DE10260833B4 - Verfahren zur Verarbeitung von Wasch- oder Reinigungsmitteln - Google Patents

Verfahren zur Verarbeitung von Wasch- oder Reinigungsmitteln Download PDF

Info

Publication number
DE10260833B4
DE10260833B4 DE10260833A DE10260833A DE10260833B4 DE 10260833 B4 DE10260833 B4 DE 10260833B4 DE 10260833 A DE10260833 A DE 10260833A DE 10260833 A DE10260833 A DE 10260833A DE 10260833 B4 DE10260833 B4 DE 10260833B4
Authority
DE
Germany
Prior art keywords
acid
weight
solid
preferred
agents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE10260833A
Other languages
English (en)
Other versions
DE10260833A1 (de
Inventor
Thomas Dr. Holderbaum
Bernd Dr. Richter
Bernd Dr. Larson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE10260833A priority Critical patent/DE10260833B4/de
Publication of DE10260833A1 publication Critical patent/DE10260833A1/de
Application granted granted Critical
Publication of DE10260833B4 publication Critical patent/DE10260833B4/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3942Inorganic per-compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3945Organic per-compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Verfahren zur Verarbeitung Bleichmittel-haltiger fester Wasch- oder Reinigungsmittel, umfassend die Schritte:
a) Zusatz von Wasser zu den festen Wasch- oder Reinigungsmittel, wobei der Feststoffgehalt des resultierenden Stoffgemisches mindestens 70 Gew.-% beträgt;
b) Erhitzen des resultierenden Stoffgemisches;
c) Trocknen des Stoffgemisches unter Bildung eines Feststoffs.

