DE1033335B - Process for the production of thin semiconducting layers from semiconducting compounds - Google Patents
Process for the production of thin semiconducting layers from semiconducting compoundsInfo
- Publication number
- DE1033335B DE1033335B DES53828A DES0053828A DE1033335B DE 1033335 B DE1033335 B DE 1033335B DE S53828 A DES53828 A DE S53828A DE S0053828 A DES0053828 A DE S0053828A DE 1033335 B DE1033335 B DE 1033335B
- Authority
- DE
- Germany
- Prior art keywords
- vapor
- volatile component
- component
- temperature
- vapor pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 150000001875 compounds Chemical class 0.000 title claims description 13
- 238000000034 method Methods 0.000 title claims description 8
- 238000004519 manufacturing process Methods 0.000 title description 2
- 238000007740 vapor deposition Methods 0.000 claims description 6
- 238000009833 condensation Methods 0.000 claims description 4
- 230000005494 condensation Effects 0.000 claims description 4
- 230000008020 evaporation Effects 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 238000005496 tempering Methods 0.000 claims 1
- 230000002349 favourable effect Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/207—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/049—Equivalence and options
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/065—Gp III-V generic compounds-processing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/158—Sputtering
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/169—Vacuum deposition, e.g. including molecular beam epitaxy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/971—Stoichiometric control of host substrate composition
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Vapour Deposition (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Recrystallisation Techniques (AREA)
Description
DEUTSCHESGERMAN
In der Halbleitertechnik werden oft dünne halbleitende Schichten benötigt. Bei Verwendung von halbierenden Elementen können solche Schichten in einfacher Weise durch Aufdampfen im Vakuum hergestellt werden. Bei halbleitenden Verbindungen, insbesondere bei solchen, deren Komponenten über der Schmelze einen wesentlich verschiedenen Dampfdruck aufweisen, bereitet das Auf dampf verfahren Schwierigkeiten. Dies trifft vor allem zu für einige AijtBv-Verbindungen. In semiconductor technology, thin semiconducting layers are often required. When using bisecting elements, such layers can be produced in a simple manner by vapor deposition in a vacuum. In the case of semiconducting compounds, especially those whose components have a significantly different vapor pressure above the melt, the process on vapor causes difficulties. This is especially true for some Aij t B v compounds.
Gegenstand der Erfindung ist ein Verfahren, das es erlaubt, dünne halbleitende Schichten auch aus solchen halbleitenden Verbindungen durch Aufdampfen herzustellen, deren Komponenten über der Schmelze einen wesentlich verschiedenen Dampfdruck aufweisen. Gemäß der Erfindung wird die Temperatur des Auffängers zwischen den Kondensationstemperaturen der leichtflüchtigen Komponente einerseits und der schwerflüchtigen Komponente andererseits gewählt und die Einfall-dichte des Dampfstrahles der leichtflüchtigen Komponente so bemessen, daß über dem Auffänger ein Überschuß an der leichtflüchtigen Komponente vorliegt.The invention relates to a method which allows thin semiconducting layers to be produced from such layers produce semiconducting compounds by vapor deposition, their components over the melt have a significantly different vapor pressure. According to the invention, the temperature of the Catcher between the condensation temperatures of the volatile component on the one hand and the On the other hand, the low-volatility component is selected and the density of incidence of the steam jet for the highly volatile Component dimensioned so that an excess of the volatile Component is present.
Eine Einrichtung zur Durchführung des Verfahrens gemäß der Erfindung ist in der Zeichnung dargestellt.A device for carrying out the method according to the invention is shown in the drawing.
