DE102022207061A1 - Verfahren zum Bestimmen eines Schaltstroms eines elektromagnetischen Ventils und Steuerungsvorrichtung - Google Patents

Verfahren zum Bestimmen eines Schaltstroms eines elektromagnetischen Ventils und Steuerungsvorrichtung Download PDF

Info

Publication number
DE102022207061A1
DE102022207061A1 DE102022207061.5A DE102022207061A DE102022207061A1 DE 102022207061 A1 DE102022207061 A1 DE 102022207061A1 DE 102022207061 A DE102022207061 A DE 102022207061A DE 102022207061 A1 DE102022207061 A1 DE 102022207061A1
Authority
DE
Germany
Prior art keywords
current
voltage
inductance
procedure according
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102022207061.5A
Other languages
English (en)
Inventor
Andreas Neu
Michael Hitzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive Technologies GmbH
Original Assignee
Continental Automotive Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Technologies GmbH filed Critical Continental Automotive Technologies GmbH
Priority to DE102022207061.5A priority Critical patent/DE102022207061A1/de
Publication of DE102022207061A1 publication Critical patent/DE102022207061A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0253Fully variable control of valve lift and timing using camless actuation systems such as hydraulic, pneumatic or electromagnetic actuators, e.g. solenoid valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • F01L9/21Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/40Methods of operation thereof; Control of valve actuation, e.g. duration or lift
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/04Measuring peak values or amplitude or envelope of ac or of pulses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3277Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches

Abstract

Die Erfindung betrifft ein Verfahren zum Bestimmen eines Schaltstroms eines elektromagnetischen Ventils, wobei an das Ventil eine Spannung angelegt wird, Stromwerte und Spannungswerte bei bestimmten Messpunkten gemessen werden und ein Parameter zum Erkennen eines Schaltvorgangs beobachtet wird. Die Erfindung betrifft des Weiteren eine zugehörige Steuerungsvorrichtung.