Description

  • Die vorliegende Erfindung liegt auf dem Gebiet der Wasch- oder Reinigungsmittel. Insbesondere betrifft die vorliegende Erfindung ein Verfahren zur Verarbeitung und Recylcierung von Wasch- oder Reinigungsmittel, insbesondere ein Verfahren zur Verarbeitung und Recylcierung von Bleichmittelhaltigen Wasch- oder Reinigungsmitteln.
  • Feste Wasch- oder Reinigungsmittel dominieren zur Zeit den Markt für Wasch- oder Reinigungsmitteln in vielen Bereichen, beispielsweise in der Textilreinigung und -pflege, bei der Reinigung harter Oberfläche oder der maschinellen Reinigung von Geschirr. Bei diesen festen Wasch- oder Reinigungsmitteln handelt es sich in der Regel um optimierte, komplexe Stoffgemische, welche aus zahlreichen -Einzelsubstanzen bestehen. Für den ästhetischen Eindruck dieser Mittel (Duft, Optik) ebenso wie für deren Reinigungsleistung ist exakte Einhaltung der entsprechenden Rezepturenebenso wie die Einhaltung der Herstellvorschriften von großer Bedeutung. Bereits bei geringen Abweichungen von diesen Vorgaben, beispielsweise der Fehldosierung einzelner Inhaltsstoffe oder Fehler bei der Vermahlung, Granulation oder Tablettierung, können größere Mengen unverkäuflichen Produkts entstehen, deren weitere Verwendung als Bestandteil von Wasch- oder Reinigungsmittel jedoch aus ökologischen wie finanziellen Gründen durchaus wünschenswert erscheint. Eine solche Wiederverwendung der eingesetzten Rohstoffe stößt jedoch auf verfahrenstechnische und sicherheitstechnische Schwierigkeiten. Insbesondere Bleichmittel-haltige Wasch- oder Reinigungsmittel neigen bei Lagerung in großen Losen, beispielsweise bei Lagerung in den so genannten Big-Bags, insbesondere bei hohen Umgebungstemperaturen, zur exothermen Zersetzung.
  • Aus dem Stand der Technik sind Verfahren zur Verarbeitung verpackter Wasch- oder Reinigungsmitteltabletten zu Pulvern bekannt. So beschreiben die internationalen Anmeldungen WO 00/04126A1 und WO 00/04127A1 (Procter & Gamble) Verfahren zur Entfernung von Plastikumverpackungen von Tabletten. Bei diesen Verfahren werden die verpackten Tabletten abwechselnd mechanische zerkleinert und gesiebt. Die Verfahren dienen der Abtrennung des Verpackungsmaterials von den darin eingeschlossenen Tabletten. Die erhaltenen Pulver werden erneut in Wasch- oder Reinigungsmitteln eingesetzt. Angaben über die Lösung der speziellen Probleme bei der Rohstoffwiederverwendung von Bleichmittel-haltigen Wasch- oder Reinigungsmitteln machen diesen Anmeldungen nicht.
  • Die europäische Anmeldung EP 578 872 A1 (Procter&Gamble) offenbart ein Verfahren zur Herstellung von Tensidgranulaten mit hohem Aktivstoffgehalt. Gegenstand der US 5,205,958 A (Clorox) ist ein Zeolith-haltiges Granulat und ein Verfahren zu dessen Herstellung. In der deutschen Offenlegungsschrift DE 27 00 797 A1 (Peroxid Chemie) wird ein Verfahren zur Herstellung Peroxid haltiger Granulate beschreiben. In allen vorgenannten Verfahren werden einzelne Inhaltsstoffe von Wasch- oder Reinigungsmitteln unter Zusatz von Wasser gemischt, anschließend getrocknet und durch Vermischen mit weiteren Aktivsubstanzen zu Wasch- oder Reinigungsmittel verarbeitet.
  • Aufgabe der vorliegenden Anmeldung war es nun, die weiter oben beschriebenen Probleme bei der Lagerung und Wiederverwendung Bleichmittel-haltiger Fehlchargen von festen Wasch- oder Reinigungsmittel zu lösen. Insbesondere sollte ein Verarbeitungsverfahren für Bleichmittel-haltige feste Wasch- oder Reinigungsmittel gefunden werden, welches die Gefahr der exothermen Zersetzung der Verfahrensprodukte bei Lagerung in großen Einzellosen beseitigt. Die Verfahrensendprodukte sollten weiterhin für die Rückführung in die Wasch- oder Reinigungsmittelproduktion geeignet sein. Vorzugsweise sollte durch das Verarbeitungsverfahren die gezielte Herstellung von Verfahrensendprodukten bestimmter granularer Struktur bzw. Partikelgröße ermöglicht werden. Schließlich sollte sich das Verarbeitungsverfahren durch eine minimierte Belastung der Umwelt, insbesondere eine minimierte Staubbelastung der Prozeßluft sowie einen minimierten Energieaufwand auszeichnen.
  • Zur Lösung dieser Aufgaben wird nun ein Verfahren offenbart, in welchem die festen Wasch- oder Reinigungsmittel nach Zusatz bestimmter Wassermengen erhitzt und anschließend unter Bildung eines Feststoffs getrocknet werden.
  • Ein erster Gegenstand der vorliegenden Anmeldung ist daher ein Verfahren zur Verarbeitung Bleichmittel-haltiger fester Wasch- oder Reinigungsmittel, umfassend die Schritte:
    • a) Zusatz von Wasser zu den festen Wasch- oder Reinigungsmittel, wobei der Feststoffgehalt des resultierenden Stoffgemisches mindestens 70 Gew.-% beträgt;
    • b) Erhitzen des resultierenden Stoffgemisches;
    • c) Trocknen des Stoffgemisches unter Bildung eines Feststoffs.
  • Bei den in einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens eingesetzten festen Wasch- oder Reinigungsmittel handelt es sich vorzugsweise um Pulver und/oder Granulate und/oder Extrudate und/oder Kompaktate. Bei den Kompaktaten werden vorzugsweise ein- oder mehrschichtigen Tabletten eingesetzt.
  • Die bevorzugt verarbeiteten festen Wasch- oder Reinigungsmittel können dabei in amorpher und/oder kristalliner und/oder teilkristalliner Form vorliegen. Bevorzugte feste Wasch- oder Reinigungsmittel weisen im Rahmen der vorliegenden Erfindung einen Wassergehalt (beispielsweise bestimmbar als Trocknungsverlust oder nach Karl Fischer) unterhalb 7 Gew.-%, vorzugsweise unterhalb 4,5 Gew.-%, und besonders bevorzugt unterhalb 2 Gew.-% auf.
  • Pulver ist eine allgemeine Bezeichnung für eine Form der Zerteilung fester Stoffe und/oder Stoffgemische, die man durch Zerkleinern, das heißt Zerreiben oder Zerstoßen in der Reibschale (Pulverisieren), Mahlen in Mühlen oder als Folge von Zerstäubungs- oder Gefriertrocknungen erhält. Eine besonders feine Zerteilung nennt man oft Atomisierung oder Mikronisierung; die entsprechenden Pulver werden als Mikro-Pulver bezeichnet. Bevorzugte Pulver weisen eine gleichmäßige (homogene) Mischungen der festen feinzerteilten Bestandteile auf und neigen im Falle von Stoffgemischen insbesondere nicht zur Auftrennung in Einzelbestandteile dieser Gemische. Im Rahmen der vorliegenden Anmeldung besonders bevorzugt verarbeitete Pulver weisen daher eine Teilchengrößeverteilung auf, in der mindestens 80 Gew.-%, vorzugsweise mindestens 60 Gew.-%, beson ders bevorzugt mindestens 95 Gew.-% und insbesondere mindestens 99 Gew.-% des Pulvers, jeweils bezogen auf dessen Gesamtgewicht, zu maximal 80%, vorzugsweise maximal 60% und insbesondere maximal 40% von der mittleren Teilchengröße dieses Pulvers abweichen.
  • Nach der Korngröße ist eine grobe Einteilung der Pulver in Grob-, Fein- u. Feinst-Pulver üblich; eine genauere Klassifizierung pulverförmiger Schüttgüter erfolgt über ihre Schüttdichte und durch Siebanalyse. Grundsätzlich lassen sich Pulver jeglicher Partikelgröße einsetzen, bevorzugt eingesetzte Pulver weisen jedoch mittlere Partikelgrößen von 40 bis 500 μm, vorzugsweise von 60 bis 400 μm und insbesondere von 100 bis 300 μm auf. Methoden zur Bestimmung der mittleren Teilchengröße stützen sich gewöhnlich auf die vorgenannte Siebanalyse und sind im Stand der Technik ausführlich beschrieben.
  • Dem unerwünschten Zusammenbacken der Pulver kann man durch Verwendung von Rieselhilfen bzw. Pudermitteln begegnen. In einer bevorzugten Ausführungsform enthalten die verarbeiteten Pulver daher Rieselhilfen bzw. Pudermittel, vorzugsweise in Gewichtsanteilen von 0,1 bis 4 Gew.-%, besonders bevorzugt von 0,2 bis 3 Gew.-% und insbesondere von 0,3 bis 2 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Pulvers. Bevorzugte Rieselhilfen bzw. Pudermittel sind, vorzugsweise in feinst vermahlener Form, Silikate und/oder Siliciumoxid und/oder Harnstoff.
  • Als partikuläre Gemische lassen sich Pulver durch eine Reihe von Techniken agglomerieren. Jedes dieser nach einem im Stand der Technik beschriebenen Granulationsverfahren hergestellten festen Wasch- oder Reinigungsmittel kann in dem erfindungsgemäß bevorzugten Verfahren eingesetzt werden. Zu den genannten bekannten Granulationsverfahren zählen beispielsweise die Granulation, die Kompaktierung und die Extrusion.
  • Als Granulate werden Anhäufungen von Granulatkörnchen bezeichnet. Ein Granulatkorn (Granalie) ist ein asymmetrisches Aggregat aus Pulverpartikeln. Granulationsverfahren sind im Stand der Technik breit beschrieben. Granulate können durch Feuchtgranulierung, durch Trockengranulierung bzw. Kompaktierung und durch Schmelzerstarrungsgranulierung hergestellt werden.
  • Die gebräuchlichste Granuliertechnik ist die Feuchtgranulierung, da diese Technik den wenigsten Einschränkungen unterworfen ist und am sichersten zu Granulaten mit günstigen Eigenschaften führt. Die Feuchtgranulierung erfolgt durch Befeuchtung der Pulvermischungen mit Lösungsmitteln und/oder Lösungsmittelgemischen und/oder Lösungen von Bindemitteln und/oder Lösungen von Klebstoffen und wird vorzugsweise in Mischern, Wirbelbetten oder Sprühtürmen durchgeführt, wobei besagte Mischer beispielsweise mit Rühr- und Knetwerkzeugen ausgestattet sein können. Für die Granulation sind jedoch auch Kombinationen von Wirbelbetten) und Mischer(n), bzw. Kombinationen verschiedener Mischer einsetzbar. Die Granulation erfolgt abhängig vom Ausgangsmaterial sowie den gewünschten Produkteigenschaften unter Einwirkung niedriger bis hoher Scherkräfte.
  • Erfolgt die Granulation in einem Sprühturm so können als Ausgangsstoffe beispielsweise Schmelzen (Schmelzerstarrung) oder, vorzugsweise wässrige, Aufschlämmungen (Sprühtrocknung) fester Substanzen eingesetzt werden, welche an der Spitze eines Turmes in definierter Tröpfchengröße eingesprüht werden, im freien Fall erstarren bzw. trocknen und am Boden des Turmes als Granulat anfallen. Die Schmelzerstarrung eignet sich im allgemeinen besonders zur Formgebung niedrigschmelzender Stoffe, die im Bereich der Schmelztemperatur stabil sind (z.B. Harnstoff, Ammoniumnitrat u. diverse Formulierungen wie Enzymkonzentrate, Arzneimittel etc.), die entsprechenden Granulate werden auch als Prills bezeichnet. Die Sprühtrocknung wird besonders für die Herstellung von Waschmitteln oder Waschmittelbestandteilen eingesetzt.
  • Weitere im Stand der Technik beschriebene Agglomerationstechniken sind die Extruder- oder Lochwalzengranulierungen, bei denen optional mit Granulierflüssigkeit versetzte Pulvergemische beim Verpressen durch Lochscheiben (Extrusion) oder auf Lochwalzen plastisch verformt werden. Die Produkte der Extrudergranulierung werden auch als Extrudate bezeichnet.
  • Kompaktate lassen sich beispielsweise durch Trockengranulationstechniken wie die Tablettierung oder Walzenkompaktierung herstellen. Durch die Kompaktierung in Tablettenpressen können ein- oder mehrphasige Tabletten oder Briketts hergestellt werden. Zu den mehrphasigen Tabletten zählen neben den Mehrschicht- oder Sandwichtabletten beispielsweise auch die Manteltabletten und die Punkttabletten (Bull-eye-Tabletten). Die Briketts können ebenso wie die in Kompaktierwalzen erzeugten Schülpen im Anschluß an die Kompaktierung durch gegenläufige Stachelwalzen zerkleinert oder durch Siebe geschlagen werden.
  • Weitere bevorzugt in dem erfindungsgemäßen Verfahren eingesetzte feste Wasch- oder Reinigungsmittel sind die ein- oder mehrphasigen Tabletten.
  • Bei erfindungsgemäßen Verfahren erfolgt der Zusatz von Wasser zu den festen Wasch- oder Reinigungsmitteln bevorzugt in einem Mischer oder auf einem Transportband. Dabei eignen sich Mischer niedriger, mittlerer oder hoher Geschwindigkeit ebenso wie Mischer mit geringer oder hoher Scherung. Es eignen sich Niedriggeschwindigkeitsmischer mit niedriger Scherung, Niedriggeschwinddigkeitsmischer mit hoher Scherung, Hochgeschwindigkeitsmischer mit niedriger Scherung und Hochgeschwindigkeitsmischer mit hoher Scherung. Die eingesetzten Mischer können kontinuierlich oder diskontinuierlich (Batch-Prozeß) arbeiten. Zur Durchführung des erfindungsgemäßen Verfahrens können auch Mischerkombinationen oder Kombinationen von Mischern und Transportbändern eingesetzt werden. Die eingesetzten Mischer können Mischwerkzeuge und/oder Schneidwerkzeuge aufweisen.
  • Zur Durchführung des erfindungsgemäßen Verfahrens geeignete Mischer sind beispielsweise die Lödige® CB-Mischer oder die Lödige® KM-Mischer. Weiterhin geeignet sind die Mischer der Draise Werke GmbH, beispielsweise der Drais® T160. Die Nieder- oder Hochgeschwindigkeitsmischer weisen vorzugsweise Rühr- und/oder Schneidwerkzeuge auf. Die Rühr- und/oder Schneidwerkzeuge sind dabei bevorzugt an einer oder mehreren rotierenden Achse(n) oder aber an der Innenwand des Mischers befestigt. Bei besonders bevorzugt eingesetzten Mischern lassen sich die Rühr- und Schneidwerkzeuge unabhängig voneinander betreiben und steuern. Bevorzugte Rühr- oder Schneidwerkzeuge weisen eine, zwei, drei, vier, fünf oder mehr Schaufeln bzw. Schneidblätter auf. Weitere bevorzugte Mischer sind die Mischer der Fukae® FS-G-Serie, der Diosna® V-Serie der Firma Dierks & Söhne, die Pharma-Matrix® Mischer der Firma T.K. Fielder Ltd. Bevorzugt eingesetzt werden weiterhin Mischer der Fuji® VG-C-Serie der Firma Fuji Sangyo Co. Oder die Mischer der Firma Schugi, insbesondere der Schugi® Flexomix Granulator.
  • Weitere geeignete Mischer, in welchen die Wasserzugabe nach Schritt a) des erfindungsgemäßen Verfahrens erfolgen kann, sind die Mischer niedriger Scherung, von denen im Rahmen der vorliegenden Erfindung insbesondere die pneumatische Wirbelschicht sowie die rotierenden Raktoren bevorzugt werden.
  • In den bevorzugt eingesetzten pneumatischen Wirbelschichtapparaturen wird die Bewegung der Mischungskomponenten durch Einblasen von Luft in das zunächst ruhende Mischgut erzeugt. Der Betrieb dieser Wirbelschichtapparate kann kontinuierlich und diskontinuierlich erfolgen. Das Einblasen der Luft erfolgt vorzugsweise durch den mit Löchern versehenen porösen Boden. Die Luft tritt durch den porösen Boden vorzugsweise mit mindestens der Lockerungsgeschwindigkeit ein. Aus dem anfänglichen Festbett entsteht das Fließbett, die Wirbelschicht, die wegen der leichten Beweglichkeit der Partikel Kontinuumseigenschaften ähnlich wie eine Flüssigkeit aufweist. Das Mischgut ist vorzugsweise fast kohäsionslos. Eine intensive Vermischung ist – abhängig von der Feinheit des Mischguts – erst beim 2- bis 6-fachen der Lockerungsgeschwindigkeit gegeben; Gaseinströmgeschwindigkeiten, welche mindestens den 2-fachen, vorzugsweise mindestens den 4-fachen; besonders bevorzugt mindestens den 6-fachen und insbesondere mindestens den 8-fachen Wert der Lockerungsgeschwindigkeit aufweisen, sind daher im Rahmen des erfindungsgemäßen Verfahrens bevorzugt. Die Lockerungsgeschwindigkeit wL kann aus dem Kräftegleichgewicht zwischen dem Gewicht Fg der Schüttung und der Druckkraft Fp – dem mit der Grundfläche A multiplizierten Druckabfall Δp über der durchströmten Schicht – unter Zuhilfenahme der Ergun-Gleichung berechnet werden. Es ergibt sich: WL = 42,9·(1 – εL)·ν/dp·{(1 + 3,11·10-4L 3/(1 – εL)2]·g·dp 3·[ρsf)/ν2)0,5 – 1}
  • Darin sind
  • εL
    die Porosität der Schicht vor der Lockerung,
    ν
    die kinematische Zähigkeit der Luft,
    dp
    der Sauterdurchmesser d32 der Partikel in der Schicht
    ρs, ρf
    Die Feststoff- bzw. bzw. die Luftdichte
  • In bevorzugten Wirbelschicht-Mischern sind die Böden in Sektoren unterteilt, die periodisch mehr oder weniger stark belüftet werden. Dadurch entstehen wechselnde Umwälzungen größerer Bereiche des Wirbelguts. Weiterhin bevorzugt sind erfindungsgemäße Verfahren, in welchen die Temperatur der einströmenden Luft regelbar ist, wobei in besonders bevorzugten Verfahrensvarianten die Temperatur von der Außentemperatur abweicht, also entweder kälter oder wärmer ist als die Temperatur der umgebenden Außenluft und/in unterschiedlichen Bereichen des Wirbelbetts unterschiedliche Temperaturen für die einströmende Luft gewählt werden. Insbesondere werden Verfahren bevorzugt, in welchen:
    • – zu Beginn der Wirbelschicht Luft mit einer Temperatur gleich oder unterhalb der Außentemperatur eingesetzt wird, während die Temperatur der einströmenden Luft im weiteren Verlauf auf Werte oberhal b der Außentemperatur steigt;
    • – zu Beginn der Wirbelschicht Luft mit einer Temperatur gleich oder oberhalb der Außentemperatur eingesetzt wird, während die Temperatur der einströmenden Luft im weiteren Verlauf auf Werte unterhalb der Außentemperatur sinkt;
    • – Zu Beginn der Wirbelschicht Luft mit einer Temperatur gleich der Außentemperatur eingesetzt wird, während die Temperatur der einströmenden Luft im weiteren Verlauf auf Werte unterhalb der Außentemperatur sinkt oder auf Werte oberhalb der Außentemperatur steigt.
  • Die Temperatur der eingesetzten Kaltluft beträgt in bevorzugten Verfahrensvarianten weniger als 15°C, vorzugsweise weniger als 13°C und insbesondere weniger als 10°C. Die Temperatur der Heißluft weist in bevorzugten Verfahrensvarianten Werte oberhalb 28°C, vorzugsweise oberhalb 35°C, besonders bevorzugt oberhalb 40°C und insbesondere oberhalb 50°C.
  • In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden in Schritt a) zum Vermischen des festen Wasch- oder Reinigungsmittels mit dem Wasser rotierende Reaktoren eingesetzt. Als „rotierende Reaktoren" werden im Rahmen der vorliegenden Erfindung solche Mischer bezeichnet, welche sich durch ein bewegliches bzw. rotierendes Reaktorgehäuse, bzw. einen bewegten Mischbehälter, auszeichnen. Derartige Reaktoren können weiterhin statische und/oder bewegliche Misch- und/(oder Schneidwerkzeuge aufweisen. Bevorzugt werden jedoch rotierende Reaktoren, in welchen das Mischgut durch Wandreibung hochgenommen wird und anschließend aufgrund der eigenen Schwerkraft frei durch den Mischerraum fällt. Als bevorzugte „rotierende Reaktoren" werden Freifallmischer eingesetzt. Als Behälter eines solchen Freifallmischers eignen sich solche mit einfachen geometrischen Formen (Zylinder, Einfach- oder Doppelkonus, Würfel u.ä.). Bevorzugte Mischbehälter weisen zudem möglichst stumpfwinkelige innere Ecken auf, da hierdurch sowohl die freie Bewegung des Mischguts als auch die Entleerung und Reinigung des Behälters nach Beendigung des Verfahrens erleichtert wird. Die Bewegung des
  • Behälters überträgt sich vorzugsweise so auf das Mischgut im Inneren, daß ein möglichst unregelmäßiges Durcheinanderwerfen und Auflockern der Reaktionsmischung erfolgt. Darüber hinaus tritt bei bevorzugten erfindungsgemäßen kontinuierlichen Verfahren eine gerichtete Bewegungskomponente auf, um den kontinuierlichen Stofftransport zu gewährleisten. Als Bewegungsarten für den Freifallmischer eignet sich insbesondere das Rotieren um eine Behälterachse (Trommel- oder Drehrohr-Mischer) bzw. um Achsen, die nicht mit geometrischen Achsen des Behälters übereinstimmen oder zu dessen Symmetrieebenen senkrecht sind (Taumelmischer), oder das Vibrieren, vorzugsweise mit hoher Amplitude und geringer Frequenz sowie wechselnden Richtungen der Ausschläge, so das unregelmäßig schüttelnde oder taumelnde Bewegungen auftreten.
  • In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden die festen Wasch- oder Reinigungsmittel vor, gleichzeitig mit oder nach dem Zusatz von Wasser vermahlen. Die Vermahlung kann dabei in allen im Stand der Technik bekannten Mühlen erfolgen, wobei lediglich beispielhaft Stiftmühlen, Prallmühlen und Luftstrahlmühlen als geeignete Apparate aufgeführt werden. Die Pudermittel können in derartigen Mühlen auf beliebige Partikelgrößen vermahlen werden, wobei der Mahlprozess vorzugsweise so eingestellt wird, die zu mindestens 70 Gew.-%, vorzugsweise zu mindestens 80 Gew.-%, insbesondere zu mindestens 90 Gew.-% und ganz besonders bevorzugt zu 100% eine Partikelgröße unterhalb von 5000 μm, vorzugsweise unterhalb von 2000 μm, insbesondere unterhalb von 1000 μm und ganz besonders bevorzugt unterhalb von 500 μm aufweisen.
  • Die Zugabe des Wassers in Verfahrensschritt a) kann, unabhängig vom Aggragatzustand des Wassers oder optionaler weiterer Zusätze, auf unterschiedliche Weise erfolgen. Der Feststoffgehalt des in Schritt a) des erfindungsgemäßen Verfahrens hergestellten Stoffgemisches beträgt, bezogen auf das Gesamtgewicht des Stoffgemisches, mindestens 70 Gew.-%. Mit anderen Worten können den festen Wasch- oder Reinigungsmitteln in Schritt a) des erfindungsgemäßen Verfahrens bis zu 1 Gew.-%, bis zu 2 Gew.-%, bis zu 3 Gew.-%, bis zu 4 Gew.-%, bis zu 5 Gew.-%, bis zu 6 Gew.-%, bis zu 7 Gew.-%, bis zu 8 Gew.-%, bis zu 9 Gew.-%, bis zu 10 Gew.-%, bis zu 11 Gew.-%, bis zu 12 Gew.-%, bis zu 13 Gew.-%, bis zu 14 Gew.-%, bis zu 15 Gew.-%, bis zu 16 Gew.-%, bis zu 17 Gew.-%, bis zu 18 Gew.-%, bis zu 19 Gew.-%, bis zu 20 Gew.-%, bis zu 21 Gew.-%, bis zu 22 Gew.-%, bis zu 23 Gew.-%, bis zu 24 Gew.-%, bis zu 25 Gew.-%, bis zu 26 Gew.-%, bis zu 27 Gew.-%, bis zu 28 Gew.-%, bis zu 29 Gew.-% oder bis zu 30 Gew.-% Wasser, jeweils bezogen auf das Gesamtgewicht des resultierenden Stoffgemisches, zugesetzt werden. Bevorzugt werden Verfahren, bei denen der Zusatz von Wasser in Schritt a) unter Zusatz von Wasser und/oder Wasserdampf erfolgt. Der Feststoffgehalt des resultierenden Stoffgemisches in Schritt a) beträgt dabei in besonders bevorzugten Verfahrensvarianten zwischen 75 und 98 Gew.-%, bevorzugt zwischen 80 und 95 Gew.-%, besonders bevorzugt zwischen 83 und 93 Gew.-% und insbesondere zwischen 85 und 91 Gew.-%. Mit anderen Worten werden dem festen Wasch- oder Reinigungsmittel in diesen bevorzugten Verfahrensva rianten in Schritt a) des erfindungsgemäßen Verfahrens, bezogen auf das Gesamtgewicht des resultierenden Stoffgemisches, zwischen 2 und 25 Gew.-%, bevorzugt zwischen 5 und 20 Gew.-%, besonders bevorzugt zwischen 7 und 17 Gew.-% und insbesondere zwischen 9 und 15 Gew.-% Wasser zugesetzt. Bevorzugt werden erfindungsgemäße Verfahren mit einem minimalen Wasserzusatz, beispielsweise in Mengen zwischen 2 und 15, vorzugsweise zwischen 3 und 12 und insbesondere zwischen 4 und 8 Gew.-%, jeweils bezogen auf das Gesamtgewicht des resultierenden Stoffgemisches, da auf diese Weise gleichzeitig der energetische Aufwand bei der Trocknung des Stoffgemisches in Schritt c) des erfindungsgemäßen Verfahrens minimiert werden kann.
  • Nach der Wasserzugabe werden die resultierenden Stoffgemische in Schritt b) des erfindungsgemäßen Verfahrens erwärmt bzw. erhitzt. Diese Erwärmung oder Erhitzung kann gleichzeitig mit oder nach der Zugabe des Wassers in Schritt a) erfolgen. So erfolgt die Erwärmung des Stoffgemisches in Schritt b) in einer bevorzugten Variante des erfindungsgemäßen Verfahrens durch Einleiten von Wasserdampf, vorzugsweise durch Einleiten überhitzten Wasserdampfs, optional in Kombination mit einem Heizelement. Selbstverständlich kann die Erwärmung des Stoffgemisches auch ausschließlich durch Einwirkung eines Heizelements erfolgen. Generell sind alle dem Fachmann zur Erwärmung fester oder pastöser Stoffgemische bekannten Verfahren auch für den Einsatz in dem erfindungsgemäßen Verfahren geeignet. Beispiele für derartige Verfahren sind beispielsweise das Einleiten von Heißluft oder der Einsatz von Wärmestrahlung. Besonders bevorzugt werden erfindungsgemäße Verfahren bei denen die Erwärmung oder Erhitzung in dem gleichem Behälter oder Mischer erfolgt, in welchem das Wasser zugegeben wird.
  • In bevorzugten Verfahrensvarianten wird das Stoffgemisch in Schritt b) auf Temperaturen von 50 bis 200°C, vorzugsweise von 60 bis 150°C, besonders bevorzugt von 70 bis 100°C und insbesondere von 80 bis 95°C erhitzt, wobei Verfahren besonders bevorzugt sind, bei denen das Stoffgemisch vor, gleichzeitig mit oder nach dem Erhitzen auf Temperaturen oberhalb 50°C, vorzugsweise oberhalb 60°C, besonders bevorzugt oberhalb 70°C und insbesondere oberhalb 80°C einem Vakuum zwischen 30 und 950 mbar, vorzugsweise zwischen 40 und 500 mbar und insbesondere zwischen 50 und 100 mbar ausgesetzt wird.
  • Die Erwärmung des Stoffgemisches in Schritt b) erfolgt vorzugsweise über einen Zeitraum zwischen 0,5 und 180 Minuten, vorzugsweise zwischen 1 und 60 Minuten und insbesondere zwischen 2 und 30 Minuten. Der Zeitraum der Erwärmung beginnt dabei mit Erreichen einer Stoffgemischtemperatur oberhalb 50°C und endet nach Absinken dieser Temperatur auf Werte unterhalb 50°C.