Mit 1 und 2 sind zwei Verdampfergefäße bezeichnet, aus denen die Komponenten A bzw. B zur Bildung der Verbindung AB auf den Auffänger 3 aufgedampft werden·. Die gesamte Einrichtung ist in einem Vakuumgefäß angeordnet, das in der schematischen Darstellung der Zeichnung nicht angegeben ist. Die effektive Auffängerfläche liegt im Einfallsbereich beider Komponentenstrahlen; sie ist in der Zeichnung durch einen Doppelpfeil angegeben. Will man z. B. eine In-As-Halbleiterschicht aufdämpfen, so enthalten die Gefäße 1 und 2 die Komponenten As bzw In. Der Aufträger wird auf eine Temperatur von etwa 200° C aufgeheizt. Diese Temperatur liegt unter der Kondensationstemperatur der In-Komponente und der Verbindung In —As, jedoch über der Kondensationstemperatur der As-Komponente, wenn man eine Einfallsdichte des As-Dampfstrahles von 1017 bis 1018 Molekülen/cm2/sec zugrunde legt. Diese Bemessung hat zur Folge, daß der gesamte In-Dampfstrom auf dem Auffänger kondensiert. Bei der genannten Dimensionierung würde ohne In-Dampfstrom der As-Dampfstrom vollständig reflektiert werden. Im vorliegenden Falle jedoch bilden die einfallenden As-Moleküle mit den In-Molekülen die Verbindung In —As, die ebenfalls auf dem Auffänger kondensiert, und zwar in einem Umfang, wie er durch die Zahl der vorhandenen In-Moleküle vorgegeben ist. Die überschüssigen As-Moleküle werden in den Dampfraum reflektiert.With 1 and 2 two evaporation vessels are designated, from which the components A and B are evaporated to the formation of the connection AB on the collector 3 ·. The entire device is arranged in a vacuum vessel, which is not indicated in the schematic representation of the drawing. The effective interceptor area lies in the area of incidence of both component beams; it is indicated in the drawing by a double arrow. Do you want to z. B. vaporize an In-As semiconductor layer, the vessels 1 and 2 contain the components As and In. The applicator is heated to a temperature of around 200 ° C. This temperature is below the condensation temperature of the In component and the In — As compound, but above the condensation temperature of the As component, assuming an incidence density of the As vapor jet of 10 17 to 10 18 molecules / cm 2 / sec. This dimensioning has the consequence that the entire In vapor flow condenses on the collector. With the dimensioning mentioned, the As vapor flow would be completely reflected without the In vapor flow. In the present case, however, the incident As molecules with the In molecules form the compound In — As, which also condenses on the receiver, to the extent that is determined by the number of In molecules present. The excess As molecules are reflected into the vapor space.
Verfahren zum HerstellenMethod of manufacture
dünner halbleitender Schichtenthin semiconducting layers
aus halbleitenden Verbindungenfrom semiconducting compounds
Anmelder:Applicant:
Siemens-SchuckertwerkeSiemens-Schuckertwerke
Aktiengesellschaft,Corporation,
Berlin und Erlangen,Berlin and Erlangen,
Erlangen, Werner-von-Siemens-Str. 50Erlangen, Werner-von-Siemens-Str. 50
Dr. rer. nat. Karl-Georg Günther, Nürnberg,
ist als Erfinder genannt wordenDr. rer. nat. Karl-Georg Günther, Nuremberg,
has been named as the inventor
Um sicherzustellen, daß sich auf die vorgenannte Weise eine stöchiometrisohe Aufdampfschicht der Verbindung bildet, dürfen die Einfallsdichten der Dampfstrahlen der Komponenten nicht beliebig stark voneinander abweichen. Ist nämlich im vorgenannten Beispiel die Einfallsdichte des As-Dampfstrahles erheblich größer als die Einfallsdichte des In-Dampf-Strahles, so tritt ein Einbau von As ein, und. zwar dadurch, daß As-Moleküle durch das kondensierende In—As zugedeckt werden. Es entstehen somit As-Einschlüsse, die nachteilige Einflüsse auf die Eigenschaften der Aufdampfschicht zur Folge haben können.In order to ensure that there is a stoichiometric vapor-deposition layer of the compound in the aforementioned manner forms, the density of incidence of the steam jets of the components must not be arbitrarily strong from one another differ. In fact, in the above example, the density of incidence of the As vapor jet is considerable greater than the density of incidence of the in-vapor jet, the incorporation of As occurs, and. although by the fact that As molecules through the condensing In — As to be covered. As a result, there are As inclusions, which can have adverse effects on the properties of the vapor deposition layer.