Description

  • Die Erfindung betrifft ein Verfahren zum Bestimmen eines Schaltstroms eines elektromagnetischen Ventils sowie eine zugehörige Steuerungsvorrichtung.
  • Elektromagnetische Ventile werden häufig in Bremssystemen verwendet, um hydraulischen Druck gezielt zu verteilen oder um bestimmte Komponenten wie beispielsweise Pumpen gezielt mit anderen Komponenten zu verbinden oder eben abzutrennen
  • Für den Betrieb eines Bremssystems ist es vorteilhaft, den Schaltstrom eines elektromagnetischen Ventils zu kennen. Dabei handelt es sich um denjenigen Strom, welcher gerade ausreicht, um einen Schaltvorgang auszulösen. Beispielsweise kann damit ein stromlos offenes Ventil in einen geschlossenen Zustand überführt werden.
  • Es ist eine Aufgabe der Erfindung, ein Verfahren zum Bestimmen eines Schaltstroms eines elektromagnetischen Ventils bereitzustellen, welches im Vergleich zu bekannten Ausführungen alternativ oder besser ausgeführt ist. Es ist des Weiteren eine Aufgabe der Erfindung, eine zugehörige Steuerungsvorrichtung bereitzustellen.
  • Dies wird erfindungsgemäß durch ein Verfahren und eine Steuerungsvorrichtung gemäß den jeweiligen Hauptansprüchen erreicht. Vorteilhafte Ausgestaltungen können beispielsweise den jeweiligen Unteransprüchen entnommen werden. Der Inhalt der Ansprüche wird durch ausdrückliche Inbezugnahme zum Inhalt der Beschreibung gemacht.
  • Die Erfindung betrifft ein Verfahren zum Bestimmen eines Schaltstroms eines elektromagnetischen Ventils. Das Verfahren weist folgende Schritte auf:
    • - Anlegen einer Spannung an das Ventil,
    • - Messen eines durch das Ventil fließenden Stroms und einer anliegenden Spannung zu mindestens einer vorgegebenen Anzahl von Messpunkten, dabei Erzeugen eines Stromwerts und eines Spannungswerts bei jedem Messpunkt,
    • - Ermitteln eines Parameters basierend auf den Stromwerten und den Spannungswerten,
    • - Erkennen eines Schaltvorgangs basierend auf einer Änderung des Parameters,
    • - wenn kein Schaltvorgang erkannt wurde, erneute Durchführung der vorherigen Schritte mit einer höheren oder niedrigeren Spannung, wobei unmittelbar aufeinanderfolgende Spannungen bei Ausführung des Verfahrens immer entweder erhöht oder verringert werden, und
    • - wenn ein Schaltvorgang erkannt wurde, Bestimmen des höchsten gemessenen Stromwerts als Schaltstrom.
  • Bei dem Ventil kann es sich insbesondere um ein Ventil handeln, welches in oder an einem Bremssystem bzw. einem Ventilblock eines Bremssystems angeordnet ist. Die Spannung wird insbesondere an eine Spule des Ventils angelegt, welche einen Schaltvorgang des Ventils auslösen kann. Die Spannung führt zu einem fließenden Strom. Jeder Messpunkt ist typischerweise einer Messzeit zugeordnet. Anstelle von Messpunkten kann somit alternativ auch von Messzeitpunkten gesprochen werden. Zu jedem Messpunkt wird die Messung von Strom und Spannung vorgenommen.
  • Der Parameter kann insbesondere derart ermittelt werden, dass er sich bei einem Schaltvorgang signifikant ändert. Vorteilhafte Implementierungen werden weiter unten angegeben. Insbesondere kann eine Änderung im Vergleich zu einem vorherigen Durchgang mit niedrigerer oder höherer Spannung erkannt werden.
  • Werden die erwähnten Schritte vom Anlegen bis zum Erkennen eines Schaltvorgangs wiederholt ausgeführt, so erfolgt das Erhöhen oder Verringern der jeweiligen Spannung typischerweise in nur einer Richtung, auch wenn mehrere Durchläufe erfolgen. Es wird also bei jedem Durchlauf der erwähnten Schritte grundsätzlich eine höhere oder niedrigere Spannung verwendet als vorher. Spannungsänderungen erfolgen anders ausgedrückt nur in einer Richtung. Wenn ein Schaltvorgang erkannt wurde, so handelt es sich dabei gerade um diejenige Spannung, bei welcher der zugehörige Strom einen Schaltvorgang ausgelöst hat, wobei die jeweils vorherige, je nach Änderung niedrigere oder höhere Spannung zu einem Strom geführt hat, welcher gerade noch keinen Schaltvorgang ausgelöst hat. Diese Vorgehensweise erlaubt ein exaktes Bestimmen des Schaltstroms.
  • Der Parameter kann gemäß einer Ausführung eine Induktivität sein. Die Induktivität ändert sich bei einem Schaltvorgang um typischerweise etwa 20 % bis 50 %, da sich ein Luftspalt ändert. Dies kann in einfacher Weise ausgenutzt werden, um einen Schaltvorgang zu erkennen. Beispielsweise ermittelt man zuerst bei kleinen Strömen (und Spannungen) eine Induktivität. Danach ermittelt man mehrmals bei größeren Strömen (und Spannungen) die Induktivität erneut und vergleicht diese mit der zuerst ermittelten. Bei hinreichend großer Änderung wird auf Schalten erkannt.
  • Gemäß einer alternativen Ausführung kann der Parameter ein Fehlermaß sein, und zwar insbesondere ein Fehlermaß zwischen den Stromwerten und einem erwarteten Stromverlauf. Ein solches Fehlermaß kann insbesondere hoch sein, wenn ein Schaltvorgang stattgefunden hat, und kann insbesondere niedrig sein, wenn kein Schaltvorgang stattgefunden hat. Dies liegt insbesondere daran, dass beim Stattfinden eines Schaltvorgangs ein erwarteter Stromverlauf basierend auf ermittelten Werten beispielsweise für Induktivität und Widerstand sehr viel genauer erfolgen kann, als wenn ein Schaltvorgang stattgefunden hat.
  • Zum Erkennen eines Schaltvorgangs kann das Fehlermaß insbesondere mit einem Schwellenwert verglichen werden. Ist das Fehlermaß mindestens so groß wie der Schwellenwert kann ein Schaltvorgang erkannt werden.