  • Im Verlaufe der Trocknung in Schritt c) des erfindungsgemäßen Verfahrens wird Wasser aus dem Stoffgemisch entfernt: Die Trocknung erfolgt in einer bevorzugten Verfahrensvariante durch Verdunstung des Wassers aus dem in Schritt a) erhaltenen und in Schritt b) erwärmten Stoffge misches. Bevorzugt werden dabei Verfahrensvarianten bei denen die Trocknung in Schritt c) durch Erwärmen des Stoffgemisches und/oder durch Einwirkung eines Vakuums erfolgt. Besonders bevorzugt werden Verfahren, bei denen unter Einwirkung eines Vakuums Wasser aus dem Stoffgemisch entfernt und dieses durch einen Wärmetauscher kondensiert wird. Das kondensierte Wasser wird dabei vorzugsweise recycliert und dem Verfahren in Schritt a) wieder zugeführt.
  • In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird dem Stoffgemisch vor der Trocknung ein Granulierhilfsmittel zugesetzt wird. Als Granulierhilfsmittel gelten im Rahmen der vorliegenden Anmeldung beispielsweise Abpuderungsmittel oder Oberflächenmodifizierer. Bevorzugt werden hierbei amorphe und/oder kristalline Aluminosilikate, wie Zeolith A, X und/oder P, verschiedene Arten von Kieselsäuren, Calciumstearat, Carbonate, Sulfate, aber auch feinteilige Compounds, beispielsweise aus amorphen Silikaten und Carbonaten. Weitere Granulierhilfsmittel im Rahmen der vorliegenden Anmeldung sind Bindemittel, insbesondere flüssige Bindemittel. Als flüssige Bindemittel eignen sich im Rahmen der vorliegenden Erfindung neben den "Tensidsäuren" auch die genannten Fettsäuren, Phosphonsäuren, Polymersäuren oder teilneutralisierte Polymersäuren sowie „Buildersäuren" und „Komplexbuildersäuren" alleine sowie in beliebigen Mischungen. Als Inhaltsstoffe von Wasch- und Reinigungsmitteln, die beispielsweise der Aniontensidsäure vor dem Aufschäumen zugemischt werden können, bieten sich vor allem saure Wasch- und Reinigungsmittel-Inhaltsstoffe an, also beispielsweise Phosphonsäuren, welche in neutralisierter Form (Phosphonate) als Inkrustationsinhibitoren Bestandteil vieler Wasch- und Reinigungsmittel sind. Auch der Einsatz von (teilneutralisierten) Polymersäuren wie beispielsweise Polyacrylsäuren, ist erfindungsgemäß möglich. Zu diesen weiteren bevorzugten Bindemitteln zählen wäßrige Polymerlösungen oder -dispersion ebenso wie wäßrige Lösungen von Wasserglas. Bei den wäßrigen Polymerlösungen werden insbesondere wäßrigen Lösungen oder Dispersionen von Homo- oder Copolymeren der Acrylsäure, insbesondere von Polyacrylaten und/oder Copolymeren der Acrylsäure mit Methacrylsäure und/oder Copolymeren von Acrylsäure mit Maleinsäure bevorzugt. Genauere Beschreibungen der bevorzugt eingesetzten Polyacrylate wie der copolymeren Polycarboxylate finden sich weiter unten im Text. Es ist aber auch möglich, säurestabile Inhaltsstoffe mit der Aniontensidsäure zu vermischen. Hier bieten sich beispielsweise sogenannte Kleinkomponenten an, welche sonst in aufwendigen weiteren Schritten zugegeben werden müßten, also beispielsweise optische Aufheller, Farbstoffe usw., wobei im Einzelfall die Säurestabilität zu prüfen ist.
  • Besonders bevorzugt ist es im Rahmen der vorliegenden Erfindung, die Trocknung des Stoffgemisches in Schritt c) unter Einsatz eines Wirbelbetts, vorzugsweise eines pneumatischen Wirbelbetts, oder eines Ringschichtmischers durchzuführen.
  • Im Anschluß an die Trocknung kann der gebildete Feststoff in einer optionalen Verfahrensvariante granuliert oder kompaktiert werden, wobei dem Feststoff vor der Granulation oder Kompaktierung vorzugsweise weitere Inhaltsstoffe von Wasch- oder Reinigungsmitteln, vorzugsweise wasch- und reinigungsaktive Substanzen aus der Gruppe der Bleichmittel, Bleichaktivatoren, Polymere, Gerüststoffe, Tenside, Enzyme, Desintegrationshilfsmittel, Elektrolyte, pH-Stellmittel, Duftstoffe, Parfümträger, Farbstoffe, Hydrotrope, Schauminhibitoren, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Einlaufverhinderer, Knitterschutzmittel, Farbübertragungs-inhibitoren, antimikrobiellen Wirkstoffe, Germizide, Fungizide, Antioxidantien, Korrosionsinhibitoren, Antistatika, Phobier- und Imprägniermittel, Quell- und Schiebefestmittel, nichtwässrigen Lösungsmittel, Weichspüler, Proteinhydrolysate, sowie UV-Absorber, insbesondere Bleichmittel und/oder Enzyme, zugesetzt werden. Die nach dem erfindungsgemäßen Verfahren verarbeiteten festen Wasch- oder Reinigungsmittel werden auf diese Weise recycliert. Ein weiterer Gegenstand der vorliegenden Anmeldung ist daher die Verwendung der nach dem erfindungsgemäßen Verfahren verarbeiteten festen Wasch- oder Reinigungsmittel in Wasch- oder Reinigungsmitteln.
  • Die in dem erfindungsgemäßen Verfahren verarbeiteten feste Wasch- oder Reinigungsmittel enthalten Bleichmittel. Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumpercarbonat, das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare. Bleichmittel sind beispielsweise Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Reinigungsmittelformkörper für das maschinelle Geschirrspülen können auch Bleichmittel aus der Gruppe der organischen Bleichmittel enthalten. Typische organische Bleichmittel sind die Diacylperoxide, wie z.B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesium-monoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peraxystearinsäure, ε-Phthalimidoperoxycapronsäure [Phthaloiminoperoxyhexansäure (PAP)], o-Carboxybenzamidoperoxycapronsäure, N-nonenylamidoperadipinsäure und N-nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1,9-Diperoxyazelainsäure, Diperocysebacinsäure, Diperoxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyldiperoxybutan-1,4-disäure, N,N-Terephthaloyl-di(6-aminopercapronsäue) können eingesetzt werden.
  • In einem erfindungsgemäß bevorzugten Verfahren enthält das feste Wasch- oder Reinigungsmittel ein Bleichmittel aus der Gruppe der anorganischen Persalze und/oder der organischen Persäuren, vorzugsweise ein Bleichmittel aus der Gruppe Natriumpercarbonat, Natriumperborattetrahydrat und Natriumperboratmonohydrat. Selbstverständlich können die in dem erfindungsgemäßen Verfahren verarbeiteten festen Wasch- oder Reinigungsmittel auch Gemische unterschiedlicher Bleichmittel enthalten. Bevorzugt werden im Rahmen der vorliegenden Anmeldung feste Wasch- oder Reinigungsmittel welche Bleichmittelgemische aus Natriumpercarbonat und Natriumperborattetrahydrat oder Gemische aus Natriumpercarbonat und Natriumperboratmonohydrat enthalten.
  • Der Bleichmittelgehalt, vorzugsweise der Gehalt an Natriumpercarbonat, des festen Wasch- oder Reinigungsmittels vor der Verarbeitung beträgt in bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens zwischen 0,5 und 60 Gew.-%, vorzugsweise zwischen 1 und 50 Gew.-%, besonders bevorzugt zwischen 2 und 40 Gew.-% und insbesondere zwischen 5 und 30 Gew.-%, jeweils bezogen auf das Gesamtgewicht des festen Wasch- oder Reinigungsmittels. Bevorzugt verarbeitete feste Wasch- oder Reinigungsmittel weisen bezogen auf ihr Gesamtgewicht einen Bleichmittelgehalt, vorzugsweise einen Gehalt an Natriumpercarbonat oberhalb 6 Gew.-%, vorzugsweise oberhalb 7 Gew.-%, besonders bevorzugt oberhalb 8 Gew.-%, ganz besonders bevorzugt oberhalb 9 Gew.-% und insbesondere oberhalb 10 Gew.-% auf. Der maximale Bleichmittelgehalt von bevorzugt verarbeiteten festen Wasch- oder Reinigungsmitteln beträgt 90 Gew.-%, vorzugsweise 80 Gew.-%, besonders bevorzugt 75 und insbesondere 70 Gew.-%.
  • Der Aktivsauerstoffgehalt der bevorzugt verarbeiteten festen Wasch- oder Reinigungsmittels beträgt, jeweils bezogen auf das Gesamtgewicht der festen Wasch- oder Reinigungsmittel, vor der Verarbeitung vorzugsweise zwischen 0,4 und 10 Gew.-%, besonders bevorzugt zwischen 0,5 und 8 Gew.-% und insbesondere zwischen 0,6 und 5 Gew.-%. Besonders bevorzugt verarbeitete feste Wasch- oder Reinigungsmittel weisen einen Aktivsauerstoffgehalt oberhalb 0,3 Gew.-%, bevorzugt oberhalb 0,7 Gew.-%, besonders bevorzugt oberhalb 0,8 Gew.-% und insbesondere oberhalb 1,0 Gew.-% auf. Der maximale Aktivsauerstoffgehalt von bevorzugt verarbeiteten festen Wasch- oder Reinigungsmitteln beträgt vorzugsweise 25 Gew.-%, besonders bevorzugt 20 Gew.-% und insbesondere 15 Gew.-%, jeweils bezogen auf das Gesamtgewicht des festen Wasch- oder Reinigungsmittels.
  • Nach der Verarbeitung weisen die eingesetzten festen Wasch- oder Reinigungsmittel in besonders bevorzugten Varianten des erfindungsgemäßen Verfahrens einen Aktivsauerstoffgehalt von weniger als 90%, vorzugsweise weniger als 70% und insbesondere weniger als 50% des Aktivsauerstoffgehalts vor der Verarbeitung auf. Mit anderen Worten wird der Aktivsauerstoffgehalt des festen Wasch- oder Reinigungsmittels durch die Verarbeitung auf weniger als 90%, vorzugsweise auf weniger als 70% und insbesondere auf weniger als 50% reduziert. Der Aktivsauerstoffgehalt des festen Wasch- oder Reinigungsmittels nach der Verarbeitung beträgt vorzugsweise zwischen 0,001 und 0,3 Gew.-%, vorzugsweise zwischen 0,002 und 0,2 Gew.-% und insbesondere zwischen 0,01 und 0,1 Gew.-%, jeweils bezogen auf das Gesamtgewicht.
  • Außer den vorgenannten Bleichmitteln können die erfindungsgemäß bevorzugt verarbeiteten festen Wasch- oder Reinigungsmittel weitere übliche Bestandteile von Wasch- oder Reinigungs mitteln enthalten. Zu diesen weiteren Bestandteilen zählen u.a. auch die Enzyme, welche in den Wasch- oder Reinigungsmitteln zur Steigerung der Wasch-, beziehungsweise Reinigungsleistung enthalten sein können, wobei prinzipiell alle im Stand der Technik für diese Zwecke etablierten Enzyme einsetzbar sind. Hierzu gehören insbesondere Proteasen, Amylasen, Lipasen, Hemicellulasen, Cellulasen oder Oxidoreduktasen, sowie vorzugsweise deren Gemische. Diese Enzyme sind im Prinzip natürlichen Ursprungs; ausgehend von den natürlichen Molekülen stehen für den Einsatz in Wasch- und Reinigungsmitteln verbesserte Varianten zur Verfügung, die entsprechend bevorzugt eingesetzt werden. Erfindungsgemäß bevorzugt verarbeitet Mittel enthalten Enzyme vorzugsweise in Gesamtmengen von 1 × 10-6 bis 5 Gewichts-Prozent bezogen auf aktives Protein. Die Proteinkonzentration kann mit Hilfe bekannter Methoden, zum Beispiel dem BCA-Verfahren (Bicinchoninsäure; 2,2'-Bichinolyl-4,4'-dicarbonsäure) oder dem Biuret-Verfahren bestimmt werden. Besonders bevorzugt ist im Rahmen der vorliegenden Erfindung die Verarbeitung von festen Wasch- oder Reinigungsmitteln mit einem Enzymgehalt vor der Verarbeitung zwischen 0,01 und 14 Gew.-%, vorzugsweise zwischen 0,02 und 8 Gew.-% und insbesondere zwischen 0,04 und 6 Gew.-%, jeweils bezogen auf das Gesamtgewicht des festen Wasch- oder Reinigungsmittels. Als „Enzymgehalt" wird dabei der Gehalt der festen Wasch- oder Reinigungsmittel an konfektioniertem Enzym, das heißt, der Gehalt bezogen auf aktives Protein und Trägersubstanz bezeichnet.
  • Unter den Proteasen sind solche vom Subtilisin-Typ bevorzugt. Beispiele hierfür sind die Subtilisine BPN' und Carlsberg, die Protease PB92, die Subtilisine 147 und 309, die Alkalische Protease aus Bacillus lentus, Subtilisin DY und die den Subtilasen, nicht mehr jedoch den Subtilisinen im engeren Sinne zuzuordnenden Enzyme Thermitase, Proteinase K und die Proteasen TW3 und TW7. Subtilisin Carlsberg ist in weiterentwickelter Form unter dem Handelsnamen Alcalase® von der Firma Novozymes A/S, Bagsvaerd, Dänemark, erhältlich. Die Subtilisine 147 und 309 werden unter den Handelsnamen Esperase®, beziehungsweise Savinase® von der Firma Novozymes vertrieben. Von der Protease aus Bacillus lentus DSM 5483 leiten sich die unter der Bezeichnung BLAP® geführten Varianten ab.
  • Weitere brauchbare Proteasen sind beispielsweise die unter den Handelsnamen Durazym®, Relase®, Everlase®, Nafizym, Natalase®, Kannase® und Ovozymes® von der Firma Novozymes, die unter den Handelsnamen, Purafect®, Purafect®OxP und Properase® von der Firma Genencor, das unter dem Handelsnamen Protosol® von der Firma Advanced Biochemicals Ltd., Thane, Indien, das unter dem Handelsnamen Wuxi® von der Firma Wuxi Snyder Bioproducts Ltd., China, die unter den Handelsnamen Proleather® und Protease P® von der Firma Amano Pharmaceuticals Ltd., Nagoya, Japan, und das unter der Bezeichnung Proteinase K-16 von der Firma Kao Corp., Tokyo, Japan, erhältlichen Enzyme.
  • Beispiele für erfindungsgemäß einsetzbare Amylasen sind die α-Amylasen aus Bacillus licheniformis, aus B. amyloliquefaciens oder aus B. stearothermophilus sowie deren für den Einsatz in Wasch- und Reinigungsmitteln verbesserte Weiterentwicklungen. Das Enzym aus B. licheniformis ist von der Firma Novozymes unter dem Namen Termamyl® und von der Firma Genencor unter dem Namen Purastar®ST erhältlich. Weiterentwicklungsprodukte dieser α-Amylase sind von der Firma Novozymes unter den Handelsnamen Duramyl® und Termamyl®ultra, von der Firma Genencor unter dem Namen Purastar®OxAm und von der Firma Daiwa Seiko Inc., Tokyo, Japan, als Keistase® erhältlich. Die α-Amylase von B. amyloliquefaciens wird von der Firma Novozymes unter dem Namen BAN® vertrieben, und abgeleitete Varianten von der α-Amylase aus B. stearothermophilus unter den Namen BSG® und Novamyl®, ebenfalls von der Firma Novozymes.
  • Desweiteren sind für diesen Zweck die α-Amylase aus Bacillus sp. A 7-7 (DSM 12368) und die Cyclodextrin-Glucanotransferase (CGTase) aus B. agaradherens (DSM 9948) hervorzuheben; ebenso sind Fusionsprodukte der genannten Moleküle einsetzbar.
  • Darüber hinaus sind die unter den Handelsnamen Fungamyl® von der Firma Novozymes erhältlichen Weiterentwicklungen der α-Amylase aus Aspergillus niger und A. oryzae geeignet. Ein weiteres Handelsprodukt ist beispielsweise die Amylase-LT®.
  • Erfindungsgemäß verarbeitete Mittel können Lipasen oder Cutinasen, insbesondere wegen ihrer Triglycerid-spaltenden Aktivitäten enthalten, aber auch, um aus geeigneten Vorstufen in situ Persäuren zu erzeugen. Hierzu gehören beispielsweise die ursprünglich aus Humicola lanuginosa (Thermomyces lanuginosus) erhältlichen, beziehungsweise weiterentwickelten Lipasen, insbesondere solche mit dem Aminosäureaustausch D96L. Sie werden beispielsweise von der Firma Novozymes unter den Handelsnamen Lipolase®, Lipolase®Ultra, LipoPrime®, Lipozyme® und Lipex® vertrieben. Desweiteren sind beispielsweise die Cutinasen einsetzbar, die ursprünglich aus Fusarium solani pisi und Humicola insolens isoliert worden sind. Ebenso brauchbare Lipasen sind von der Firma Amano unter den Bezeichnungen Lipase CE®, Lipase P®, Lipase B®, beziehungsweise Lipase CES®, Lipase AKG®, Bacillis sp. Lipase®, Lipase AP®, Lipase M-AP® und Lipase AML® erhältlich. Von der Firma Genencor sind beispielsweise die Lipasen, beziehungsweise Cutinasen einsetzbar, deren Ausgangsenzyme ursprünglich aus Pseudomonas mendocina und Fusarium solanii isoliert worden sind. Als weitere wichtige Handelsprodukte sind die ursprünglich von der Firma Gist-Brocades vertriebenen Präparationen M1 Lipase® und Lipomax® und die von der Firma Meito Sangyo KK, Japan, unter den Namen Lipase MY-30®, Lipase OF® und Lipase PL® vertriebenen Enzyme zu erwähnen, ferner das Produkt Lumafast® von der Firma Genencor.
  • Erfindungsgemäß verarbeitete Mittel können, insbesondere wenn sie für die Behandlung von Textilien gedacht sind, Cellulasen enthalten, je nach Zweck als reine Enzyme, als Enzympräpara tionen oder in Form von Mischungen, in denen sich die einzelnen Komponenten vorteilhafterweise hinsichtlich ihrer verschiedenen Leistungsaspekte ergänzen. Zu diesen Leistungsaspekten zählen insbesondere Beiträge zur Primärwaschleistung, zur Sekundärwaschleistung des Mittels (Antiredepositionswirkung oder Vergrauungsinhibition) und Avivage (Gewebewirkung), bis hin zum Ausüben eines „stone washed"-Effekts.
  • Eine brauchbare pilzliche, Endoglucanase(EG)-reiche Cellulase-Präparation, beziehungsweise deren Weiterentwicklungen werden von der Firma Novozymes unter dem Handelsnamen Celluzyme® angeboten. Die ebenfalls von der Firma Novozymes erhältlichen Produkte Endolase® und Carezyme® basieren auf der 50 kD-EG, beziehungsweise der 43 kD-EG aus H. insolens DSM 1800. Weitere mögliche Handelsprodukte dieser Firma sind Cellusoft® und Renozyme®. Ebenso ist die 20 kD-EG Cellulase aus Melanocarpus, die von der Firma AB Enzymes, Finnland, unter den Handelsnamen Ecostone® und Biotouch® erhältlich ist, einsetzbar. Weitere Handelsprodukte der Firma AB Enzymes sind Econase® und Ecopulp®. Eine weitere geeignete Cellulase aus Bacillus sp. CBS 670.93 ist von der Firma Genencor unter dem Handelsnamen Puradax® erhältlich. Weitere Handelsprodukte der Firma Genencor sind „Genencor detergent cellulase L" und IndiAge® Neutra.
  • Erfindungsgemäß verarbeitete Mittel können weitere Enzyme enthalten, die unter dem Begriff Hemicellulasen zusammengefaßt werden. Hierzu gehören beispielsweise Mannanasen, Xanthanlyasen, Pektinlyasen (=Pektinasen), Pektinesterasen, Pektatlyasen, Xyloglucanasen (=Xylanasen), Pullulanasen und β-Glucanasen. Geeignete Mannanasen sind beispielsweise unter den Namen Gamanase® und Pektinex AR® von der Firma Novozymes, unter dem Namen Rohapec® B1L von der Firma AB Enzymes und unter dem Namen Pyrolase® von der Firma Diversa Corp., San Diego, CA, USA erhältlich. Die aus B. subtilis gewonnene β-Glucanase ist unter dem Namen Cereflo® von der Firma Novozymes erhältlich.
  • Weiterhin können die erfindungsgemäß verarbeiteten Wasch- oder Reinigungsmittel Oxidoreduktasen, beispielsweise Oxidasen, Oxygenasen, Katalasen, Peroxidasen, wie Halo-, Chloro-, Bromo-, Lignin-, Glucose- oder Mangan-peroxidasen, Dioxygenasen oder Laccasen (Phenoloxidasen, Polyphenoloxidasen) enthalten. Als geeignete Handelsprodukte sind Denilite® 1 und 2 der Firma Novozymes zu nennen. Vorteilhafterweise werden zusätzlich vorzugsweise organische, besonders bevorzugt aromatische, mit den Enzymen wechselwirkende Verbindungen zugegeben, um die Aktivität der betreffenden Oxidoreduktasen zu verstärken (Enhancer) oder um bei stark unterschiedlichen Redoxpotentialen zwischen den oxidierenden Enzymen und den Anschmutzungen den Elektronenfluß zu gewährleisten (Mediatoren).
  • Die in erfindungsgemäß verarbeiteten Mitteln eingesetzten Enzyme stammen entweder ursprünglich aus Mikroorganismen, etwa der Gattungen Bacillus, Streptomyces, Humicola, oder Pseudo monas, und/oder werden nach an sich bekannten biotechnologischen Verfahren durch geeignete Mikroorganismen produziert, etwa durch transgene Expressionswirte der Gattungen Bacillus oder filamentöse Fungi.
  • Die Aufreinigung der betreffenden Enzyme erfolgt günstigerweise über an sich etablierte Verfahren, beispielsweise über Ausfällung, Sedimentation, Konzentrierung, Filtration der flüssigen Phasen, Mikrofiltration, Ultrafiltration, Einwirken von Chemikalien, Desodorierung oder geeignete Kombinationen dieser Schritte.
  • Erfindungsgemäß verarbeiteten Mitteln können die Enzyme in jeder nach dem Stand der Technik etablierten Form zugesetzt sein. Hierzu gehören beispielsweise die durch Granulation, Extrusion oder Lyophilisierung erhaltenen festen Präparationen oder, insbesondere bei flüssigen oder gelförmigen Mitteln, Lösungen der Enzyme, vorteilhafterweise möglichst konzentriert, wasserarm und/oder mit Stabilisatoren versetzt.
  • Alternativ können die Enzyme verkapselt sein, beispielsweise durch Sprühtrocknung oder Extrusion der Enzymlösung zusammen mit einem, vorzugsweise natürlichen Polymer oder in Form von Kapseln, beispielsweise solchen, bei denen die Enzyme wie in einem erstarrten Gel eingeschlossen sind oder in solchen vom Kern-Schale-Typ, bei dem ein enzymhaltiger Kern mit einer Wasser-, Luft- und/oder Chemikalien-undurchlässigen Schutzschicht überzogen ist. In aufgelagerten Schichten können zusätzlich weitere Wirkstoffe, beispielsweise Stabilisatoren, Emulgatoren, Pigmente, Bleich- oder Farbstoffe aufgebracht werden. Derartige Kapseln werden nach an sich bekannten Methoden, beispielsweise durch Schüttel- oder Rollgranulation oder in Fluid-bed-Prozessen aufgebracht. Vorteilhafterweise sind derartige Granulate, beispielsweise durch Aufbringen polymerer Filmbildner, staubarm und aufgrund der Beschichtung lagerstabil.
  • Weiterhin ist es möglich, zwei oder mehrere Enzyme zusammen zu konfektionieren, so daß ein einzelnes Granulat mehrere Enzymaktivitäten aufweist.
  • Ein in einem erfindungsgemäß verarbeiteten Mittel enthaltenes Protein und/oder Enzym kann besonders während der Lagerung gegen Schädigungen wie beispielsweise Inaktivierung, Denaturierung oder Zerfall etwa durch physikalische Einflüsse, Oxidation oder proteolytische Spaltung geschützt sein. Bei mikrobieller Gewinnung der Proteine und/oder Enzyme ist eine Inhibierung der Proteolyse besonders bevorzugt, insbesondere wenn auch die Mittel Proteasen enthalten. Erfindungsgemäße Mittel können zu diesem Zweck Stabilisatoren enthalten.
  • Eine Gruppe von Stabilisatoren sind reversible Proteaseinhibitoren. Häufig werden Benzamidin-Hydrochlorid, Borax, Borsäuren, Boronsäuren oder deren Salze oder Ester verwendet, darunter vor allem Derivate mit aromatischen Gruppen, etwa ortho-, meta- oder para-substituierte Phenylboronsäuren, beziehungsweise deren Salze oder Ester. Weiterhin sind Peptidaldehyde, das heißt Oligo peptide mit reduziertem C-Terminus geeignet. Als peptidische Proteaseinhibitoren sind unter anderem Ovomucoid und Leupeptin zu erwähnen; eine zusätzliche Option ist die Bildung von Fusionsproteinen aus Proteasen und Peptid-Inhibitoren.
  • Weitere Enzymstabilisatoren sind Aminoalkohole wie Mono-, Di-, Triethanol- und -Propanolamin und deren Mischungen, aliphatische Carbonsäuren bis zu C12, wie Bernsteinsäure, andere Dicarbonsäuren oder Salze der genannten Säuren. Auch endgruppenverschlossene Fettsäureamidalkoxylate sind als Stabilisatoren einsetzbar.
  • Niedere aliphatische Alkohole, vor allem aber Polyole, wie beispielsweise Glycerin, Ethylenglykol, Propylenglykol oder Sorbit sind weitere häufig eingesetzte Enzymstabilisatoren. Weiterhin schützt auch Di-Glycerinphosphat gegen Denaturierung durch physikalische Einflüsse. Ebenso werden Calciumsalze verwendet, wie beispielsweise Calciumacetat oder Calcium-Formiat sowie Magnesiumsalze.
  • Polyamid-Oligomere oder polymere Verbindungen wie Lignin, wasserlösliche Vinyl-Copolymere oder, wie Cellulose-Ether, Acryl-Polymere und/oder Polyamide stabilisieren die Enzym-Präparation unter anderem gegenüber physikalischen Einflüssen oder pH-Wert-Schwankungen. Polyamin-N-Oxid-enthaltende Polymere wirken gleichzeitig als Enzymstabilisatoren und als Farbübertragungsinhibitoren. Andere polymere Stabilisatoren sind die linearen C8-C18 Polyoxyalkylene. Alkylpolyglycoside können gemäß den ebenfalls die enzymatischen Komponenten des erfindungsgemäß verarbeiteten Mittels stabilisieren und sogar in ihrer Leistung steigern. Vernetzte N-haltige Verbindungen erfüllen eine Doppelfunktion als Soil-release-Agentien und als Enzym-Stabilisatoren.
  • Reduktionsmittel und Antioxidantien wie Natrium-Sulfit oder reduzierende Zucker erhöhen die Stabilität der Enzyme gegenüber oxidativem Zerfall.
  • Bevorzugt werden Kombinationen von Stabilisatoren verwendet, beispielsweise aus Polyolen, Borsäure und/oder Borax, die Kombination von Borsäure oder Borat, reduzierenden Salzen und Bernsteinsäure oder anderen Dicarbonsäuren oder die Kombination von Borsäure oder Borat mit Polyolen oder Polyaminoverbindungen und mit reduzierenden Salzen. Die Wirkung von Peptid-Aldehyd-Stabilisatoren kann durch die Kombination mit Borsäure und/oder Borsäurederivaten und Polyolen gesteigert und gemäß durch die zusätzliche Verwendung von zweiwertigen Kationen, wie zum Beispiel Calcium-Ionen weiter verstärkt werden.
  • Zur Bestimmung der Enzymaktivität Enzym-haltiger wird in der durch eine bestimmte Enzym-mengen katalysierten Reaktion die zeitliche Abnahme des Substrats oder die Zunahme des Substrats oder die Zunahme des Reaktionsproduktes meist spektrometrisch ermittelt. Nach Festlegungen der Internationalen Enzymkommission der UIPAC ist eine Enzymeinheit (1U) die Menge an Enzym, die unter Standardbedingungen die Umwandlung von 1 Mmol Substrat pro Minute kataly siert. Als neue Internationale Einheit wurde 1972 die katalytische Einheit Katal, Einheitenzeichen kat, eingeführt. 1 kat ist die Menge an Enzymaktivität, die 1 mol Substrat pro Sekunde umsetzt. Als Untereinheiten wurden das Mikrokatal (μkat), Nanokatal (nkat) und Picokatal (pkat) zugelassen. Für die Umrechnung zwischen den Einheiten gilt: 1 kat = 6 107 U bzw. 1 U = 16,67 nkat.