Andererseits ist die Einstellung des günstigen Verhältnisses der Einfallsdichten der Komponenten technisch nicht immer einfach zu beherrschen, insbesondere dann nicht, wenn die Dampfdruckunterschiede der Komponenten wie bei dem obengenannten In — As besonders groß sind. In solchen Fällen wird gemäß weiterer Erfindung die geometrische Anordnung der beiden Verdampfergefäße in bezug auf den Auffänger so gewählt, daß sich die Einfallsdichte der beiden Komponentenstrahlen längs des Auffängers in entgegengesetztem Sinne ändert. Diese Forderung kann ohne besonderen Aufwand, im Prinzip z. B. mit der oben beschrietaien, in der Zeichnung dargestellten Anordnung, realisiert werden. So nimmt z. B. die Einfallsdichte des von dem Gefäß 1 auftreffenden Dampf-Strahles von links nach rechts ab, bezogen auf die durch den Doppelpfeil angegebene effekte Auffängerfläche; umgekehrt sind die Verhältnisse bezüglich des von dem Gefäß 2 auftreffenden Dampfstrahles. Innerhalb des gesamten, vorher als effektive Auffänger-On the other hand is the setting of the favorable ratio the density of incidence of the components is not always technically easy to master, especially then not if the vapor pressure differences of the components are as in the above-mentioned In - As are particularly large. In such cases, the geometric arrangement of the two evaporation vessels with respect to the collector chosen so that the incident density of the two Component rays along the interceptor changes in the opposite sense. This requirement can without special effort, in principle z. B. with the above beschrietaien shown in the drawing Arrangement, can be realized. So takes z. B. the density of incidence of the steam jet impinging on the vessel 1 from left to right, based on the effective catcher area indicated by the double arrow; the opposite is the case with regard to the steam jet impinging on the vessel 2. Within of the whole, previously as an effective catcher
809 559/336809 559/336
fläche bezeichneten Bereiches wird ein Teilbereich sein, in dem ein günstiges Verhältnis der Emfällsdicbten der beiden Dampf strahlen vorliegt; dieser wird für die spätere Verwendung der Aufdampfschicht aus der Gesamtfläche herausgeschnitten.area designated area will be a sub-area in which a favorable ratio of the victims the two steam jets is present; this is for the later use of the vapor deposition from the total area cut out.
In Fällen, bei denen es auf extreme Stöchiometrie ankommt, wird gemäß weiterer Erfindung die aufgedampfte Schicht im Dampf der leichtflüchtigen Komponente bei einer Temperatur dicht unter der Schmelztemperatur der Verbindung getempert und hierzu der Dampfdruck der leichtflüchtigen Komponente so* bemessen, daß er unterhalb des Dampfdruckes der reinen leichtflüchtigen Komponente, aber oberhalb des entsprechenden Dampfdruckes über der stöchiometnschen Verbindung bei der Tempertemperatur liegt. Hierdurch wird erreicht, daß eventuell in der Aufdampffläche mechanisch eingeschlossene Teilchen der leichtflüchtigen Komponente herausdampfen, da deren Dampfdruck dicht unterhalb der Schmelztemperatur der Verbindung wesentlich höher ist als der Partialdampfdruck dieser Komponente über der Verbindung. Wenn die Einschlüsse an der leichtflüchtigen Kompo- ' nente nicht zu groß sind, wird sich dann ein Gleichgewicht einstellen, das der streng stöchiometrischen Verbindung entspricht.In cases where extreme stoichiometry is important, according to a further invention, the vapor-deposited Layer in the vapor of the volatile component at a temperature just below the melting temperature the connection is tempered and for this purpose the vapor pressure of the volatile component is measured as *, that it is below the vapor pressure of the pure volatile component, but above the corresponding Vapor pressure is above the stoichiometric compound at the annealing temperature. Through this it is achieved that any mechanically trapped particles of the highly volatile The component evaporates because its vapor pressure is just below the melting temperature the connection is significantly higher than the partial vapor pressure of this component over the connection. If the inclusions on the volatile component are not too large, an equilibrium will then be achieved set that corresponds to the strictly stoichiometric compound.
Claims (3)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL103088D NL103088C (en) | 1957-06-08 | ||
NL224894D NL224894A (en) | 1957-06-08 | ||
DES53828A DE1033335B (en) | 1957-06-08 | 1957-06-08 | Process for the production of thin semiconducting layers from semiconducting compounds |
FR1194877D FR1194877A (en) | 1957-06-08 | 1958-04-18 | Process for manufacturing thin semiconductor films made of semiconductor compounds |