  • Der erwartete Stromverlauf kann insbesondere basierend auf einem ermittelten Widerstand und einer ermittelten Induktivität berechnet werden. Widerstand und Induktivität können beispielsweise basierend auf den Messwerten ermittelt werden, wie dies weiter unten angegeben wird.
  • Gemäß einer Ausführung weist das Verfahren ferner folgenden Schritt auf:
    • - Ermitteln einer Induktivität basierend auf den Stromwerten und den Spannungswerten.
  • Eine solche Induktivität kann insbesondere direkt als Parameter verwendet werden, um anhand einer Änderung der Induktivität einen Schaltvorgang zu erkennen, oder sie kann in die Ermittlung eines erwarteten Stromverlaufs eingehen.
  • Gemäß einer Ausführung weist das Verfahren ferner folgenden Schritt auf:
    • - Ermitteln eines Widerstands und einer Induktivität basierend auf den Stromwerten und den Spannungswerten. Ein solcher Widerstand kann insbesondere in das Ermitteln eines erwarteten Stromverlaufs eingehen.
  • Der Widerstand und/oder die Induktivität können insbesondere aus einem Parametervektor ermittelt werden, welcher durch Multiplikation des Inversen einer Messwertmatrix mit einem Stromvektor berechnet wird. Dies erlaubt die Verwendung einfacher Matrizenrechnung zur Berechnung des Parametervektors, aus welchem sich wiederum Widerstand und Induktivität ermitteln lassen. Eine mögliche Zusammensetzung der Messwertmatrix wird nachfolgend beschrieben werden. Gleiches gilt für den Stromvektor.
  • Die Messwertmatrix kann insbesondere zwei Spalten und mehrere Zeilen aufweisen. In der linken Spalte kann insbesondere in jeder Zeile die Summe zweier Spannungswerte stehen, welche zu zwei unmittelbar zeitlich benachbarten Messpunkten gemessen wurden. In der rechten Spalte kann insbesondere in jeder Zeile die Summe zweier Stromwerte stehen, welche zu zwei unmittelbar zeitlich benachbarten Messpunkten gemessen wurden. Der früheste Messpunkt jeder Zeile kann insbesondere ab der zweiten Zeile genau um einen Messpunkt später sein als der früheste Messpunkt der eins weiter oben angeordneten Zeile.
  • Durch die Bildung von Summen aus Spannungswerten bzw. Stromwerten wird in einfacher Weise eine Mittelwertbildung realisiert. Insbesondere bezieht sich dies auf eine Mittelwertbildung zwischen zwei Werten, welche zu unmittelbar zeitlich benachbarten Messpunkten gemessen wurden. Bei aufeinanderfolgenden Messpunkten, welche wie erwähnt insbesondere jeweiligen Messzeiten bzw. Zeitpunkten zugeordnet sind, kann insbesondere von unmittelbar zeitlich benachbarten Messpunkten gesprochen werden, wenn sich zwischen zwei solchen unmittelbar zeitlich benachbarten Messpunkten kein weiterer Messpunkt befindet. Der früheste Messpunkt jeder Zeile ist insbesondere derjenige, welcher zeitlich am frühesten angeordnet ist. Die jeweilige erste Zeile kann insbesondere mit zwei unmittelbar zeitlich benachbarten Messpunkten besetzt werden, welche den Ausgang für die weitere Besetzung der darunterliegenden Zeilen bilden.
  • In dem Stromvektor kann insbesondere in jeder Zeile die Differenz zweier Stromwerte stehen, welche zu zwei unmittelbar zeitlich benachbarten Messpunkten gemessen wurden. Der früheste Messpunkt jeder Zeile ab der zweiten Zeile kann insbesondere genau um einen Messpunkt später sein als der früheste Messpunkt der eins weiter oben angeordneten Zeile. In der Differenz kann insbesondere jeweils der zu einem früheren Messpunkt gemessene Stromwert vom zu einem späteren Messpunkt gemessenen Stromwert abgezogen werden.
  • Mittels einer solchen Vorgehensweise kann ein Stromvektor bereitgestellt werden, welcher zur Berechnung des Parametervektors dient. Dabei kann insbesondere auf eine Vorgehensweise bei der Berechnung zurückgegriffen werden, welche weiter unten näher erläutert werden wird.
  • Die Induktivität kann insbesondere basierend auf einem zeitlichen Abstand zwischen zwei unmittelbar benachbarten Messpunkten geteilt durch oberen Wert des Parametervektors berechnet werden. Insbesondere kann die Induktivität als zeitlicher Abstand zwischen zwei unmittelbar benachbarten Messpunkten geteilt durch oberen Wert des Parametervektors und geteilt durch zwei ermittelt werden. Dies stellt eine Spezifizierung der zuerst genannten Vorschrift dar. Eine Berechnung, die um eine Multiplikation mit einem konstanten Faktor erweitert ist, kann je nach Implementierung als äquivalent angesehen werden. Basierend auf der weiter unten erläuterten Vorgehensweise hat sich dies als zweckmäßige und einfache Berechnungsvorschrift für die Induktivität erwiesen.
  • Der Widerstand kann insbesondere als unterer Wert des Parametervektors geteilt durch oberen Wert des Parametervektors ermittelt werden. Basierend auf der weiter unten erläuterten Vorgehensweise hat sich dies als einfache und praktikable Berechnungsvorschrift erwiesen.
  • Der erwartete Stromverlauf kann insbesondere basierend auf folgender Formel berechnet werden: i e s t , j = I 0 + U I 0 R R ( 1 e j T S R L )
    Figure DE102022207061A1_0001
  • Dabei bezeichnen:
  • iest,j
    erwarteter Stromverlauf,
    I0
    Strom-Nullwert,
    U
    Spannung,
    R
    Widerstand,
    L
    Induktivität,
    j
    Nummer des Messpunkts,
    TS
    zeitlicher Abstand zwischen zwei unmittelbar benachbarten Messpunkten.