  • Das erfindungsgemäße Verfahren eignet sich außer zur Deaktivierung der in den festen Wasch- oder Reinigungsmitteln enthaltenen Bleichmitteln weiterhin auch zur Deaktivierung der in diesen Wasch- oder Reinigungsmitteln optional enthaltenen Enzyme. Dabei ist ein besonderer Vorteil des erfindungsgemäßen Verfahrens, daß im Verlaufe des Verfahrens nur sehr geringe Mengen Enzym-haltigen Staubes in die Umgebungsluft freigesetzt wird. Dies gilt insbesondere für Verfahren, bei denen die Vermahlung der festen Wasch- oder Reinigungsmittel erst nach oder während der Zugabe von Wasser erfolgt. Bei der Durchführung dieser bevorzugten Verfahrensvarianten sind Absaugungen während des Verfahrens nicht oder nur in sehr eingeschränktem Maße notwendig. Die Reinigung Enzym-belasteter Filter entfällt. Weiterhin wirken auch die aus dem Verfahren resultierenden Feststoffe aufgrund ihrer geringen Enzymaktivität in weit geringerem Maße sensibilisierend auf den Menschen. Bevorzugte Varianten des erfindungsgemäßen Verfahrens sind dadurch gekennzeichnet, daß die Enzymaktivität des festen Wasch- oder Reinigungsmittels nach der Verarbeitung weniger als 90%, vorzugsweise weniger als 70% und insbesondere weniger als 50%, der Enzymaktivität vor der Verarbeitung beträgt.
  • Besonders bevorzugt werden Wasch- oder Reinigungsmittel verarbeitet, welche neben den Bleichmitteln weitere wasch- und reinigungsaktive Substanzen, vorzugsweise aus der Gruppe der Bleichaktivatoren, Polymere, Gerüststoffe, Tenside, Enzyme, Desintegrationshilfsmittel, Elektrolyte, pH-Stellmittel, Duftstoffe, Parfümträger, Farbstoffe, Hydrotrope, Schauminhibitoren, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Einlaufverhinderer, Knitterschutzmittel, Farbübertragungs-inhibitoren, antimikrobiellen Wirkstoffe, Germizide, Fungizide, Antioxidantien, Korrosionsinhibitoren, Antistatika, Phobier- und Imprägniermittel, Quell- und Schiebefestmittel, nichtwässrigen Lösungsmittel, Weichspüler, Proteinhydrolysatte, sowie UV-Absorber enthalten.
  • Als wichtige Bestandteile von Wasch- und Reinigungsmitteln können in den erfindungsgemäß verarbeiteten Mitteln neben anderen Bestandteilen Bleichmittel und Bleichkaktivatoren enthalten sein. Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumpercarbonat, das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Reinigungsmittelformkörper für das maschinelle Geschirrspülen können auch Bleichmittel aus der Gruppe der organischen Bleichmittel enthalten. Typische organische Bleichmittel sind die Diacylperoxide, wie z.B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesium-monoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, ε-Phthalimidoperoxycapronsäure [Phthaloiminoperoxyhexansäure (PAP)], o-Carboxybenzamidoperoxycapronsäure, N-nonenylamidoperadipinsäure und N-nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1,9-Diperoxyazelainsäure, Diperocysebacinsäure, Diperoxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyldiperoxybutan-1,4-disäure, N,N-Terephthaloyl-di(6-aminopercapronsäue) können eingesetzt werden.
  • Hanelt es sich bei den erfindungsgemäß verarbeiteten Mitteln um maschinelle Geschirrspülmittel, so können diese Bleichaktivatoren enthalten, um beim Reinigen bei Temperaturen von 60°C und darunter eine verbesserte Bleichwirkung zu erreichen. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoyl-succinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran.
  • Weitere im Rahmen der vorliegenden Anmeldung bevorzugt eingesetzte Bleichaktivatoren sind Verbindungen aus der Gruppe der kationischen Nitrile, insbesondere kationische Nitril der Formel
    Figure 00190001
    in der R1 für -H, -CH3, einen C2-24-Alkyl- oder -Alkenylrest, einen substituierten C2-24-Alkyl- oder -Alkenylrest mit mindestens einem Substituenen aus der Gruppe -Cl, -Br, -OH, -NH2, -CN, einen Alkyl- oder Alkenylarylrest mit einer C1-24-Alkylgruppe, oder für einen substituierten Alkyl- oder Alkenylarylrest mit einer C1-24-Alkylgruppe und mindestens einem weiteren Substituenten am aromatischen Ring steht, R2 und R3 unabhängig voneinander ausgewählt sind aus -CH2-CN, -CH3, -CH2-CH3, -CH2-CH2-CH3, -CH(CH3)-CH3, -CH2-OH, -CH2-CH2-OH, -CH(OH)-CH3, -CH2-CH2-CH2-OH, -CH2-CH(OH)-CH3, -CH(OH)-CH2-CH3, -(CH2CH2-O)nH mit n = 1, 2, 3, 4, 5 oder 6 und X ein Anion ist.
  • In erfindungsgemäß besonders bevorzugt verarbeiteten Mitteln ist ein kationisches Nitril der Formel
    Figure 00200001
    enthalten, in der R4, R5 und R6 unabhängig voneinander ausgewählt sind aus -CH3, -CH2-CH3, -CH2-CH2-CH3, -CH(CH3)-CH3, wobei R4 zusätzlich auch -H sein kann und X ein Anion ist, wobei vorzugsweise R5 = R6 = -CH3 und insbesondere R4 = R5 = R6 = -CH3 gilt und Verbindungen der Formeln (CH3)3N(+)CH2-CN X-, (CH3CH2)3N(+)CH2-CN X-, (CH3CH2CH2)3N(+)CH2-CN X-, (CH3CH(CH3))3N(+)CH2-CN X-, oder (HO-CH2-CH2)3N(+)CH2-CN X- besonders bevorzugt sind, wobei aus der Gruppe dieser Substanzen wiederum das kationische Nitril der Formel (CH3)3N(+)CH2-CN X-, in welcher X- für ein Anion steht, das aus der Gruppe Chlorid, Bromid, Iodid, Hydrogensulfat, Methosulfat, p-Toluolsulfonat (Tosylat) oder Xylolsulfonat ausgewählt ist, besonders bevorzugt wird.
  • Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in die Mittel eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru- oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
  • Bei den Tensiden kommen insbesondere die Aniontenside in Säureform, wäßrige Lösungen oder Pasten der neutralisierten Aniontensidsäuren, nichtionische Tenside und/oder Kationtenside bzw. amphotere Tenside in Betracht. In Abhängigkeit von der Wahl des/der eingesetzten Tenside sind tensidhaltige Mittel beispielsweise in der Beseitigung von Fett- oder Ölverschmutzungen einsetzbar, wobei ihr Einsatzgebiet von der Textilreinigung bis zur Beseitigung von Ölverschmutzungen in der Natur reicht. Im Rahmen der vorliegenden Anmeldung werden Granulate bevorzugt, welche einen Tensidgehalt von 1 bis 70 Gew.-%, besonders bevorzugt von 2 bis 60 Gew.-%, insbesondere bevorzugt von 4 bis 50 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Mittel, aufweisen.
  • Neben den genannten Inhaltsstoffen Bleichmittel und Bleichaktivator sind Gerüststoffe weitere wichtige Inhaltsstoffe von Wasch- Reinigungsmitteln. Erfindungsgemäß besonders bevorzugt verarbeitete Mittel können dabei alle üblicherweise in Reinigungsmitteln eingesetzten Gerüststoffe enthalten, insbesondere also Zeolithe, Silikate, Carbonate, organische Cobuilder und – wo keine ökologischen Vorurteile gegen ihren Einsatz bestehen – auch die Phosphate. Die genannten Gerüststoffe können dabei selbstverständlich auch in tensidfreien Komprimaten eingesetzt werden.
  • Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2X+1H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5·yH2O bevorzugt.
  • Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1:2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharten Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharte Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate weisen ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen auf. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
  • Der einsetzbare feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel nNa2O·(1-n)K2O·Al2O3·(2 – 2,5)SiO2·(3,5 – 5,5)H2O beschrieben werden kann. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
  • Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte.
  • Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate.
  • Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-)-Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
  • Natriumdihydrogenphosphat, NaH2PO4, Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, Trinatriumphosphat, tertiäres Natriumphosphat, Na3PO4, Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7 und durch Kondensation des NaH2PO4 bzw. des KH2PO4 entstehen höhermol. Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann sind ebenso wie das Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat) weitere im Rahmen der vorliegenden Anmeldung mit Vorteil eingesetzte Gerüststoffe.
  • Besonders bevorzugt werden erfindungsgemäße Verfahren, bei welchen das zu verarbeitende feste Wasch- oder Reinigungsmittel einen Phosphatgehalt zwischen 1 und 90 Gew.-%, besonders bevorzugt zwischen 10 und 80 Gew.-% und insbesondere zwischen 20 und 70 Gew.-% aufweist. Werden in dem erfindungsgemäßen Verfahren Mittel mit einem hohen Phosphatgehalt, das heißt mit einem Phosphatgehalt oberhalb 70 Gew.-% eingesetzt, so beträgt die Mengen des in Schritt a) des erfindungsgemäßen Verfahrens zugesetzten Wasser vorzugsweise mindestens 20 Gew.-%, besonders bevorzugt mindestens 24 Gew.-% und insbesondere mindestens 26 Gew.-%, jeweils bezogen auf das Gewicht des resultierenden Stoffgemisches. Bei festen Wasch- oder Reinigungsmitteln mit einem Phosphatgehalt unterhalb 70 Gew.-%, vorzugsweise im Bereich von 30 bis 60 Gew.-%, insbesondere im Bereich von 40 bis 57 Gew.-%, wird in bevorzugten Ausführungsvarianten des erfindungsgemäßen Verfahrens in Schritt a) Wasser in Mengen zwischen 4 und 18 Gew.-%, vorzugsweise zwischen 6 und 16 Gew.-%, jeweils bezogen auf das Gesamtgewicht der resultierenden Mischung, zugesetzt.
  • Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Alkali- und insbesondere Natriumsalze einsetzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
  • Als weitere Bestandteile können Alkaliträger zugegen sein. Als Alkaliträger gelten Alkalimetallhydroxide, Alkalimetallcarbonate, Alkalimetallhydrogencarbonate, Alkalimetallsesquicarbonate, Alkalisilikate, Alkalimetasilikate, und Mischungen der vorgenannten Stoffe, wobei im Sinne dieser Erfindung bevorzugt die Alkalicarbonate, insbesondere Natriumcarbonat, Natriumhydrogencarbonat oder Natriumsesquicarbonat eingesetzt werden.
  • Handelt es sich bei den erfindungsgemäß verarbeiteten Mittel um maschinelle Geschirrspülmittel, so können diese wasserlösliche Builder enthalten, da diese auf Geschirr und harten Oberflächen in der Regel weniger dazu tendieren, unlösliche Rückstände zu bilden. Übliche Builder sind die niedermolekularen Polycarbonsäuren und ihre Salze, die homopolymeren und copolymeren Polycarbonsäuren und ihre Salze, die Carbonate, Phosphate und Silikate. Bevorzugt werden zur Herstellung von Tabletten für das maschinelle Geschirrspülen Trinatriumcitrat und/oder Pentanatriumtripolyphosphat und/oder Natriumcarbonat und/oder Natriumbicarbonat und/oder Gluconate und/oder silikatische Builder aus der Klasse der Disilikate und/oder Metasilikate eingesetzt. Besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat. Ebenfalls besonders bevorzugt ist ein Buildersystem, das eine Mischung aus Tripolyphosphat und Natriumcarbonat und Natriumdisilikat enthält.
  • Als organische Cobuilder können in den Reinigungsmitteln im Rahmen der vorliegenden Erfindung insbesondere Polycarboxylate/Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.
  • Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Methylglycindiessigsäure, Zuckersäuren und Mischungen aus diesen.
  • Auch die Säuren an sich können eingesetzt Säuren. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
  • Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
  • Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
  • Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 1000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 1000 bis 10000 g/mol, und besonders bevorzugt von 1200 bis 4000 g/mol, aufweisen, bevorzugt sein.
  • Besonders bevorzugt werden Mittel verarbeitet, welche sowohl Polyacrylate als auch Copolymere aus ungesättigten Carbonsäuren, Sulfonsäuregruppen-haltigen Monomeren sowie gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren enthalten. Die Sulfonsäuregruppen-haltigen Copolymere werden in der Folge ausführlich beschrieben.
  • Es lassen sich aber auch Mittel verarbeiten, welche als sogenannte „3 in 1"-Produkte die herkömmlichen Reiniger, Klarspüler und eine Salzersatzfunktion in sich vereinen. Hierbei sind maschinelle Geschirrspülmittel bevorzugt, die zusätzlich 0,1 bis 70 Gew-% an Copolymeren aus
    • i) ungesättigten Carbonsäuren
    • ii) Sulfonsäuregruppen-haltigen Monomeren
    • iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
    enthalten.
  • Diese Copolymere bewirken, daß die mit solchen Mitteln behandelten Geschirrteile bei nachfolgenden Reinigungsvorgängen deutlich sauberer werden, als Geschirrteile, die mit herkömmlichen Mitteln gespült wurden.
  • Im Rahmen der vorliegenden Erfindung sind ungesättigte Carbonsäuren der Formel I als Monomer bevorzugt, R1(R2)C=C(R3)COOH (I),in der R1 bis R3 unabhängig voneinander für -H-CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettiger oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist.
  • Unter den ungesättigten Carbonsäuren, die sich durch die Formel I beschreiben lassen, sind insbesondere Acrylsäure (R1 = R2 = R3 = H), Methacrylsäure (R1 = R2 = H; R3 = CH3) und/oder Maleinsäure (R1 = COOH; R2 = R3 = H) bevorzugt.
  • Bei den Sulfonsäuregruppen-haltigen Monomeren sind solche der Formel II bevorzugt, R5(R6)C=C(R7)-X-SO3H (II),in der R5 bis R7 unabhängig voneinander für -H-CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettiger oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)-.
  • Unter diesen Monomeren bevorzugt sind solche der Formeln IIa, IIb und/oder IIc, H2C=CH-X-SO3H (IIa), H2C=C(CH3)-X-SO3H (IIb), HO3S-X-(R6)C=C(R7)-X-SO3H (IIc),in denen R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)-.
  • Besonders bevorzugte Sulfonsäuregruppen-haltige Monomere sind dabei 1-Acrylamido-1-propansulfonsäure (X = -C(O)NH-CH(CH2CH3) in Formel IIa), 2-Acrylamido-2-propansulfonsäure (X = -C(O)NH-C(CH3)2 in Formel IIa), 2-Acrylamido-2-methyl-1-propansulfonsäure (X = -C(O)NH-C(CH3)2CH2- in Formel IIa), 2-Methacrylamido-2-methyl-1-propansulfonsäure (X = -C(O)NH-C(CH3)2CH2- in Formel IIb), 3-Methacrylamido-2-hydroxy-propansulfonsäure (X = -C(O)NH-CH2CH(OH)CH2- in Formel IIb), Allylsulfonsäure (X = CH2 in Formel IIa), Methallylsulfonsäure (X = CH2 in Formel IIb), Allyloxybenzolsulfonsäure (X = -CH2-O-C6H4- in Formel IIa), Methallyloxybenzolsulfonsäure (X = -CH2-O-C6H4- in Formel XIb), 2-Hydroxy-3-(2-propenyloxy)propansulfonsäure, 2-Methyl-2-propen1-sulfonsäure (X = CH2 in Formel IIb), Styrolsulfonsäure (X = C6H4 in Formel IIa), Vinylsulfonsäure (X nicht vorhanden in Formel IIa), 3-Acrylamido-propansulfonsäure (X = -C(O)NH-CH2CH2CH2- in Formel IIa), 3-Methacrylamido-propansulfonsäure (X = -C(O)NH-CH2CH2CN2- in Formel IIb), Sulfomethacrylamid (X = -C(O)NH- in Formel IIb), Sulfomethylmethacrylamid (X = -C(O)NH-CH2- in Formel IIb) sowie wasserlösliche Salze der genannten Säuren.
  • Als weitere ionische oder nichtionogene Monomere kommen insbesondere ethylenisch ungesättigte Verbindungen in Betracht. Vorzugsweise beträgt der Gehalt der enthaltenen Polymere an Monomeren der Gruppe iii) weniger als 20 Gew.-%, bezogen auf das Polymer. Besonders bevorzugt zu verwendende Polymere bestehen lediglich aus Monomeren der Gruppen i) und ii).
  • Zusammenfassend sind Copolymere aus
    • i) ungesättigten Carbonsäuren der Formel I. R1(R2)C=C(R3)COOH(H), in der R1 bis R3 unabhängig voneinander für -H-CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettiger oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist,
    • ii) Sulfonsäuregruppen-haltigen Monomeren der Formel II R5(R6)C=C(R7)-X-SO3H (II),in der R5 bis R7 unabhängig voneinander für -H-CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettiger oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n mit n = 0 bis 4, -COO(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)
    • iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
    besonders bevorzugt.
  • Besonders bevorzugte Copolymere bestehen aus
    • i) einer oder mehrerer ungesättigter Carbonsäuren aus der Gruppe Acrylsäure, Methacrylsäure und/oder Maleinsäure
    • ii) einem oder mehreren Sulfonsäuregruppen-haltigen Monomeren der Formeln IIa, IIb und/oder IIc: H2C=CH-X-SO3H (IIa), H2C=C(CH3)-X-SO3H (IIb), HO3S-X-(R6)C=C(R7)-X-SO3H (IIc),in der R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2) mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)
    • iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren.
  • Die in den Mitteln enthaltenen Copolymere können die Monomere aus den Gruppen i) und ii) sowie gegebenenfalls iii) in variierenden Mengen enthalten, wobei sämtliche Vertreter aus der Gruppe i) mit sämtlichen Vertretern aus der Gruppe ii) und sämtlichen Vertretern aus der Gruppe iii) kombiniert werden können. Besonders bevorzugte Polymere weisen bestimmte Struktureinheiten auf, die nachfolgend beschrieben werden.
  • So werden beispielsweise solche Mittel bevorzugt verarbeitet, die dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel III -[CH2-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p- (III),enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
  • Diese Polymere werden durch Copolymerisation von Acrylsäure mit einem Sulfonsäuregruppenhaltigen Acrylsäurederivat hergestellt. Copolymerisiert man das Sulfonsäuregruppen-haltige Acrylsäurederivat mit Methacrylsäure, gelangt man zu einem anderen Polymer, dessen Einsatz in den erfindungsgemäß besonders bevorzugt verarbeiteten Mitteln ebenfalls bevorzugt wird und welches dadurch gekennzeichnet ist, daß die Mittel ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel IV -[CH2-C(CH3)COOH]m-[CH2-CHC(O)-Y-SO3H]p- (IV),enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2) mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
  • Völlig analog lassen sich Acrylsäure und/oder Methacrylsäure auch mit Sulfonsäuregruppenhaltigen Methacrylsäurederivaten copolymerisieren, wodurch die Struktureinheiten im Molekül verändert werden. So werden solche Mittel besonders bevorzugt verarbeitet, die ein oder mehrere Copolymere enthalten, welche Struktureinheiten der Formel V -[CH2-CHCOOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p- (V),enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2) mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind, ebenfalls eine bevorzugte Ausführungsform der vorliegenden Erfindung, genau wie auch Mittel bevorzugt sind, die dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel VI -[CH2-C(CH3)COOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p- (VI),enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2) mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
  • Anstelle von Acrylsäure und/oder Methacrylsäure bzw. in Ergänzung hierzu kann auch Maleinsäure als besonders bevorzugtes Monomer aus der Gruppe i) eingesetzt werden. Man gelangt auf diese Weise zu erfindungsgemäß bevorzugt verarbeiteten Mitteln, die dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel VII -[HOOCCH-CHCOOH)m-[CH2-CHC(O)-Y-SO3H]p- (VII),enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n mit n = 0 bis 4, für -O-(C6H4)=, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind und zu Mitteln, welche dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel VIII -[HOOCCH-CHCOOH]m-[CH2-C(CH3)C(O)O-Y-SO3H]p- (VIII),enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2) mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
  • Zusammenfassend werden solche maschinellen Geschirrspülmittel bevorzugt verarbeitet, die als Inhaltsstoff b) ein oder mehrere Copolymere enthält, die Struktureinheiten der Formeln III und/oder IV und/oder V und/oder VI und/oder VII und/oder VIII -[CH2-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p- (III), -[CH2-C(CH3)COOH]m-[CH2-CHC(O)-Y-SO3H)p- (IV), -[CH2-CHCOOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p- (V), -[CH2-C(CH3)COOH]m -[CH2-C(CH3)C(O)-Y-SO3H]p- (VI), -[HOOCCH-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p- (VII), -[HOOCCH-CHCOOH]m -[CH2-C(CH3)C(O)O-Y-SO3H]p- (VIII),enthalten, in denen m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
  • In den Polymeren können die Sulfansäuregruppen ganz oder teilweise in neutralisierter Form vorliegen, d.h. daß das acide Wasserstoffatom der Sulfonsäuregruppe in einigen oder allen Sulfonsäuregruppen gegen Metallionen, vorzugsweise Alkalimetallionen und insbesondere gegen Natriumionen, ausgetauscht sein kann. Entsprechende Mittel, die dadurch gekennzeichnet sind, daß die Sulfonsäuregruppen im Copolymer teil- oder vollneutralisiert vorliegen, werden erfindungsgemäß bevorzugt verarbeitet.
  • Die Monomerenverteilung der in den erfindungsgemäß bevorzugt verarbeiteten Mitteln eingesetzten Copolymeren beträgt bei Copolymeren, die nur Monomere aus den Gruppen i) und ii) enthalten, vorzugsweise jeweils 5 bis 95 Gew.-% i) bzw. ii), besonders bevorzugt 50 bis 90 Gew.-% Monomer aus der Gruppe i) und 10 bis 50 Gew.-% Monomer aus der Gruppe ii), jeweils bezogen auf das Polymer.
  • Bei Terpolymeren sind solche besonders bevorzugt, die 20 bis 85 Gew.-% Monomer aus der Gruppe i), 10 bis 60 Gew.-% Monomer aus der Gruppe ii) sowie 5 bis 30 Gew.-% Monomer aus der Gruppe iii) enthalten.
  • Die Molmasse der in den erfindungsgemäß bevorzugt verarbeiteten Mitteln eingesetzten Polymere kann variiert werden, um die Eigenschaften der Polymere dem gewünschten Verwendungszweck anzupassen. Bevorzugte maschinelle Geschirrspülmittel sind dadurch gekennzeichnet, daß die Copolymere Molmassen von 2000 bis 200.000 gmol-1, vorzugsweise von 4000 bis 25.000 gmol-1 und insbesondere von 5000 bis 15.000 gmol-1 aufweisen.
  • Der Gehalt an einem oder mehreren Copolymeren in den erfindungsgemäß bevorzugt verarbeiteten Mitteln kann je nach Anwendungszweck und gewünschter Produktleistung variieren, wobei bevorzugt maschinelle Geschirrspülmittel verarbeitet werden, welche dadurch gekennzeichnet sind, daß sie das bzw. die Copolymere) in Mengen von 0,25 bis 50 Gew.-%, vorzugsweise von 0,5 bis 35 Gew.-%, besonders bevorzugt von 0,75 bis 20 Gew.-% und insbesondere von 1 bis 15 Gew.-% enthalten.
  • Wie bereits weiter oben erwähnt, können in den erfindungsgemäß bevorzugt verarbeiteten Mitteln besonders bevorzugt sowohl Polyacrylate als auch die vorstehend beschriebenen Copolymere aus ungesättigten Carbonsäuren, Sulfonsäuregruppen-haltigen Monomeren sowie gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren enthalten sein. Die Polyacrylate wurden dabei weiter oben ausführlich beschrieben. Besonders bevorzugt sind Kombinationen aus den vorstehend beschriebenen Sulfonsäuregruppen-haltigen Copolymeren mit Polyacrylaten niedriger Molmasse, beispielsweise im Bereich zwischen 1000 und 4000 Dalton. Solche Polyacrylate sind kommerziell unter dem Handelsnamen Sokalan® PA15 bzw. Sokalan® PA25 (BASF) erhältlich.
  • Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 100000 g/mol, vorzugsweise 20000 bis 90000 g/mol und insbesondere 30000 bis 80000 g/mol.
  • Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
  • Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
  • Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
  • Als Aniontenside in Säureform werden bevorzugt ein oder mehrere Stoffe aus der Gruppe der Carbonsäuren, der Schwefelsäurehalbester und der Sulfonsäuren, vorzugsweise aus der Gruppe der Fettsäuren, der Fettalkylschwefelsäuren und der Alkylarylsulfonsäuren, eingesetzt. Um ausreichende oberflächenaktive Eigenschaften aufzuweisen, sollten die genannten Verbindungen dabei über längerkettige Kohlenwasserstoffreste verfügen, also im Alkyl- oder Alkenylrest mindestens 6C-Atome aufweisen. Üblicherweise liegen die C-Kettenverteilungen der Aniontenside im Bereich von 6 bis 40, vorzugsweise 8 bis 30 und insbesondere 12 bis 22 Kohlenstoffatome.