GB17370/58A GB852598A (en) | 1957-06-08 | 1958-05-30 | Improvements in or relating to the production of semi-conducting layers from semi-conducting compounds |
US739577A US2938816A (en) | 1957-06-08 | 1958-06-03 | Vaporization method of producing thin layers of semiconducting compounds |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DES53828A DE1033335B (en) | 1957-06-08 | 1957-06-08 | Process for the production of thin semiconducting layers from semiconducting compounds |
Publications (1)
Publication Number | Publication Date |
---|---|
DE1033335B true DE1033335B (en) | 1958-07-03 |
Family
ID=7489466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DES53828A Pending DE1033335B (en) | 1957-06-08 | 1957-06-08 | Process for the production of thin semiconducting layers from semiconducting compounds |
Country Status (5)
Country | Link |
---|---|
US (1) | US2938816A (en) |
DE (1) | DE1033335B (en) |
FR (1) | FR1194877A (en) |
GB (1) | GB852598A (en) |
NL (2) | NL224894A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT381122B (en) * | 1974-11-29 | 1986-08-25 | Lohja Ab Oy | METHOD FOR GROWING CONNECTIVE THIN LAYERS |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3082124A (en) * | 1959-08-03 | 1963-03-19 | Beckman Instruments Inc | Method of making thin layer semiconductor devices |
NL258863A (en) * | 1959-12-11 | |||
US3245674A (en) * | 1960-04-25 | 1966-04-12 | Nat Res Corp | Crucible coated with reaction product of aluminum and boron nitride coating |
DE1211593B (en) * | 1960-04-27 | 1966-03-03 | Wacker Chemie Gmbh | Process for the crucible-free production of high-purity, electrically semiconducting, crystalline compounds |
NL269855A (en) * | 1960-10-04 | |||
US3101280A (en) * | 1961-04-05 | 1963-08-20 | Ibm | Method of preparing indium antimonide films |
US3152006A (en) * | 1961-06-29 | 1964-10-06 | High Temperature Materials Inc | Boron nitride coating and a process of producing the same |
US3211128A (en) * | 1962-05-31 | 1965-10-12 | Roy F Potter | Vacuum evaporator apparatus |
NL293415A (en) * | 1962-05-31 | |||
US3301637A (en) * | 1962-12-27 | 1967-01-31 | Ibm | Method for the synthesis of gallium phosphide |
US3429295A (en) * | 1963-09-17 | 1969-02-25 | Nuclear Materials & Equipment | Apparatus for producing vapor coated particles |
US3388002A (en) * | 1964-08-06 | 1968-06-11 | Bell Telephone Labor Inc | Method of forming a piezoelectric ultrasonic transducer |
US3303067A (en) * | 1963-12-26 | 1967-02-07 | Ibm | Method of fabricating thin film transistor devices |
US3341364A (en) * | 1964-07-27 | 1967-09-12 | David A Collins | Preparation of thin film indium antimonide from bulk indium antimonide |
US3958931A (en) * | 1965-03-18 | 1976-05-25 | Ciba-Geigy Ag | Wool dyeing with epihalohydrin or chloroacetamide quarternized polyglycolamine assisted dye solution |
US3433682A (en) * | 1965-07-06 | 1969-03-18 | American Standard Inc | Silicon coated graphite |
US3469978A (en) * | 1965-11-30 | 1969-09-30 | Xerox Corp | Photosensitive element |
US3531335A (en) * | 1966-05-09 | 1970-09-29 | Kewanee Oil Co | Method of preparing films of controlled resistivity |
FR95985E (en) * | 1966-05-16 | 1972-05-19 | Rank Xerox Ltd | Glassy semiconductors and their manufacturing process in the form of thin films. |
US3520716A (en) * | 1966-06-07 | 1970-07-14 | Tokyo Shibaura Electric Co | Method of vapor depositing multicomponent film |
US3480484A (en) * | 1966-06-28 | 1969-11-25 | Loral Corp | Method for preparing high mobility indium antimonide thin films |
US3476593A (en) * | 1967-01-24 | 1969-11-04 | Fairchild Camera Instr Co | Method of forming gallium arsenide films by vacuum deposition techniques |
US3492509A (en) * | 1967-07-24 | 1970-01-27 | Bell Telephone Labor Inc | Piezoelectric ultrasonic transducers |
US3619283A (en) * | 1968-09-27 | 1971-11-09 | Ibm | Method for epitaxially growing thin films |
US3603285A (en) * | 1968-11-05 | 1971-09-07 | Massachusetts Inst Technology | Vapor deposition apparatus |
US3632439A (en) * | 1969-04-25 | 1972-01-04 | Westinghouse Electric Corp | Method of forming thin insulating films particularly for piezoelectric transducer |
US3865625A (en) * | 1972-10-13 | 1975-02-11 | Bell Telephone Labor Inc | Molecular beam epitaxy shadowing technique for fabricating dielectric optical waveguides |
DE2317797B2 (en) * | 1973-04-09 | 1979-12-06 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Process for the production of gallium phosphide |
DE2358859C3 (en) * | 1973-11-26 | 1981-08-06 | Robert Bosch Gmbh, 7000 Stuttgart | Record carriers for the optical recording of information by means of sequential signals |