  • Eine solche Vorgehensweise hat sich als vorteilhaft erwiesen, da sie den erwarteten Stromverlauf in guter Näherung berechnet, insbesondere unter der Annahme, dass Widerstand und Induktivität über den betrachteten Zeitraum konstant bleiben. Wenn dies nicht der Fall ist, ist die Berechnung wesentlich schlechter, was zu einem höheren Fehlermaß führt. Genau dies wird bei der hierin beschriebenen Vorgehensweise ausgenutzt. Das Fehlermaß kann insbesondere eine Summe von Fehlerquadraten sein. Eine derartige Vorgehensweise hat sich als vorteilhaft erwiesen, da Fehlerquadrate einfach zu berechnen sind und einfach aufaddiert werden können. Insbesondere kann es sich um den Abstand zwischen einem gemessenen Wert und einem berechneten Wert zu einem bestimmten Messpunkt oder Zeitpunkt handeln, welcher quadriert wird, um ein Fehlerquadrat zu bilden. Über die gebildeten Fehlerquadrate wird dann eine Summe genommen, welche ein Fehlermaß darstellt. Grundsätzlich ist jedoch auch die Verwendung anderer Fehlermaße möglich.
  • Unter dem Strom-Nullwert I0 kann dabei insbesondere ein Strom zum Zeitpunkt des Starts des ersten Zyklus der Verfahrensführung, also beispielsweise beim ersten Messpunkt, verstanden werden. Es handelt sich typischerweise um einen Messwert. Er ist typischerweise ungleich Null.
  • Gemäß einer möglichen Ausführung weist das Verfahren ferner folgende Schritte auf:
    • - Vergleichen des Fehlermaßes mit einem weiteren Schwellenwert, und
    • - Erkennen keines Schaltvorgangs ansprechend darauf, dass das Fehlermaß höchstens so groß ist wie der weitere Schwellenwert.
  • Somit kann aktiv erkannt werden, dass kein Schaltvorgang stattgefunden hat. Der weitere Schwellenwert kann dabei in geeigneter Weise gesetzt werden. Er kann insbesondere kleiner sein als der Schwellenwert. Zwischen den beiden Schwellenwerten kann insbesondere ein undefinierter Bereich vorhanden sein, welcher zur Sicherheit vorgesehen werden kann, um falsche Erkennungen auszuschließen. Sollte das Fehlermaß in diesem undefinierten Bereich liegen, kann eine Fehlermeldung ausgegeben werden, oder es kann festgestellt werden, dass das Vorliegen eines Schaltvorgangs weder sicher erkannt noch sicher ausgeschlossen werden kann. Der weitere Schwellenwert kann jedoch auch gerade so groß sein, dass eine klare Unterscheidung in das Erkennen eines Schaltvorgangs und das Erkennen des Fehlens eines Schaltvorgangs in jedem Fall erfolgt.
  • Gemäß einer weiteren möglichen Ausführung wird kein Schaltvorgang erkannt, wenn das Fehlermaß kleiner ist als der Schwellenwert. Dies entspricht einer einfachen Ausführung.
  • Das Erkennen keines Schaltvorgangs kann insbesondere als aktive Bestimmung eines Ergebnisses betrachtet werden, d.h. es wird die Information ausgegeben, dass kein Schaltvorgang stattgefunden hat.
  • Gemäß einer Ausführung beträgt die vorgegebene Anzahl mindestens vier. Dies hat sich als vorteilhaft erwiesen, um mit einer ausreichenden Zuverlässigkeit einen Schaltvorgang zu erkennen oder auszuschließen. Auch jede andere Anzahl kann jedoch verwendet werden. Insbesondere kann eine höhere Anzahl als vier verwendet werden.
  • Insbesondere kann die Spannung pulsweitenmoduliert angelegt werden. Dadurch kann eine beliebige resultierende Spannung eingestellt werden, ohne dass diese Spannung im Dauerbetrieb erreicht werden muss. Dadurch können Aufwand und mögliche Energieverluste eingespart werden. Alternativ kann die Spannung auch konstant angelegt werden, d.h. sie wird für einen gewissen Zeitraum aufrechterhalten, ohne dass es zu einer Pulsweitenmodulation kommt.
  • Die Erfindung betrifft des Weiteren eine Steuerungsvorrichtung, welche dazu konfiguriert ist, ein Verfahren wie hierin beschrieben auszuführen. Die Erfindung betrifft des Weiteren ein nichtflüchtiges computerlesbares Speichermedium, welches Programmcode enthält, bei dessen Ausführung ein Prozessor ein hierin beschriebenes Verfahren ausführt. Bezüglich des hierin beschriebenen Verfahrens kann dabei jeweils auf alle hierin beschriebenen Ausführungen und Varianten zurückgegriffen werden.
  • Das hierin beschriebene Verfahren kann insbesondere in einer Steuerungsvorrichtung bzw. in einer elektronischen Vorrichtung ausgeführt werden.
  • Allgemein sei erwähnt, dass bei Bremssystemen, insbesondere bei By-Wire-Bremssystemen, Magnetventile zum Einsatz kommen. Beispielhaft seien dabei ein master cylinder cut valve (MCV), circuit separation valve (CSV), pressure feed valve (PFV), Einlassventil oder Auslassventil erwähnt. Oft ist es nützlich zu erkennen, ob ein Ventil noch schalten kann. Beispielsweise kann damit ein hydraulischer Selbsttest ergänzt werden, und die Betriebsbereitschaft kann sichergestellt werden. Es kann dabei eine Induktivitätsänderung beim Schaltvorgang ausgenutzt werden. Diese kommt zustande, indem sich beim Schalten der Luftspalt verringert und damit die Induktivität größer wird. Der Effekt der Induktivitätserhöhung ist bei typischen Ventilen beispielsweise zwischen 20 % und 50 % bezogen auf die Induktivität im Ruhezustand.
  • Es gibt bereits Ansätze, den geschalteten Zustand zu erkennen, indem beispielsweise im inaktiven Zustand und im aktiven Zustand die jeweilige Induktivität gemessen wird und die beiden Ergebnisse verglichen werden. Dies hat sich jedoch als zeitaufwändig und außerdem als schaltungstechnisch aufwändig erwiesen, da man die beiden Zustände aktiv und inaktiv ansteuern können muss, ohne das Bremssystem zu stören.