  • Carbonsäuren, die in Form ihrer Alkalimetallsalze als Seifen in Wasch- und Reinigungsmitteln Verwendung finden, werden technisch größtenteils aus nativen Fetten und Ölen durch Hydrolyse gewonnen. Während die bereits im vergangenen Jahrhundert durchgeführte alkalische Verseifung direkt zu den Alkalisalzen (Seifen) führte, wird heute großtechnisch zur Spaltung nur Wasser eingesetzt, das die Fette in Glycerin und die freien Fettsäuren spaltet. Großtechnisch angewendete Verfahren sind beispielsweise die Spaltung im Autoklaven oder die kontinuierliche Hochdruckspaltung. Im Rahmen der vorliegenden Erfindung als Aniontensid in Säureform einsetzbare Carbonsäuren sind beispielsweise Hexansäure (Capronsäure), Heptansäure (Önanthsäure), Octan- säure (Caprylsäure), Nonansäure (Pelargonsäure), Decansäure (Caprinsäure), Undecansäure usw.. Bevorzugt ist im Rahmen der vorliegenden Verbindung der Einsatz von Fettsäuren wie Dodecansäure (Laurinsäure), Tetradecansäure (Myristinsäure), Hexadecansäure (Palmitinsäure), Octadecansäure (Stearinsäure), Eicosansäure (Arachinsäure), Docosansäure (Behensäure), Tetracosansäure (Lignocerinsäure), Hexacosansäure (Cerotinsäure), Triacotansäure (Melissinsäure) sowie der ungesättigten Spezies 9c-Hexadecensäure (Palmitoleinsäure), 6c-Octadecensäure (Petroselinsäure), 6t-Octadecensäure (Petroselaidinsäure), 9c-Octadecensäure (Ölsäure), 9t-Octadecensäure ((Elaidinsäure), 9c,12c-Octadecadiensäure (Linolsäure), 9t,12t-Octadecadiensäure (Linolaidinsäure) und 9c,12c,15c-Octadecatreinsäure (Linolensäure). Aus Kostengründen ist es bevorzugt, nicht die reinen Spezies einzusetzen, sondern technische Gemische der einzelnen Säuren, wie sie aus der Fettspaltung zugänglich sind. Solche Gemische sind beispielsweise Koskosölfettsäure (ca. 6 Gew.-% C8, 6 Gew.-% C10, 48 Gew.-% C12, 18 Gew.-% C14, 10 Gew.-% C16, 2 Gew.-% C18, 8 Gew.-% C18', 1 Gew.-% C18''), Palmkernölfettsäure (ca. 4 Gew.-% C8, 5 Gew.-% C10, 50 Gew.-% C12, 15 Gew.-% C14, 7 Gew.-% C16, 2 Gew.-% C18, 15 Gew.-% C18', 1 Gew.-% C18''), Talgfettsäure (ca. 3 Gew.% C14, 26 Gew.-% C16, 2 Gew.-% C16', 2 Gew.-% C17, 17 Gew.-% C18, 44 Gew.-% C18', 3 Gew.-% C18'', 1 Gew.-% C18'''), gehärtete Talgfettsäure (ca. 2 Gew.-% C14, 28 Gew.-% C16, 2 Gew.-% C17, 63 Gew.-% C18, 1 Gew.-% C18'), technische Ölsäure (ca. 1 Gew.-% C12, 3 Gew.-% C14, 5 Gew.-% C16, 6 Gew.-% C16', 1 Gew.-% C17, 2 Gew.-% C18, 70 Gew.-% C18', 10 Gew.-% C18'', 0,5 Gew.-% C18'''), technische Palmitin/Stearinsäure (ca. 1 Gew.-% C12, 2 Gew.- C14, 45 Gew.-% C16, 2 Gew.-% C17, 47 Gew.-% C18, 1 Gew.-% C18') sowie Sojabohnenölfettsäure (ca. 2 Gew.-% C14, 15 Gew.-% C16, 5 Gew.-% C18, 25 Gew.-% C18', 45 Gew.-% C18'', 7 Gew.-% C18''').
  • Schwefelsäurehalbester längerkettiger Alkohole sind ebenfalls Aniontenside in ihrer Säureform und im Rahmen der vorliegenden Erfindung einsetzbar. Ihre Alkalimetall-, insbesondere Natriumsalze, die Fettalkoholsulfate, sind großtechnisch aus Fettalkoholen zugänglich, welche mit Schwefelsäure, Chlorsulfonsäure, Amidosulfonsäure oder Schwefeltrioxid zu den betreffenden Alkylschwefelsäuren umgesetzt und nachfolgend neutralisiert werden. Die Fettalkohole werden dabei aus den betreffenden Fettsäuren bzw. Fettsäuregemischen durch Hochdruckhydrierung der Fettsäuremethylester gewonnen. Der mengenmäßig bedeutendste industrielle Prozeß zur Herstellung von Fettalkylschwefelsäuren ist die Sulfierung der Alkohole mit SO3/Luft-Gemischen in speziellen Kaskaden-, Fallfilm- oder Röhrenbündelreaktoren.
  • Eine weitere Klasse von Aniontensidsäuren, die in den erfindungsgemäß bevorzugt verarbeiteten Mitteln enthalten sein kann, sind die Alkyletherschwefelsäuren, deren Salze, die Alkylethersulfate, sich im Vergleich zu den Alkylsulfaten durch eine höhere Wasserlöslichkeit und geringere Empfindlichkeit gegen Wasserhärte (Löslichkeit der Ca-Salze) auszeichnen. Alkyletherschwefelsäuren werden wie die Alkylschwefelsäuren aus Fettalkoholen synthetisiert, welche mit Ethylenoxid zu den betreffenden Fettalkoholethoxylaten umgesetzt werden. Anstelle von Ethylenoxid kann auch Propylenoxid eingesetzt werden. Die nachfolgende Sulfonierung mit gasförmigem Schwefeltrioxid in Kurzzeit-Sulfierreaktoren liefert Ausbeuten über 98% an den betreffenden Alkyletherschwefelsäuren.
  • Auch Alkansulfonsäuren und Olefinsulfonsäuren sind im Rahmen der vorliegenden Erfindung als Aniontenside in Säureform einsetzbar. Alkansulfonsäuren können die Sulfonsäuregruppe terminal gebunden (primäre Alkansulfonsäuren) oder entlang der C-Kette enthalten (sekundäre Alkansulfonsäuren), wobei lediglich die sekundären Alkansulfonsäuren kommerzielle Bedeutung besitzen. Diese werden durch Sulfochlorierung oder Sulfoxidation linearer Kohlenwasserstoffe hergestellt. Bei der Sulfochlorierung nach Reed werden n-Paraffine mit Schwefeldioxid und Chlor unter Bestrahlung mit UV-Licht zu den entsprechenden Sulfochloriden umgesetzt, die bei Hydrolyse mit Alkalien direkt die Alkansulfonate, bei Umsetzung mit Wasser die Alkansulfonsäuren, liefern. Da bei der Sulfochlorierung Di- und Polysulfochlaride sowie Chlorkohlenwasserstoffe als Nebenprodukte der radikalischen Reaktion auftreten können, wird die Reaktion üblicherweise nur bis zu Umsetzungsgraden von 30% durchgeführt und danach abgebrochen.
  • Ein anderer Prozeß zur Herstellung von Alkansulfonsäuren ist die Sulfoxidation, bei der n-Paraffine unter Bestrahlung mit UV-Licht mit Schwefeldioxid und Sauerstoff umgesetzt werden. Bei dieser Radikalreaktion entstehen sukzessive Alkylsulfonylradikale, die mit Sauerstoff zu den Alkylpersulfonylradiaklen weiter reagieren. Die Reaktion mit unumgesetztem Paraffin liefert ein Alkylradikal und die Alkylpersulfonsäure, welche in ein Alkylperoxysulfonylradikal und ein Hydroxylradikal zerfällt. Die Reaktion der beiden Radikale mit unumgesetztem Paraffin liefert die Alkylsulfonsäuren bzw. Wasser, welches mit Alkylpersulfonsäure und Schwefeldioxid zu Schwefelsäure reagiert. Um die Ausbeute an den beiden Endprodukten Alkylsulfonsäure und Schwefelsäure möglichst hoch zu halten und Nebenreaktionen zu unterdrücken, wird diese Reaktion üblicherweise nur bis zu Umsetzungsgraden von 1% durchgeführt und danach abgebrochen.
  • Olefinsulfonate werden technisch durch Reaktion von α-Olefinen mit Schwefeltrioxid hergestellt. Hierbei bilden sich intermediär Zwitterionen, welche sich zu sogenannten Sultonen cyclisieren. Unter geeigneten Bedingungen (alkalische oder saure Hydrolyse) reagieren diese Sultone zu Hydroxylalkansulfonsäuren bzw. Alkensulfonsäuren, welche beide ebenfalls als Aniontensidsäuren eingesetzt werden können.
  • Alkylbenzolsulfonate als leistungsstarke anionische Tenside sind seit den dreißiger Jahren unseres Jahrhunderts bekannt. Damals wurden durch Monochlorierung von Kogasin-Fraktionen und subsequente Friedel-Crafts-Alkylierung Alkylbenzole hergestellt, die mit Oleum sulfoniert und mit Natronlauge neutralisiert wurden. Anfang der fünfziger Jahre wurde zur Herstellung von Alkylbenzolsulfonaten Propylen zu verzweigtem α-Dodecylen tetramerisiert und das Produkt über eine Friedel-Crafts-Reaktion unter Verwendung von Aluminiumtrichlorid oder Fluorwasserstoff zum Tetrapropylenbenzol umgesetzt, das nachfolgend sulfoniert und neutralisiert wurde. Diese ökonomische Möglichkeit der Herstellung von Tetrapropylenbenzolsulfonaten (TPS) führte zum Durchbruch dieser Tensidklasse, die nachfolgend die Seifen als Haupttensid in Wasch- und Reinigungsmitteln verdrängte.
  • Aufgrund der mangelnden biologischen Abbaubarkeit von TPS bestand die Notwendigkeit, neue Alkylbenzolsulfonate darzustellen, die sich durch ein verbessertes ökologische Verhalten auszeichnen. Diese Erfordernisse werden von linearen Alkylbenzolsulfonaten erfüllt, welche heute die fast ausschließlich hergestellten Alkylbenzolsulfonate sind und mit dem Kurzzeichen ABS bzw. LAS belegt werden.
  • Lineare Alkylbenzolsulfonate werden aus linearen Alkylbenzolen hergestellt, welche wiederum aus linearen Olefinen zugänglich sind. Hierzu werden großtechnisch Petroleumfraktionen mit Molekularsieben in die n-Paraffine der gewünschten Reinheit aufgetrennt und zu den n-Olefinen dehydriert, wobei sowohl α- als auch i-Olefine resultieren. Die entstandenen Olefine werden dann in Gegenwart saurer Katalysatoren mit Benzol zu den Alkylbenzolen umgesetzt, wobei die Wahl des Friedel-Crafts-Katalysators einen Einfluß auf die Isomerenverteilung der entstehenden linearen Alkylbenzole hat: Bei Verwendung von Aluminiumtrichlorid liegt der Gehalt der 2-Phenyl-Isomere in der Mischung mit den 3-, 4-, 5- und anderen Isomeren bei ca. 30 Gew.-%, wird hingegen Fluorwasserstoff als Katalysator eingesetzt, läßt sich der Gehalt an 2-Phenyl-Isomer auf ca. 20 Gew.-% senken. Die Sulfonierung der linearen Alkylbenzole schließlich gelingt heute großtechnisch mit Oleum, Schwefelsäure oder gasförmigem Schwefeltrioxid, wobei letzteres die weitaus größte Bedeutung hat. Zur Sulfonierung werden spezielle Film- oder Rohrbündelreaktoren eingesetzt, die als Produkt eine 97 Gew.-%ige Alkylbenzolsulfonsäure (ABSS) liefern, die im Rahmen der vorliegenden Erfindung als Aniontensidsäure einsetzbar ist.
  • Durch Wahl des Neutralisationsmittels lassen sich aus den ABSS die unterschiedlichsten Salze, d.h. Alkylbenzolsulfonate, gewinnen. Aus Gründen der Ökonomie ist es hierbei bevorzugt, die Alkalimetallsalze und unter diesen bevorzugt die Natriumsalze der ABSS herzustellen und einzusetzen. Diese lassen sich durch die allgemeine Formel IX beschreiben:
    Figure 00340001
    in der die Summe aus x und y üblicherweise zwischen 5 und 13 liegt. Erfindungsgemäß bevorzugt enthalten die zu verarbeitenden Mittel als Aniontensid in Säureform C8-16-, vorzugsweise C9-13-Alkylbenzolsulfonsäuren. Es ist im Rahmen der vorliegenden Erfindung weiterhin bevorzugt, C8-16-, vorzugsweise C9-13-Alkybenzolsulfionsäuren einzusetzen, die sich von Alkylbenzolen ableiten, welche einen Tetralingehalt unter 5 Gew.-%, bezogen auf das Alkylbenzol, aufweisen. Weiterhin bevorzugt ist es, Alkylbenzolsulfonsäuren zu verwenden, deren Alkylbenzole nach dem HF-Verfahren hergestellt wurden, so daß die eingesetzten C8-16-, vorzugsweise C9-13-Alkybenzolsulfonsäuren einen Gehalt an 2-Phenyl-Isomer unter 22 Gew.-%, bezogen auf die Alkylbenzolsulfonsäure, aufweisen.
  • Die vorstehend genannten Aniontenside in ihrer Säureform können alleine oder in Mischung miteinander eingesetzt werden. Es ist aber auch möglich und bevorzugt, daß dem Aniontensid in Säureform vor der Zugabe auf das/die Trägermaterialien) weitere, vorzugsweise saure, Inhaltsstoffe von Wasch- und Reinigungsmitteln in Mengen von 0,1 bis 40 Gew.-%, vorzugsweise von 1 bis 15 Gew.-% und insbesondere von 2 bis 10 Gew.-%, jeweils bezogen auf das Gewicht der umzusetzenden Mischung, zugemischt werden.
  • Als saure Reaktionspartner eignen sich im Rahmen der vorliegenden Erfindung neben den „Tensidsäuren" auch die genannten Fettsäuren, Phosphonsäuren, Polymersäuren oder teilneutralisierte Polymersäuren sowie „Buildersäuren" und „Komplexbuildersäuren" (Einzelheiten später im Text) alleine sowie in beliebigen Mischungen. Als Inhaltsstoffe von Wasch- und Reinigungsmitteln bieten sich vor allem saure Wasch- und Reinigungsmittel-Inhaltsstoffe an, also beispielsweise Phosphonsäuren, welche in neutralisierter Form (Phosphonate) als Inkrustationsinhibitoren Be standteil vieler Wasch- und Reinigungsmittel sind. Auch der Einsatz von (teilneutralisierten) Polymersäuren wie beispielsweise Polyacrylsäuren, ist erfindungsgemäß möglich. Es ist aber auch möglich, säurestabile Inhaltsstoffe mit der Aniontensidsäure zu vermischen. Hier bieten sich beispielsweise sogenannte Kleinkomponenten an, welche sonst in aufwendigen weiteren Schritten zugegeben werden müßten, also beispielsweise optische Aufheller, Farbstoffe usw., wobei im Einzelfall die Säurestabilität zu prüfen ist.
  • Selbstverständlich ist es auch möglich, die Aniontenside teil- oder vollneutralisiert einzusetzen. Diese Salze können dann als Lösung, Suspension oder Emulsion in der Granulierflüssigkeit vorliegen, aber auch als Feststoff Bestandteil des Feststoffbetts sein. Als Kationen für solche Aniontenside bieten sich neben den Alkalimetallen (hier insbesondere nach Anspruch- und K-Salze) Ammonium- sowie Mono-, Di- oder Triethanolalkonium-Ionen an. Anstelle von Mono-, Di- oder Triethanolamin können auch die analogen Vertreter des Mono-, Di- oder Trimethanolamins bzw. solche der Alkanolamine höherer Alkohole quaterniert und als Kation zugegen sein.
  • Auch Kationtenside lassen sich mit Vorteil als Aktivsubstanz einsetzen. Das Kationtensid kann dabei in seiner Lieferform direkt in den Mischer gegeben werden, oder in Form einer flüssigen bis pastösen Kationtensid-Zubereitungsform auf den festen Träger aufgedüst werden. Solche Kationtensid-Zubereitungsformen lassen sich beispielsweise durch Mischen handelsüblicher Kationtenside mit Hilfsstoffen wie nichtionischen Tensiden, Polyethylenglycolen oder Polyolen herstellen. Auch niedere Alkohole wie Ethanol und Isopropanol können eingesetzt werden, wobei die Menge an solchen niederen Alkoholen in der flüssigen Kationtensid-Zubereitungsform aus den obengenannten Gründen unter 10 Gew.-% liegen sollte.
  • Als Kationtenside kommen für die erfindungsgemäß zu verarbeitenden Mittel alle üblichen Stoffe in Betracht, wobei Kationtenside mit textilweichmachender Wirkung deutlich bevorzugt sind.
  • Die erfindungsgemäß zu verarbeitenden Mittel können als kationische Aktivsubstanzen mit textilweichmachender Wirkung ein oder mehrerer kationische, textilweichmachende Mittel der Formeln X, XI oder XII enthalten:
    Figure 00350001
    Figure 00360001
    worin jede Gruppe R1 unabhängig voneinander ausgewählt ist aus C1-6-Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen; jede Gruppe R2 unabhängig voneinander ausgewählt ist aus C8-28-Alkyl- oder -Alkenylgruppen; R3 = R1 oder (CH2)n-T-R2; R4 = R1 oder R2 oder (CH2)n-T-R2; T = -CH2-, -O-CO- oder -CO-O- und n eine ganze Zahl von 0 bis 5 ist.
  • In bevorzugten Ausführungsformen der vorliegenden Erfindung enthält/enthalten der/die Feststoff(e) zusätzlich Niotensid(e) als Aktivsubstanz.
  • Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
  • Als besonders bevorzugte Niotenside haben sich im Rahmen der vorliegenden Erfindung schwachschäumende Niotenside erwiesen, welche alternierende Ethylenoxid- und Alkylenoxideinheiten aufweisen. Unter diesen sind wiederum Tenside mit EO-AO-EO-AO-Blöcken bevorzugt, wobei jeweils eine bis zehn EO- bzw. AO-Gruppen aneinander gebunden sind, bevor ein Block aus den jeweils anderen Gruppen folgt. Hier werden solche Mittel bevorzugt verarbeitet, die als nichtionisches) Tenside) Tenside der allgemeinen Formel XIV enthalten
    Figure 00360002
    in der R1 für einen geradkettigen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten C6-24-Alkyl- oder -Alkenylrest steht; jede Gruppe R2 bzw. R3 unabhängig voneinander ausgewählt ist aus -CH3; -CH2CH3, -CH2CH2-CH3, CH(CH3)2 und die Indizes w, x, y, z unabhängig voneinander für ganze Zahlen von 1 bis 6 stehen.
  • Die bevorzugten Niotenside der Formel XIV lassen sich durch bekannte Methoden aus den entsprechenden Alkoholen R1-OH und Ethlyne- bzw. Alkylenoxid herstellen. Der Rest R1 in der vorstehenden Formel XIV kann je nach Herkunft des Alkohols variieren. Werden native Quellen genutzt, weist der Rest R1 eine gerade Anzahl von Kohlenstoffatomen auf und ist in der Regel unverzeigt, wobei die linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, bevorzugt sind. Aus sysnthetischen Quellen zugängliche Alkohole sind beispielsweise die Guerbetalkohole oder in 2-Stellung methylverzweigte bzw. lineare und methylverzweigte Reste im Gemisch, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Unanbhängig von der Art des zur Herstellung der in den zu verarbeitenden Mitteln enthaltenen Niotenside eingesetzten Alkohols werden solche Mittel bevorzugt verarbeitet; bei denen R1 in Formel XIV für einen Alkylrest mit 6 bis 24, vorzugsweise 8 bis 20, besonders bevorzugt 9 bis 15 und insbesondere 9 bis 11 Kohlenstoffatomen steht.
  • Als Alkylenoxideinheit, die alternierend zur Ethylenoxideinheit in den bevorzugten Niotensiden enthalten ist, kommt neben Propylenoxid insbesondere Butylenoxid in Betracht. Aber auch weitere Alkylenoxide, bei denen R2 bzw. R3 unabhängig voneinander ausgewählt sind aus -CH2CH2-CH3 bzw. CH(CH3)2 sind geeignet. Bevorzugte Mittel sind dadurch gekennzeichnet, daß R2 bzw. R3 für einen Rest -CH3, w und x unabhängig voneinander für Werte von 3 oder 4 und y und z unabhängig voneinander für Werte von 1 oder 2 stehen.
  • Zusammenfassend enthalten erfindungsgemäß bevorzugt verarbeitete Mittel insbesondere nichtionische Tenside, die einen C9-15-Alkylrest mit 1 bis 4 Ethylenoxideinheiten, gefolgt von 1 bis 4 Propylenoxideinheiten, gefolgt von 1 bis 4 Ethylenoxideinheiten, gefolgt von 1 bis 4 Propylenoxideinheiten aufweisen.
  • Die angegebenen C-Kettenlängen sowie Ethoxylierungsgrade bzw. Alkoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Aufgrund der Herstellverfahren bestehen Handelsprodukte der genannten Formeln zumeist nicht aus einem individuellen Vertreter, sondern aus Gemischen, wodurch sich sowohl für die C-Kettenlängen als auch für die Ethoxylierungsgrade bzw. Alkoxylierungsgrade Mittelwerte und daraus folgend gebrochene Zahlen ergeben können.
  • Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten; insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
  • Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt weiden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethyleste.
  • Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
  • Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel XV,
    Figure 00380001
    in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
  • Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel XVI,
    Figure 00380002
    in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-14-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit min destens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes.
  • [Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
  • Es ist für viele Anwendungen besonders bevorzugt, wenn das Verhältnis von Aniontensid(en) zu Niotensid(en) zwischen 10:1 und 1:10, vorzugsweise zwischen 7,5:1 und 1:5 und insbesondere zwischen 5:1 und 1:2 beträgt. Bevorzugt sind dabei erfindungsgemäß zu verarbeitende Mittel, die Tensid(e), vorzugsweise anionische(s) und/oder nichtionisches) Tensid(e), in Mengen von 5 bis 80 Gew.-%, vorzugsweise von 7,5 bis 70 Gew.-%, besonders bevorzugt von 10 bis 60 Gew.-% uns insbesondere von 12,5 bis 50 Gew.-%, jeweils bezogen auf das Gewicht der umschlossenen Feststoffe, enthalten. Besonders bevorzugt werden Niotensid-haltige Mittel verarbeitet, welche Niotenside in Mengen zwischen 2,5 bis 18 Gew.-%, vorzugsweise zwischen 3 bis 14 Gew.-%, besonders bevorzugt zwischen 4 bis 12 Gew.-% und insbesondere zwischen 4,5 bis 10 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Mittels, enthalten.
  • Wie bereits erwähnt, beschränkt sich der Einsatz von Tensiden bei Reinigungsmitteln für das maschinelle Geschirrspülen vorzugsweise auf den Einsatz nichtionischer Tenside in geringen Mengen. Sollen die erfindungsgemäß verarbeiteten Mittel derartige Tenside umschließen, so enthalten diese Mittel vorzugsweise nur bestimmte nichtionische Tenside, die nachstehend beschrieben sind. Als Tenside werden in maschinellen Geschirrspülmitteln üblicherweise lediglich schwachschäumende nichtionische Tenside eingesetzt. Vertreter aus den Gruppen der anionischen, kationischen oder amphoteren Tenside haben dagegen eine geringere Bedeutung. Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE).
  • Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
  • Besonders bevorzugt werden maschinelle Geschirrspülmittel verarbeitet, welche ein nichtionisches Tensid enthalten, das einen Schmelzpunkt oberhalb Raumtemperatur aufweist, bevorzugt ein nichtionisches Tensid mit einem Schmelzpunkt oberhalb von 20°C. Bevorzugt einzusetzende nichtionische Tenside weisen Schmelzpunkte oberhalb von 25°C auf, besonders bevorzugt einzusetzende nichtionische Tenside haben Schmelzpunkte zwischen 25 und 60°C, insbesondere zwischen 26,6 und 43,3°C.
  • Geeignete nichtionische Tenside, die Schmelz- bzw. Erweichungspunkte im genannten Temperaturbereich aufweisen, sind beispielsweise schwachschäumende nichtionische Tenside, die bei Raumtemperatur fest oder hochviskos sein können. Werden bei Raumtemperaturhochviskose Niotenside eingesetzt, so ist bevorzugt, daß diese eine Viskosität oberhalb von 20 Pas, vorzugsweise oberhalb von 35 Pas und insbesondere oberhalb 40 Pas aufweisen. Auch Niotenside, die bei Raumtemperatur wachsartige Konsistenz besitzen, sind bevorzugt.
  • Bevorzugt als bei Raumtemperatur feste einzusetzende Niotenside stammen aus den Gruppen der alkoxylierten Niotenside, insbesondere der ethoxylierten primären Alkohole und Mischungen dieser Tenside mit strukturell komplizierter aufgebauten Tensiden wie Polyoxypropylen/Polyoxyethylen/Polyoxypropylen (PO/EO/PO)-Tenside. Solche (PO/EO/PO)-Niotenside zeichnen sich darüberhinaus durch gute Schaumkontrolle aus.
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das nichtionische Tensid mit einem Schmelzpunkt oberhalb Raumtemperatur ein ethoxyliertes Niotensid, das aus der Reaktion von einem Monohydroxyalkanol oder Alkylphenol mit 6 bis 20 C-Atomen mit vorzugsweise mindestens 12 Mol, besonders bevorzugt mindestens 15 Mol, insbesondere mindestens 20 Mol Ethylenoxid pro Mol Alkohol bzw. Alkylphenol hervorgegangen ist.
  • Ein besonders bevorzugtes bei Raumtemperatur festes, einzusetzendes Niotensid wird aus einem geradkettigen Fettalkohol mit 16 bis 20 Kohlenstoffatomen (C16-20-Alkohol), vorzugsweise einem C18-Alkohol und mindestens 12 Mol, vorzugsweise mindestens 15 Mol und insbesondere mindestens 20 Mol Ethylenoxid gewonnen. Hierunter sind die sogenannten „narrow range ethoxylates" (siehe oben) besonders bevorzugt.
  • Das bei Raumtemperatur feste Niotensid besitzt vorzugsweise zusätzlich Propylenoxideinheiten im Molekül. Vorzugsweise machen solche PO-Einheiten bis zu 25 Gew.-%, besonders bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids aus. Besonders bevorzugte nichtionische Tenside sind ethoxylierte Monohydroxyalkanole oder Alkylphenole, die zusätzlich Polyoxyethylen-Polyoxypropylen Blockcopolymereinheiten auf weisen. Der Alkohol- bzw. Alkylphenolteil solcher Niotensidmoleküle macht dabei vorzugsweise mehr als 30 Gew.-%, besonders bevorzugt mehr als 50 Gew.-% und insbesondere mehr als 70 Gew.-% der gesamten Molmasse solcher Niotenside aus.
  • Weitere besonders bevorzugt einzusetzende Niotenside mit Schmelzpunkten oberhalb Raumtemperatur enthalten 40 bis 70% eines Polyoxypropylen/Polyoxyethylen/Polyoxypropylen-Blockpolymerblends, der 75 Gew.-% eines umgekehrten Block-Copolymers von Polyoxyethylen und Polyoxypropylen mit 17 Mol Ethylenoxid und 44 Mol Propylenoxid und 25 Gew.-% eines Block-Copolymers von Polyoxyethylen und Polyoxypropylen, initiiert mit Trimethylolpropan und enthaltend 24 Mol Ethylenoxid und 99 Mol Propylenoxid pro Mol Trimethylolpropan.
  • Nichtionische Tenside, die mit besonderem Vorzug eingesetzt werden können, sind beispielsweise unter dem Namen Poly Tergent® SLF-18 von der Firma Olin Chemicals erhältlich.
  • Ein weiter bevorzugtes Tensid läßt sich durch die Formel R1O[CH2CH(CH3)O]x[CH2CH2O]y[CH2CH(OH)R2] beschreiben, in der R1 für einen linearen oder verzweigten aliphatischen Kohlenwasserstoffrest mit 4 bis 18 Kohlenstoffatomen oder Mischungen hieraus steht, R2 einen linearen oder verzweigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen oder Mischungen hieraus bezeichnet und x für Werte zwischen 0,5 und 1,5 und y für einen Wert von mindestens 15 steht.
  • Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen Poly(oxyalkylierten) Niotenside der Formel R1O[CH2CH(R3)O]x[CH2]kCH(OH)(CH2]jOR2 in der R1 und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen. Wenn der Wert x ≥ 2 ist, kann jedes R3 in der obenstehenden Formel unterschiedlich sein. R1 und R2 sind vorzugsweise lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 6 bis 22 Kohlenstoffatomen, wobei Reste mit 8 bis 18 C-Atomen besonders bevorzugt sind. Für den Rest R3 sind H, -CH3 oder -CH2CH3 besonders bevorzugt. Besonders bevorzugte Werte für x liegen im Bereich von 1 bis 20, insbesondere von 6 bis 15.
  • Wie vorstehend beschrieben, kann jedes R3 in der obenstehenden Formel unterschiedlich sein, falls x ≥ 2 ist. Hierdurch kann die Alkylenoxideinheit in der eckigen Klammer variiert werden. Steht x beispielsweise für 3, kann der Rest R3 ausgewählt werden, um Ethylenoxid- (R3 = H) oder Propylenoxid-(R3 = CH3) Einheiten zu bilden, die in jedweder Reihenfolge aneinandergefügt sein kön nen, beispielsweise (EO)(PO)(EO), (EO)(EO)(PO), (EO)(EO)(EO), (PO)(EO)(PO), (PO)(PO)(EO) und (PO)(PO)(PO). Der Wert 3 für x ist hierbei beispielhaft gewählt worden und kann durchaus größer sein, wobei die Variationsbreite mit steigenden x-Werten zunimmt und beispielsweise eine große Anzahl (EO)-Gruppen, kombiniert mit einer geringen Anzahl (PO)-Gruppen einschließt, oder umgekehrt.
  • Insbesondere bevorzugte endgruppenverschlossenen Poly(oxyalkylierte) Alkohole der obenstehenden Formel weisen Werte von k = 1 und j = 1 auf, so daß sich die vorstehende Formel zu R1O[CH2CH(R3)O]xCH2CH(OH)CH2OR2 vereinfacht. In der letztgenannten Formel sind R1, R2 und R3 wie oben definiert und x steht für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesondere von 6 bis 18. Besonders bevorzugt sind Tenside, bei denen die Reste R1 und R2 9 bis 14 C-Atome aufweisen, R3 für H steht und x Werte von 6 bis 15 annimmt.