US4094269A (en) * | 1974-06-14 | 1978-06-13 | Zlafop Pri Ban | Vapor deposition apparatus for coating continuously moving substrates with layers of volatizable solid substances |
US4091138A (en) * | 1975-02-12 | 1978-05-23 | Sumitomo Bakelite Company Limited | Insulating film, sheet, or plate material with metallic coating and method for manufacturing same |
GB1528192A (en) * | 1975-03-10 | 1978-10-11 | Secr Defence | Surface treatment of iii-v compound crystals |
CA1055819A (en) * | 1975-06-20 | 1979-06-05 | Roelof P. Bult | Stabilization of aluminum arsenide |
JPS5331106A (en) * | 1976-09-03 | 1978-03-24 | Hitachi Ltd | Information recording member |
JPS5399762A (en) * | 1977-02-12 | 1978-08-31 | Futaba Denshi Kogyo Kk | Device for producing compound semiconductor film |
US4177298A (en) * | 1977-03-22 | 1979-12-04 | Hitachi, Ltd. | Method for producing an InSb thin film element |
CH626407A5 (en) * | 1977-07-08 | 1981-11-13 | Balzers Hochvakuum | |
US4513031A (en) * | 1983-09-09 | 1985-04-23 | Xerox Corporation | Process for forming alloy layer |
US4523051A (en) * | 1983-09-27 | 1985-06-11 | The Boeing Company | Thin films of mixed metal compounds |
CN102452646B (en) | 2010-10-26 | 2013-10-09 | 清华大学 | Method for preparing hydrophilic carbon nanotube film |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2759861A (en) * | 1954-09-22 | 1956-08-21 | Bell Telephone Labor Inc | Process of making photoconductive compounds |
-
0
- NL NL103088D patent/NL103088C/xx active
- NL NL224894D patent/NL224894A/xx unknown
-
1957
- 1957-06-08 DE DES53828A patent/DE1033335B/en active Pending
-
1958
- 1958-04-18 FR FR1194877D patent/FR1194877A/en not_active Expired
- 1958-05-30 GB GB17370/58A patent/GB852598A/en not_active Expired
- 1958-06-03 US US739577A patent/US2938816A/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT381122B (en) * | 1974-11-29 | 1986-08-25 | Lohja Ab Oy | METHOD FOR GROWING CONNECTIVE THIN LAYERS |
Also Published As
Publication number | Publication date |
---|---|
NL224894A (en) | |
NL103088C (en) | |
US2938816A (en) | 1960-05-31 |
FR1194877A (en) | 1959-11-13 |
GB852598A (en) | 1960-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE1033335B (en) | Process for the production of thin semiconducting layers from semiconducting compounds | |
DE2628366C3 (en) | Process for the production of thin single crystal layers | |
DE1032404B (en) | Process for the production of surface semiconductor elements with p-n layers | |
DE2631881A1 (en) | METHOD OF MANUFACTURING A SEMICONDUCTOR DEVICE | |
DE1950126A1 (en) | Process for applying insulating films and electronic components | |
DE1034776B (en) | Diffusion process for line type-determining impurities in semiconductor surfaces | |
DE872065C (en) | Process for the production of sheets provided with deformable foils, for television sets and the like. like | |
DE2252197A1 (en) | THIN FILM CONDUCTOR DEVICE AND METHOD FOR MANUFACTURING IT | |
DE919360C (en) | Selenium rectifier with tellurium and process for its manufacture | |
DE2161472C3 (en) | Process for growing a polycrystalline silicon layer on a semiconductor wafer | |
DE1813844A1 (en) | Manufacture of manganese bismuth | |
DE1764282C3 (en) | Semiconductor arrangement with a layer consisting of silicon oxide and carrying an aluminum layer | |
DE879581C (en) | Photo element with carrier electrode made of aluminum | |
DE1041582B (en) | Method for producing a semiconductor from a chemical compound of at least two chemical elements as components on a carrier | |
DE1259670B (en) | Method for producing thin, stoechiometric CdSe layers by vapor deposition in a high vacuum | |
DE907322C (en) | Process for metal vapor deposition on a dielectric, in particular for the production of coating layers for electrical capacitors | |
DE875968C (en) | Electrically asymmetrical conductive system | |
DE1446232C (en) | Process for the vapor deposition of a thin semiconductor layer | |
DE1101625B (en) | Method of manufacturing selenium rectifiers | |
DE935383C (en) | Process for the manufacture of selenium rectifiers | |
DE764514C (en) | Process for the production of metallized insulating foils | |
DE1008088B (en) | Method for producing a solder connection between two bodies, in particular on a surface rectifier or transistor between a system electrode and a pick-up electrode or a connection line | |
DE1771918C (en) | Process for the production of mixed crystal layers from cadmium sulfide and cadmium selenide by vapor deposition in a high vacuum | |
DE1109795B (en) | Process for the production of selenium rectifiers with an addition of halogen | |
DE1077789B (en) | Cooling device for a disc-shaped semiconductor element enclosed in a container with at least one pn junction |