  • Bei der hierin beschriebenen Vorgehensweise sind typischerweise eine an der Spule anliegende Spannung oder ein duty cycle einer Pulsweitenmodulation bekannt. Zudem ist eine Abtastzeit Ts bekannt, welche insbesondere dem zeitlichen Abstand zwischen zwei unmittelbar benachbarten Messpunkten entsprechen kann. Es werden dann typischerweise Spulenströme und zugehörige Spannungen zu den jeweiligen Messpunkten gemessen, was insbesondere hinreichend oft erfolgen kann, beispielsweise jede Millisekunde. Nach beispielsweise den ersten vier Messungen kann die Anwendung eines Schätzverfahrens basierend auf der Methode der kleinsten Quadrate zur Bestimmung der Parameter Spulenwiderstand und Spuleninduktivität erfolgen. Dabei kann insbesondere auf die folgende Formel zurückgegriffen werden: d i d t = 1 L u R L i
    Figure DE102022207061A1_0002
  • Der Parameter i bezeichnet dabei den Strom, t die Zeit und u die Spannung. Mit den gefundenen Parametern Widerstand und Induktivität wird die Stromkurve nachgebildet, wobei insbesondere auf die bereits weiter oben wiedergegebene Formel (1) zurückgegriffen werden kann. Mit den gewonnenen Ergebnissen kann ein Fehlermaß Q berechnet werden, beispielsweise als Summe von Fehlerquadraten, beispielsweise basierend auf folgender Formel: Q = 1 N j = 1 N ( i M e s s , j i e s t , j ) 2
    Figure DE102022207061A1_0003
  • Die Messwerte werden dabei mit iMess,j bezeichnet, wobei j jeweils einen bestimmten Messpunkt bezeichnet.
  • Hat das Ventil nicht geschaltet, so war typischerweise L konstant und die Rekonstruktion der Kurve gelingt gut. Das Kriterium Q ist somit klein bis sehr klein und nur durch eventuelle Messfehler und Ungenauigkeiten begründet. Hat das Ventil jedoch geschaltet, so stimmt die Annäherung mit der Nachbildung nur grob überein und die Summe der Fehlerquadrate ist wesentlich größer.
  • Alternativ kann auch die Induktivität L direkt als Parameter verwendet werden, dessen Änderung zwischen einer angelegten Spannung und der nächsten einen Schaltvorgang anzeigt.
  • Nachfolgend werden die theoretischen Grundlagen zur Berechnung von Widerstand und Induktivität dargelegt.
  • Der Strom i einer Spule mit den Parametern Widerstand R und Induktivität L unter gegebener Spannung u lässt sich mittels der bereits weiter oben erwähnten Gleichung (2) beschreiben: d i d t = 1 L u R L i
    Figure DE102022207061A1_0004
  • Werden die Messwerte für Strom und Spannung mit einer konstanten Abtastzeit Ts abgetastet, so gilt für jeweils zwei benachbarte Stromwerte ik+1, ik sowie benachbarte Spannungswerte uk+1, uk: i k + 1 i k = [ u k + 1 + u k , ( i k + 1 + i k ) ] [ T S 2 L T S R 2 L ]
    Figure DE102022207061A1_0005
  • Für einen Parametervektor p, welcher viele Messpunkte berücksichtigen kann, ergibt sich somit: p = [ T S 2 L T S R 2 L ]
    Figure DE102022207061A1_0006
  • Der oben wiedergegebene Zusammenhang der Formel (4) lässt sich in Matrizenschreibweise mit einer Messwertmatrix S folgendermaßen darstellen: S = [ S U , S I ]
    Figure DE102022207061A1_0007
    S U = [ u 2 + u 1 ,   u 3 + u 2 ,   u 4 + u 3 , , u n + 1 + u n ] T
    Figure DE102022207061A1_0008
    S I = [ i 2 + i 1 ,   i 3 + i 2 ,   i 4 + i 3 , , i n + 1 + i n ] T
    Figure DE102022207061A1_0009
  • Ein Stromvektor y wird dann folgendermaßen definiert: y = [ i 2 i 1 ,   i 3 i 2 ,   i 4 i 3 , , i n + 1 i n ] T
    Figure DE102022207061A1_0010
  • Durch geeignete Umformungen ergibt sich dann: Y = S p
    Figure DE102022207061A1_0011
    p = ( S T S ) 1 S T y
    Figure DE102022207061A1_0012
  • In der letzten Zeile können bei quadratischer Matrix S die beiden transformierten Matrizen ST auch weggelassen werden, so dass sich einfach P = S 1 y
    Figure DE102022207061A1_0013
    ergibt.
  • Für die Berechnung von Induktivität L und Widerstand R ergibt sich somit: L = T S / ( P ( 1 ) 2 )
    Figure DE102022207061A1_0014
    R = P ( 2 ) P ( 1 )
    Figure DE102022207061A1_0015
    wobei P(1) den oberen Wert des Parametervektors und P(2) den unteren Wert des Parametervektors bezeichnen.
  • Für den erwarteten Strom ergibt sich somit i e s t , j = I 0 + U I 0 R R ( 1 e j T S R L ) , j = 1   b i s   N ,
    Figure DE102022207061A1_0016
    womit ein Fehlermaß Q Q = 1 N j = 1 N ( i M e s s , j i e s t , j ) 2
    Figure DE102022207061A1_0017
    berechnet werden kann.
  • Gemäß einer möglichen Ausführung wird zunächst eine Spannung eingestellt, die einen Strom sicher unterhalb des Schaltpunkts verursacht, und es wird die Induktivität L als Parameter ermittelt. Dies kann insbesondere wie eben beschrieben erfolgen. Danach wird nach und nach die Spannung erhöht, wodurch auch der Strom erhöht wird, und wiederum wird der Parameter L gemessen. Wenn sich der Parameter L bei zunehmendem Strom ändert, kann man davon ausgehen, dass das Ventil geschaltet hat.
  • Gemäß einer weiteren möglichen Vorgehensweise wird eine Spannung eingestellt, die einen Strom sicher oberhalb des Schaltpunkts verursacht, und es wird die Induktivität L als Parameter berechnet, beispielsweise wie weiter oben beschrieben. Danach verringert man nach und nach die Spannung und somit den Strom und misst wiederum den Parameter L. Wenn sich der Parameter L bei abnehmendem Strom ändert, dann kann man davon ausgehen, dass das Ventil geschaltet hat.