  • Bevorzugte erfindungsgemäß verarbeitete Mittel, welche als maschinelle Geschirrspülmittel eingesetzt werden, enthalten neben den genannten Tensiden zur Verbesserung des Klarspülergebnisses weiterhin amphotere oder kationische Polymere.
  • Um den Zerfall der in den erfindgungsgemäß bevorzugt verarbeiteten Mittel umfaßten Feststoffe wie beispielsweise Tabletten oder Granulate zu erleichtern, können diese Komprimate Desintegrationshilfsmittel, sogenannte Tablettensprengmittel, enthalten. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182–184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.
  • Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng" mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein-Derivate. Alle genannten Desintegrationshilfsmittel können in erfindungsgemäß bevorzugt verarbeiteten Mitteln enthalten sein.
  • Als bevorzugte Desintegrationshilfsmittel werden im Rahmen der vorliegenden Erfindung Destintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granularer, cogranulierter oder kompaktierter Form, eingesetzt.
  • Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal betrachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50,000 bis 500,000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen.
  • Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist. Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 μm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 μm kompaktierbar sind.
  • Zusätzlich oder anstelle der Desintegrationshilfsmittel auf Cellulosebasis können die erfindungsgemäß verarbeiteten Mittel ein gasfreisetzendes System aus organischen Säuren und Carbanaten/Hydrogencarbonaten enthalten.
  • Als organische Säuren, die aus den Carbonaten/Hydrogencarbonaten in wäßriger Lösung Kohlendioxid freisetzen, sind beispielsweise die festen Mono-, Oligo- und Polycarbonsäuren einsetzbar. Aus dieser Gruppe wiederum bevorzugt sind Citronensäure, Weinsäure, Bernsteinsäure, Malonsäure, Adipinsäure, Maleinsäure, Fumarsäure, Oxalsäure sowie Polyacrylsäure. Organische Sulfonsäuren wie Amidosulfonsäure sind ebenfalls einsetzbar. Kommerziell erhältlich und als Acidifizierungsmittel im Rahmen der vorliegenden Erfindung ebenfalls bevorzugt einsetzbar ist Sokalan® DCS (Warenzeichen der BASF), ein Gemisch aus Bernsteinsäure (max. 31 Gew.-%), Glutarsäure (max. 50 Gew.-%) und Adipinsäure (max. 33 Gew.-%).
  • Die genannten Säuren müssen nicht stöchiometrisch zu den in den Komprimaten enthaltenen Carbonaten bzw. Hydrogencarbonaten eingesetzt werden.
  • Eine im Rahmen der vorliegenden Erfindung bevorzugtes Wasch- und Reinigungsmittelkomprimat enthält zusätzlich ein Brausesystem.
  • Das gasentwickelnde Brausesystem besteht in den erfindungsgemäß bevorzugt verarbeiteten Mitteln neben den genannten organischen Säuren aus Carbonaten und/oder Hydrogencarbonaten. Bei den Vertretern dieser Stoffklasse sind aus Kostengründen die Alkalimetallsalze deutlich bevorzugt. Bei den Alkalimetallcarbonaten bzw. -hydrogencarbonaten wiederum sind die Natrium- und Kaliumsalze aus Kostengründen gegenüber den anderen Salzen deutlich bevorzugt. Selbstverständlich müssen nicht die betreffenden reinen Alkalimetallcarbonate bzw. -hydrogencarbonate eingesetzt werden; vielmehr können Gemische unterschiedlicher Carbonate und Hydrogencarbonate bevorzugt sein.
  • Als Elektrolyte aus der Gruppe der anorganischen Salze kann eine breite Anzahl der verschiedensten Salze eingesetzt werden. Bevorzugte Kationen sind die Alkali- und Erdalkalimetalle, bevorzugte Anionen sind die Halogenide und Sulfate. Aus herstellungstechnischer Sicht ist der Einsatz von NaCl oder MgCl2 in den erfindungsgemäß bevorzugt verarbeiteten Granulaten bevorzugt.
  • Erfindungsgemäß bevorzugt verarbeitete Mittel können pH-Stellmitteln enthalten. Einsetzbar sind hier sämtliche bekannten Säuren bzw. Laugen, sofern sich ihr Einsatz nicht aus anwendungstechnischen oder ökologischen Gründen bzw. aus Gründen des Verbraucherschutzes verbietet. Üblicherweise überschreitet die Menge dieser Stellmittel 1 Gew.-% der Gesamtformulierung nicht.
  • Als Parfümöle bzw. Duftstoffe können im Rahmen der vorliegenden Erfindung einzelne Riechstoff, verbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzyl-carbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenyl-glycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, ∝-Isomethylionon und Methyl-cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, OlibanumÖl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
  • Die allgemeine Beschreibung der einsetzbaren Parfüme (siehe oben) stellt dabei allgemein die unterschiedlichen Substanzklassen von Riechstoffen dar. Um wahrnehmbar zu sein, muß ein Riechstoff flüchtig sein, wobei neben der Natur der funktionellen Gruppen und der Struktur der chemischen Verbindung auch die Molmasse eine wichtige Rolle spielt. So besitzen die meisten Riechstoffe Molmassen bis etwa 200 Dalton, während Molmassen von 300 Dalton und darüber eher eine Ausnahme darstellen. Auf Grund der unterschiedlichen Flüchtigkeit von Riechstoffen verändert sich der Geruch eines aus mehreren Riechstoffen zusammengesetzten Parfüms bzw. Duftstoffs während des Verdampfens, wobei man die Geruchseindrücke in "Kopfnote" (top note), "Herz- bzw. Mittelnote" (middle note bzw. body) sowie "Basisnote" (end note bzw. dry out) unterteilt. Da die Geruchswahrnehmung zu einem großen Teil auch auf der Geruchsintensität beruht, besteht die Kopfnote eines Parfüms bzw. Duftstoffs nicht allein aus leichtflüchtigen Verbindungen, während die Basisnote zum größten Teil aus weniger flüchtigen, d.h. haftfesten Riechstoffen besteht. Bei der Komposition von Parfüms können leichter flüchtige Riechstoffe beispielsweise an bestimmte Fixative gebunden werden, wodurch ihr zu schnelles Verdampfen verhindert wird. Bei der nachfolgenden Einteilung der Riechstoffe in "leichter flüchtige" bzw. "haftfeste" Riechstoffe ist also über den Geruchseindruck und darüber, ob der entsprechende Riechstoff als Kopf- oder Herznote wahrgenommen wird, nichts ausgesagt.
  • Erfindungsgemäß bevorzugt verarbeitete Mittel können weiterhin Duftstoffe bzw. Parfümöle enthalten. Haftfeste Riechstoffe, die im Rahmen der vorliegenden Erfindung einsetzbar sind, sind beispielsweise die ätherischen Öle wie Angelikawurzelöl, Anisöl, Arnikablütenöl, Basilikumöl, Bayöl, Bergamottöl, Champacablütenöl, Edeltannenöl, Edeltannenzapfenöl, Elemiöl, Eukalyptusöl, Fenchelöl, Fichtennandelöl, Galbanumöl, Geraniumöl, Gingergrasöl, Guajakholzöl, Gurjunbalsamöl, Nelichrysumöl, Ho-Öl, Ingweröl, Irisöl, Kajeputöl, Kalmusöl, Kamillenöl, Kampferöl, Kanagaöl, Kardamomenöl, Kassiaöl, Kiefernnadelöl, Kopaïvabalsamöl, Korianderöl, Krauseminzeöl, Kümmelöl, Kuminöl, Lavendelöl, Lemongrasöl, Limetteöl, Mandarinenöl, Melissenöl, Moschuskörneröl, Myrrhenöl, Nelkenöl, Neroliöl, Niaouliöl, Olibanumöl, Orangenöl, Origanumöl, Palmarosaöl, Patschuliöl, Perubalsamöl, Petitgrainöl, Pfefferöl, Pfefferminzöl, Pimentöl, Pine-Öl, Rosenöl, Rosmarinöl, Sandelholzöl, Sellerieöl, Spiköl, Sternanisöl, Terpentinöl, Thujaäl, Thymianöl, Verbenaöl, Vetiveröl, Wacholderbeeröl, Wermutöl, Wintergrünöl, Ylang-Ylang-Öl, Ysop-Öl, Zimtöl, Zimtblätteröl, Zitronelöl, Zitronenöl sowie Zypressenöl. Aber auch die höhersiedenden bzw. festen Riechstoffe natürlichen oder synthetischen Ursprungs können im Rahmen der vorliegenden Erfindung als haftfeste Riechstoffe bzw. Riechstoffgemische, also Duftstoffe, eingesetzt werden. Zu diesen Verbindungen zählen die nachfolgend genannten Verbindungen sowie Mischungen aus diesen: Ambrettolid, α-Amylzimtaldehyd, Anethol, Anisaldehyd, Anisalkohol, Anisol, Anthranilsäuremethylester, Acetophenon, Benzylaceton, Benzaldehyd, Benzoesäureethylester, Benzophenon, Ben zylalkohol, Benzylacetat, Benzylbenzoat, Benzylformiat, Benzylvalerianat, Borneol, Bornylacetat, α-Bromstyrol, n-Decylaldehyd, n-Dodecylaldehyd, Eugenol, Eugenolmethylether, Eukalyptol, Farnesol, Fenchon, Fenchylacetat, Geranylacetat, Geranylformiat, Heliotropin, Heptincarbonsäuremethylester, Heptaldehyd, Hydrochinon-Dimethylether, Hydroxyzimtaldehyd, Hydroxyzimtalkohol, Indol, Iron, Isoeugenol, Isoeugenolmethylether, Isosafrol, Jasmon, Kampfer, Karvakrol, Karvon, p-Kresolmethylether, Cumarin, p-Methoxyacetophenon, Methyl-n-amylketon, Methylanthranilsäuremethylester, p-Methylacetophenon, Methylchavikol, p-Methylchinolin, Methyl-β-naphthylketon, Methyl-n-nonylacetaldehyd, Methyl-n-nonylketon, Muskon, β-Naphtholethylether, β-Naphtholmethylether, Nerol, Nitrobenzol, n-Nonylaldehyd, Nonylakohol, n-Octylaldehyd, p-Oxy-Acetophenon, Pentadekanolid, α-Phenylethylalkohol, Phenylacetaldehyd-Dimethyacetal, Phenylessigsäure, Pulegon, Safrol, Salicylsäureisoamylester, Salicylsäuremethylester, Salicylsäurehexylester, Salicylsäurecyclohexylester, Santalol, Skatol, Terpineol, Thymen, Thymol, γ-Undelacton, Vanilin, Veratrumaldehyd, Zimtaldehyd, Zimatalkohol, Zimtsäure, Zimtsäureethylester, Zimtsäurebenzylester. Zu den leichter flüchtigen Riechstoffen zählen insbesondere die niedriger siedenden Riechstoffe natürlichen oder synthetischen Ursprung, die allein oder in Mischungen eingesetzt werden können. Beispiele für leichter flüchtige Riechstoffe sind Alkyisothiocyanate (Alkylsenföle), Butandion, Limonen, Linalool, Linaylacetat und -Propionat, Menthol, Menthon, Methyl-n-heptenon, Phellandren, Phenylacetaldehyd, Terpinylacetat, Zitral, Zitronellal.
  • Weiterhin können erfindungsgemäß bevorzugt verarbeitete Mittel mit geeigneten Farbstoffen eingefärbt sein. Derartige Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht.
  • Als Hydrotrope oder Lösungsvermittler werden Substanzen bezeichnet, die durch ihre Gegenwart andere, in einem bestimmten Lösungsmittel praktisch unlösliche Verbindungen in diesem Lösungsmittel löslich oder emulgierbar machen (Solubilisation). Es gibt Lösungsvermittler, die mit der schwerlöslichen Substanz eine Molekülverbindung eingehen und solche, die durch Micell-Bildung wirken. Man kann auch sagen, daß erst Lösungsvermittler einem sogenannten latenten Lösemittel sein Lösungsvermögen verleihen. Bei Wasser als (latentem) Lösungsmittel spricht man statt von Lösungsvermittler meist von Hydrotropika, in bestimmten Fällen besser von Emulgatoren.
  • Als Schauminhibitoren, die in den erfindungsgemäß verarbeiteten Mitteln eingesetzt werden können, kommen u.a. Seifen, Öle, Fette, Paraffine oder Silikonöle in Betracht, die gegebenenfalls auf Trägermaterialien aufgebracht sein können. Als Trägermaterialien eignen sich beispielsweise anorganische Salze wie Carbonate oder Sulfate, Cellulosederivate oder Silikate sowie Mischungen der vorgenannten Materialien. Im Rahmen der vorliegenden Anmeldung bevorzugte Mittel enthalten Paraffine, vorzugsweise unverzweigte Paraffine (n-Paraffine) und/oder Silikone, vorzugsweise linear-polymere Silikone, welche nach dem Schema (R2SiO)x aufgebaut sind und auch als Silikon öle bezeichnet werden. Diese Silikonöle stellen gewöhnlich klare, farblose, neutrale, geruchsfreie, hydrophobe Flüssigkeiten dar mit einem Molekulargewicht zwischen 1000–150 000, und Viskositäten zwischen 10 u. 1 000 000 mPa·s.
  • Geeignete Antiredepositionsmittel, die auch als soll repellents bezeichnet werden, sind beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an. Methoxygruppen von 15 bis 30 Gew.-% und an Hydroxypropylgruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglycolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Insbesondere bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und Terephthalsäure-Polymere.
  • Optische Aufheller (sogenannte „Weißtöner") können den erfindungsgemäß verarbeiteten Mitteln zugesetzt werden, um Vergrauungen und Vergilbungen der behandelten Textilien zu beseitigen. Diese Stoffe ziehen auf die Faser auf und bewirken eine Aufhellung und vorgetäuschte Bleichwirkung, indem sie unsichtbare Ultraviolettstrahlung in sichtbares längenwelliges Licht umwandeln, wobei das aus dem Sonnenlicht absorbierte ultraviolette Licht als schwach bläuliche Fluoreszenz abgestrahlt wird und mit dem Gelbton der vergrauten bzw. vergilbten Wäsche reines Weiß ergibt. Geeignete Verbindungen stammen beispielsweise aus den Substanzklassen der 4,4'-Diamino-2,2'-stilbendisulfonsäuren (Flavonsäuren), 4,4'-Distyryl-biphenylen, Methylumbelliferone, Cumarine, Dihydrochinolinone, 1,3-Diarylpyrazoline, Naphthalsäureimide, Benzoxazol-, Benzisoxazol- und Benzimidazol-Systeme sowie der durch Heterocyclen substituierten Pyrenderivate.
  • Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Fthersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw. Auch Polyvinylpyrrolidon ist brauchbar. Als Vergrauungsinhibitoren einsetzbar sind weiterhin Celluloseether wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxy-methylcellulose und deren Gemische.
  • Da textile Flächengebilde, insbesondere aus Reyon, Zellwolle, Baumwolle und deren Mischungen, zum Knittern eigen können, weil die Einzelfasern gegen Durchbiegen, Knicken. Pressen und Quetschen quer zur Faserrichtung empfindlich sind, können die erfindungsgemäß verarbeiteten Mittel synthetische Knitterschutzmittel enthalten. Hierzu zählen beispielsweise synthetische Pro dukte auf der Basis von Fettsäuren, Fettsäureestern. Fettsäureamiden, -alkylolestern, -alkylolamiden oder Fettalkoholen, die meist mit Ethylenoxid umgesetzt sind, oder Produkte auf der Basis von Lecithin oder modifizierter Phosphorsäureester. Eine im besonderen Maße zur Textilausrüstung und Pflege geeignete Substanz ist das Baumwollsamenöl, welches beispielsweise durch Auspressen der braunen gereinigten Baumwollsamen und Raffination mit etwa 10%igem Natriumhydroxid oder durch Extraktion mit Hexan bei 60–70°C hergestellt werden kann. Derartige Baumwollöle enthalten 40 bis 55 Gew.-% Linolsäure, 16 bis 26 Gew.-% Ölsäure und 20 bis 26 Gew.-% Palmitinsäure. Weitere zur Faserglättung und Faserpflege besonders bevorzugte Mittel sind die Glyceride, insbesondere die Monoglyceride von Fettsäuren wie beispielsweise Glycerinmonooleat oder Glycerinmonostearat.
  • Zur Bekämpfung von Mikroorganismen können die erfindungsgemäß verarbeiteten Mittel antimikrobielle Wirkstoffe enthalten. Hierbei unterscheidet man je nach antimikrobiellem Spektrum und Wirkungsmechanismus zwischen Bakteriostatika und Bakteriziden, Fungistatika und Fungiziden usw. Wichtige Stoffe aus diesen Gruppen sind beispielsweise Benzalkoniumchloride, Alkylarlylsulfonate, Halogenphenole und Phenolmercuriacetat, wobei bei den erfindungemäßen Mitteln auch gänzlich auf diese Verbindungen verzichtet werden kann.
  • Um unerwünschte, durch Sauerstoffeinwirkung und andere oxidative Prozesse verursachte Veränderungen an den Wasch- und Reinigungsmitteln und/oder den behandelten Textilien zu verhindern, können die erfindungsgemäß verarbeiteten Mittel Antioxidantien enthalten. Zu dieser Verbindungsklasse gehören beispielsweise substituierte Phenole, Hydrochinone, Brenzcatechnine und aromatische Amine sowie organische Sulfide, Polysulfide, Dithiocarbamate, Phosphite und Phosphonate.
  • Ein erhöhter Tragekomfort kann aus der zusätzlichen Verwendung von Antistatika resultieren, die den erfindungsgemäß bevorzugt verarbeiteten Mitteln zusätzlich beigefügt werden. Antistatika vergrößern die Oberflächenleitfähigkeit und ermöglichen damit ein verbessertes Abfließen gebildeter Ladungen. Äußere Antistatika sind in der Regel Substanzen mit wenigstens einem hydrophilen Molekülliganden und geben auf den Oberflächen einen mehr oder minder hygroskopischen Film. Diese zumeist grenzflächenaktiven Antistatika lassen sich in stickstoffhaltige (Amine, Amide, quartäre Ammoniumverbindungen), phosphorhaltige (Phosphorsäureester) und schwefelhaltige (Alkylsulfonate, Alkylsulfate) Antistatika unterteilen. Lauryl-(bzw. Stearyl-) dimethylbenzylammoniumchloride eignen sich ebenfalls als Antistatika für Textilien bzw. als Zusatz zu Waschmitteln, wobei zusätzlich ein Avivageeftekt erzielt wird.
  • Phobier- und Imprägnierverfahren dienen der Ausrüstung von Textilien mit Substanzen, welche die Ablagerung von Schmutz verhindern oder dessen Auswaschbarkeit erleichtern. Bevorzugte Phobier- und Imprägniermittel sind perfluorierte Fettsäuren, auch in Form ihrer Aluminium- u. Zirconiumsalze, organische Silicate, Silicone, Polyacrylsäureester mit perfluorierter Alkohol-Komponente oder mit perfluoriertem Acyl- od. Sulfonyl-Rest gekoppelte, polymerisierbare Verbindungen. Auch Antistatika können enthalten sein. Die schmutzabweisende Ausrüstung mit Phobier- und Imprägniermitteln wird oft als eine Pflegeleicht-Ausrüstung eingestuft. Das Eindringen der Imprägniermittel in Form von Lösungen oder Emulsionen der betreffenden Wirkstoffe kann durch Zugabe von Netzmitteln erleichtert werden, die die Oberflächenspannung herabsetzen. Ein weiteres Einsatzgebiet von Phobier- und Imprgäniermitteln ist die wasserabweisende Ausrüstung von Textilwaren, Zelten, Planen, Leder usw., bei der im Gegensatz zum Wasserdichtmachen die Gewebeporen nicht verschlossen werden, der Stoff also atmungsaktiv bleibt (Hydrophobieren). Die zum Hydrophobieren verwendeten Hydrophobiermittel überziehen Textilien, Leder, Papier, Holz usw. mit einer sehr dünnen Schicht hydrophober Gruppen, wie längere Alkyl-Ketten od. Siloxan-Gruppen. Geeignete Hydrophobiermittel sind z.B. Paraffine, Wachse, Metallseifen usw. mit Zusätzen an Aluminium- od. Zirconium-Salzen, quartäre Ammonium-Verbindungen mit langkettigen Alkyl-Resten, Harnstoff-Derivate, Fettsäure-modifizierte Melaminharze, Chrom-Komplexsalze, Silicone, Zinn-organische Verbindungen und Glutardialdehyd sowie perfluorierte Verbindungen. Die hydrophobierten Materialien fühlen sich nicht fettig an; dennoch perlen – ähnlich wie an gefetteten Stoffen – Wassertropfen an ihnen ab, ohne zu benetzen. So haben z.B. Silicon-imprägnierte Textilien einen weichen Griff u. sind wasser- u. schmutzabweisend; Flecke aus Tinte, Wein, Fruchtsäften und dergleichen sind leichter zu entfernen.
  • Zur Pflege der Textilien und zur Verbesserung der Textileigenschaften wie einem weicheren "Griff' (Avivage) und verringerter elektrostatischer Aufladung (erhöhter Tragekomfort) können die erfindungsgemäß verarbeiteten Mittel Weichspüler enthalten. Die Wirkstoffe in Weichspülformulierungen sind "Esterquats", quartäre Ammoniumverbindungen mit zwei hydrophoben Resten, wie beispielsweise das Disteraryldimethylammoniumchlarid, welches jedoch wegen seiner. ungenügenden biologischen Abbaubarkeit zunehmend durch quartäre Ammoniumverbindungen ersetzt wird, die in ihren hydrophoben Resten Estergruppen als Sollbruchstellen für den biologischen Abbau enthalten. Derartige "Esterquats" mit verbesserter biologischer Abbaubarkeit sind beispielsweise dadurch erhältlich, daß man Mischungen von Methyldiethanolamin und/oder Triethanolamin mit Fettsäuren verestert und die Reaktionsprodukte anschließend in an sich bekannter Weise mit Alkylierungsmitteln quaterniert. Als Appretur weiterhin geeignet ist Dimethylolethylenharnstoff.
  • Zur Verbesserung des Wasserabsorptionsvermögens, der Wiederbenetzbarkeit der behandelten Textilien und zur Erleichterung des Bügelns der behandelten Textilien können in den erfindungsgemäß verarbeiteten Mitteln beispielsweise Silikonderivate eingesetzt werden. Diese verbessern zusätzlich das Ausspülverhalten der erfindungsgemäß verarbeiteten Mittel durch ihre schauminhibierenden Eigenschaften. Bevorzugte Silikonderivate sind beispielsweise Polydialkyl- oder Alkylarylsiloxane, bei denen die Alkylgruppen ein bis fünf C-Atome aufweisen und ganz oder teilweise fluoriert sind. Bevorzugte Silikone sind Polydimethylsiloxane, die gegebenenfalls derivatisiert sein können und dann aminofunktionell oder quaterniert sind bzw. Si-OH-, Si-H- und/oder Si-Cl-Bindungen aufweisen. Weitere bevorzugte Silikone sind die Polyalkylenoxid-modifizierten Polysiloxane, also Polysiloxane, welche beispielsweise Polyethylenglycole aufweisen sowie die Polyalkylenoxid-modifizierten Dimetylpolysiloxane.
  • Proteinhydrolysate sind auf Grund ihrer faserpflegenden Wirkung weitere im Rahmen der vorliegenden Erfindung bevorzugte Aktivsubstanzen aus dem Gebiet der Wasch- und Reinigungsmittel. Proteinhydrolysate sind Produktgemische, die durch sauer, basisch oder enzymatisch katalysierten Abbau von Proteinen (Eiweißen) erhalten werden. Erfindungsgemäß können Proteinhydrolysate sowohl pflanzlichen als auch tierischen Ursprungs in den zu verarbeitenden Mitteln enthalten sein. Tierische Proteinhydrolysate sind beispielsweise Elastin-, Kollagen-, Keratin-, Seiden- und Milcheiweiß-Proteinhydrolysate, die auch in Form von Salzen vorliegen können. Erfindungsgemäß bevorzugt ist die Verarbeitung von Mitteln, welche Proteinhydrolysaten pflanzlichen Ursprungs, z.B. Soja-, Mandel-, Reis-, Erbsen-, Kartoffel- und Weizenproteinhydrolysate enthalten. Wenngleich der Einsatz der Proteinhydrolysate als solche bevorzugt ist, können an deren Stelle gegebenenfalls auch anderweitig erhaltene Aminosäuregemische oder einzelne Aminosäuren wie beispielsweise Arginin, Lysin, Histidin oder Pyrroglutaminsäure eingesetzt werden. Ebenfalls möglich ist der Einsatz von Derivaten der Proteinhydrolysate, beispielsweise in Form ihrer Fettsäure-Kondensationsprodukte.
  • Schließlich können die erfindungsgemäß verarbeiteten Mittel auch UV-Absorber enthalten, die auf die behandelten Textilien aufziehen und die Lichtbeständigkeit der Fasern verbessern. Verbindungen, die diese gewünschten Eigenschaften aufweisen, sind beispielsweise die durch strahlungslose Desaktivierung wirksamen Verbindungen und Derivate des Benzophenons mit Substituenten in 2- und/oder 4-Stellung. Weiterhin sind auch substituierte Benzotriazole, in 3-Stellung Phenylsubstituierte Acrylate (Zimtsäurederivate), gegebenenfalls mit Cyanogruppen in 2-Stellung, Salicylate, organische Ni-Komplexe sowie Naturstoffe wie Umbelliferon und die körpereigene Urocansäure geeignet.
  • Reinigungsmittel für das maschinelle Geschirrspülen können zum Schutze des Spülgutes oder der Maschine Korrosionsinhibitoren enthalten, wobei besonders Silberschutzmittel und Glaskorrosionsinhibitoren im Bereich des maschinellen Geschirrspülens eine besondere Bedeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetallsalze oder -komplexe eingesetzt werden. Besonders bevorzugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Man findet in Reinigerformulierungen darüber hinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigern werden besonders Sauerstoff und stickstoffhaltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z.B. Hydrochinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglucin, Pyrogallol bzw. Derivate dieser Verbindungsklassen. Auch salz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt-(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans und des Mangansulfats sowie den Mangankomplexen [Me-TACN)MnIV(m-0)3MnIV(Me-TACN)]2+(PF6 -)2, [Me-McTACN)MnIV(m-0)3MnIV(Me-McTACN)]2+(PF6 -)2, [Me-TACN)MnIII(m-0)(m-0Ac)2MnIII(Me-TACN)]2+(PF6 -)2 und [Me-McTACN)MnIII(m-0)(m-0Ac)2MnIII(Me-McTACN)]2+(PF6 -)2, wobei Me-TACN für 1,4,7-trimethyl-1,4,7-triazacyclononan und Me-McTACN für 1,2,4,7-tetramethyl-1,4,7-triazacyclononan steht. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.
  • Im Rahmen der vorliegenden Erfindung ist es bevorzugt, zusätzlich mindestens ein Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole, vorzugsweise Benzotriazol und/oder Alkylaminotriazol, in Mengen von 0,001 bis 1 Gew.-%, vorzugsweise von 0,01 bis 0,5 Gew.-% und insbesondere von 0,05 bis 0,25 Gew.-%, jeweils bezogen auf das Gesamtgewicht der in den erfindungsgemäß verarbeiteten Mitteln enthalten sind.
  • Neben den zuvor genannten Silberschutzmitteln können erfindungsgemäß verarbeitete Mittel weiterhin eine oder mehrere Substanzen zur Verringerung der Glaskorrosion enthalten. Im Rahmen der vorliegenden Anmeldung werden insbesondere Zusätze von Zink und/oder anorganischen und/oder organischen Zinksalzen und/oder Silikaten, beispielsweise das schichtförmige kristalline Natriumdisilikat SKS 6 der Clariant GmbH, und/oder wasserlösliche Gläser, beispielsweise Gläser, welche einen Masseverlust von wenigstens 0,5 mg unter den in DIN ISO 719 angegebenen Bedingungen aufweisen, zur Verringerung der Glaskorrosion bevorzugt. Besonders bevorzugte Mittel enthalten mindestens ein Zinksalz einer organischen Säure, vorzugsweise ausgewählt aus der Gruppe Zinkoleat, Zinkstearat, Zinkgluconat, Zinkacetat, Zinklactat und Zinkcitrat.

