüchtigen Kompo- ' nente nicht zu groß sind, wird sich dann ein Gleichgewicht einstellen, das der streng stöchiometrischen Verbindung entspricht.In cases where extreme stoichiometry is important, according to a further invention, the vapor-deposited Layer in the vapor of the volatile component at a temperature just below the melting temperature the connection is tempered and for this purpose the vapor pressure of the volatile component is measured as *, that it is below the vapor pressure of the pure volatile component, but above the corresponding Vapor pressure is above the stoichiometric compound at the annealing temperature. Through this it is achieved that any mechanically trapped particles of the highly volatile The component evaporates because its vapor pressure is just below the melting temperature the connection is significantly higher than the partial vapor pressure of this component over the connection. If the inclusions on the volatile component are not too large, an equilibrium will then be achieved set that corresponds to the strictly stoichiometric compound.

Claims (3)

PATENTANSPRÜCHE:PATENT CLAIMS: 1. Verfahren zum Herstellen dünner halbleitender Schichten aus halbleitenden Verbindungen, deren Komponenten im geschmolzenen Zustand einen wesentlich verschiedenen Dampfdruck aufweisen, durch gleichzeitiges Aufdampfen der einzelnen Komponenten, dadurch gekennzeichnet, daß die Temperatur des Auffängers zwischen den Kondensationstemperaturen der leichtflüchtigen Komponente einerseits und der schwerflüchtigen Komponente und der Verbindung andererseits gewählt wird und daß die Einfallsdichte des Dampfstrahles der leichtflüchtigen Komponente so bemessen wird, daß über dem Auffänger ein Überschuß an der leichtflüchtigen Komponente vorliegt.1. Process for producing thin semiconducting layers from semiconducting compounds, the components of which have a significantly different vapor pressure in the molten state, by simultaneous vapor deposition of the individual components, characterized in that the temperature of the receiver between the condensation temperatures the volatile component on the one hand and the low volatility component and the compound on the other hand and that the density of incidence of the vapor jet of the volatile component is measured in such a way that that there is an excess of the volatile component above the collector. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die geometrische Anordnung der beiden Verdampfungsgefäße in bezug auf den Auffänger so gewählt wird, daß sich die Einfallsdichte der beiden Komponentendampfstrahlen längs des Auffängers in entgegengesetztem Sinne ändert.2. The method according to claim 1, characterized in that the geometric arrangement of the two evaporation vessels with respect to the collector is chosen so that the incident density of the two component vapor jets along the collector changes in opposite directions. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die aufgedampfte Schicht im Dampf der leichtflüchtigen Komponente bei- einer Temperatur dicht unter der Schmelztemperatur der Verbindung getempert wird und hierzu der Dampfdruck der leichtflüchtigen Komponente so bemessen wird, daß er unterhalb des Dampfdruckes der reinen leichtflüchtigen Komponente und oberhalb des Dampfdruckes dieser Komponente über der stöchiometrischen Verbindung bei dar Tempertemperatur liegt.3. The method according to claim 1 or 2, characterized in that the vapor-deposited layer in the Vapor of the volatile component at a temperature just below the melting temperature the connection is tempered and for this purpose the vapor pressure of the volatile component so is measured that it is below the vapor pressure of the pure volatile component and above the vapor pressure of this component above the stoichiometric compound the tempering temperature is. Hierzu 1 Blatt Zeichnungen1 sheet of drawings © 809 559/336 6.58© 809 559/336 6.58
DES53828A 1957-06-08 1957-06-08 Process for the production of thin semiconducting layers from semiconducting compounds Pending DE1033335B (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
NL224894D NL224894A (en) 1957-06-08
NL103088D NL103088C (en) 1957-06-08
DES53828A DE1033335B (en) 1957-06-08 1957-06-08 Process for the production of thin semiconducting layers from semiconducting compounds
FR1194877D FR1194877A (en) 1957-06-08 1958-04-18 Process for manufacturing thin semiconductor films made of semiconductor compounds
GB17370/58A GB852598A (en) 1957-06-08 1958-05-30 Improvements in or relating to the production of semi-conducting layers from semi-conducting compounds
US739577A US2938816A (en) 1957-06-08 1958-06-03 Vaporization method of producing thin layers of semiconducting compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DES53828A DE1033335B (en) 1957-06-08 1957-06-08 Process for the production of thin semiconducting layers from semiconducting compounds