  • Gemäß einer weiteren möglichen Ausführung wird während des Einschaltvorgangs kontinuierlich der Strom in konstanten Zeitabständen betrachtet und dabei wird mittels eines Kleinsten-Fehlerquadrate-Verfahrens eine Schätzung der Parameter R und L vorgenommen. Nach den ersten vier Stromwerten, wenn das Ventil noch nicht geschaltet hat, kann man erstmalig den Schätzalgorithmus anwenden und R und L bestimmen, woraus das oben genannte Kriterium Q bestimmt werden kann. Dieses sollte zunächst relativ klein sein. Ab dem Moment, an welchem das Ventil zu schalten beginnt, wird die Schätzung schlechter und folgerichtig wird das Kriterium Q größer. Diesen Anstieg kann man auswerten und somit den Schaltstrom finden.
  • Nachfolgend werden weitere Erläuterungen mit Bezug auf die beigefügte Zeichnung gegeben. Dabei zeigen:
    • 1: eine Steuerungsvorrichtung und ein Ventil,
    • 2: Stromverläufe ohne Schaltvorgang, und
    • 3: Stromverläufe mit Schaltvorgang.
  • 1 zeigt eine Steuerungsvorrichtung 10 gemäß einem Ausführungsbeispiel der Erfindung, welche mit einem Ventil 20 verbunden ist. Das Ventil 20 ist hier lediglich beispielhaft dargestellt und weist eine Spule 22, eine Ankerstange 24, einen Stößel 26 sowie einen Ventilsitz 28 auf. Die Spule 22 ist elektrisch ansteuerbar und kann durch ein erzeugtes Magnetfeld die Ankerstange 24 bewegen. Der Stößel 26 ist mit der Ankerstange 24 verbunden und kann somit den Ventilsitz 28 schließen oder freigeben.
  • Die Steuerungsvorrichtung 10 ist dazu konfiguriert, ein erfindungsgemäßes Verfahren auszuführen. Insbesondere kann sie eine Spannung an die Spule 22 anlegen und zu mehreren vorgegebenen Messpunkten einen jeweiligen Spannungswert und einen jeweiligen Stromwert messen, daraus Widerstand und Induktivität berechnen, daraus einen erwarteten Stromverlauf berechnen, basierend auf dem erwarteten Stromverlauf und den gemessenen Werten ein Fehlermaß berechnen, das Fehlermaß mit einem Schwellenwert vergleichen und abhängig davon feststellen, ob das Ventil 20 geschaltet hat oder nicht. Wenn es nicht geschaltet hat, kann die Steuerungsvorrichtung 10 die Spannung erhöhen und den Vorgang erneut durchführen. Wenn es geschaltet hat kann die Steuerungsvorrichtung den bei dieser Spannung maximal gemessenen Strom als Schaltstrom bestimmen.
  • Alternativ kann die Steuerungsvorrichtung 10 auch nur die jeweilige Induktivität bei jeder anliegenden Spannung berechnen und basierend auf einer Änderung feststellen, wann das Ventil geschalten hat.
  • Beispielhafte Kurvenverläufe zur Erläuterung des Prinzips der Verwendung eines Fehlermaßes sind in den 2 und 3 dargestellt. 2 zeigt dabei einen gemessenen Stromverlauf IMeas sowie einen simulierten Stromverlauf ISim, wenn das Ventil 20 nicht geschaltet hat. Die beiden gezeigten Kurven sind dabei weitgehend identisch, so dass sich ein Fehlermaß von lediglich Q=0,000011 ergibt. 3 zeigt demgegenüber den Fall, wenn das Ventil 20 geschaltet hat. Die beiden Kurven sind dabei deutlich unterschiedlicher, so dass sich ein Fehlermaß von Q=0,000323 ergibt. Anhand dieser unterschiedlichen Fehlermaße kann in einfacher Weise erkannt werden, ob das Ventil geschaltet hat oder nicht.
  • In den 2 und 3 ist auf der horizontalen Achse jeweils die Zeit t und auf der vertikalen Achse der jeweilige Strom I angetragen. Jeweilige Knickpunkte treten insbesondere an jeweiligen Messpunkten auf. Der Abstand der Messpunkte beträgt vorliegend 1 ms.
  • Im dargestellten Beispiel ist das Verhältnis Q im geschalteten Zustand zu Q im nicht geschalteten Zustand 323/11, also ungefähr 29, somit ist der Unterschied gut detektierbar. In 2 war der Strom bei maximal ca. 520 mA und das Ventil hat nicht geschaltet. In 3 war ein Schaltvorgang zu erkennen mit der beschriebenen Vorgehensweise, somit war der Schaltstrom überhalb von 520 mA und kleiner als 700 mA. Mit weiteren Messungen lässt sich der Schaltstrom mit einer gewünschten Genauigkeit bestimmen. Hierzu kann beispielsweise das Verfahren nochmals mit Spannungs- bzw. Stromwerten durchgeführt werden, welche zwischen denjenigen Werten liegen, welche unmittelbar vor und unmittelbar nach einem Schaltvorgang angelegt bzw. gemessen wurden.
  • Erwähnte Schritte des erfindungsgemäßen Verfahrens können in der angegebenen Reihenfolge ausgeführt werden. Sie können jedoch auch in einer anderen Reihenfolge ausgeführt werden, soweit dies technisch sinnvoll ist. Das erfindungsgemäße Verfahren kann in einer seiner Ausführungen, beispielsweise mit einer bestimmten Zusammenstellung von Schritten, in der Weise ausgeführt werden, dass keine weiteren Schritte ausgeführt werden. Es können jedoch grundsätzlich auch weitere Schritte ausgeführt werden, auch solche welche nicht erwähnt sind.
  • Es sei darauf hingewiesen, dass in den Ansprüchen und in der Beschreibung Merkmale in Kombination beschrieben sein können, beispielsweise um das Verständnis zu erleichtern, obwohl diese auch separat voneinander verwendet werden können. Der Fachmann erkennt, dass solche Merkmale auch unabhängig voneinander mit anderen Merkmalen oder Merkmalskombinationen kombiniert werden können.
  • Rückbezüge in Unteransprüchen können bevorzugte Kombinationen der jeweiligen Merkmale kennzeichnen, schließen jedoch andere Merkmalskombinationen nicht aus.
  • Bezugszeichenliste
  • 10
    Steuerungsvorrichtung
    20
    Ventil
    22
    Spule
    24
    Ankerstange
    26
    Stößel
    28
    Ventilsitz
    t
    Zeit
    I
    Strom