Claims (21)

  1. Verfahren zur Verarbeitung Bleichmittel-haltiger fester Wasch- oder Reinigungsmittel, umfassend die Schritte: a) Zusatz von Wasser zu den festen Wasch- oder Reinigungsmittel, wobei der Feststoffgehalt des resultierenden Stoffgemisches mindestens 70 Gew.-% beträgt; b) Erhitzen des resultierenden Stoffgemisches; c) Trocknen des Stoffgemisches unter Bildung eines Feststoffs.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das feste Wasch- oder Reinigungsmittel vor, gleichzeitig mit oder nach dem Zusatz von Wasser vermahlen wird.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß als festes Wasch- oder Reinigungsmittel Pulver und/oder Granulate und/oder Extrudate und/oder Kompaktate, vorzugsweise ein- oder mehrschichtigen Tabletten, eingesetzt werden.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das feste Wasch- oder Reinigungsmittel ein Bleichmittel aus der Gruppe der anorganischen Persalze und/oder der organischen Persäuren, vorzugsweise ein Bleichmittel aus der Gruppe Natriumpercabonat, Natriumperborattetrahydrat und Natriumperboratmonohydrat enthält.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Bleichmittelgehalt des festen Wasch- oder Reinigungsmittels vor der Verarbeitung zwischen 0,5 und 60 Gew.-%, vorzugsweise zwischen 1 und 50 Gew.-%, besonders bevorzugt zwischen 2 und 40 Gew.-% und insbesondere zwischen 5 und 30 Gew.-%, jeweils bezogen auf das Gesamtgewicht, beträgt.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Aktivsauerstoffgehalt des festen Wasch- oder Reinigungsmittels vor der Verarbeitung zwischen 0,4 und 10 Gew.-%, vorzugsweise zwischen 0,5 und 8 Gew.-% und insbesondere zwischen 0,6 und 5 Gew.-%, jeweils bezogen auf das Gesamtgewicht, beträgt.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Enzymgehalt des festen Wasch- oder Reinigungsmittels vor der Verarbeitung zwischen 0,01 und 14 Gew.-%, vorzugsweise zwischen 0,02 und 8 Gew.-% und insbesondere zwischen 0,04 und 6 Gew.-%, jeweils bezogen auf das Gesamtgewicht, beträgt.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das feste Wasch- oder Reinigungsmittel einen Phosphatgehalt zwischen 1 und 90 Gew.-%, besonders bevorzugt zwischen 10 und 80 Gew.-% und insbesondere zwischen 20 und 70 Gew.-% aufweist.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das feste Wasch- oder Reinigungsmittel einen Niotensidgehalt zwischen 2,5 bis 18 Gew.-%, vorzugsweise zwischen 3 bis 14 Gew.-%, besonders bevorzugt zwischen 4 bis 12 Gew.-% und insbesondere zwischen 4,5 bis 10 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Mittels, aufweist.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Zusatz von Wasser in Schritt a) unter Zusatz von Wasser und/oder Wasserdampf erfolgt.
  11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der Feststoffgehalt des resultierenden Stoffgemisches in Schritt a) zwischen 75 und 98 Gew.-%, bevorzugt zwischen 80 und 95 Gew.-%, besonders bevorzugt zwischen 83 und 93 Gew.-% und insbesondere zwischen 85 und 91 Gew.-% beträgt.
  12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Erwärmung des Stoffgemisches in Schritt b) durch Einleiten von Wasserdampf, vorzugsweise durch Einleiten überhitzten Wasserdampfs und/oder durch ein Heizelement erfolgt.
  13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß das Stoffgemisch in Schritt b) auf Temperaturen von 50 bis 200°C, vorzugsweise von 60 bis 150°C, besonders bevorzugt von 70 bis 100°C und insbesondere von 80 bis 95°C erhitzt wird.
  14. Verfahren nach einem der Ansprüche 1 bis 13 dadurch gekennzeichnet, daß das Stoffgemisch vor, gleichzeitig mit oder nach dem Erhitzen auf Temperaturen oberhalb 50°C, vorzugsweise oberhalb 60°C, besonders bevorzugt oberhalb 70°C und insbesondere oberhalb 80°C einem Vakuum zwischen 30 und 950 mbar, vorzugsweise zwischen 40 und 500 mbar und insbesondere zwischen 50 und 100 mbar ausgesetzt wird.
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß das unter Einwirkung des Vakuums Wasser aus dem Stoffgemisch entfernt und dieses durch einen Wärmetauscher kondensiert wird.
  16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die Trocknung des Stoffgemisches in Schritt c) unter Einsatz eines Wirbelbetts erfolgt.
  17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß dem Stoffgemisch vor der Trocknung ein Granulierhilfsmittel zugesetzt wird.
  18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß der Aktivsauerstoffgehalt des festen Wasch- oder Reinigungsmittels nach der Verarbeitung weniger als 90%, vorzugsweise weniger als 70% und insbesondere weniger als 50% des Aktivsauerstoffgehalts vor der Verarbeitung, beträgt.
  19. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß der Aktivsauerstoffgehalt des festen Wasch- oder Reinigungsmittels nach der Verarbeitung zwischen 0,001 und 0,3 Gew.-%, vorzugsweise zwischen 0,002 und 0,2 Gew.-% und insbesondere zwischen 0,01 und 0,1 Gew.-%, jeweils bezogen auf das Gesamtgewicht, beträgt.
  20. Verfahren nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß die Enzymaktivität des festen Wasch- oder Reinigungsmittels nach der Verarbeitung weniger als 90%, vorzugsweise weniger als 70% und insbesondere weniger als 50%, der Enzymaktivität vor der Verarbeitung beträgt.
  21. Verwendung der gemäß eines Verfahrens nach den Ansprüche 1 bis 20 verarbeiteten festen Wasch- oder Reinigungsmittel in Wasch- oder Reinigungsmitteln.
DE10260833A 2002-12-23 2002-12-23 Verfahren zur Verarbeitung von Wasch- oder Reinigungsmitteln Expired - Fee Related DE10260833B4 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10260833A DE10260833B4 (de) 2002-12-23 2002-12-23 Verfahren zur Verarbeitung von Wasch- oder Reinigungsmitteln