Publications (1)

Publication Number Publication Date
DE1033335B true DE1033335B (en) 1958-07-03

Family

ID=7489466

Family Applications (1)

Application Number Title Priority Date Filing Date
DES53828A Pending DE1033335B (en) 1957-06-08 1957-06-08 Process for the production of thin semiconducting layers from semiconducting compounds

Country Status (5)

Country Link
US (1) US2938816A (en)
DE (1) DE1033335B (en)
FR (1) FR1194877A (en)
GB (1) GB852598A (en)
NL (2) NL224894A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT381122B (en) * 1974-11-29 1986-08-25 Lohja Ab Oy METHOD FOR GROWING CONNECTIVE THIN LAYERS

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3082124A (en) * 1959-08-03 1963-03-19 Beckman Instruments Inc Method of making thin layer semiconductor devices
NL258863A (en) * 1959-12-11
US3245674A (en) * 1960-04-25 1966-04-12 Nat Res Corp Crucible coated with reaction product of aluminum and boron nitride coating
DE1211593B (en) * 1960-04-27 1966-03-03 Wacker Chemie Gmbh Process for the crucible-free production of high-purity, electrically semiconducting, crystalline compounds
NL269855A (en) * 1960-10-04
US3101280A (en) * 1961-04-05 1963-08-20 Ibm Method of preparing indium antimonide films
US3152006A (en) * 1961-06-29 1964-10-06 High Temperature Materials Inc Boron nitride coating and a process of producing the same
US3211128A (en) * 1962-05-31 1965-10-12 Roy F Potter Vacuum evaporator apparatus
NL293415A (en) * 1962-05-31
US3301637A (en) * 1962-12-27 1967-01-31 Ibm Method for the synthesis of gallium phosphide
US3429295A (en) * 1963-09-17 1969-02-25 Nuclear Materials & Equipment Apparatus for producing vapor coated particles
US3388002A (en) * 1964-08-06 1968-06-11 Bell Telephone Labor Inc Method of forming a piezoelectric ultrasonic transducer
US3303067A (en) * 1963-12-26 1967-02-07 Ibm Method of fabricating thin film transistor devices
US3341364A (en) * 1964-07-27 1967-09-12 David A Collins Preparation of thin film indium antimonide from bulk indium antimonide
US3958931A (en) * 1965-03-18 1976-05-25 Ciba-Geigy Ag Wool dyeing with epihalohydrin or chloroacetamide quarternized polyglycolamine assisted dye solution
US3433682A (en) * 1965-07-06 1969-03-18 American Standard Inc Silicon coated graphite
US3469978A (en) * 1965-11-30 1969-09-30 Xerox Corp Photosensitive element
US3531335A (en) * 1966-05-09 1970-09-29 Kewanee Oil Co Method of preparing films of controlled resistivity
FR95985E (en) * 1966-05-16 1972-05-19 Rank Xerox Ltd Glassy semiconductors and their manufacturing process in the form of thin films.
US3520716A (en) * 1966-06-07 1970-07-14 Tokyo Shibaura Electric Co Method of vapor depositing multicomponent film
US3480484A (en) * 1966-06-28 1969-11-25 Loral Corp Method for preparing high mobility indium antimonide thin films
US3476593A (en) * 1967-01-24 1969-11-04 Fairchild Camera Instr Co Method of forming gallium arsenide films by vacuum deposition techniques
US3492509A (en) * 1967-07-24 1970-01-27 Bell Telephone Labor Inc Piezoelectric ultrasonic transducers
US3619283A (en) * 1968-09-27 1971-11-09 Ibm Method for epitaxially growing thin films
US3603285A (en) * 1968-11-05 1971-09-07 Massachusetts Inst Technology Vapor deposition apparatus
US3632439A (en) * 1969-04-25 1972-01-04 Westinghouse Electric Corp Method of forming thin insulating films particularly for piezoelectric transducer
US3865625A (en) * 1972-10-13 1975-02-11 Bell Telephone Labor Inc Molecular beam epitaxy shadowing technique for fabricating dielectric optical waveguides
DE2317797B2 (en) * 1973-04-09 1979-12-06 Siemens Ag, 1000 Berlin Und 8000 Muenchen Process for the production of gallium phosphide
DE2358859C3 (en) * 1973-11-26 1981-08-06 Robert Bosch Gmbh, 7000 Stuttgart Record carriers for the optical recording of information by means of sequential signals
US4094269A (en) * 1974-06-14 1978-06-13 Zlafop Pri Ban Vapor deposition apparatus for coating continuously moving substrates with layers of volatizable solid substances
US4091138A (en) * 1975-02-12 1978-05-23 Sumitomo Bakelite Company Limited Insulating film, sheet, or plate material with metallic coating and method for manufacturing same
GB1528192A (en) * 1975-03-10 1978-10-11 Secr Defence Surface treatment of iii-v compound crystals
CA1055819A (en) * 1975-06-20 1979-06-05 Roelof P. Bult Stabilization of aluminum arsenide
JPS5331106A (en) * 1976-09-03 1978-03-24 Hitachi Ltd Information recording member
JPS5399762A (en) * 1977-02-12 1978-08-31 Futaba Denshi Kogyo Kk Device for producing compound semiconductor film
US4177298A (en) * 1977-03-22 1979-12-04 Hitachi, Ltd. Method for producing an InSb thin film element
CH626407A5 (en) * 1977-07-08 1981-11-13 Balzers Hochvakuum
US4513031A (en) * 1983-09-09 1985-04-23 Xerox Corporation Process for forming alloy layer
US4523051A (en) * 1983-09-27 1985-06-11 The Boeing Company Thin films of mixed metal compounds
CN102452646B (en) 2010-10-26 2013-10-09 清华大学 Method for preparing hydrophilic carbon nanotube film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2759861A (en) * 1954-09-22 1956-08-21 Bell Telephone Labor Inc Process of making photoconductive compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT381122B (en) * 1974-11-29 1986-08-25 Lohja Ab Oy METHOD FOR GROWING CONNECTIVE THIN LAYERS

Also Published As

Publication number Publication date
US2938816A (en) 1960-05-31
NL103088C (en)
FR1194877A (en) 1959-11-13
GB852598A (en) 1960-10-26
NL224894A (en)

Similar Documents

Publication Publication Date Title
DE1033335B (en) Process for the production of thin semiconducting layers from semiconducting compounds
DE1056746B (en) Process for the manufacture of selenium rectifiers
DE2628366C3 (en) Process for the production of thin single crystal layers
DE1444496A1 (en) Epitaxial growth process
DE2631881A1 (en) METHOD OF MANUFACTURING A SEMICONDUCTOR DEVICE
DE1950126A1 (en) Process for applying insulating films and electronic components
DE1034776B (en) Diffusion process for line type-determining impurities in semiconductor surfaces
DE872065C (en) Process for the production of sheets provided with deformable foils, for television sets and the like. like
DE69117378T2 (en) Superconducting device with a layered structure, composed of oxide superconductor and insulator thin film and their method of manufacture
DE2252197A1 (en) THIN FILM CONDUCTOR DEVICE AND METHOD FOR MANUFACTURING IT
DE1813844A1 (en) Manufacture of manganese bismuth
DE1764282C3 (en) Semiconductor arrangement with a layer consisting of silicon oxide and carrying an aluminum layer
DE879581C (en) Photo element with carrier electrode made of aluminum
DE1041582B (en) Method for producing a semiconductor from a chemical compound of at least two chemical elements as components on a carrier
DE1259670B (en) Method for producing thin, stoechiometric CdSe layers by vapor deposition in a high vacuum
DE875968C (en) Electrically asymmetrical conductive system
DE1446232C (en) Process for the vapor deposition of a thin semiconductor layer
DE1101625B (en) Method of manufacturing selenium rectifiers
DE1764282B2 (en) SEMI-CONDUCTOR ARRANGEMENT WITH A LAYER CARRYING AN ALUMINUM LAYER, MADE OF SILICON OXIDE
DE935383C (en) Process for the manufacture of selenium rectifiers
DE764514C (en) Process for the production of metallized insulating foils
DE1008088B (en) Method for producing a solder connection between two bodies, in particular on a surface rectifier or transistor between a system electrode and a pick-up electrode or a connection line
DE1771918C (en) Process for the production of mixed crystal layers from cadmium sulfide and cadmium selenide by vapor deposition in a high vacuum
DE1109795B (en) Process for the production of selenium rectifiers with an addition of halogen
AT304704B (en) Process for the manufacture of selenium rectifiers