Claims (15)

  1. Verfahren zum Bestimmen eines Schaltstroms eines elektromagnetischen Ventils (20), wobei das Verfahren folgende Schritte aufweist: - Anlegen einer Spannung an das Ventil (20), - Messen eines durch das Ventil fließenden Stroms und einer anliegenden Spannung zu mindestens einer vorgegebenen Anzahl von Messpunkten, dabei Erzeugen eines Stromwerts und eines Spannungswerts bei jedem Messpunkt, - Ermitteln eines Parameters basierend auf den Stromwerten und den Spannungswerten, - Erkennen eines Schaltvorgangs basierend auf einer Änderung des Parameters, - wenn kein Schaltvorgang erkannt wurde, erneute Durchführung der vorherigen Schritte mit einer höheren oder niedrigeren Spannung, wobei unmittelbar aufeinanderfolgende Spannungen bei Ausführung des Verfahrens immer entweder erhöht oder verringert werden, und - wenn ein Schaltvorgang erkannt wurde, Bestimmen des höchsten gemessenen Stromwerts als Schaltstrom.
  2. Verfahren nach Anspruch 1, - wobei der Parameter eine Induktivität ist.
  3. Verfahren nach Anspruch 1, - wobei der Parameter ein Fehlermaß zwischen den Stromwerten und einem erwarteten Stromverlauf ist.
  4. Verfahren nach Anspruch 3, - wobei der erwartete Stromverlauf basierend auf einem ermittelten Widerstand und einer ermittelten Induktivität berechnet wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, welches ferner mindestens einen der folgenden Schritte aufweist: - Ermitteln einer Induktivität basierend auf den Stromwerten und den Spannungswerten, oder - Ermitteln eines Widerstands und einer Induktivität basierend auf den Stromwerten und den Spannungswerten.
  6. Verfahren nach Anspruch 5, - wobei der Widerstand und/oder die Induktivität aus einem Parametervektor ermittelt werden, welcher durch Multiplikation des Inversen einer Messwertmatrix mit einem Stromvektor berechnet wird.
  7. Verfahren nach Anspruch 6, - wobei die Messwertematrix zwei Spalten und mehrere Zeilen hat, - wobei in der linken Spalte in jeder Zeile die Summe zweier Spannungswerte steht, welche zu zwei unmittelbar zeitlich benachbarten Messpunkten gemessen wurden, - wobei in der rechten Spalte in jeder Zeile die Summe zweier Stromwerte steht, welche zu zwei unmittelbar zeitlich benachbarten Messpunkten gemessen wurden, - wobei der früheste Messpunkt jeder Zeile ab der zweiten Zeile genau um einen Messpunkt später ist als der früheste Messpunkt der eins weiter oben angeordneten Zeile.
  8. Verfahren nach einem der Ansprüche 6 oder 7, - wobei in dem Stromvektor in jeder Zeile die Differenz zweier Stromwerte steht, welche zu zwei unmittelbar zeitlich benachbarten Messpunkten gemessen wurden, - wobei der früheste Messpunkt jeder Zeile ab der zweiten Zeile genau um einen Messpunkt später ist als der früheste Messpunkt der eins weiter oben angeordneten Zeile, und - wobei in der Differenz jeweils der zu einem früheren Messpunkt gemessene Stromwert vom zu einem späteren Zeitpunkt gemessenen Stromwert abgezogen wird.
  9. Verfahren nach einem der Ansprüche 6 bis 8, - wobei die Induktivität basierend auf einem zeitlichen Abstand zwischen zwei unmittelbar benachbarten Messpunkten geteilt durch oberen Wert des Parametervektors berechnet wird.
  10. Verfahren nach einem der Ansprüche 6 bis 9, - wobei die Induktivität als zeitlicher Abstand zwischen zwei unmittelbar benachbarten Messpunkten geteilt durch oberen Wert des Parametervektors und geteilt durch zwei ermittelt wird.
  11. Verfahren nach einem der Ansprüche 6 bis 10, - wobei der Widerstand als unterer Wert des Parametervektors geteilt durch oberen Wert des Parametervektors ermittelt wird.
  12. Verfahren nach Anspruch 3 oder einem davon abhängigen Anspruch, - wobei der erwartete Stromverlauf basierend auf folgender Formel berechnet wird: i e s t , j = I 0 + U I 0 R R ( 1 e j T S R L )
    Figure DE102022207061A1_0018
    dabei bezeichnen: iest,j erwarteter Stromverlauf I0 Strom-Nullwert U Spannung R Widerstand L Induktivität j Nummer des Messpunkts TS zeitlicher Abstand zwischen den Messpunkten
  13. Verfahren nach Anspruch 3 oder einem davon abhängigen Anspruch, - wobei das Fehlermaß eine Summe von Fehlerquadraten ist.
  14. Verfahren nach einem der vorhergehenden Ansprüche, - wobei die Spannung pulsweitenmoduliert angelegt wird.
  15. Steuerungsvorrichtung, welche dazu konfiguriert ist, ein Verfahren nach einem der vorhergehenden Ansprüche auszuführen.
DE102022207061.5A 2022-07-11 2022-07-11 Verfahren zum Bestimmen eines Schaltstroms eines elektromagnetischen Ventils und Steuerungsvorrichtung Pending DE102022207061A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102022207061.5A DE102022207061A1 (de) 2022-07-11 2022-07-11 Verfahren zum Bestimmen eines Schaltstroms eines elektromagnetischen Ventils und Steuerungsvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102022207061.5A DE102022207061A1 (de) 2022-07-11 2022-07-11 Verfahren zum Bestimmen eines Schaltstroms eines elektromagnetischen Ventils und Steuerungsvorrichtung

Publications (1)

Publication Number Publication Date
DE102022207061A1 true DE102022207061A1 (de) 2024-01-11

Family

ID=89387127

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102022207061.5A Pending DE102022207061A1 (de) 2022-07-11 2022-07-11 Verfahren zum Bestimmen eines Schaltstroms eines elektromagnetischen Ventils und Steuerungsvorrichtung

Country Status (1)

Country Link
DE (1) DE102022207061A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011078161A1 (de) 2011-03-03 2012-09-06 Robert Bosch Gmbh Verfahren zur Erkennung einer Nadelbewegung eines Dosierventils und entsprechendes Kontrollmodul
DE102011083068A1 (de) 2011-09-20 2013-03-21 Robert Bosch Gmbh Verfahren zum Bestimmen eines Werts eines Stroms
DE102018217661A1 (de) 2018-10-15 2020-04-16 Continental Teves Ag & Co. Ohg Verfahren zum Bestimmen eines Schaltzustands eines Ventils und Elektromagnetventilanordnung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011078161A1 (de) 2011-03-03 2012-09-06 Robert Bosch Gmbh Verfahren zur Erkennung einer Nadelbewegung eines Dosierventils und entsprechendes Kontrollmodul
DE102011083068A1 (de) 2011-09-20 2013-03-21 Robert Bosch Gmbh Verfahren zum Bestimmen eines Werts eines Stroms
DE102018217661A1 (de) 2018-10-15 2020-04-16 Continental Teves Ag & Co. Ohg Verfahren zum Bestimmen eines Schaltzustands eines Ventils und Elektromagnetventilanordnung

Similar Documents

Publication Publication Date Title
EP2707587B1 (de) Verfahren und vorrichtung zum erkennen eines schliesszeitpunktes eines einen spulenantrieb aufweisenden ventils
DE102014105719B4 (de) Schaltungsvorrichtung mit einer Thyristorschaltung sowie ein Verfahren zum Prüfen der Thyristorschaltung
EP0777597B1 (de) Verfahren und vorrichtung zur ansteuerung eines elektromagnetischen ventils
DE102015209195A1 (de) Einrastventilanordnung mit Positionserkennung
EP3867659B1 (de) Verfahren zum bestimmen eines schaltzustands eines ventils und elektromagnetventilanordnung
WO2020078806A1 (de) Verfahren zum bestimmen eines schaltzustands eines ventils und elektromagnetventilanordnung
DE2655615A1 (de) Verfahren und vorrichtung zum stabilisieren der oeffnungsperiode einer elektromagnetisch betaetigten brennstoff-einspritzvorrichtung
DE2250872C3 (de) Verfahren und Einrichtung zum elektroerosiven Bearbeiten
DE102014223066A1 (de) Verfahren und Steuereinheit zur Erkennung eines Ankeranschlags eines elektromechanischen Aktuators
EP0880732A1 (de) Verfahren und vorrichtung zur prüfung und/oder einstellung von ventilen
DE102022207061A1 (de) Verfahren zum Bestimmen eines Schaltstroms eines elektromagnetischen Ventils und Steuerungsvorrichtung
DE102022207059A1 (de) Verfahren zum Erkennen eines Schaltvorgangs und Steuerungsvorrichtung
DE102014216609A1 (de) Überwachung einer Spule
DE1802251A1 (de) Analogrechenanordnung
DE102018207417A1 (de) Bestimmung einer Kenngröße eines magnetischen Schaltventils
DE3715163A1 (de) Elektrische pruefschaltung
DE102012209967A1 (de) Verfahren zum Betreiben eines Magnetventils
DE102009021856B4 (de) Verfahren zur Ermittlung eines Induktivitätswertes zur Bestimmung eines Ankerweges
AT523209B1 (de) Brennstoffzellensystem, Computerprogrammprodukt, Speichermittel und Verfahren zum Betreiben eines Brennstoffzellensystems
DE1448908A1 (de) Vorrichtung zur elektrographischen Aufzeichnung
AT164729B (de) Einrichtung für den Nachrichtenverkehr
DE2213281A1 (de) Verfahren und Vorrichtung zur Stabilisierung der Ladung eines Energiespeichers
DE102022200410A1 (de) Verfahren zum Betrieb einer Magnetventilanordnung mit mehreren parallelgeschalteten Spulen für ein Fahrdynamiksystem
DE102016219872B3 (de) Betreiben eines Kraftstoffinjektors mit hydraulischem Anschlag bei reduziertem Kraftstoffdruck
DE2706604C2 (de) Verfahren und Schaltungsanordnung zum Betrieb eines Mehrspalt-Thyratrons

Legal Events

Date Code Title Description
R163 Identified publications notified
R081 Change of applicant/patentee

Owner name: CONTINENTAL AUTOMOTIVE TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE TECHNOLOGIES GMBH, 30165 HANNOVER, DE