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10260833A DE10260833B4 (de) 2002-12-23 2002-12-23 Verfahren zur Verarbeitung von Wasch- oder Reinigungsmitteln

Publications (2)

Publication Number Publication Date
DE10260833A1 DE10260833A1 (de) 2004-07-08
DE10260833B4 true DE10260833B4 (de) 2007-08-16

Family

ID=32477957

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10260833A Expired - Fee Related DE10260833B4 (de) 2002-12-23 2002-12-23 Verfahren zur Verarbeitung von Wasch- oder Reinigungsmitteln

Country Status (1)

Country Link
DE (1) DE10260833B4 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004003430A1 (de) * 2004-01-23 2005-05-25 Henkel Kgaa Verfahren zur Verarbeitung von Wasch- oder Reinigungsmitteln

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2700797A1 (de) * 1977-01-11 1978-07-20 Peroxid Chemie Gmbh Verfahren zur verbesserung der lagerbestaendigkeit von sauerstoffabgebenden verbindungen
DE3636904A1 (de) * 1986-10-30 1988-05-05 Henkel Kgaa Verfahren zur umhuellung von persaeuregranulaten
US5205958A (en) * 1989-06-16 1993-04-27 The Clorox Company Zeolite agglomeration process and product
EP0578872A1 (de) * 1992-07-15 1994-01-19 The Procter & Gamble Company Waschmittelzusammensetzungen
DE4227277A1 (de) * 1992-08-18 1994-02-24 Hoechst Ag Stabile Granulate für Wasch-, Reinigungs- und Desinfektionsmittel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2700797A1 (de) * 1977-01-11 1978-07-20 Peroxid Chemie Gmbh Verfahren zur verbesserung der lagerbestaendigkeit von sauerstoffabgebenden verbindungen
DE3636904A1 (de) * 1986-10-30 1988-05-05 Henkel Kgaa Verfahren zur umhuellung von persaeuregranulaten
US5205958A (en) * 1989-06-16 1993-04-27 The Clorox Company Zeolite agglomeration process and product
EP0578872A1 (de) * 1992-07-15 1994-01-19 The Procter & Gamble Company Waschmittelzusammensetzungen
DE4227277A1 (de) * 1992-08-18 1994-02-24 Hoechst Ag Stabile Granulate für Wasch-, Reinigungs- und Desinfektionsmittel

Also Published As

Publication number Publication date
DE10260833A1 (de) 2004-07-08

Similar Documents

Publication Publication Date Title
DE102004030318B4 (de) Mehrkammer-Pouch
EP1802734A1 (de) Wasch- oder reinigungsmittel
EP1802736A1 (de) Wasch- oder reinigungsmittel
WO2006021284A1 (de) Beschichteter wasch- oder reinigungsmittelformkörper
WO2006045451A1 (de) Wasch- oder reinigungsmittel
EP1340807B1 (de) Formkörper mit nachträglicher Tensiddosierung
EP1340808B1 (de) Parfümierte Reinigungsmittelformkörper
DE10260833B4 (de) Verfahren zur Verarbeitung von Wasch- oder Reinigungsmitteln
WO2006063724A1 (de) Schneidwerkzeug für folienbahnen
DE102004020082A1 (de) Verfahren zur Herstellung von Wasch- und/oder Reinigungsmitteln
DE102004003430A1 (de) Verfahren zur Verarbeitung von Wasch- oder Reinigungsmitteln
DE10259848A1 (de) Portioniertes Wasch- oder Reinigungsmittel
EP1529096B1 (de) Portionierte wasch- oder reinigungsmittel mit phosphat iii
WO2006066721A1 (de) Dosiereinheit für wasch- oder reinigungsmittel
DE10242221B4 (de) Verfahren zum Bleichen von Aniontensidsäuren
DE10310932A1 (de) Portioniertes Wasch- oder Reinigungsmittel
WO2005123368A1 (de) Verfahren zur herstellung von portionspackungen aus wasserlöslichem polymerfilm für wasch- oder reinigungsaktive substanzen
WO2005103222A1 (de) Portioniertes wasch- oder reinigungsmittel mit tensidphase
WO2002096547A2 (de) Hochaktivsubstanzhaltige granulate und verfahren zu ihrer herstellung
DE10258585A1 (de) Portioniertes Wasch-oder Reinigungsmittel
DE102004005761A1 (de) Neutralisationsverfahren
WO2006066722A1 (de) Verpacktes wasch- oder reinigungsmittel
DE102005005499A1 (de) Verfahren zur Herstellung von Wasch- oder Reinigungsmitteln
DE10258584A1 (de) Portioniertes Wasch-oder Reinigungsmittel
WO2006045453A1 (de) Wasch- oder reinigungsmitteldosiereinheit

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: HENKEL AG & CO. KGAA, 40589 DUESSELDORF, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee