-
Gebiet der Technik
-
Die vorliegende Beschreibung betrifft im Allgemeinen Verfahren und Systeme zum Überwachen der Funktionsfähigkeit physischer Objekte und insbesondere zum Erkennen von Anomalien bei Fahrzeugkomponenten.
-
Allgemeiner Stand der Technik
-
Die prädiktive Instandhaltung, die auch als zustandsbasierte Instandhaltung bezeichnet wird, ist eine Strategie, die ein kontinuierliches Überwachen des Zustands von Objekten (z. B. Fahrzeugkomponenten) einschließt, um Instandhaltungsmaßnahmen zu bestimmen, die zu bestimmten Zeitpunkten ergriffen werden müssen. Systeme zur Prognose, Anomalieerkennung (Anomaly Detection - AD) und Vorhersage der verbleibenden Nutzungsdauer (Remaining Useful Life - RUL) können die Funktionsfähigkeit der Objekte kontinuierlich überwachen und Benachrichtigungen bereitstellen, wenn das Durchführen einer Wartung empfohlen wird. Um eine Anzahl von Komponentenbeeinträchtigungen im praktischen Einsatz zu reduzieren und Ausgestaltungsfehler schneller festzustellen, kann ein Vorhersagemodell verwendet werden, um einen AD-Schwellenwert festzulegen, der eine Wartung auslöst. Zum Beispiel beinhaltet ein Ansatz, der von Zhang et al. in der US-Patentanmeldungsveröffentlichung Nr. 2019/0384257 angewendet wird, das Kombinieren von gelernten Funktionsfähigkeitsindikatoren mit Regressionsmodellen, um Ausfälle vorherzusagen.
-
In einer Umgebung mit herkömmlichen Fahrzeugen ist das Vorhersagemodell in das Fahrzeug eingebettet und nutzt lokale oder fahrzeuginterne Informationen, um den Funktionsfähigkeitsstatus des Objekts festzusetzen. In einem System vernetzter Fahrzeuge können die physischen Objekte zudem über einen Internet-of-Things-Framework (IoT-Framework) mit einem Cloud-basierten Funktionsfähigkeitsüberwachungssystem und mit anderen physischen Objekten vernetzt sein, wobei jedes Objekt Informationen an das Cloud-basierte Funktionsfähigkeitsüberwachungssystem und die anderen Objekte übertragen und von diesen empfangen kann. Somit kann das Vorhersagemodell Objektpopulationsinformationen von einer Vielzahl von ähnlichen Fahrzeugen empfangen, die im praktischen Einsatz betrieben werden. Gleichermaßen können Objekte in einer Fabrikumgebung zudem Betriebsinformationen von anderen ähnlichen Maschinen in der Fabrik sowie von anderen Fabriken empfangen. Das Vorhersagemodell kann daher auf Grundlage von Daten von vernetzten Fahrzeugen angelegt werden. Zum Beispiel lehren Barfield et. al im
US-Patent Nr. 9,881,428 das Vorhersagen potenzieller Komponentenausfälle in einem Fahrzeug durch Auswerten von Cloud-basierten Daten von einer Vielzahl von Fahrzeugen.
-
Kurzdarstellung
-
Die Erfinder der vorliegenden Erfindung haben jedoch potenzielle Probleme bei der Verwendung aktueller Vorhersagemodelle zum Vorhersagen einer Beeinträchtigung von Objekten erkannt. Als ein Beispiel können aktuelle Funktionsfähigkeitsüberwachungssysteme, sowohl herkömmliche als auch vernetzte, wenn sie neue Informationen empfangen, die zuvor nicht im IoT-Framework verfügbar waren, ihre AD-Vorhersagemodelle, -Algorithmen und/oder -Erkennungsschwellenwerte unter Umständen nicht kontinuierlich auf Grundlage der neuen Informationen aktualisieren. Somit können aktuelle AD-Modelle unter Umständen nicht lernen und/oder sich weiterentwickeln, um im Laufe der Zeit genauer zu werden, insbesondere wenn neue, zuvor unbekannte latente Effekte entdeckt werden, die aus vernetzten Datenströmen ersichtlich werden können. Selbst wenn die AD-Modelle regelmäßig aktualisiert werden, kann die Aktualisierung einen einfachen Mittelungsprozess einschließen, der die Varianz in den Daten unter Umständen nicht angemessen erfasst. Zusätzlich können AD-Modelle zu einer hohen Rate von falsch positiven Ergebnissen neigen, die unter Umständen durch das Sammeln von Daten von einer größeren Population von Fahrzeugen nicht angemessen angegangen werden kann. Zum Beispiel können herkömmliche Ansätze parametrische oder mechanistische Modelle niedriger Ordnung für AD-Vorhersagen und feste Erkennungsschwellenwerte nutzen, die für eine begrenzte Menge von Betriebsbedingungen kalibriert und über kalibrierbare Modifikatoren verallgemeinert werden, die unter Umständen einen zugrundeliegenden Zufallsprozess nicht darstellen. Ferner können die parametrischen Modelle eine Einzelfaktoranalyse im Gegensatz zu einer multivariaten Analyse nutzen und können Filterungs- und Mittelungstechniken verwenden, um die Empfindlichkeit relativ zu einem festen Erkennungsschwellenwert zu reduzieren, die auf einer Annahme der Stationarität basieren, selbst wenn Prozesse heteroskedastisch sind. Die Vorhersagemodelle stellen zudem unter Umständen keine Informationen über einzelne Grundursachen einer Komponentenverschlechterung bereit, da unter Umständen erwartete Faktoren der Komponentenverschlechterung aggregiert werden können, um allgemeine Modelle zu erstellen, die unter Umständen nicht für alle Bedingungen gelten, denen ein Fahrzeugsystem ausgesetzt sein kann.
-
In einem Beispiel können die vorstehend beschriebenen Probleme durch ein Verfahren zur kontinuierlichen Funktionsfähigkeitsüberwachung von vernetzten physischen Objekten angegangen werden, umfassend Anpassen von Schwellenwerten für Anomalieerkennung und Grundursachenanalysealgorithmen für die vernetzten Objekte auf Grundlage einer Aggregation neuer vernetzter Daten unter Verwendung von maschinellem Lernen; Aktualisieren und Einstufen in einer Rangfolge von hochentwickelten statistischen Modellen und Modellen zum maschinellen Lernen auf Grundlage ihrer Leistung unter Verwendung vernetzter Daten, bis ein Modell mit der besten Leistung bestätigt ist; und Einsetzen des Modells mit der besten Leistung, um die vernetzten physischen Objekte zu überwachen. Auf diese Weise können Verfahren zum maschinellen Lernen (Machine Learning - ML) in Verbindung mit Daten von dem IoT-Framework verwendet werden, um eine genauere AD-Modellierung bereitzustellen. Konkreter können AD-Metriken durch Verwenden von Wahrscheinlichkeitsdichtefunktionen und Schätzen bedingter Wahrscheinlichkeiten einer Beeinträchtigung einer Komponente angesichts einer Beeinträchtigung einer oder mehrerer anderer Komponenten des Fahrzeugsystems und/oder beobachtbarer Ereignisse aktualisiert werden.
-
Als ein Beispiel kann eine Beeinträchtigung einer Kraftstoffeinspritzvorrichtung eine Ursache für eine Fehlzündung sein, wobei eine Wahrscheinlichkeit des Auftretens einer Fehlzündung sowohl von einer Randwahrscheinlichkeit des Auftretens der Fehlzündung unabhängig von anderen Bedingungen (z. B. auf Grundlage von Fehlzündungsdaten, die von einer Vielzahl von Fahrzeugen im Laufe der Zeit gesammelt wurden) als auch von einer bedingten Wahrscheinlichkeit des Auftretens der Fehlzündung angesichts einer vorherigen Beeinträchtigung der Kraftstoffeinspritzvorrichtung (z. B. auf Grundlage von Fehlzündungsdaten und Beeinträchtigungsdaten von Kraftstoffeinspritzvorrichtungen, die von der Vielzahl von Fahrzeugen im Laufe der Zeit gesammelt wurden) abhängen kann. Somit kann eine Genauigkeit eines Fehlzündungs-AD-Modells durch Verwenden und kontinuierliches Aktualisieren sowohl der Randwahrscheinlichkeit der Fehlzündung als auch der bedingten Wahrscheinlichkeiten der Fehlzündung angesichts anderer Beeinträchtigungsdaten mit Daten von dem IoT-Framework, sobald die Daten verfügbar werden, erhöht werden. Ferner kann eine Vielzahl von Fehlzündungs-AD-Modellen aus den von den vernetzten Fahrzeugobjekten empfangenen Fehlzündungsdaten erstellt werden, die auf Grundlage neuer Fehlzündungsdaten kontinuierlich neu in einer Rangfolge eingestuft (z. B. neu in einer Rangfolge eingestuft) werden können, um ein Fehlzündungs-AD-Modell mit der besten Leistung auszuwählen, wobei ein AD-Schwellenwert des Fehlzündungs-AD-Modells mit der besten Leistung verwendet werden kann, um eine Wartungsbenachrichtigung auszulösen. Infolge des kontinuierlichen Aktualisierens der Randwahrscheinlichkeit und der bedingten Wahrscheinlichkeiten und des Neueinstufens der Vielzahl von AD-Modellen in einer Rangfolge kann eine Rate von falsch positiven und falsch negativen Ergebnissen in AD- und RUL-Vorhersagemodellen reduziert werden. Ein Vorteil des kontinuierlichen Aktualisierens der Randwahrscheinlichkeit und der bedingten Wahrscheinlichkeiten und des Neueinstufens der Vielzahl von AD-Modellen in einer Rangfolge besteht darin, dass eine beliebige Anzahl oder Art von statistischen Modellen und/oder Modellen zum maschinellen Lernen verwendet werden kann, die im Laufe der Zeit lernen und sich weiterentwickeln und konkurrieren können. Ein zusätzlicher Vorteil des in dieser Schrift offenbarten Verfahrens besteht darin, dass durch kontinuierliches Aktualisieren der Randwahrscheinlichkeit und der bedingten Wahrscheinlichkeiten die AD-Modellierung Grundursachen festsetzen kann, die es AD-Vorhersagemodellen erlauben, die zukünftige Funktionsfähigkeit und Leistung (z. B. RUL) der Fahrzeugkomponenten auf Grundlage der Grundursache vorhersagend einzuschätzen.
-
Es versteht sich, dass die vorstehende Kurzdarstellung bereitgestellt ist, um in vereinfachter Form eine Auswahl an Konzepten vorzustellen, die in der detaillierten Beschreibung ausführlicher beschrieben ist. Es ist nicht beabsichtigt, wichtige oder maßgebliche Merkmale des beanspruchten Gegenstands festzustellen, dessen Umfang einzig durch die Patentansprüche definiert ist, die auf die detaillierte Beschreibung folgen. Des Weiteren ist der beanspruchte Gegenstand nicht auf Umsetzungen beschränkt, die beliebige der vorstehend oder in einem beliebigen Teil dieser Offenbarung angeführten Nachteile beheben.
-
Figurenliste
-
- 1 veranschaulicht eine schematische Darstellung eines Motors, der in einem Hybridfahrzeug beinhaltet ist.
- 2 zeigt schematisch ein beispielhaftes Fahrzeugantriebssystem.
- 3 ist eine grafische Darstellung, die eine überwachte Funktionsfähigkeitsmetrik einer Fahrzeugkomponente zur Anomalieerkennung veranschaulicht.
- 4 veranschaulicht ein beispielhaftes System zur Anomalieerkennung unter Gebrauch von Daten von vernetzten Fahrzeugen.
- 5 ist ein Ablaufdiagramm, das ein beispielhaftes Verfahren zum Aktualisieren von AD-Vorhersagemodellen auf Grundlage von Daten von vernetzten Fahrzeugen veranschaulicht.
- 6 ist ein Ablaufdiagramm, das ein beispielhaftes Verfahren zum Einstufen von Anomalieerkennungsmodellen in einer Rangfolge auf Grundlage von Daten von vernetzten Fahrzeugen veranschaulicht.
- 7A ist ein Ablaufdiagramm, das ein beispielhaftes Verfahren zum Aktualisieren einer Randwahrscheinlichkeit einer vollständigen Beeinträchtigung einer Fahrzeugkomponente veranschaulicht.
- 7B ist ein Ablaufdiagramm, das ein beispielhaftes Verfahren zum Erstellen und/oder Aktualisieren eines AD-Modells auf Grundlage einer bedingten Wahrscheinlichkeit einer vollständigen Beeinträchtigung einer Fahrzeugkomponente veranschaulicht.
- 8 ist ein Diagramm, das die Verwendung von Wahrscheinlichkeitsdichteschätzungen für eine Cloud-basierte AD-Trendauswertung/- entdeckung in einer Population veranschaulicht.
- 9 ist eine grafische Darstellung von Verläufen von Kurven der Operationscharakteristik eines Beobachters (Receiver Operator Characteristic - ROC), die zum Sortieren von Vorhersagemodellen verwendet werden.
- 10 ist ein Ablaufdiagramm, das ein beispielhaftes Verfahren zum Markieren einer Komponente in Bezug auf eine mögliche Beeinträchtigung auf Grundlage einer Anomalieerkennung veranschaulicht.
-
Detaillierte Beschreibung
-
Die folgende Beschreibung betrifft Systeme und Verfahren zum kontinuierlichen Aktualisieren einer Vielzahl von Anomalieerkennungsmodellen (AD-Modellen) und AD-Schwellenwerten auf Grundlage von Daten, die von einem System vernetzter Fahrzeuge empfangen werden, und zum Einstufen der aktualisierten AD-Modelle in einer Rangfolge, um ein oder mehrere Modelle mit der besten Leistung zu bestimmen.
-
Eine Komponente eines Fahrzeugs kann von einer Vielzahl von Lieferanten geliefert werden, wobei sich ein Ausgestaltungsfehler in der Komponente von einem Lieferanten aus der Vielzahl von Lieferanten in einer Teilmenge einer Fahrzeugpopulation zeigen kann. Der Ausgestaltungsfehler wird häufig durch Rückrufe nach einer (großen) Anzahl von Beeinträchtigungen im praktischen Einsatz behoben, was zu zusätzlichen Fahrten für die Wartung und zu Frustration des Fahrers führt. Um die Anzahl von Beeinträchtigungen im praktischen Einsatz zu reduzieren, können AD-Modelle verwendet werden, um vorherzusagen, wann eine Beeinträchtigung der Komponente auftreten kann, und eine Benachrichtigung über eine Aufforderung zur Durchführung einer Wartung an einen Fahrer des Fahrzeugs bereitzustellen.
-
Ein AD-Modell kann in einen Speicher des Fahrzeugs eingebettet sein und eine Steuerung des Fahrzeugs kann auf dieses zugreifen. Das AD-Modell kann einen AD-Schwellenwert festsetzen, wobei der AD-Schwellenwert eine Metrik ist, die verwendet wird, um eine Komponente des Fahrzeugs in Bezug auf anormales Verhalten zu kennzeichnen. Die Metrik kann direkt gemessen oder von anderen Signalen abgeleitet werden. In einem Beispiel ist die Metrik Zeit, wobei der AD-Schwellenwert eine Zeitdauer ist, die während einer Lebensdauer der Komponente verstrichen ist. In anderen Beispielen kann eine andere Metrik verwendet werden, wie etwa eine Anzahl von Malen, welche die Komponente verwendet oder angeschaltet wurde, oder eine Anzahl von Umdrehungen der Komponente oder eine Anzahl von Fällen eines Eintretens eines Ereignisses, das die Komponente einschließt, oder eine andere Metrik. Wenn der AD-Schwellenwert erreicht ist, wird einem Fahrer des Fahrzeugs eine Benachrichtigung bereitgestellt, dass das Fahrzeug gewartet werden muss. In einem Beispiel wird der AD-Schwellenwert auf Grundlage von historischen/statistischen Daten, Reparaturdaten, Garantiedaten, Testdaten oder anderen Daten, die von einem Hersteller oder Händler des Fahrzeugs gesammelt werden, festgesetzt, wobei der AD-Schwellenwert fest ist und sich im Laufe der Zeit nicht ändert.
-
Das Fahrzeug kann innerhalb eines Systems vernetzter Fahrzeuge betrieben werden, wobei die Steuerung über ein drahtloses Modem des Fahrzeugs mit einer Vielzahl von anderen Fahrzeugen des Systems vernetzter Fahrzeuge und einem oder mehreren Cloud-basierten Diensten, wie etwa einem Cloud-basierten Funktionsfähigkeitsüberwachungssystem, kommunizieren kann. Wenn das Fahrzeug innerhalb des Systems vernetzter Fahrzeuge betrieben wird, kann der AD-Schwellenwert, wie nachstehend ausführlicher beschrieben, durch das AD-Modell auf Grundlage von Daten aktualisiert werden, die von anderen Fahrzeugen des Systems vernetzter Fahrzeuge empfangen werden, welche die Komponente beinhalten. Zum Beispiel kann das AD-Modell den AD-Schwellenwert einer Kraftstoffeinspritzvorrichtung des Fahrzeugs auf Grundlage von Beeinträchtigungsdaten einer Vielzahl von ähnlichen Kraftstoffeinspritzvorrichtungen einer entsprechenden Vielzahl von Fahrzeugen aktualisieren. Wenn die Beeinträchtigungsdaten eine Zunahme der Beeinträchtigung der Kraftstoffeinspritzvorrichtungen zeigen (z. B. aufgrund eines Ausgestaltungsfehlers in einer Teilpopulation von Kraftstoffeinspritzvorrichtungen von einem Lieferanten), kann der AD-Schwellenwert gesenkt werden, oder wenn die Beeinträchtigungsdaten eine Abnahme der Beeinträchtigung der Kraftstoffeinspritzvorrichtungen zeigen (z. B. aufgrund einer Ausgestaltungsverbesserung in einer Teilpopulation von Kraftstoffeinspritzvorrichtungen von einem Lieferanten), kann der AD-Schwellenwert angehoben werden.
-
Die AD-Modelle können von einem Hersteller des Fahrzeugs vor dem Einsatz erstellt und kalibriert werden, wobei die Vor-Einsatz-Kalibrierung Festlegen von anfänglichen AD-Schwellenwerten und/oder AD-Metriken (z. B. Leistungsvariablen) und Anwenden von Filterungs- und/oder Mittelungstechniken beinhalten kann, um eine Empfindlichkeit relativ zu den anfänglichen AD-Schwellenwerten zu verringern. Herkömmlicherweise werden die anfänglichen AD-Schwellenwerte jedoch auf Grundlage von Stichprobenstatistiken (z. B. neuen Fahrzeugen) anstelle von Populationsstatistiken (z. B. allen Fahrzeugen im praktischen Einsatz) festgesetzt, und die Filterungs- und/oder Mittelungstechniken können eine starke Stationarität annehmen, wenn Daten heteroskedatisch sein können (z. B. wenn sich eine Variabilität der Daten im Laufe der Zeit ändern kann, was eine erhöhte Anzahl von falsch positiven und/oder falsch negativen Ergebnissen erzeugen kann).
-
Um die Anzahl von falsch positiven und/oder falsch negativen Ergebnissen zu reduzieren, werden Verfahren vorgeschlagen, um die AD-Metriken und/oder AD-Schwellenwerte auf Grundlage von Beeinträchtigungsdaten, die von dem System vernetzter Fahrzeuge empfangen werden, kontinuierlich anzupassen (z. B. zu aktualisieren). Zusätzlich kann eine Vielzahl von Modellen mit unterschiedlichen AD-Metriken und/oder AD-Schwellenwerten verwendet werden, wobei ein Modell mit der besten Leistung aus der Vielzahl von Modellen auf Grundlage eines oder mehrerer Rangfolgeeinstufungsalgorithmen ausgewählt werden kann, wie nachstehend beschrieben.
-
Ein Fahrzeug kann einen Motor, wie etwa den Motor, der in 1 abgebildet ist, innerhalb eines Fahrzeugantriebssystems, wie etwa des Fahrzeugantriebssystems aus 2, beinhalten. Eine geschätzte Nutzungsdauer einer Komponente des Fahrzeugs kann in einer grafischen Darstellung im Zeitverlauf mit verschiedenen Funktionsfähigkeitsüberwachungsmetriken (z. B. AD-Schwellenwerten) aufgetragen werden, wie etwa in der grafischen Darstellung, die in 3 gezeigt ist. Beeinträchtigungsdaten der Komponente können aus einer oder mehreren Fertigungsdatenbanken und/oder einem System vernetzter Fahrzeuge über ein Cloud-basiertes AD-Serversystem, wie etwa das AD-Serversystem 401 aus 4, gesammelt werden. Das eine oder die mehreren AD-Modelle können gemäß einer Prozedur, wie etwa der Prozedur, die durch das Verfahren 500 aus 5 beschrieben ist, erstellt, aktualisiert und in einer Rangfolge eingestuft werden. Die AD-Modelle können periodisch oder kontinuierlich auf Grundlage neuer Daten gemäß einer Prozedur, wie etwa der Prozedur, die durch das Verfahren 600 aus 6 beschrieben ist, neu in einer Rangfolge eingestuft werden, was das Einstufen von Kurven der Operationscharakteristik eines Beobachters (ROC-Kurven), wie etwa den ROC-Kurven, die in 9 gezeigt sind, in einer Rangfolge einschließen kann. Die AD-Modelle können auf Grundlage einer Berechnung einer Randwahrscheinlichkeit und einer bedingten Wahrscheinlichkeit, dass eine Anomalie in einer Komponente erkannt werden wird, aktualisiert werden. Wenn jeder Anomalieerkennungsfall empfangen wird, kann die Randwahrscheinlichkeit des Erkennens der Anomalie in der Komponente unter Verwendung einer Wahrscheinlichkeitsdichtefunktion geschätzt werden, wie in dem Verfahren 700 aus 7A beschrieben. Sobald die Randwahrscheinlichkeiten von Anomalien, die in einer Reihe von vernetzten Komponenten auftreten, bestimmt wurden, kann eine bedingte (A-posteriori-)Wahrscheinlichkeit des Erkennens der Anomalie in der Komponente gemäß dem Bayes-Theorem unter Verwendung einer Prozedur, wie etwa der Prozedur, die durch das Verfahren 750 aus 7B beschrieben ist, berechnet werden. Die Wahrscheinlichkeitsdichteschätzungen können zudem verwendet werden, um Trends und/oder neue Modalitäten in den Daten der vernetzten Fahrzeuge festzustellen, wie unter Bezugnahme auf 8 beschrieben. Wenn ein AD-Modell eine Anomalie in einer Komponente eines Fahrzeugs vorhersagt, kann die Komponente durch eine Steuerung des Fahrzeugs gekennzeichnet werden, sodass ein Fahrer des Fahrzeugs über eine Aufforderung zur Durchführung einer Wartung benachrichtigt werden kann.
-
1 zeigt eine schematische Abbildung eines Hybridfahrzeugsystems 6, das Antriebsleistung von einem Motorsystem 8 und/oder von einer Energiespeichervorrichtung an Bord beziehen kann. Eine Energieumwandlungsvorrichtung, wie etwa ein Generator, kann dazu betrieben werden, Energie aus einer Fahrzeugbewegung und/oder dem Motorbetrieb zu absorbieren und die absorbierte Energie dann in eine zum Speichern durch die Energiespeichervorrichtung geeignete Energieform umzuwandeln.
-
Das Motorsystem 8 kann einen Motor 10 beinhalten, der eine Vielzahl von Zylindern 30 aufweist. Der Motor 10 beinhaltet einen Motoreinlass 23 und einen Motorauslass 25. Der Motoreinlass 23 beinhaltet eine Luftansaugdrossel 62, die über einen Ansaugkanal 42 an den Motoransaugkrümmer 44 fluidgekoppelt ist. Luft kann über ein Luftfilter 52 in den Ansaugkanal 42 eintreten. Der Motorauslass 25 beinhaltet einen Abgaskrümmer 48, der zu einem Abgaskanal 35 führt, der Abgas in die Atmosphäre ableitet. Der Motorauslass 25 kann eine oder mehrere Emissionssteuervorrichtungen 70 beinhalten, die an einer motornahen Position oder an einer entfernten Unterbodenposition montiert sind. Die eine oder die mehreren Emissionssteuervorrichtungen können einen Dreiwegekatalysator, eine Mager-NOx-Falle, ein Dieselpartikelfilter, einen Oxidationskatalysator usw. beinhalten. Es versteht sich, dass andere Komponenten in dem Motor beinhaltet sein können, wie etwa eine Vielfalt an Ventilen und Sensoren, wie in dieser Schrift genauer erörtert. In einigen Ausführungsformen, bei denen das Motorsystem 8 ein aufgeladenes Motorsystem ist, kann das Motorsystem ferner eine Aufladevorrichtung, wie etwa einen Turbolader (nicht gezeigt), beinhalten.
-
Das Fahrzeugsystem 6 kann ferner ein Steuersystem 14 beinhalten. Der Darstellung nach empfängt das Steuersystem 14 Informationen von einer Vielzahl von Sensoren 16 (für die in dieser Schrift verschiedene Beispiele beschrieben werden) und sendet Steuersignale an eine Vielzahl von Aktoren 81 (für die in dieser Schrift verschiedene Beispiele beschrieben werden). Als ein Beispiel können die Sensoren 16 einen Abgassensor 126, der sich stromaufwärts der Emissionssteuervorrichtung befindet, einen Temperatursensor 128 und einen Drucksensor 129 beinhalten. Andere Sensoren, wie etwa zusätzliche Druck-, Temperatur-, Luft-KraftstoffVerhältnis- und Zusammensetzungssensoren, können an verschiedene Stellen in dem Fahrzeugsystem 6 gekoppelt sein. Als ein weiteres Beispiel können die Aktoren die Drossel 62 beinhalten.
-
Die Steuerung 12 kann als herkömmlicher Mikrocomputer konfiguriert sein, der eine Mikroprozessoreinheit, Eingangs-/Ausgangsanschlüsse, einen Festwertspeicher, einen Direktzugriffsspeicher, einen Keep-Alive-Speicher, einen Controller-Area-Network-Bus (CAN-Bus) usw. beinhaltet. Die Steuerung 12 kann als ein Antriebsstrangsteuermodul (Powertrain Control Module - PCM) konfiguriert sein. Für zusätzliche Energieeffizienz kann die Steuerung zwischen einem Ruhe- und einem Weckmodus umgeschaltet werden. Die Steuerung kann Eingabedaten von den verschiedenen Sensoren empfangen, die Eingabedaten verarbeiten und die Aktoren als Reaktion auf die verarbeiteten Eingabedaten auf Grundlage einer darin programmierten Anweisung oder eines darin programmierten Codes, die/der einer oder mehreren Routinen entspricht, auslösen.
-
In einigen Beispielen umfasst das Hybridfahrzeug 6 mehrere Drehmomentquellen, die einem oder mehreren Fahrzeugrädern 59 zur Verfügung stehen. In anderen Beispielen ist das Fahrzeug 6 ein herkömmliches Fahrzeug nur mit einem Motor oder ein Elektrofahrzeug nur mit (einer) elektrischen Maschine(n). In dem gezeigten Beispiel beinhaltet das Fahrzeug 6 einen Motor 10 und eine elektrische Maschine 51. Die elektrische Maschine 51 kann ein Elektromotor oder ein Motor/Generator sein. Eine Kurbelwelle des Motors 10 und die elektrische Maschine 51 können über ein Getriebe 54 mit Fahrzeugrädern 59 verbunden sein, wenn eine oder mehrere Kupplungen 56 eingekuppelt sind. In dem abgebildeten Beispiel ist eine erste Kupplung 56 zwischen einer Kurbelwelle und der elektrischen Maschine 51 bereitgestellt und ist eine zweite Kupplung 56 zwischen der elektrischen Maschine 51 und dem Getriebe 54 bereitgestellt. Die Steuerung 12 kann ein Signal an einen Aktor der jeweiligen Kupplung 56 senden, um die Kupplung einzukuppeln oder auszukuppeln, um so die Kurbelwelle mit der elektrischen Maschine 51 und den damit verbundenen Komponenten zu verbinden oder von diesen zu trennen und/oder um die elektrische Maschine 51 mit dem Getriebe 54 und den damit verbundenen Komponenten zu verbinden oder von diesen zu trennen. Bei dem Getriebe 54 kann es sich um ein Schaltgetriebe, ein Planetenradsystem oder eine andere Getriebeart handeln. Der Antriebsstrang kann auf verschiedene Weisen konfiguriert sein, was ein Parallel-, Serien- oder Serien-Parallel-Hybridfahrzeug beinhaltet.
-
Die elektrische Maschine 51 nimmt elektrische Leistung von einer Traktionsbatterie 61 auf, um den Fahrzeugrädern 59 Drehmoment bereitzustellen. Die elektrische Maschine 51 kann zudem als Generator betrieben werden, um zum Beispiel während eines Bremsvorgangs elektrische Leistung zum Aufladen der Batterie 61 bereitzustellen.
-
2 veranschaulicht ein beispielhaftes Fahrzeugantriebssystem 200, das ein nicht einschränkendes Beispiel für das Hybridfahrzeugsystem 6 aus 1 ist. Das Fahrzeugantriebssystem 200 beinhaltet einen Kraftstoffverbrennungsmotor 210 und einen Elektromotor 220. Als ein nicht einschränkendes Beispiel umfasst der Motor 210 eine Brennkraftmaschine und umfasst der Elektromotor 220 einen elektrischen Motor. Der Motor 210 kann ein nicht einschränkendes Beispiel für den Motor 10 aus 1 sein und der Elektromotor 220 kann ein nicht einschränkendes Beispiel für die elektrische Maschine 51 aus 1 sein. Der Elektromotor 220 kann dazu konfiguriert sein, eine andere Energiequelle zu gebrauchen oder zu verbrauchen als der Motor 210. Zum Beispiel kann der Motor 210 einen Flüssigkraftstoff (z. B. Benzin) verbrauchen, um eine Motorausgangsleistung zu erzeugen, während der Elektromotor 220 elektrische Energie verbrauchen kann, um eine Elektromotorausgangsleistung zu erzeugen. Demnach kann ein Fahrzeug mit dem Antriebssystem 200 als Hybridelektrofahrzeug (Hybrid Electric Vehicle - HEV) bezeichnet werden.
-
Das Fahrzeugantriebssystem 200 kann in Abhängigkeit von den Betriebsbedingungen, denen das Fahrzeugantriebssystem ausgesetzt ist, eine Vielfalt unterschiedlicher Betriebsmodi gebrauchen. Einige dieser Modi können ermöglichen, dass der Motor 210 in einem ausgeschalteten Zustand (d. h. auf einen abgeschalteten Zustand festgelegt) gehalten wird, in dem die Verbrennung von Kraftstoff an dem Motor unterbrochen ist. Zum Beispiel kann der Elektromotor 220 das Fahrzeug unter ausgewählten Betriebsbedingungen über ein Antriebsrad 230 antreiben, wie durch den Pfeil 222 angegeben, während der Motor 210 abgeschaltet ist, was in dieser Schrift als rein elektrischer Betrieb bezeichnet werden kann.
-
Während anderer Betriebsbedingungen kann der Motor 210 auf einen abgeschalteten Zustand festgelegt sein (wie vorstehend beschrieben), während der Elektromotor 220 betrieben werden kann, um eine Energiespeichervorrichtung 250 zu laden. Zum Beispiel kann der Elektromotor 220 ein Raddrehmoment von dem Antriebsrad 230 empfangen, wie durch den Pfeil 222 angegeben, wobei der Elektromotor die kinetische Energie des Fahrzeugs in elektrische Energie zur Speicherung in der Energiespeichervorrichtung 250 umwandeln kann, wie durch den Pfeil 224 angegeben. Dieser Betrieb kann als Nutzbremsung des Fahrzeugs bezeichnet werden. Somit kann der Elektromotor 220 in einigen Beispielen eine Generatorfunktion bereitstellen. In anderen Beispielen kann stattdessen jedoch ein Generator 260 das Raddrehmoment von dem Antriebsrad 230 empfangen, wobei der Generator die kinetische Energie des Fahrzeugs in elektrische Energie zur Speicherung in der Energiespeichervorrichtung 250 umwandeln kann, wie durch den Pfeil 262 angegeben. In einigen Beispielen kann der Motor 210 während des Nutzbremsens abgeschaltet werden und kann die Traktion an dem Antriebsrad 230 negativ sein, sodass sich der Elektromotor 220 rückwärts drehen und die Energiespeichervorrichtung 250 wiederaufladen kann. Somit kann Nutzbremsen von einem rein elektrischen Betrieb unterschieden werden, bei dem der Elektromotor 220 positive Traktion an dem Antriebsrad 230 bereitstellen kann, wodurch ein SOC der Energiespeichervorrichtung 250 verringert wird, während der Motor 210 abgeschaltet ist.
-
Während noch anderer Betriebsbedingungen kann der Motor 210 betrieben werden, indem Kraftstoff verbrannt wird, der von einem Kraftstoffsystem 240 empfangen wird, wie durch den Pfeil 242 angegeben. Zum Beispiel kann der Motor 210 betrieben werden, um das Fahrzeug über das Antriebsrad 230 anzutreiben, wie durch den Pfeil 212 angegeben, während der Elektromotor 220 abgeschaltet ist, wie etwa während eines Ladungserhaltungsbetriebs. Während anderer Betriebsbedingungen können sowohl der Motor 210 als auch der Elektromotor 220 jeweils betrieben werden, um das Fahrzeug über das Antriebsrad 230 anzutreiben, wie durch den Pfeil 212 bzw. 222 angegeben. Eine Konfiguration, in der sowohl der Motor als auch der Elektromotor das Fahrzeug selektiv antreiben können, kann als Fahrzeugantriebssystem vom Paralleltyp oder als Hybridantrieb bezeichnet werden. Es ist anzumerken, dass in einigen Beispielen der Elektromotor 220 das Fahrzeug über einen ersten Satz von Antriebsrädern antreiben kann und der Motor 210 das Fahrzeug über einen zweiten Satz von Antriebsrädern antreiben kann.
-
In anderen Beispielen kann das Fahrzeugantriebssystem 200 als Fahrzeugantriebssystem vom Serientyp konfiguriert sein, wodurch der Motor die Antriebsräder nicht direkt antreibt. Vielmehr kann der Motor 210 durch den Leistungsmotor 220 betrieben werden, wodurch wiederum das Fahrzeug über das Antriebsrad 230 angetrieben werden kann, wie durch den Pfeil 222 angegeben. Zum Beispiel kann der Motor 210 während ausgewählter Betriebsbedingungen den Generator 260 antreiben, wie durch den Pfeil 216 angegeben, der wiederum einem oder mehreren von dem Elektromotor 220, wie durch den Pfeil 214 angegeben, oder der Energiespeichervorrichtung 250, wie durch den Pfeil 262 angegeben, elektrische Energie zuführen kann. Als ein weiteres Beispiel kann der Motor 210 betrieben werden, um den Elektromotor 220 anzutreiben, der wiederum eine Generatorfunktion bereitstellen kann, um die Motorausgangsleistung in elektrische Energie umzuwandeln, wobei die elektrische Energie zur späteren Verwendung durch den Elektromotor in der Energiespeichervorrichtung 250 gespeichert werden kann.
-
In noch anderen Beispielen, die nachstehend ausführlicher erörtert werden, kann der Elektromotor 220 dazu konfiguriert sein, den Motor ohne Kraftstoffzufuhr unter Verwendung von Energie, die über die Energiespeichervorrichtung 250 bereitgestellt wird, wie durch den Pfeil 286 beispielhaft dargestellt, in einer Vorwärts- (z. B. Standardausrichtung) oder Rückwärtsausrichtung zu drehen.
-
Das Kraftstoffsystem 240 kann einen oder mehrere Kraftstoffspeichertanks 244 zum Speichern von Kraftstoff an Bord des Fahrzeugs beinhalten. Zum Beispiel kann der Kraftstofftank 244 einen oder mehrere Flüssigkraftstoffe speichern, darunter unter anderem Benzin, Diesel und Alkoholkraftstoffe. In einigen Beispielen kann der Kraftstoff als Gemisch aus zwei oder mehr unterschiedlichen Kraftstoffen an Bord des Fahrzeugs gespeichert sein. Zum Beispiel kann der Kraftstofftank 244 dazu konfiguriert sein, ein Gemisch aus Diesel und Biodiesel, Benzin und Ethanol (z. B. E10, E85 usw.) oder ein Gemisch aus Benzin und Methanol (z. B. M10, M85 usw.) zu speichern, wodurch diese Kraftstoffe oder Kraftstoffgemische an den Motor 210 abgegeben werden können, wie durch den Pfeil 242 angegeben. Es können noch andere geeignete Kraftstoffe oder Kraftstoffgemische dem Motor 210 zugeführt werden, wobei sie in dem Motor verbrannt werden können, um eine Motorausgangsleistung zu erzeugen. Die Motorausgangsleistung kann dazu gebraucht werden, das Fahrzeug anzutreiben, wie durch den Pfeil 212 angegeben, oder die Energiespeichervorrichtung 250 über den Elektromotor 220 oder den Generator 260 wiederaufzuladen.
-
In einigen Beispielen kann die Energiespeichervorrichtung 250 dazu konfiguriert sein, elektrische Energie zu speichern, die anderen elektrischen Verbrauchern (als dem Elektromotor) zugeführt werden kann, die sich an Bord des Fahrzeugs befinden, was Kabinenheizung und -klimatisierung, Motorstart, Scheinwerfer, Kabinenaudio- und - videosysteme usw. beinhaltet. Als ein nicht einschränkendes Beispiel kann die Energiespeichervorrichtung 250 eine/n oder mehrere Batterien und/oder Kondensatoren beinhalten. In einigen Beispielen kann ein Erhöhen der elektrischen Energie, die von der Energiespeichervorrichtung 250 zugeführt wird, eine Reichweite im rein elektrischen Betrieb verringern, wie nachstehend genauer beschrieben wird.
-
Ein Steuersystem 290 kann mit einem oder mehreren von dem Motor 210, dem Elektromotor 220, dem Kraftstoffsystem 240, der Energiespeichervorrichtung 250 und dem Generator 260 kommunizieren. In einigen Beispielen kann das Steuersystem 290 ähnlich der Steuerung 12 aus 1 verwendet werden. Das Steuersystem 290 kann sensorische Rückmeldungsinformationen von einem oder mehreren von dem Motor 210, dem Elektromotor 220, dem Kraftstoffsystem 240, der Energiespeichervorrichtung 250 und dem Generator 260 empfangen. Ferner kann das Steuersystem 290 als Reaktion auf diese sensorische Rückmeldung Steuersignale an eines oder mehrere von dem Motor 210, dem Elektromotor 220, dem Kraftstoffsystem 240, der Energiespeichervorrichtung 250 und dem Generator 260 senden. In einigen Beispielen kann das Steuersystem 290 eine Angabe einer durch einen Bediener angeforderten Ausgangsleistung des Fahrzeugantriebssystems von einem Fahrzeugführer 202 empfangen. Zum Beispiel kann das Steuersystem 290 eine sensorische Rückmeldung von einem Pedalpositionssensor 294 empfangen, der mit einem Pedal 292 kommuniziert. Das Pedal 292 kann sich schematisch auf ein Bremspedal und/oder ein Fahrpedal beziehen. Ferner kann das Steuersystem 290 in einigen Beispielen mit einem Motorfernstartempfänger 295 (oder -sendeempfänger) in Kommunikation stehen, der drahtlose Signale 206 von einem Funkschlüssel 204 empfängt, der eine Fernstarttaste 205 aufweist. In anderen Beispielen (nicht gezeigt) kann ein Motorfernstart über ein Mobiltelefon oder ein smartphonebasiertes System, bei dem das Mobiltelefon eines Benutzers Daten an einen Server sendet und der Server mit dem Fahrzeug kommuniziert, um den Motor zu starten, eingeleitet werden.
-
In einigen Beispielen kann das Fahrzeugantriebssystem 200 zusätzlich oder alternativ dazu konfiguriert sein, autonom (z. B. ohne einen menschlichen Fahrzeugführer) betrieben zu werden. Demnach kann das Steuersystem 290 eine oder mehrere gewünschte Motorbetriebsbedingungen auf Grundlage geschätzter aktueller Fahrbedingungen bestimmen.
-
Die Energiespeichervorrichtung 250 kann periodisch elektrische Energie von einer Leistungsquelle 280 aufnehmen, die sich außerhalb des Fahrzeugs befindet (z. B. nicht Teil des Fahrzeugs ist), wie durch den Pfeil 284 angegeben. Als ein nicht einschränkendes Beispiel kann das Fahrzeugantriebssystem 200 als Plug-in-Hybridelektrofahrzeuge (Hybrid Electric Vehicle - HEV) konfiguriert sein, wodurch der Energiespeichervorrichtung 250 elektrische Energie aus der Leistungsquelle 280 über ein Übertragungskabel 282 für elektrische Energie zugeführt werden kann. Während eines Aufladebetriebs der Energiespeichervorrichtung 250 aus der Leistungsquelle 280 kann das elektrische Übertragungskabel 282 die Energiespeichervorrichtung 250 und die Leistungsquelle 280 elektrisch koppeln. Während das Fahrzeugantriebssystem betrieben wird, um das Fahrzeug anzutreiben, kann das elektrische Übertragungskabel 282 zwischen der Leistungsquelle 280 und der Energiespeichervorrichtung 250 getrennt sein. Das Steuersystem 290 kann die in der Energiespeichervorrichtung gespeicherte Menge an elektrischer Energie, die als Ladezustand (State Of Charge - SOC) bezeichnet werden kann, ermitteln und/oder steuern.
-
In anderen Beispielen kann das elektrische Übertragungskabel 282 weggelassen werden, wobei elektrische Energie an der Energiespeichervorrichtung 250 drahtlos aus der Leistungsquelle 280 aufgenommen werden kann. Zum Beispiel kann die Energiespeichervorrichtung 250 elektrische Energie über eines oder mehrere von elektromagnetischer Induktion, Funkwellen und elektromagnetischer Resonanz aus der Leistungsquelle 280 aufnehmen. Demnach versteht es sich, dass ein beliebiger geeigneter Ansatz zum Wiederaufladen der Energiespeichervorrichtung 250 aus einer Leistungsquelle, die nicht Teil des Fahrzeugs ist, verwendet werden kann. Auf diese Weise kann der Elektromotor 220 das Fahrzeug unter Gebrauch einer anderen Energiequelle als dem von dem Motor 210 verwendeten Kraftstoff antreiben.
-
Das Kraftstoffsystem 240 kann periodisch Kraftstoff aus einer Kraftstoffquelle aufnehmen, die sich außerhalb des Fahrzeugs befindet. Als ein nicht einschränkendes Beispiel kann das Fahrzeugantriebssystem 200 mit Kraftstoff versorgt werden, indem Kraftstoff über eine Kraftstoffabgabevorrichtung 270 aufgenommen wird, wie durch den Pfeil 272 angegeben. In einigen Beispielen kann der Kraftstofftank 244 dazu konfiguriert sein, den von der Kraftstoffabgabevorrichtung 270 aufgenommenen Kraftstoff zu speichern, bis er dem Motor 210 zur Verbrennung zugeführt wird. In einigen Beispielen kann das Steuersystem 290 eine Angabe des Füllstands des in dem Kraftstofftank 244 gespeicherten Kraftstoffs über einen Füllstandsensor empfangen. Der Füllstand des in dem Kraftstofftank 244 gespeicherten Kraftstoffs (z. B. wie durch den Füllstandssensor ermittelt) kann dem Fahrzeugführer zum Beispiel über eine Kraftstoffanzeige oder eine Angabe an einem Fahrzeugarmaturenbrett 296 kommuniziert werden.
-
Das Fahrzeugantriebssystem 200 kann zudem einen Umgebungstemperatur-/-luftfeuchtigkeitssensor 298 und einen Rollstabilitätssteuersensor, wie etwa einen Querbeschleunigungs- und/oder Längsbeschleunigungs- und/oder Gierratensensor 299, beinhalten. Das Fahrzeugarmaturenbrett 296 kann (eine) Anzeigeleuchte(n) und/oder eine textbasierte Anzeige, auf der einem Bediener Nachrichten angezeigt werden, beinhalten. Das Fahrzeugarmaturenbrett 296 kann zudem verschiedene Eingabeabschnitte zum Empfangen einer Bedienereingabe beinhalten, wie etwa Tasten, Touchscreens, Spracheingabe/-erkennung usw. Zum Beispiel kann das Fahrzeugarmaturenbrett 296 eine Betankungstaste 297 beinhalten, die durch einen Fahrzeugführer manuell betätigt oder gedrückt werden kann, um das Betanken einzuleiten. Zum Beispiel kann, wie nachstehend ausführlicher beschrieben wird, als Reaktion darauf, dass der Fahrzeugführer die Betankungstaste 297 betätigt, der Druck in einem Kraftstofftank in dem Fahrzeug herabgesetzt werden, sodass das Betanken durchgeführt werden kann.
-
Das Steuersystem 290 kann unter Verwendung geeigneter Kommunikationstechnologie, wie sie im Fach bekannt ist, kommunikativ an andere Fahrzeuge oder Infrastrukturen gekoppelt sein. Zum Beispiel kann das Steuersystem 290 über ein drahtloses Netzwerk 231, das Wi-Fi, Bluetooth, eine Art von Mobilfunkdienst, ein drahtloses Datenübertragungsprotokoll und so weiter umfassen kann, an andere Fahrzeuge oder Infrastrukturen gekoppelt sein. Das Steuersystem 290 kann Informationen hinsichtlich Fahrzeugdaten, Fahrzeugdiagnosen, Verkehrsbedingungen, Fahrzeugstandortinformationen, Fahrzeugbetriebsprozeduren usw. über Fahrzeug-zu-Fahrzeug(V2V)-, Fahrzeug-zu-Infrastruktur-zu-Fahrzeug(V2I2V)- und/oder Fahrzeug-zu-Infrastruktur(V2I oder V2X)-Technologie aussenden (und empfangen). Die Kommunikation und die Informationen, die zwischen den Fahrzeugen ausgetauscht werden, können entweder direkt zwischen Fahrzeugen oder über Multi-Hop ausgetauscht werden. In einigen Beispielen können Kommunikationstechniken mit größerer Reichweite (z. B. WiMax) anstelle von oder in Verbindung mit V2V oder V2I2V verwendet werden, um den Abdeckungsbereich um einige Meilen zu erweitern. In noch anderen Beispielen kann das Fahrzeugsteuersystem 290 über ein drahtloses Netzwerk 231 und das Internet (z. B. Cloud) kommunikativ an andere Fahrzeuge oder Infrastrukturen gekoppelt sein, wie es im Fach allgemein bekannt ist. Ein Beispiel für eine V2V-Kommunikationsvorrichtung kann ein Netzwerk zur dedizierten Nahbereichskommunikation (Dedicated Short Range Communication - DSRC) beinhalten, das es Fahrzeugen innerhalb einer Schwellennähe (z. B. 5.000 Fuß) ermöglichen kann, ohne Internetverbindung zu kommunizieren (z. B. Informationen zu übertragen).
-
Das drahtlose Netzwerk 231 kann ein oder mehrere Rechensysteme (z. B. Server) beinhalten, die einen Speicher und einen oder mehrere Prozessoren beinhalten. Der Speicher kann dazu konfiguriert sein, verschiedene Modelle zur Anomalieerkennung/Bestimmung der verbleibenden Nutzungsdauer, wie in dieser Schrift beschrieben, sowie verschiedene Daten, die diesem bereitgestellt werden, was von mehreren Fahrzeugen erlangte Fahrzeugbetriebs-/Sensordaten beinhaltet, zu speichern. Der Prozessor kann die im Speicher gespeicherten Anweisungen ausführen, um die Fahrzeugbetriebs-/Sensordaten in die verschiedenen Modelle einzugeben, AD-Schwellenwerte auf Grundlage der Ausgabe der Modelle anzupassen, die Modelle zu sortieren usw., wie nachstehend beschrieben.
-
Das Fahrzeugantriebssystem 200 kann zudem ein Navigationssystem 232 an Bord (zum Beispiel ein globales Positionsbestimmungssystem) beinhalten, mit dem ein Bediener des Fahrzeugs interagieren kann. Das Navigationssystem 232 kann einen oder mehrere Standortsensoren zum Unterstützen beim Schätzen der Fahrzeuggeschwindigkeit, der Fahrzeughöhe, der Fahrzeugposition/des Fahrzeugstandorts usw. beinhalten. Diese Informationen können dazu verwendet werden, Motorbetriebsparameter, wie etwa den lokalen Luftdruck, abzuleiten. Wie vorstehend erörtert, kann das Steuersystem 290 ferner dazu konfiguriert sein, Informationen über das Internet oder andere Kommunikationsnetzwerke zu empfangen. Von dem GPS empfangene Informationen können auf Informationen querverwiesen sein, die über das Internet verfügbar sind, um die örtlichen Wetterbedingungen, örtliche Fahrzeugvorschriften usw. zu bestimmen.
-
In einigen Beispielen kann das Fahrzeugantriebssystem 200 eine oder mehrere bordeigene Kameras 235 beinhalten. Die bordeigenen Kameras 235 können zum Beispiel Fotos und/oder Videobilder an das Steuersystem 290 kommunizieren. Bordeigene Kameras können in einigen Beispielen gebraucht werden, um zum Beispiel Bilder innerhalb eines vorbestimmten Radius des Fahrzeugs aufzuzeichnen. Die bordeigenen Kameras 235 können an einer Außenfläche des Fahrzeugs so angeordnet sein, dass eine Fläche um das Fahrzeug und/oder benachbart zu diesem visualisiert werden kann.
-
Fahrzeuge weisen Komponenten auf, die unter einer Vielzahl von Bedingungen beeinträchtigt werden, und Hersteller entwickeln Modelle mit Schwellenwerten, die vorhersagen, wann Fahrzeugkomponenten beeinträchtigt werden können. Die Modelle können verwendet werden, um den Bediener zu benachrichtigen, damit das Fahrzeug gewartet werden kann. Die Schwellenwerte können jedoch auf empirischen Modellen basieren, die an neuen Fahrzeugen getestet wurden oder unter eingeschränkten Bedingungen und dergleichen getestet wurden, sodass die Schwellenwerte zu falsch positiven oder falsch negativen Bestimmungen der Beeinträchtigung führen können. Falsch positive und falsch negative Ergebnisse stellen Unannehmlichkeiten für den Fahrzeugführer bereit, was unter anderem eine Beeinträchtigung von Komponenten ohne Benachrichtigung, durchgehend falsche Beeinträchtigungsbenachrichtigungen und häufige Reparaturen beinhaltet.
-
Zum Beispiel zeigt 3 eine grafische Darstellung 300, die eine erwartete Lebensdauer und zwei Beispiele für unerwartete Lebensdauern für eine Kraftstoffeinspritzvorrichtungskomponente in einem Fahrzeug veranschaulicht. Die grafische Darstellung 300 beinhaltet eine Komponentenfunktionsfähigkeitsmetrik, die auf der y-Achse aufgetragen ist, und die Zeit der Komponente im Betrieb, die auf der x-Achse aufgetragen ist. Die grafische Darstellung 300 veranschaulicht feste Schwellenwerte zum Überwachen der Komponentenfunktionsfähigkeit im Zeitverlauf. Die grafische Darstellung 300 beinhaltet einen Verlauf 302, der eine Kurve ist, die eine Änderung der Komponentenfunktionsfähigkeitsmetrik (z. B. Anzahl von Fehlzündungsereignissen) im Zeitverlauf zeigt. Eine Metrik der Komponentenbeeinträchtigung für Kraftstoffeinspritzvorrichtungen kann Fehlzündungsereignisse beinhalten, wobei eine Zunahme von Fehlzündungsereignissen im Zeitverlauf eine Beeinträchtigung von Kraftstoffeinspritzvorrichtungen angeben kann. In einem Beispiel kann eine Beeinträchtigung der Kraftstoffeinspritzvorrichtung eine Einspritzung zum falschen Zeitpunkt verursachen, was zu einer unvollständigen Verbrennung führt. Auf Grundlage von Sensormesswerten und Betriebsdaten für die Komponente kann ein Modell angewendet werden, um die festen Schwellenwerte bei der Leistungsüberwachung der Komponente zu bestimmen. Die grafische Darstellung 300 kann einen Funktionsfähigkeitsindex der Komponente veranschaulichen, sodass eine Beeinträchtigung und anomales Verhalten der Komponente innerhalb eines Zeitfensters erkannt werden können.
-
Ein erster Schwellenwert 304 kann ein erwartetes Fehlzündungsniveau darstellen, wenn die Fahrzeugkomponente (z. B. die Kraftstoffeinspritzvorrichtung) neu ist. Ein zweiter Schwellenwert 306 kann eine Obergrenze für einen Normalbetrieb für die Fahrzeugkomponente darstellen, das heißt, wenn die Funktionsfähigkeitsmetrik, wie durch Verlauf 302 gezeigt, zwischen dem ersten Schwellenwert 304 und dem zweiten Schwellenwert 306 liegt, kann davon ausgegangen werden, dass die Fahrzeugkomponente in einem normalen Betriebsbereich liegt (z. B. keine Beeinträchtigung über den normalen Verschleiß hinaus aufweist).
-
Die grafische Darstellung 300 kann Unterteilungen von Zeitspannen während des Überwachens der Funktionsfähigkeit der Fahrzeugkomponente beinhalten, die Zeitfenster darstellen, in denen die Funktionsfähigkeitsdaten der Fahrzeugkomponente bei bestimmten Schwellenwerten liegen können. Funktionsfähigkeitsdaten von Fahrzeugkomponenten können in Zeitschritten aufgezeichnet werden, die unter anderem Millisekunden, Sekunden, Minuten oder Stunden beinhalten.
-
Eine erste Zeitspanne 314 kann eine Zeitdauer darstellen, in der sich die Fahrzeugkomponente bei normaler Funktionsfähigkeit befindet, was eine beliebige Zeitdauer ist, in welcher der Verlauf 302 unter dem zweiten Schwellenwert 306 liegt. Eine zweite Zeitspanne 316 kann eine Zeitdauer darstellen, in der die Funktionsfähigkeit der Fahrzeugkomponente von der normalen Funktionsfähigkeit abweicht, was eine beliebige Zeitdauer ist, in welcher der Verlauf 302 über dem festen Schwellenwert 306 liegt. Die erste Zeitspanne 314 und die zweite Zeitspanne 316 können in der grafischen Darstellung 300 durch eine erste Zeitmarkierung 318 unterteilt sein, die einen Zeitpunkt darstellen kann, zu dem der Verlauf 302 den zweiten Schwellenwert 306 überschreitet.
-
Signifikante Datenpunkte der Funktionsfähigkeitsdaten von Fahrzeugkomponenten können für eine Vielzahl von Maßnahmen beim Überwachen der Funktionsfähigkeit von Fahrzeugkomponenten aufgezeichnet werden. Die Maßnahmen können das Senden von Benachrichtigungen, das Modifizieren des Komponentenbetriebs und dergleichen beinhalten. Der Fahrzeugführer kann Empfehlungen als Benachrichtigungen bezüglich des Änderns des Fahrzeugbetriebs als Reaktion auf die Funktionsfähigkeit von Fahrzeugkomponenten empfangen. Die Empfehlungen können über eine Mensch-Maschine-Schnittstelle (Human-Machine Interface - HMI), eine Telefonanwendung und dergleichen kommuniziert werden. In einem Beispiel können signifikante Komponentenfunktionsfähigkeitsdaten in Bezug auf eine sich verschlechternde Kraftstoffeinspritzvorrichtung dazu führen, dass der Fahrzeugführer Empfehlungen empfängt, seine Beschleunigungsrate zu reduzieren, um die RUL der Kraftstoffeinspritzvorrichtung zu verlängern.
-
Ein erster Punkt von Interesse 330 kann in der grafischen Darstellung 300 als ein Datenpunkt dargestellt sein, wenn der Verlauf 302 den zweiten Schwellenwert 306 überschreitet. Der Punkt von Interesse 330 sowie nachfolgende Punkte von Interesse, die später erörtert werden, können als signifikante Daten für Vorhersagemodelle aufgezeichnet werden und die Daten können an Vorhersagemodelle für eine Vielzahl von lokalen Fahrzeugkomponenten sowie an Vorhersagemodelle für Fahrzeugkomponenten von Fahrzeugen in einer Population vernetzter Fahrzeuge kommuniziert werden.
-
Die grafische Darstellung 300 beinhaltet ferner einen ersten festen AD-Schwellenwert 308 und einen zweiten festen AD-Schwellenwert 310, wobei jeder davon beim Überwachen der Funktionsfähigkeit für die Fahrzeugkomponente verwendet werden kann. Der erste feste AD-Schwellenwert 308 und der zweite feste AD-Schwellenwert 310 sind unterschiedliche Beispiele für mögliche Umsetzungen von festen Anomalieschwellenwerten. Wenn Datenpunkte auf dem Verlauf 302 einen Anomalieschwellenwert überschreiten (z. B. wenn vorhergesagt wird, dass eine Anomalie erkannt werden wird), kann eine Benachrichtigung an den Fahrzeugführer gesendet werden, sodass das Fahrzeug repariert oder gewartet werden kann.
-
Ein Sprung 340 auf dem Verlauf 302 kann eine plötzliche und signifikante Verschlechterung der Funktionsfähigkeit der Fahrzeugkomponente angeben. In einem Beispiel kann ein beschädigter Draht in der Kraftstoffeinspritzvorrichtung zu einer signifikanten Zunahme von Fehlzündungsereignissen führen.
-
Ein zweiter Punkt von Interesse 332 kann in einer Ausführungsform der grafischen Darstellung 300 dargestellt sein, bei welcher der erste feste AD-Schwellenwert 308 als ein Datenpunkt verwendet wird, wenn der Verlauf 302 den Schwellenwert überschreitet. In einigen Ausführungsformen können Vorhersagemodelle die Daten auf dem Verlauf 302 bis zum zweiten Punkt von Interesse 332 verwenden, um die RUL der Fahrzeugkomponente vorherzusagen.
-
Eine zweite Zeitmarkierung 320 kann in einer Ausführungsform der grafischen Darstellung 300 dargestellt sein, bei welcher der erste feste AD-Schwellenwert 308 als ein Indikator für einen Zeitpunkt verwendet wird, an dem die Fahrzeugkomponente unter Nennbetrieb eine vollständige Beeinträchtigung erfahren kann. Die zweite Zeitmarkierung 320 kann erzeugt werden, sobald der Verlauf 302 einen festen AD-Schwellenwert überschreitet, wenn das Vorhersagemodell die erwartete RUL erzeugt.
-
In einer alternativen Ausführungsform der grafischen Darstellung 300, bei welcher der zweite feste AD-Schwellenwert 310 verwendet wird, kann ein dritter Punkt von Interesse 334 in der grafischen Darstellung 300 als ein Datenpunkt verwendet werden, wenn der Verlauf 302 den Schwellenwert überschreitet. Wie vorstehend beschrieben können Vorhersagemodelle die Daten auf dem Verlauf 302 bis zum dritten Punkt von Interesse 334 in dieser Ausführungsform verwenden, um die RUL der Fahrzeugkomponente vorherzusagen.
-
In einem Beispiel kann die RUL der Fahrzeugkomponente den Verlauf 336 widerspiegeln, in dem die Fahrzeugkomponente infolge des Sprungs 340 eine beschleunigte Beeinträchtigung erfahren kann. Eine dritte Zeitmarkierung 322 kann den Zeitpunkt darstellen, an dem die Fahrzeugkomponente in dem Beispiel des Verlaufs 336 eine vollständige Beeinträchtigung erfährt, was vor dem vorhergesagten Zeitpunkt liegt, der durch die zweite Zeitmarkierung 320 dargestellt wird. In einer Ausführungsform der grafischen Darstellung 300, bei welcher der zweite feste AD-Schwellenwert 310 verwendet wird, kann der Fahrzeugführer unter Umständen eine Benachrichtigung bezüglich der Funktionsfähigkeit der Komponente, bevor die Komponente eine vollständige Beeinträchtigung erfährt, zu spät empfangen.
-
In einem Beispiel kann die RUL der Fahrzeugkomponente den Verlauf 338 widerspiegeln, in dem die Fahrzeugkomponente infolge günstiger Bedingungen eine verlängerte RUL erfahren kann. Eine vierte Zeitmarkierung 324 kann den Zeitpunkt darstellen, an dem die Fahrzeugkomponente in dem Beispiel des Verlaufs 338 eine vollständige Beeinträchtigung erfährt, was nach dem vorhergesagten Zeitpunkt liegt, der durch die zweite Zeitmarkierung 320 dargestellt wird. In einer Ausführungsform der grafischen Darstellung 300, bei welcher der erste feste AD-Schwellenwert 308 verwendet wird, kann der Fahrzeugführer infolge des Sprungs 340, der sich aus einer Vielzahl von anormalen oder äußeren Bedingungen ergeben haben kann, eine Benachrichtigung bezüglich der Funktionsfähigkeit der Komponente unter Umständen zu früh empfangen. Der Fahrzeugführer kann unter Umständen infolge falsch positiver Ergebnisse im Laufe der Zeit für zunehmende Reparaturmengen bezahlen.
-
Ein Schwellenwert 312 der vollständigen Beeinträchtigung kann die vollständige Beeinträchtigung für die Fahrzeugkomponente darstellen, das heißt, wenn Datenpunkte auf dem Verlauf 302 den Schwellenwert 312 der vollständigen Beeinträchtigung erreichen, funktioniert die Fahrzeugkomponente unter Umständen nicht mehr wie hergestellt. In einem Beispiel kann die Anzahl von Fehlzündungsereignissen während des Betriebs den Schwellenwert 312 der vollständigen Beeinträchtigung erreichen, was angibt, dass die Kraftstoffeinspritzvorrichtung repariert oder ersetzt werden sollte, da sie gemäß dem Modell nicht mehr funktionsfähig ist.
-
Beim Bestimmen eines festen AD-Schwellenwerts für AD-Modelle kann eine Wahrscheinlichkeit hoch sein, dass falsch positive und/oder falsch negative Ergebnisse vorhanden sind. Der AD-Schwellenwert kann zu niedrig sein, das heißt, dass es zu einer Zunahme von falsch positiven Ergebnissen kommt, oder zu hoch sein, das heißt, dass es zu einer Zunahme von falsch negativen Ergebnissen kommt. Sobald das Modell und der feste AD-Schwellenwert in dem Fahrzeugsystem eingesetzt sind, können die Schwellenwerte herkömmlicherweise selbst dann nicht angepasst werden, wenn Daten von einer Population vernetzter Fahrzeuge, die mit dem Fahrzeug kommunizieren, angeben, dass das Modell durch Anpassen des AD-Schwellenwerts eine Erhöhung der Genauigkeit aufweisen könnte. Anomales Verhalten von Fahrzeugkomponenten kann durch das Vorhandensein von kausalen Stressoren verschlimmert werden und kann bei der Entfernung jeglicher kausaler Stressoren während des Betriebs zu einer normalen Komponentenfunktionsfähigkeit zurückkehren. In einem Beispiel kann eine Kraftstoffeinspritzvorrichtung einen fehlerhaften O-Ring aufweisen, der Kraftstofflecks verursacht, und ein Fahrzeugführer kann die Kraftstoffeinspritzvorrichtung reparieren lassen, wodurch die Komponentenfunktionsfähigkeit der Kraftstoffeinspritzvorrichtung gemäß den Schwellenwerten der grafischen Darstellung 300 in einen normalen Zustand zurückversetzt wird.
-
Somit können, wie durch 3 dargestellt, feste Anomalie- oder Beeinträchtigungsschwellenwerte zu einer unerwünschten Anzahl von falsch positiven und/oder falsch negativen Angaben einer Komponentenbeeinträchtigung führen. Wie nachstehend ausführlicher beschrieben wird, geht die vorliegende Offenbarung dieses Problem an, indem Daten von vernetzten Fahrzeugen, Werkstätten usw. wirksam eingesetzt werden, um Echtzeitaktualisierungen von anfänglichen Anomalieschwellenwerten bereitzustellen. Zusätzlich können gemäß in dieser Schrift offenbarten Ausführungsformen die Anomalieschwellenwerte auf Grundlage von Wahrscheinlichkeitsdichtefunktionen aktualisiert werden, die durch Schätzen bedingter Wahrscheinlichkeiten einer Komponentenbeeinträchtigung angesichts einer vorherigen Beeinträchtigung einer oder mehrerer zugehöriger Komponenten erstellt werden. Ferner können verschiedene AD-Modelle erstellt werden, aus denen ein Modell mit der besten Leistung auf Grundlage einer Einstufung in einer Rangfolge der AD-Modelle auf Grundlage der aktualisierten bedingten Wahrscheinlichkeiten ausgewählt werden kann, wobei sich die Einstufung in einer Rangfolge ändern kann, wenn neue Beeinträchtigungsdaten empfangen werden.
-
Unter nunmehriger Bezugnahme auf 4 zeigt diese schematisch ein System 400 zur Anomalieerkennung, das Daten vernetzter Fahrzeuge und Ressourcen aus einem Cloud-Netzwerk410 wirksam einsetzt. Das System 400 kann eine genauere AD-Modellierung ermöglichen, indem die Modelle aktualisiert werden, wenn neue Daten empfangen werden, wodurch falsch positive und falsch negative Ergebnisse reduziert werden. Wenn die AD-Modelle des Systems 400 auf lokale Fahrzeugkomponenten angewendet werden, können Fahrzeugführer unter Umständen genauere Informationen bezüglich der Funktionsfähigkeit von Fahrzeugkomponenten in dem lokalen Fahrzeug erhalten, was im Laufe der Zeit zu einer Reduzierung der Reparaturkosten führen kann.
-
Das System 400 beinhaltet ein Serversystem 401 zur Anomalieerkennung (AD). Das Serversystem 401 kann Ressourcen (z. B. Speicher, Prozessor(en)) beinhalten, die zugewiesen sein können, um eine Vielzahl von AD-Modellen zu speichern und Anweisungen zu speichern und auszuführen, um eines oder mehrere der AD-Modelle auf Grundlage von Fahrzeugdaten zu aktualisieren, die von einer Vielzahl von Fahrzeugen gesammelt wurden. Das Serversystem 401 beinhaltet ein Kommunikationsmodul, einen Speicher und (einen) Prozessor(en), um die in dieser Schrift beschriebenen Anomaliemodelle zu speichern und zu aktualisieren. Das Kommunikationsmodul kann die Übertragung elektronischer Daten innerhalb und/oder zwischen einem oder mehreren Systemen ermöglichen. Die Kommunikation über das Kommunikationsmodul kann unter Verwendung eines oder mehrerer Protokolle umgesetzt werden. Das Kommunikationsmodul kann eine drahtgebundene Schnittstelle (z. B. ein Datenbus, eine Verbindung per Universal Serial Bus (USB) usw.) und/oder eine drahtlose Schnittstelle (z. B. Funkfrequenz, Infrarot, Nahfeldkommunikation (Near Field Communication -NFC) usw.) sein. Zum Beispiel kann das Kommunikationsmodul über ein drahtgebundenes lokales Netzwerk (Local Area Network - LAN), drahtloses LAN, Weitverkehrsnetzwerk (Wide Area Network - WAN) usw. unter Verwendung eines beliebigen vergangenen, gegenwärtigen oder zukünftigen Kommunikationsprotokolls (z. B. BLUETOOTH™, USB 2.0, USB 3.0 usw.) kommunizieren.
-
Der Speicher kann eine oder mehrere Datenspeicherstrukturen, wie etwa optische Speichervorrichtungen, magnetische Speichervorrichtungen oder Festkörperspeichervorrichtungen, zum Speichern von Programmen und Routinen beinhalten, die durch den/die Prozessor(en) des Serversystems 401 ausgeführt werden, um verschiedene Funktionalitäten auszuführen, die in dieser Schrift offenbart sind. Der Speicher kann eine beliebige gewünschte Art von flüchtigem und/oder nichtflüchtigem Speicher beinhalten, wie zum Beispiel statischen Direktzugriffsspeicher (Static Random Access Memory - SRAM), dynamischen Direktzugriffsspeicher (Static Random Access Memory - DRAM), Flash-Speicher, Festwertspeicher (Read-Only Memory - ROM) usw. Der/die Prozessor(en) kann/können zum Beispiel ein beliebiger geeigneter Prozessor, eine beliebige geeignete Verarbeitungseinheit oder ein beliebiger geeigneter Mikroprozessor sein. Der/die Prozessor(en) kann/können ein Multiprozessorsystem sein und kann/können somit einen oder mehrere zusätzliche Prozessoren beinhalten, die identisch oder ähnlich zueinander sind und die über einen Verbindungsbus kommunikativ gekoppelt sind.
-
Das System 400 beinhaltet eine oder mehrere Datenbanken, die Daten speichern, die zum Initialisieren und dann zum Aktualisieren eines oder mehrerer AD-Modelle verwendet werden können. Wie gezeigt, beinhaltet das System 400 eine erste Datenbank 402, eine zweite Datenbank 404 und eine dritte Datenbank 406. In einem Beispiel ist die erste Datenbank 402 eine Konstruktionsdatenbank, die Herstellungsdaten über Fahrzeugkomponenten speichert, was unter anderem historische Komponentendaten, historische Fahrzeugdaten und Herstellerstandarddaten für Vorhersagemodelle beinhaltet. In einem Beispiel ist die zweite Datenbank 404 eine Garantiedatenbank, die Garantiedaten über Fahrzeugkomponenten speichert, was unter anderem Daten zur erwarteten Lebensdauer, RUL-Zeitdaten und historische Garantiedaten beinhaltet. In einem Beispiel ist die dritte Datenbank 406 eine Händler- und Reparaturdatenbank, die Daten über Fahrzeugkomponenten speichert, was unter anderem Daten zur Reparaturhäufigkeit von Komponenten, Daten zur Komponentenfunktionsfähigkeit vor und nach Reparaturen und Testfahrtdaten des Händlers beinhaltet. Die Datenbanken können Ursache-Wirkungs-Daten beinhalten, sofern sie die Anomalieerkennung von Fahrzeugkomponenten betreffen, um Vorhersagemodelle beim Überwachen der Funktionsfähigkeit von Fahrzeugkomponenten zu unterstützen. Zusätzlich oder alternativ können mehr oder weniger Datenbanken bei der Anomalieerkennung für Fahrzeugkomponenten verwendet werden. In alternativen Ausführungsformen können die Datenbanken 402, 404 und 406 unterschiedliche Arten von Daten beinhalten, wie etwa Fahrerverhaltensdaten und/oder geografische Daten.
-
Das Serversystem 401 kann die Daten aus den Datenbanken 402, 404 und 406 aggregieren, um vorläufige oder Basisvorhersagemodelle einzuschätzen, die auf Grundlage von anfänglichen Testdaten und historischen Daten von Entwicklern und Herstellern entwickelt und durch das Serversystem 401 gespeichert oder eingesetzt werden können. Das Serversystem 401 kann eine Leistung der Basisvorhersagemodelle mit aktuellen Daten von vernetzten Fahrzeugen vergleichen, um neue Datenverhaltensweisen, aufkommende Trends bei Komponentendaten und dergleichen zu erkennen. Das Serversystem 401 kann über ein Netzwerk 410 Daten, was unter anderem die Basisvorhersagemodelle und aggregierten Daten aus den Datenbanken 402, 404 und 406 beinhaltet, drahtlos kommunizieren, um Fahrzeugsysteme in einer Population vernetzter Fahrzeuge zu aktualisieren und eine Entwicklungsdatenbank 408 zu aktualisieren.
-
Die Entwicklungsdatenbank 408 kann Aktualisierungen der eingesetzten Modelle speichern und Hersteller können Aktualisierungen von der Entwicklungsdatenbank 408 empfangen. Die Entwicklungsdatenbank 408 kann Fahrzeugkomponentendaten von einer oder mehreren Vielzahlen von Fahrzeugpopulationen in einem vernetzten System, wie etwa über das Netzwerk 410, speichern. In einem Beispiel stellt die Entwicklungsdatenbank 408 eine Vielzahl von Datenbanken von verschiedenen Herstellern dar. Ein Fahrzeug kann Komponenten von mehreren Herstellern beinhalten, wobei jeder Hersteller über eine Datenbank von Komponenten verfügt. Die Entwicklungsdatenbank 408 kann ferner Daten speichern, die Entwickler von Vorhersagemodellen verwenden, um RUL-Modelle, AD-Modelle und dergleichen zu entwickeln und zu aktualisieren, sowie die Modelle enthalten. Unter Verwendung der Daten aus der Entwicklungsdatenbank 408 können Entwickler eine Vielzahl von Modellen erzeugen, was unter anderem empirische Modelle, physische Modelle und Modelle zum maschinellen Lernen beinhaltet, indem anfängliche Metriken für die Schwellenwerterkennung für die Fahrzeugkomponenten definiert werden. Die Modelle und anfänglichen Metriken können unter Verwendung bekannter Testfälle, Bedingungen und Rauschfaktoren getestet werden. Unter Verwendung der Ergebnisse der Tests können Entwickler anfängliche AD-Schwellenwerte erstellen, die während des anfänglichen Einsatzes der AD-Modelle verwendet werden. Wenn Entwickler Daten aus der Entwicklungsdatenbank 408 verwenden, um AD-Modelle zu aktualisieren, können Daten in Bezug auf Reparaturen, Garantien, Rückrufe, Bußgelder und dergleichen verwendet werden, um die aktualisierten Modelle für einen erneuten Einsatz zu testen.
-
Das Serversystem 401, die Datenbanken 402, 404 und 406, die Entwicklungsdatenbank 408 und eine Vielzahl von Fahrzeugen 420 können über ein geeignetes Netzwerk, wie etwa das Netzwerk 410, kommunizieren. Ferner können eine oder mehrere der in dieser Schrift beschriebenen Vorrichtungen über eine Cloud oder ein anderes Computernetzwerk umgesetzt sein. Zum Beispiel ist das Serversystem 401 in 4 der Darstellung nach eine einzelne Einheit, es versteht sich j edoch, dass das Serversystem 401 über mehrere Vorrichtungen verteilt sein kann, wie etwa über mehrere Server.
-
Ein Beispiel für ein eingesetztes Modell (z. B. an einem oder mehreren der Vielzahl von Fahrzeugen 420 eingesetzt) ist in 4 als Einsatzmodell 430, das nach dem anfänglichen Einsatz von Modellen aus der Entwicklungsdatenbank 408 modelliert werden kann, visuell dargestellt. In einem Beispiel wird das Einsatzmodell 430 für eine Kraftstoffeinspritzvorrichtung erstellt, wobei historische Daten der Kraftstoffeinspritzvorrichtung in einer Population vernetzter Fahrzeuge gegenüber Herstellerdaten für die Kraftstoffeinspritzvorrichtung modelliert werden, um einen Schwellenwert zu erstellen (gezeigt durch die vertikale Linie des Verlaufs, die in der visuellen Darstellung des Einsatzmodells 430 abgebildet ist), um Betriebsanomalien während der gesamten Lebensdauer der Kraftstoffeinspritzvorrichtung zu erkennen. Die Einsatzmodelle können dann in den Fahrzeugen eingesetzt werden, die den Komponenten mit Vorhersagemodellen zur Funktionsfähigkeitsüberwachung entsprechen.
-
Das Serversystem 401 kann Stapelaktualisierungen von Daten von der Vielzahl von Fahrzeugen 420 empfangen. Die empfangenen Daten können verwendet werden, um Dichteschätzungen für Fahrzeugkomponenten zu aktualisieren, und die Verteilungsdaten 440 sind eine Visualisierung von beispielhaften aggregierten Daten. Die Verteilungsdaten 440 können verwendet werden, um ein AD-Modell unter Verwendung von bedingten Wahrscheinlichkeiten zu aktualisieren, wie nachstehend ausführlicher beschrieben wird. Das Serversystem 401 kann dazu konfiguriert sein, die Verteilung zu modifizieren, wenn neue Daten aggregiert werden, und wenn die Daten angeben, dass ein anfänglicher Anomalieschwellenwert zu hoch oder zu niedrig ist, kann das Serversystem 401 das entsprechende AD-Modell aktualisieren, wodurch die Rate von falsch positiven und falsch negativen Ergebnissen für ein Fahrzeug verringert wird. Zum Beispiel kann das Serversystem 401 den AD-Schwellenwert unter Verwendung der aktualisierten Verteilungsdaten modifizieren. Änderungen der Verteilungsdaten 440 können in einem aktualisierten Einsatzmodell 450 dargestellt werden, in dem sich ein AD-Schwellenwert auf Grundlage der aktualisierten Daten verschieben kann.
-
Zum Beispiel kann in dem aktualisierten Einsatzmodell 450 die Wahrscheinlichkeitsverteilungskurve 452 eine Wahrscheinlichkeit des Auftretens von Beeinträchtigungen von Kraftstoffeinspritzvorrichtungen in einer normalen Population von Kraftstoffeinspritzvorrichtungen (z. B. bei einem Mittelwert von 10 Jahren) angeben, und kann die Wahrscheinlichkeitsverteilungskurve 454 eine Wahrscheinlichkeit des Auftretens einer Beeinträchtigung einer Kraftstoffeinspritzvorrichtung in einer Teilpopulation von Kraftstoffeinspritzvorrichtungen, die von einem Lieferanten geliefert werden, angeben, wobei die Kraftstoffeinspritzvorrichtungen der Teilpopulation einen Ausgestaltungsfehler beinhalten, der die RUL der Kraftstoffeinspritzvorrichtungen der Teilpopulation verkürzt (z. B. auf 4 Jahre). Unter dem aktualisierten Einsatzmodell 450 wird der AD-Schwellenwert auf Grundlage von Vor-Einsatz-Daten an einer Position 458 festgesetzt, das heißt, dass das Auftreten (z. B. Erkennen) einer Anomalie bei ungefähr 7 Jahren für die Gesamtpopulation vorhergesagt werden kann. Wenn jedoch neue Beeinträchtigungsdaten durch das AD-Modell von dem System vernetzter Fahrzeuge empfangen werden, kann sich die Wahrscheinlichkeit der Beeinträchtigung der Kraftstoffeinspritzvorrichtung der Teilpopulation ändern, wie durch eine aktualisierte Wahrscheinlichkeitsverteilungskurve 456 (z. B. die frühere Wahrscheinlichkeitsverteilungskurve 454) widergespiegelt wird. Auf Grundlage der aktualisierten Wahrscheinlichkeitsverteilungskurve 456 kann das AD-Modell aktualisiert werden, um den AD-Schwellenwert zu einer Position 460 zu verschieben, die widerspiegelt, dass das Auftreten einer Anomalie nach ungefähr 8,5 Jahren vorhergesagt werden kann. Bei der Platzierung des AD-Schwellenwerts kann versucht werden, eine mittlere Lebensdauer der Kraftstoffeinspritzvorrichtungen zu maximieren (nach der Wartungsbenachrichtigungen ausgegeben werden), während eine Anzahl von Einspritzvorrichtungen minimiert wird, die in dem Bereich einer kleinen Teilpopulation von fehlerhaften Kraftstoffeinspritzvorrichtungen beeinträchtigt wird.
-
Das aktualisierte Einsatzmodell 450 kann an die Vielzahl von Fahrzeugen 420 und/oder die Entwicklungsdatenbank 408 verteilt werden. Es versteht sich, dass die Verteilungsdaten 440 und das aktualisierte Einsatzmodell 450 visuell dargestellt sind, um die Klarheit der Erörterung der Verteilungsdaten 440 und des aktualisierten Modells 450 zu unterstützen, und dass die Verteilungsdaten 440 und das aktualisierte Einsatzmodell 450 andere Formen annehmen können, ohne vom Umfang der Offenbarung abzuweichen. Während die Verteilungsdaten 440 und das aktualisierte Einsatzmodell 450 ferner getrennt von dem Serversystem 401 gezeigt sind, versteht es sich, dass die Verteilungsdaten 440 und das aktualisierte Einsatzmodell 450 auf dem Serversystem 401, einer beliebigen der in dieser Schrift offenbarten Datenbanken (z. B. der Datenbank 402, 404, 406, der Entwicklungsdatenbank 408) und/oder Kombinationen davon gespeichert sein können.
-
Unter nunmehriger Bezugnahme auf 5 ist ein beispielhaftes Verfahren 500 zum Entwickeln und Aktualisieren von AD-Modellen, um die Funktionsfähigkeit von Fahrzeugkomponenten zu überwachen, gezeigt, wobei von der Verfügbarkeit vernetzter Daten ausgegangen wird. Die Verfügbarkeit vernetzter Daten kann die Kommunikation mit einer Fahrzeugpopulation oder einer Vielzahl von Datenbanken und/oder Servern unter Verwendung von V2V, V2I, einem Cloud-Netzwerk und dergleichen beinhalten. Anweisungen zum Durchführen von zumindest einem Teil des Verfahrens 500 können auf einem Serversystem, wie etwa dem Serversystem 401 aus 4, gespeichert und durch dieses ausgeführt werden.
-
Bei 502 beinhaltet das Verfahren 500 Definieren eines oder mehrerer bester AD-Modelle während der anfänglichen Entwicklung. Jedes AD-Modell kann für eine bestimmte Fahrzeugkomponente (z. B. Kraftstoffeinspritzvorrichtung, Lambdasonde, Kühler) oder ein Fahrzeugsystem oder -teilsystem spezifisch sein. Ferner kann mehr als ein AD-Modell für eine bestimmte Fahrzeugkomponente, ein bestimmtes Teilsystem oder ein bestimmtes Fahrzeugsystem entwickelt werden. Zum Beispiel kann ein erstes AD-Modell, das für Kraftstoffeinspritzvorrichtungen spezifisch ist, ein Modell einer Support-Vektor-Maschine (SVM) sein, während ein zweites AD-Modell, das für Kraftstoffeinspritzvorrichtungen spezifisch ist, ein Entscheidungsbaummodell sein kann. Durch Erzeugen mehrerer Modelle für jede Fahrzeugkomponente kann, nachdem die Modelle eingesetzt wurden, das Modell festgestellt werden, das am besten zum Erkennen einer Anomalie geeignet ist, wie nachstehend ausführlicher erläutert. Die AD-Modelle können geeignete Modelle für maschinelles Lernen und/oder physikbasierte Modelle sein, was unter anderem SVM, Entscheidungsbäume, Naive-Bayes(NB)-Klassifikator, Random Forest, k-nächste Nachbarn (k-nearest Neighbors - KNN), dichtebasierte räumliche Clusterbildung von Anwendungen mit Rauschen (Density-Based Spatial Clustering of Applications with Noise - DBSCAN), Gauß-Prozess-Regression (GPR), Abstandsmetriken usw. beinhaltet. Wie nachstehend ausführlicher beschrieben, können die Modelle in einer Rangfolge eingestuft werden, um ein Modell mit der besten Leistung zu bestimmen.
-
Merkmale der besten Modelle können definiert werden und die Dimensionsreduktion kann auf die besten Modelle angewendet werden, um Modellierungsfehler (z. B. Überanpassung) zu reduzieren. Dimensionsreduktionstechniken können Hauptkomponentenanalyse (Principal Component Analysis - PCA), Variational Autoencoders (VAE) und dergleichen beinhalten.
-
Bei 504 kann eine Teilpopulation zum Aktualisieren der AD-Modelle ausgewählt werden. Fahrzeuge können auf Grundlage von Parametern, wie etwa Geografie, Marke, Modell/Typ usw., in Teilpopulationen gruppiert werden. In einigen Ausführungsformen können die Teilpopulationen unter Verwendung von überwachtem oder nicht überwachtem Lernen gruppiert werden. In einem Beispiel können AD-Modelle aufgrund der großen Datenstichproben in einer Fahrzeugpopulation, in der die AD-Modelle eingesetzt werden können, über nicht überwachtes Lernen aktualisiert werden.
-
Bei 506 werden die AD-Modelle mit Vor-Einsatz-Kalibrierungen initialisiert. Beim anfänglichen Einsatz kann jedes AD-Modell einen oder mehrere Auslöser, Kennzeichnungen und/oder Schwellenwerte beinhalten, die im Vergleich zu lokalen Fahrzeugdaten verwendet werden können, um ein anomales Verhalten eines Fahrzeugteils anzugeben. Die Vor-Einsatz-Kalibrierungen (z. B. die Auslöser, Kennzeichnungen, Schwellenwerte usw.) können auf Grundlage von Informationen bestimmt werden, die aus bekannten Anwendungsfällen und historischen/statistischen Daten zusammengestellt wurden. Wie vorstehend unter Bezugnahme auf 4 beschrieben, können zum Beispiel die historischen/statistischen Daten Forschungs- und Konstruktionsdaten, Herstellerstandarddaten, Garantiedaten, Reparatur-/Händlerdaten, Testdaten und Testfahrtdaten usw. beinhalten.
-
Bei 508 werden vernetzte Datenströme überwacht und bei 510 wird die AD-Modell-/Systemleistung auf Grundlage der vernetzten Datenströme überwacht. In einem Beispiel beinhaltet das Überwachen der Leistung des AD-Systems das Überwachen der Erkennung von Anomalien einer Vielzahl von verschiedenen Fahrzeugkomponenten über eine Gesamtpopulation von Fahrzeugen und einer Vielzahl von Teilpopulationen von Fahrzeugen innerhalb der Gesamtpopulation von Fahrzeugen. Zum Beispiel kann ein Fahrzeugsystem (z. B. ein Motorsystem, ein Kraftstoffsystem usw.) eines Fahrzeugs der Gesamtpopulation von Fahrzeugen eine Vielzahl von Komponenten beinhalten, wobei jede Komponente der Vielzahl von Komponenten durch eine Vielzahl von AD-Modellen modelliert werden kann. Ein AD-Schwellenwert eines Modells mit der besten Leistung aus der Vielzahl von AD-Modellen (z. B. infolge einer vorherigen Einstufung in einer Rangfolge) kann für die Komponente ausgewählt werden, wobei, wenn der AD-Schwellenwert (z. B. 10 Jahre) erreicht ist, ein Fahrer des Fahrzeugs benachrichtigt wird, um das Fahrzeug zur Wartung zu bringen. Während die vernetzten Datenströme in Bezug auf die AD-Systemleistung überwacht werden, werden Anomaliedaten der Komponente empfangen, wenn die AD-Schwellenwerte von Fahrzeugen der Gesamtpopulation von Fahrzeugen (und Teilpopulationen von Fahrzeugen) erreicht werden.
-
In einem Beispiel können die Anomaliedaten empfangen werden, wenn ein Fahrer benachrichtigt wird und ein Fahrzeug zur Wartung bringt und die Komponente inspiziert und/oder ersetzt wird. Die Anomalie kann verifiziert werden (z. B. ein richtig positives Ergebnis) oder die Anomalie kann nicht verifiziert werden (z. B. ein falsch positives Ergebnis). In einem anderen Beispiel können die Anomaliedaten empfangen werden, wenn ein Fahrer benachrichtigt wird und ein Fahrzeug nicht zur Wartung bringt und eine vollständige Beeinträchtigung der Komponente im praktischen Einsatz auftritt. Die vollständige Beeinträchtigung der Komponente kann auftreten, wenn die RUL der Komponente nahe 0 liegt (z. B. ein richtig negatives Ergebnis), oder eine vollständige Beeinträchtigung der Komponente kann auftreten, wenn die RUL der Komponente größer oder kleiner als 0 ist (z. B. ein falsch negatives Ergebnis). Somit kann, wenn Anomalie- und Beeinträchtigungsdaten aggregiert werden, die Leistung des AD-Systems bewertet werden. Wenn die Beeinträchtigungsdaten angeben, dass eine Genauigkeit des AD-Modells einer Komponente hoch ist, kann der AD-Schwellenwert für dieses Modell beibehalten werden. Wenn die Beeinträchtigungsdaten angeben, dass eine Genauigkeit des AD-Modells einer Komponente nicht hoch ist, kann die Vielzahl von AD-Modellen, die der Komponente zugeordnet ist, neu in einer Rangfolge eingestuft werden, wodurch ein anderes AD-Modell mit einem anderen AD-Schwellenwert ausgewählt werden kann.
-
Bei 512 werden AD-Modelle in einer Rangfolge eingestuft. In einem Beispiel werden die AD-Modelle auf Grundlage von Kurven der Operationscharakteristik eines Beobachters (ROC-Kurven) in einer Rangfolge eingestuft. Zum Beispiel können ROC-Kurven für eine Vielzahl von Modellen angelegt werden, wobei jede ROC-Kurve einem Modell der Vielzahl von Modellen entspricht. Für jedes Modell ist eine entsprechende 2-dimensionale ROC-Kurve durch (x,y)-Koordinatenpunkte definiert, wobei jeder (x,y)-Koordinatenpunkt einem Erkennungsschwellenwert entspricht und wobei x eine Falsch-Positiv-Rate und y eine Richtig-Positiv-Rate an der Erkennungsschwellenwertposition ist. Unter kurzer Bezugnahme auf 9 ist ein beispielhafter ROC-Kurvenverlauf 900 gezeigt, der eine ROC-Kurve 904, die ein erstes Modell darstellt, eine ROC-Kurve 906, die ein zweites Modell darstellt, und eine ROC-Kurve 908, die ein drittes Modell darstellt, beinhaltet, die über eine Zufallslinie 902 aufgetragen sind, die ein schlechtestes Modell darstellt, bei dem eine gleiche Wahrscheinlichkeit für ein richtig positives oder ein falsch positives Ergebnis besteht. Ein beispielhafter Punkt 910 der ROC-Kurve 904 stellt der Darstellung nach einen einzelnen Erkennungsschwellenwert des ersten Modells dar, wobei eine Falsch-Positiv-Rate für den einzelnen Erkennungsschwellenwert 0,2 beträgt und eine Richtig-Positiv-Rate für den einzelnen Erkennungsschwellenwert 0,6 beträgt. Eine Fläche unter einer ROC-Kurve kann als Kriterium verwendet werden, um zwischen in Frage kommenden Modellen auszuwählen, wobei ein Punkt 912 eine Erkennbarkeit von 100 % darstellt (z. B. ist eine Fläche unter einer theoretischen ROC-Kurve, die den Punkt 912 schneidet, gleich 1,0). Somit kann in dem beispielhaften ROC-Kurvenverlauf 900 das dritte Modell, das der ROC-Kurve 908 entspricht, als das beste Modell ausgewählt werden, da die Fläche unter der ROC-Kurve 908 Eins am nächsten ist.
-
Unter wiederholter Bezugnahme auf 5 werden bei 514 bedingte Verteilungen, AD-Modelle und AD-Erkennungsschwellenwerte aktualisiert. Wenn Anomaliedaten, die von dem System vernetzter Fahrzeuge empfangen werden, angeben, dass eine Genauigkeit eines AD-Modells nicht hoch ist, können zusätzlich zum Neueinstufen der Vielzahl von AD-Modellen in einer Rangfolge, um ein neues Modell mit der besten Leistung auszuwählen, auch die AD-Modelle und die entsprechenden Schwellenwerte aktualisiert werden, sodass die AD-Modelle aus den Anomaliedaten (und Beeinträchtigungsdaten) lernen und sich weiterentwickeln können. Das Aktualisieren der AD-Modelle kann von einer Art des verwendeten Modells abhängen. Zum Beispiel kann eine Vielzahl von Gewichtungen eines ML-Modells auf Grundlage neuer Anomaliedaten angepasst werden, oder ein Regressionsmodell kann angepasst werden, um neue Datenpunkte zu beinhalten, die den neuen Anomaliedaten entsprechen. Zusätzlich können die AD-Modelle bedingte Wahrscheinlichkeiten nutzen, wobei das Aktualisieren der AD-Modelle das Aktualisieren der bedingten Wahrscheinlichkeiten beinhalten kann, wie nachstehend in Bezug auf die 7A-7B beschrieben.
-
Bei 516 werden aktualisierte Modelle und Schwellenwertparameter drahtlos an passende Fahrzeugkomponenten übertragen. Sobald die Modelle und Schwellenwertparameter aktualisiert sind, können die lokalen Fahrzeuge in einer Fahrzeugpopulation die Aktualisierungen über ein Cloud-Netzwerk und/oder andere Fahrzeuge in der Fahrzeugpopulation empfangen.
-
Unter nunmehriger Bezugnahme auf 6 zeigt diese ein beispielhaftes Verfahren 600 zum Einstufen von AD-Modellen von Objekten in einer Rangfolge, wenn Daten von vernetzten Fahrzeugen verfügbar sind. Anweisungen zum Durchführen des Verfahrens 600 können auf einem Serversystem, wie etwa dem Serversystem 401 aus 4, gespeichert und durch dieses ausgeführt werden. In einem Beispiel wird das Verfahren 600 als Teil des vorstehend beschriebenen Verfahrens 500 ausgeführt.
-
Bei 602 beinhaltet das Verfahren 600 Kategorisieren von Fahrzeugen in einer Population vernetzter Fahrzeuge. Das Verfahren 600 kann eine Fahrzeugtaxonomie verwenden, um Fahrzeuge in einer Population vernetzter Fahrzeuge zu kategorisieren, indem die Fahrzeuge nach Fahrzeugklasse klassifiziert werden. Eine Vielzahl von Bedingungen, die unter anderem Kraftstoffgemische, Geografie, Umgebungsereignisse und Verkehrsmuster beinhalten, können Faktoren sein, die das Komponentenverhalten beim Überwachen der Funktionsfähigkeitsmetriken von Fahrzeugsystemen unterscheiden. Für AD-Modelle kann die Fahrzeugklassenklassifizierung das Aufteilen des Verhaltens von Fahrzeugkomponenten auf Grundlage von Unterschieden zwischen den Fahrzeugklassen sowie das Isolieren von Grundursachen für die Beeinträchtigung von Fahrzeugkomponenten ermöglichen. In einem Beispiel können die Eigenschaften einer Fahrzeugtaxonomie Marke, Modell, Antriebsstrang, Kraftübertragung, Radstand und Betriebsregionsbedingungen beinhalten, die ferner Umgebungstemperatur, Feuchtigkeit, Verkehrsmuster und Höhe beinhalten können.
-
Bei 604 werden Objekte und Modelle (z. B. AD-Modelle) eingesetzt. Objekte und Modelle können in Bezug auf das Verfahren 500 aus 5 eingesetzt werden. Modelle können mit Abweichungen in Bezug auf spezifische Klassifizierungsstufen in der Fahrzeugtaxonomie entwickelt und an Fahrzeuge verteilt werden, für welche die Klassifizierungsstufen gelten.
-
Bei 606 wird eine Benachrichtigung ausgegeben, dass ein AD-Schwellenwert eines Objekts erreicht wurde, wodurch eine Benachrichtigung an einen Fahrer eines entsprechenden Fahrzeugs ausgegeben wird, das Fahrzeug zur Wartung zu bringen. In einem Beispiel können ein oder mehrere AD-Modelle der Komponente (z. B. in dem Fahrzeug) mit Anomaliedaten (z. B. Informationen über richtige Anomalien oder falsche Anomalien aus der Fahrzeugwartung) aktualisiert werden. In einem anderen Beispiel wird zudem ein Cloud-basiertes Funktionsfähigkeitsüberwachungssystem benachrichtigt, wodurch ein oder mehrere Cloud-basierte AD-Modelle aktualisiert werden können. Bei 608 beinhaltet das Verfahren 600 Bestimmen, ob die Benachrichtigung ignoriert wird. Wenn bei 608 bestimmt wird, dass die Benachrichtigung nicht ignoriert wird, geht das Verfahren 600 zu 610 über. Bei 610 beinhaltet das Verfahren 600 Bestimmen, ob eine Anomalie erkannt wird, wodurch die Anomaliedaten ein richtig positives Ergebnis sind, wie vorstehend unter Bezugnahme auf das Verfahren 500 aus 5 beschrieben. In einem Beispiel kann das Verfahren 600 die Anomalie standardmäßig als richtig positiv markieren. Wenn bei 610 bestimmt wird, dass eine Anomalie erkannt wird, geht das Verfahren 600 zu 612 über. Bei 612 beinhaltet das Verfahren 600 Anpassen einer Richtig-Positiv-Rate des einen oder der mehreren AD-Modelle.
-
Bei 614 werden die AD-Modelle gemäß der vorstehend unter Bezugnahme auf 5 beschriebenen Rangfolgeeinstufungsprozedur neu in einer Rangfolge eingestuft. Während des Einstufens in einer Rangfolge werden die AD-Modelle nach der Wahrscheinlichkeit des Auftretens der Anomalie jedes AD-Modells in absteigender Reihenfolge in einer Rangfolge eingestuft (z. B. werden die AD-Modelle, welche die höchste Wahrscheinlichkeit des Auftretens der gekennzeichneten Anomalie melden, in einer Rangfolgeneinstufung der Modelle mit der besten Leistung als Modelle mit besserer Leistung eingestuft).
-
Unter erneuter Bezugnahme auf 610 geht das Verfahren 600 zu 616 über, wenn bestimmt wird, dass keine Anomalie erkannt wird. Bei 616 beinhaltet das Verfahren 600 Markieren der Anomalie als falsch positives Ergebnis und bei 618 wird die Falsch-Positiv-Rate angepasst.
-
Bei 620 werden AD-Modelle neu in einer Rangfolge eingestuft. Während des Einstufens in einer Rangfolge werden die AD-Modelle nach der Wahrscheinlichkeit des Auftretens der Anomalie jedes AD-Modells in aufsteigender Reihenfolge in einer Rangfolge eingestuft (z. B. werden die AD-Modelle, welche die höchste Wahrscheinlichkeit des Nichtauftretens der gekennzeichneten Anomalie melden, in der Rangfolgeneinstufung der Modelle mit der besten Leistung als Modelle mit besserer Leistung eingestuft).
-
Unter erneuter Bezugnahme auf 608 geht das Verfahren 600 zu 622 über, wenn bestimmt wird, dass die Benachrichtigung ignoriert wird. Bei 622 beinhaltet das Verfahren 600 Beibehalten normaler Betriebsparameter und das Fortsetzen des Verwendens der Fahrzeugkomponente.
-
Bei 624 wird die Fahrzeugkomponente überwacht, bis eine Beeinträchtigung der Fahrzeugkomponente registriert wird. In einem Beispiel ist die Beeinträchtigung eine vollständige Beeinträchtigung, bei der die Fahrzeugkomponente im praktischen Einsatz ihre Funktionstüchtigkeit verliert. In einem anderen Beispiel ist die Beeinträchtigung eine partielle Beeinträchtigung, wobei die Komponente unter Umständen noch funktioniert, jedoch mit einer geringeren Funktionalität, sodass eine Leistung des Fahrzeugs beeinträchtigt ist. Bei 626 beinhaltet das Verfahren 600 Bestimmen, ob die Beeinträchtigung nach Erreichen einer vorhergesagten RUL der Komponente aufgetreten ist. Wenn bei 626 bestimmt wird, dass die Beeinträchtigung der Fahrzeugkomponente vor oder beim Erreichen einer vorhergesagten RUL der Komponente aufgetreten ist, geht das Verfahren 600 zu 628 über. Bei 628 beinhaltet das Verfahren 600 Neueinstufen der AD-Modelle in einer Rangfolge, wobei die AD-Modelle nach der Wahrscheinlichkeit des Auftretens der Anomalie jedes AD-Modells in absteigender Reihenfolge in einer Rangfolge eingestuft werden (z. B. werden die AD-Modelle, welche die höchste Wahrscheinlichkeit des Auftretens der gekennzeichneten Anomalie melden, in der Auflistung der Modelle mit der besten Leistung als Modelle mit besserer Leistung eingestuft).
-
Wenn alternativ bei 626 bestimmt wird, dass die Beeinträchtigung der Fahrzeugkomponente im Wesentlichen nach dem Erreichen der vorhergesagten RUL der Komponente aufgetreten ist, geht das Verfahren 600 zu 630 über. Bei 630 beinhaltet das Verfahren 600 Neueinstufen der AD-Modelle in einer Rangfolge, wobei die AD-Modelle nach der Wahrscheinlichkeit des Auftretens der Anomalie jedes AD-Modells in aufsteigender Reihenfolge in einer Rangfolge eingestuft werden (z. B. werden die AD-Modelle, welche die höchste Wahrscheinlichkeit des Nichtauftretens der gekennzeichneten Anomalie melden, in der Auflistung der Modelle mit der besten Leistung als Modelle mit besserer Leistung eingestuft).
-
Zum Beispiel kann die Fahrzeugkomponente vor oder nach der vorhergesagten RUL eine vollständige Beeinträchtigung erfahren. In einem Beispiel erfährt die Fahrzeugkomponente eine vollständige Beeinträchtigung vor der vorhergesagten RUL und AD-Modelle, welche die höchste Wahrscheinlichkeit des Auftretens einer Anomalie vor dem vorhergesagten Zeitpunkt melden, werden in der Auflistung der besten Modelle als höhere Modelle in einer Rangfolge eingestuft. In einem anderen Beispiel erfährt die Fahrzeugkomponente eine vollständige Beeinträchtigung nach der vorhergesagten RUL und AD-Modelle, welche die höchste Wahrscheinlichkeit des Nichtauftretens der Anomalie vor oder an der vorhergesagten RUL melden, werden in der Auflistung der besten Modelle als höhere Modelle in einer Rangfolge eingestuft.
-
Bei 632 werden die Beeinträchtigungsdaten der Fahrzeugkomponente an einen Hersteller weitergeleitet. Bei 634 können Herstellungsverfahren und AD-Schwellenwerte angepasst werden und das Verfahren 600 endet.
-
Während falsch positive und falsch negative Anomalien von AD-Modellen reduziert werden können, indem eine Menge von Anomalie- und/oder Beeinträchtigungsdaten, die von den AD-Modellen berücksichtigt wird (z. B. von einem System vernetzter Fahrzeuge), erhöht wird und den AD-Modellen erlaubt wird, auf Grundlage von Genauigkeit zu konkurrieren, kann die Genauigkeit der AD-Modelle zusätzlich erhöht werden, indem die Anomaliedaten als Wahrscheinlichkeitsverteilungen anstelle von skalaren Datenpunkten dargestellt werden. Konkreter können beim Aggregieren von Anomaliedaten die Wahrscheinlichkeiten, die von den AD-Modellen verwendet werden, um AD-Schwellenwerte festzulegen, genauer geschätzt werden, indem über eine Wahrscheinlichkeitsdichtefunktion integriert wird, die durch Summieren von Wahrscheinlichkeitsverteilungen erzeugt wird, die den Anomaliedaten (was Beeinträchtigungsdaten beinhaltet) zugeordnet sind, als indem ein laufender Mittelwert des Funktionsfähigkeitsindexwerts über einen Summierungs- und Dividierungsmittelungsprozess berechnet wird. Ein Grund dafür ist, dass, wenn ein laufender Mittelwert des Funktionsfähigkeitsindexwerts aufgrund des Hinzufügens eines neuen individuellen Funktionsfähigkeitsindexwerts angepasst wird, der neue Funktionsfähigkeitsindexwert mit einzelnen Funktionsfähigkeitsindexwerten, die zu einem früheren Zeitpunkt aggregiert wurden, gleich gewichtet wird, wodurch Entwicklungstendenzen bei der Beeinträchtigung verdeckt werden können. Ferner kann eine tatsächliche Verteilung über eine größere Population nicht erfasst werden. Ferner können Wahrscheinlichkeitsdichtefunktionen eine Einsicht in das Verhalten einer Komponente über eine große Stichprobe hinweg bereitstellen, und somit können Aktualisierungen auf Grundlage der Wahrscheinlichkeitsdichtefunktionen Trends über einen breiten Betriebsbereich widerspiegeln und können daher bessere Schätzfunktionen einer Wirkung sein, wie etwa einer Anomalie oder Beeinträchtigung. Durch Verwenden von Wahrscheinlichkeitsdichtefunktionen, um die Platzierung von AD-Schwellenwerten für ein einzelnes Fahrzeug zu lenken, können die AD-Schwellenwerte mit größerer Konfidenz relativ zu einer anfänglichen Kalibrierung und insbesondere gegenüber statischen AD-Schwellenwerten, die möglicherweise nicht die Ground Truth nach dem Einsatz des Objektes widerspiegeln, für das tatsächliche Verhalten angepasst werden. In einem Beispiel basieren die Wahrscheinlichkeitsverteilungen auf Randwahrscheinlichkeiten (z. B. einer Wahrscheinlichkeit des Erkennens einer Anomalie in einer ersten Fahrzeugkomponente). In Fällen, in denen die Anomaliedaten für eine zweite Fahrzeugkomponente verfügbar sind und in denen eine Anomalie oder Beeinträchtigung der zweiten Fahrzeugkomponente dazu führen kann, dass eine Anomalie in der ersten Fahrzeugkomponente erkannt wird, können die Wahrscheinlichkeitsverteilungen auf bedingten Wahrscheinlichkeiten basieren (z. B. eine Wahrscheinlichkeit des Erkennens einer Anomalie der ersten Fahrzeugkomponente angesichts einer vorherigen Anomalie/Beeinträchtigung einer zweiten Fahrzeugkomponente, wobei die Anomalie/Beeinträchtigung der zweiten Fahrzeugkomponente eine Ursache für die Anomalie in der ersten Fahrzeugkomponente ist). In noch anderen Beispielen können die Wahrscheinlichkeitsverteilungen sowohl auf den Randwahrscheinlichkeiten als auch auf den bedingten Wahrscheinlichkeiten basieren. Die Berechnung und Aktualisierung der Randwahrscheinlichkeiten und bedingten Wahrscheinlichkeiten werden nachstehend unter Bezugnahme auf die 7A und 7B beschrieben.
-
Unter nunmehriger Bezugnahme auf 7A ist ein beispielhaftes Verfahren 700 zum Aktualisieren einer Randwahrscheinlichkeit (z. B. A-priori-Wahrscheinlichkeit) des Auftretens einer Anomalie gezeigt. Zum Beispiel kann eine erste Anomalie eine Ursache einer zweiten Anomalie oder eine Wirkung einer dritten Anomalie oder beides sein. Wenn Informationen gemeldet werden, die eine Ursache- oder Wirkungs-Beziehung zwischen der ersten Anomalie und der zweiten und/oder dritten Anomalie festsetzen, kann eine bedingte Wahrscheinlichkeit (z. B. A-posteriori-Wahrscheinlichkeit) des Auftretens der Anomalie auf Grundlage der Ursache- oder Wirkungs-Beziehung berechnet werden. Die bedingte Wahrscheinlichkeit und die Randwahrscheinlichkeit können verwendet werden, um eine Gesamtwahrscheinlichkeit des Auftretens der Anomalie zu berechnen, wobei die Gesamtwahrscheinlichkeit genauer als die Randwahrscheinlichkeit ist, wie nachstehend unter Bezugnahme auf 7B beschrieben ist. Anweisungen zum Durchführen des Verfahrens 700 können auf einem Serversystem, wie etwa dem Serversystem 401 aus 4, gespeichert und durch dieses ausgeführt werden. In einem Beispiel wird das Verfahren 700 als Teil des vorstehend beschriebenen Verfahrens 500 ausgeführt.
-
Bei 702 beinhaltet das Verfahren 700 Empfangen eines einzelnen Anomaliefalls von einem Cloud-Netzwerk (z. B. von einem System vernetzter Fahrzeuge). Wenn Fälle von Anomalien empfangen werden, können Daten darüber gesammelt werden, wie oft die Anomalien auftreten. Die Daten können verwendet werden, um eine Wahrscheinlichkeitsdichtefunktion ƒ (X) zu erzeugen und/oder zu aktualisieren, wobei X der empfangene Anomaliefall ist. In einem Beispiel werden Kerndichteschätzungen (Kernel Density Estimates - KDE) verwendet, um die Wahrscheinlichkeitsdichtefunktion zu schätzen. Zum Beispiel kann jeder gemeldete Anomaliefall als ein Kern aufgetragen werden, wobei der Kern eine zugewiesene Wahrscheinlichkeitsdichte und eine zugewiesene Datenverteilung aufweist. In einem Beispiel ist die Verteilung der Daten eine Gauß-Verteilung auf Grundlage einer Standardabweichung (z. B. 2,25). In anderen Beispielen kann die Verteilung von Daten eine Epanechnikov-Verteilung oder eine Dreiecksverteilung oder eine gleichmäßige Verteilung oder eine andere Verteilung sein. Wenn jeder neue Anomaliefall dem Verlauf der Wahrscheinlichkeitsdichtefunktion hinzugefügt wird, werden die Kerne summiert, um eine KDE zu erzeugen, wobei die KDE eine Kurve ist, die am besten zu den Beeinträchtigungsdaten passt. Die KDE kann sich im Laufe der Zeit ändern, wenn jeweils neue Anomaliedaten gemeldet werden. Ein Vorteil des Berechnens der Randwahrscheinlichkeit des Auftretens der Anomalie unter Verwendung der KDE, um eine Wahrscheinlichkeitsdichtefunktion ƒ (X) zu schätzen, besteht im Gegensatz zu einem Mittelungsansatz, bei dem Anomaliedaten gemittelt werden, darin, dass Wahrscheinlichkeitsschätzungen in Richtung neuerer Daten verzerrt werden, wodurch sich verschiebende Verteilungen festgestellt werden können, die Indikatoren für sich entwickelnde Trends sein können.
-
Unter kurzer Bezugnahme auf 8 zeigt ein Komponentenpopulationsdiagramm 800 eine beispielhafte grafische Darstellung 802 der Wahrscheinlichkeitsdichte, in der eine Wahrscheinlichkeitsdichtefunktion ƒ (X) aufgetragen ist, wobei die Wahrscheinlichkeitsdichtefunktion über KDE geschätzt wird. In der grafischen Darstellung 802 ist eine Vielzahl von erkannten Anomaliefällen als eine Anzahl von gestrichelten Linien 810 aufgetragen. Jede gestrichelte Linie 810 gibt einen Kern an, der einen eigenen Anomaliefall darstellt, der von einer Cloud 806 (die z. B. das System vernetzter Fahrzeuge beinhaltet) empfangen wird. Die x-Achse des Verlaufs 802 kann eine Leistungsmetrik sein. Zum Beispiel kann die Leistungsmetrik die in Tagen gemessene Zeit sein. Jeder Kern ist als Wahrscheinlichkeitskurve mit einer Gauß-Verteilung abgebildet, wobei eine Spitze der Wahrscheinlichkeitskurve einen Mittelwert oder Erwartungswert der Gauß-Verteilung darstellt. Zum Beispiel tritt eine Anomalie, die durch eine Spitze eines Kerns 820 dargestellt wird, zum Zeitpunkt 20 (z. B. nach 20 Tagen) auf, wie durch eine gepunktete Linie 822 angegeben.
-
Die Wahrscheinlichkeitsdichtefunktion ƒ (X) ist durch eine durchgezogene Linie 812 gezeigt, die eine gewichtete Summe der Wahrscheinlichkeitskurven jedes Kerns darstellt, die durch die Anzahl der gestrichelten Linien 810 angegeben sind. Jede Spitze der durchgezogenen Linie 812 kann eine durchschnittliche Beeinträchtigungszeit der Fahrzeugkomponenten einer vorgegebenen Population darstellen (z. B. Kerne, die unter der Spitze in Clustern gruppiert sind). In der grafischen Darstellung 802 können mindestens zwei unterschiedliche Populationen von Fahrzeugkomponenten mit unterschiedlichen mittleren Anomalieerkennungsmetriken festgestellt werden, die in der Darstellung durch eine gestrichelte Linie 814 getrennt sind. Eine erste Population von Fahrzeugkomponenten 830 (z. B. von einem ersten Lieferanten) weist eine höchste Wahrscheinlichkeit des Auftretens einer Anomalie (z. B. der Beeinträchtigung) etwa zu dem Zeitpunkt 20 auf, während eine zweite Population von Fahrzeugkomponenten 832 (z. B. von einem zweiten Lieferanten) eine höchste Wahrscheinlichkeit des Auftretens einer Anomalie (z. B. der Beeinträchtigung) zwischen Zeitpunkt 40 und Zeitpunkt 70 aufweist. Eine zweite grafische Darstellung 804 zeigt eine Verteilung der ersten und zweiten Population, wobei eine Verteilung von Normaldaten 816 der ersten Population von Fahrzeugkomponenten 830 der grafischen Darstellung 802 entsprechen kann und eine Verteilung von abweichenden Daten 818 der zweiten Population von Fahrzeugkomponenten 832 der grafischen Darstellung 802 entsprechen kann. In einem Beispiel kann die Verteilung der abweichenden Daten 818 repräsentativ für einen aufkommenden Trend sein, wobei die Verteilung der abweichenden Daten 818 zuvor nicht existierte oder zuvor nicht mit der angegebenen Verteilung existierte. Somit können durch Verwenden von KDE, um die Wahrscheinlichkeitsdichtefunktion ƒ (X) zu schätzen, sich verschiebende Populationen von Fahrzeugkomponenten erkannt und charakterisiert werden, wodurch eine Grundursache einer neuen Population von defekten Fahrzeugkomponenten festgestellt werden kann.
-
Unter erneuter Bezugnahme auf 7A beinhaltet das Verfahren 700 bei 704 Aktualisieren der Wahrscheinlichkeitsdichtefunktion auf Grundlage des empfangenen Anomaliefalls, wie vorstehend beschrieben. Ein Kern wird entsprechend dem empfangenen Anomaliefall aufgetragen und die Summierung aller Kerne wird aktualisiert, was eine Form der Kurve ändert, die zu den summierten Kernen passt, was zu einer angepassten Wahrscheinlichkeitsfunktion führt. Die Wahrscheinlichkeitsdichtefunktion kann jedes Mal aktualisiert werden, wenn Daten empfangen werden, oder sie kann aktualisiert werden, nachdem ein Stapel von Anomaliedaten empfangen wurde.
-
Bei 706 beinhaltet das Verfahren 700 Berechnen (z. B. Aktualisieren einer Berechnung) der Randwahrscheinlichkeit des Auftretens des empfangenen Anomaliefalls unter Verwendung der aktualisierten Wahrscheinlichkeitsdichtefunktionen. Die Wahrscheinlichkeitsdichtefunktion kann als f (X) dargestellt werden, wobei X der empfangene Anomaliefall ist. Wenn sie aufgetragen ist, ergibt die Wahrscheinlichkeitsdichtefunktion ƒ (X) eine Kurve, die eine Wahrscheinlichkeitsverteilung eines Erkennens einer Anomalie in einer Fahrzeugkomponente zwischen einem Funktionsfähigkeitsindexwert α und einem Funktionsfähigkeitsindexwert b für eine vorgegebene Population von Fahrzeugen darstellt. Die Randwahrscheinlichkeit des Auftretens des empfangenen Anomaliefalls, z. B. ein Skalarwert zwischen 0,0 und 1,0, kann durch Integrieren über die Wahrscheinlichkeitsdichtefunktion berechnet werden, wie in der nachstehenden Gleichung (1) gezeigt:
-
Bei 708 werden die Randwahrscheinlichkeiten in einem Cloud-basierten Funktionsfähigkeitsüberwachungssystem gespeichert, wie etwa dem AD-Serversystem 401 aus 4 (damit darauf z. B. durch AD-Modelle anderer Fahrzeuge zugegriffen werden kann oder damit es in globalen AD-Modellen verwendet werden kann). Wie nachstehend beschrieben, können die Randwahrscheinlichkeiten verwendet werden, um durch UrsachelWirkung bedingte A-posteriori-Wahrscheinlichkeiten eines Auftretens des Anomaliefalls X angesichts von Anomaliedaten anderer Fahrzeugkomponenten zu berechnen.
-
Unter nunmehriger Bezugnahme auf 7B ist ein beispielhaftes Verfahren 750 zum Aktualisieren eines oder mehrerer AD-Modelle unter Verwendung bedingter Wahrscheinlichkeiten auf Grundlage von Aktualisierungen in Fahrzeugpopulationsdaten gezeigt, wobei das eine oder die mehreren AD-Modelle verwendet werden können, um AD-Schwellenwerte für eine oder mehrere Populationen von Teilen auf Grundlage von Berechnungen einer Wahrscheinlichkeit, dass eine Anomalie in einer Fahrzeugkomponente erkannt werden wird, festzusetzen. Ein anomales Verhalten (E(Effect) = Wirkung) kann verstärkt werden, oder eine Wahrscheinlichkeit des Auftretens kann bei Vorhandensein einer oder mehrerer spezifischer Vorläuferursachen (C (Cause)= Ursache) zunehmen. Zusätzlich kann eine Wirkung eine oder mehrere Ursachen mit unterschiedlichem Einflussgrad haben. Daher kann die Kenntnis über das Vorliegen dieser Ursachen eine bessere Vorhersage des Auftretens der Wirkung erlauben. Ursache-Wirkungs-Informationen sind verfügbar, indem bei der Population von Objekten, die überwacht wird, eine Stichprobe auf das Vorhandensein einer oder mehrerer Ursachen genommen wird, selbst wenn ein einzelnes Objekt das Vorhandensein der Ursache unter Umständen nicht zeigt. Die Informationen können verwendet werden, um Schätzungen des Auftretens einer Wirkung zu aktualisieren. Somit können die Berechnungen der Wahrscheinlichkeit, dass eine Anomalie in einem ersten Teil erkannt wird, das Schätzen sowohl einer Randwahrscheinlichkeit eines Erkennens der Anomalie in dem ersten Teil als auch einer bedingten Wahrscheinlichkeit eines Erkennens der Anomalie in dem ersten Teil angesichts des Erkennens einer Anomalie in einem oder mehreren anderen zweiten Teilen eines gleichen Fahrzeugsystems beinhalten. In einigen Beispielen kann das Schätzen der bedingten Wahrscheinlichkeit eines Erkennens der Anomalie in dem ersten Teil angesichts des Erkennens einer Anomalie in einem zweiten Teil des einen oder der mehreren anderen zweiten Teile Schätzen einer bedingten Wahrscheinlichkeit des Erkennens der Anomalie in dem zweiten Teil angesichts einer Erkennung einer Anomalie in dem ersten Teil, wie vorstehend beschrieben, beinhalten. Anweisungen zum Durchführen des Verfahrens 750 können auf einem Serversystem, wie etwa dem AD-Serversystem 401 aus 4, gespeichert und durch dieses ausgeführt werden. In einem Beispiel wird das Verfahren 750 als Teil des vorstehend beschriebenen Verfahrens 500 ausgeführt.
-
Bei 752 beinhaltet das Verfahren 750 Auswählen einer Fahrzeugkomponente, um die Anomalieerkennung zu analysieren. In einem Beispiel kann eine Kraftstoffeinspritzvorrichtung für die AD-Analyse ausgewählt werden.
-
Bei 754 beinhaltet das Verfahren 750 Feststellen möglicher Ursachen und/oder Wirkungen der Anomalie der Fahrzeugkomponente, um Ursache-Wirkungs-Paare zu erzeugen. Zum Beispiel kann eine Beeinträchtigung einer Kraftstoffeinspritzvorrichtung eine Fehlzündung verursachen oder eine Beeinträchtigung einer Düse einer Einspritzvorrichtung oder einer Magnetspule einer Einspritzvorrichtung kann eine Beeinträchtigung der Kraftstoffeinspritzvorrichtung verursachen. Somit kann ein erstes Ursache-Wirkungs-Paar die Beeinträchtigung der Kraftstoffeinspritzvorrichtung als eine Ursache und die Fehlzündung als die Wirkung beinhalten, und ein zweites Ursache-Wirkungs-Paar kann die Düse der Einspritzvorrichtung oder die Magnetspule der Einspritzvorrichtung als eine Ursache und die Beeinträchtigung der Kraftstoffeinspritzvorrichtung als die Wirkung beinhalten. In funktionaler Sprache kann ein Anomaliefall X eine Ursache C eines zweiten Anomaliefalls Y sein, wobei P(X) als P(C) dargestellt werden kann, wenn eine bedingte Wahrscheinlichkeit des Auftretens des Anomaliefalls X beschrieben wird. In einem anderen Beispiel kann der Anomaliefall X eine Wirkung E des zweiten Anomaliefalls Y sein, wobei P(X) als P(E) dargestellt werden kann, wenn eine bedingte Wahrscheinlichkeit des Auftretens des Anomaliefalls X beschrieben wird.
-
Bei 756 beinhaltet das Verfahren 750 Empfangen von Anomaliedaten aus der Cloud für jedes Ursache-Wirkungs-Paar. Zum Beispiel können die Anomaliedaten Anomaliefälle beinhalten, die Ursachen sind, und/oder Anomaliefälle, die Wirkungen sind (z. B. Beeinträchtigungsdaten der Kraftstoffeinspritzvorrichtungen, Fehlzündungsdaten, Beeinträchtigungsdaten der Düse der Einspritzvorrichtung oder des Magnetventils der Einspritzvorrichtung usw.).
-
In einigen Beispielen können die Anomaliedaten zusätzlich Daten beinhalten, die aus aggregierten Daten erzeugt werden, die von einem System vernetzter Fahrzeuge gesammelt und in der Cloud gespeichert werden, wie etwa eine aktualisierte Wahrscheinlichkeitsdichtefunktion und/oder aktualisierte Randwahrscheinlichkeiten (die z. B. gemäß einem Verfahren, wie etwa dem in 7A beschriebenen Verfahren 700, aktualisiert und in der Cloud gespeichert wurden). Wenn zum Beispiel ein Ursache-Wirkungs-Paar die Beeinträchtigung der Kraftstoffeinspritzvorrichtung als die Ursache und die Fehlzündung als die Wirkung beinhaltet, können die Anomaliedaten eine Wahrscheinlichkeitsdichtefunktion für die Beeinträchtigung der Kraftstoffeinspritzvorrichtung und eine Randwahrscheinlichkeit des Auftretens der Beeinträchtigung der Kraftstoffeinspritzvorrichtung (z. B. P(C)); und eine Wahrscheinlichkeitsdichtefunktion für die Fehlzündung und eine Randwahrscheinlichkeit des Auftretens der Fehlzündung (z. B. P(E)) beinhalten. Gleichermaßen können, wenn das zweite Ursache-Wirkungs-Paar die Beeinträchtigung der Düse der Einspritzvorrichtung oder der Magnetspule der Einspritzvorrichtung als eine Ursache und die Beeinträchtigung der Kraftstoffeinspritzvorrichtung als die Wirkung beinhaltet, die Anomaliedaten eine aktualisierte Wahrscheinlichkeitsdichtefunktion für die Beeinträchtigung der Düse der Einspritzvorrichtung oder der Magnetspule der Einspritzvorrichtung und eine aktualisierte Randwahrscheinlichkeit des Auftretens der Düse der Einspritzvorrichtung oder der Magnetspule der Einspritzvorrichtung (z. B. P(C)) beinhalten.
-
Bei 760 beinhaltet das Verfahren 750 Aktualisieren einer oder mehrerer Wahrscheinlichkeitsdichtefunktionen eines oder mehrerer AD-Modelle der Fahrzeugkomponente auf Grundlage der empfangenen Anomaliedaten von entweder dem Cloud-Netzwerk oder anderen Fahrzeugen in dem System vernetzter Fahrzeuge. Die eine oder mehreren Wahrscheinlichkeitsdichtefunktionen können auf aggregierten Randwahrscheinlichkeiten oder aggregierten bedingten Wahrscheinlichkeiten oder beidem basieren.
-
Bei 762 beinhaltet das Verfahren 750 Empfangen einer bedingten Wahrscheinlichkeit des Auftretens der Ursache angesichts der Wirkung, dargestellt als P(C|E), für jedes festgestellte Ursache-Wirkungs-Paar von dem Cloud-Netzwerk. Die bedingte Wahrscheinlichkeit P(C|E) dient zur Anomalieerkennung und zum Festsetzen von ursächlichen Zusammenhängen, die sich auf den Funktionsfähigkeitsstatus einer Fahrzeugkomponente auswirken. Zum Beispiel kann P(C|E) die Wahrscheinlichkeit der Beeinträchtigung einer Kraftstoffeinspritzvorrichtung angesichts von Fehlzündungsdaten sein. In einem Beispiel wird die bedingte Wahrscheinlichkeit P(C|E) aus gespeicherten Daten bestimmt, die historische und/oder statistische Daten beinhalten, die von einem Hersteller eines Fahrzeugs oder einer Fahrzeugkomponente gesammelt wurden. Die historischen und/oder statistischen Daten können Testdaten, Händlerreparaturdaten, Qualitätsdaten und dergleichen beinhalten. Die historischen und/oder statistischen Daten können zum Beispiel Daten beinhalten, die in einer Konstruktionsdatenbank (z. B. der Konstruktionsdatenbank 402 aus 4) gespeichert sind, wie etwa Herstellungsdaten über Fahrzeugkomponenten, historische Komponentendaten, historische Fahrzeugdaten und/oder Herstellerstandarddaten für Vorhersagemodelle. Die historischen und/oder statistischen Daten können Daten beinhalten, die in einer Garantiedatenbank gespeichert sind, wie etwa Daten zur erwarteten Lebensdauer, RUL-Zeitdaten und historische Garantiedaten. Die historischen und/oder statistischen Daten können Daten beinhalten, die in einer Händler- und Reparaturdatenbank gespeichert sind, wie etwa Komponentenreparaturhäufigkeitsdaten, Komponentenfunktionsfähigkeitsdaten vor und nach Reparaturen, Händlertestfahrtdaten und dergleichen. In einem anderen Beispiel kann die bedingte Wahrscheinlichkeit P(C|E) auf Grundlage der von der Cloud empfangenen Anomaliedaten geschätzt werden. Die bedingte Wahrscheinlichkeit P(C|E) wird zum Bestimmen der Grundursachen der Beeinträchtigung für eine Fahrzeugkomponente verwendet.
-
Bei 764 beinhaltet das Verfahren 750 für jede bedingte Wahrscheinlichkeit P(C|E) Berechnen einer bedingten Wahrscheinlichkeit des Auftretens der Wirkung angesichts der Ursache, die als P(E|C) dargestellt ist. Zum Beispiel kann die bedingte Wahrscheinlichkeit P(E|C) die Wahrscheinlichkeit der Fehlzündung einer Kraftstoffeinspritzvorrichtung angesichts einer vorherigen Beeinträchtigung einer Kraftstoffeinspritzvorrichtung sein. Die bedingte Wahrscheinlichkeit P(E|C) kann auf Grundlage der bei 762 empfangenen P(C|E) und der P(C) und P(E) aus den bei 756 empfangenen aktualisierten Anomaliedaten (z. B. aus den Wahrscheinlichkeitsdichtefunktionen bestimmt, wie sie unter Bezugnahme auf
7A beschrieben wurden) über die Bayes-Wahrscheinlichkeitsgleichung wie folgt berechnet werden:
-
Bei 766 beinhaltet das Verfahren 750 Verwenden von P(E|C)-Werten, um das eine oder die mehreren AD-Modelle zu aktualisieren. In einem Beispiel beinhaltet das Aktualisieren des einen oder der mehreren AD-Modelle auf Grundlage der P(E|C)-Werte Aktualisieren von bedingten Wahrscheinlichkeitsdichtefunktionen eines oder mehrerer AD-Modelle. Das Aktualisieren des einen oder der mehreren AD-Modelle kann auch Aktualisieren von AD-Schwellenwerten des einen oder der mehreren AD-Modelle beinhalten. In einem Beispiel wird eine Leistungsmetrik gemäß einem Mittelungsansatz unter Verwendung der folgenden Formel aktualisiert:
wobei Y
k der angepasste AD-Schwellenwert der Leistungsmetrik auf Grundlage einer gewichteten Summe eines aktuellen AD-Schwellenwerts der Leistungsmetrik, Y
k, und eines vorherigen Werts des angepassten AD-Schwellenwerts der Leistungsmetrik Y
k-1 ist. Zum Beispiel kann Y
k ein Schwellenzeitpunkt sein, an dem gemäß der Vorhersage eines RUL-Modells eine Kraftstoffeinspritzvorrichtung ausfällt. Wenn eine neue Beeinträchtigung der Kraftstoffeinspritzvorrichtung erkannt wird (z. B. in Fahrzeugen einer vernetzten Flotte), wird ein Zeitpunkt, an dem die neue Beeinträchtigung der Kraftstoffeinspritzvorrichtung aufgetreten ist, der aktuelle Y
k und der Schwellenzeitpunkt wird der neue Y
k-1. Somit wird der aktualisierte Y
k zum neuen angepassten AD-Schwellenwert der Leistungsmetrik.
-
Während jedoch herkömmliche Verfahren zum Aktualisieren von AD-Schwellenwerten einen kalibrierbaren konstanten Wert für θ
k (z.B. θ
k = θ für alle k) verwenden können, wird der aktuelle Gewichtungsfaktor θ
k in dem vorgeschlagenen Ansatz in Abhängigkeit von einer aktuellen Bayesschen Aktualisierung P(E|C), wie vorstehend bei 764 berechnet, wie folgt angepasst:
Somit nähert sich θ
k mit zunehmender Wahrscheinlichkeit einer Wirkung, die durch eine vorgegebene Ursache bedingt ist, 1 und der aktualisierte AD-Schwellenwert der Leistungsmetrik Y ist mehr in Richtung aktueller Anomaliedaten verzerrt.
-
Sobald das eine oder die mehreren AD-Modelle aktualisiert wurden, können ein oder mehrere Modelle mit der besten Leistung aus dem einen oder den mehreren AD-Modellen ausgewählt werden, wobei das eine oder die mehreren Modelle mit der besten Leistung die AD-Modelle sind, die eine Komponentenbeeinträchtigung mit der größten Genauigkeit vorhersagen.
-
Bei 768 beinhaltet das Verfahren 750 Einstufen von Modelltypen in einer Rangfolge auf Grundlage von Kurven der Operationscharakteristik eines Beobachters (ROC-Kurven), wobei eine Fläche unter jeder Kurve berechnet und in einer Rangfolge eingestuft wird, um das eine oder die mehreren besten Modelle zu bestimmen, wie vorstehend in Bezug auf 9 beschrieben, und das Verfahren 750 endet.
-
Unter nunmehriger Bezugnahme auf 10 veranschaulicht ein Ablaufdiagramm 1000 ein beispielhaftes Verfahren zum Kennzeichnen einer Komponente eines Fahrzeugs in Bezug auf eine mögliche Beeinträchtigung auf Grundlage einer Anomalieerkennung. Anweisungen zum Durchführen des Verfahrens 1000 können auf einer Steuerung des Fahrzeugs in Verbindung mit einem Cloud-basierten Serversystem, wie etwa dem AD-Serversystem 401 aus 4, gespeichert und durch dieses ausgeführt werden.
-
Bei 1002 beinhaltet das Verfahren 1000 Schätzen und/oder Messen von Fahrzeugbetriebsbedingungen. Zum Beispiel können die Fahrzeugbetriebsbedingungen unter anderem einen Status eines Motors des Fahrzeugs (z. B., ob der Motor eingeschaltet ist) und ein Einlegen eines oder mehrerer Gänge eines Getriebes des Fahrzeugs (z. B., ob sich das Fahrzeug bewegt) beinhalten. Fahrzeugbetriebsbedingungen können Motordrehzahl und -last, Fahrzeuggeschwindigkeit, Getriebeöltemperatur, Abgasstromrate, Luftmassenstromrate, Kühlmitteltemperatur, Kühlmittelstromrate, Motoröldrücke (z. B. Ölleitungsdrücke), Betriebsmodi eines oder mehrerer Einlassventile und/oder Auslassventile, Elektromotordrehzahl, Batterieladung, Motordrehmomentausgabe, Fahrzeugraddrehmoment usw. beinhalten. In einem Beispiel ist das Fahrzeug ein Hybridelektrofahrzeug und beinhaltet das Schätzen und/oder Messen von Fahrzeugbetriebsbedingungen Bestimmen, ob das Fahrzeug durch einen Motor oder einen Elektromotor mit Leistung versorgt wird. Das Schätzen und/oder Messen von Fahrzeugbetriebsbedingungen kann ferner Bestimmen eines Zustands eines Kraftstoffsystems des Fahrzeugs, wie etwa eines Kraftstofffüllstands in dem Kraftstofftank, und Bestimmen eines Zustands eines oder mehrerer Ventile des Kraftstoffsystems usw. beinhalten.
-
Bei 1003 beinhaltet das Verfahren 1000 Senden von Fahrzeugdaten an einen Cloud-basierten Server (z. B. den AD-Server 401 aus 4). Die Fahrzeugdaten können Echtzeitsensor- und Ereignisdaten des Fahrzeugs beinhalten, wie sie über Fahrzeugsensoren, wie etwa die vorstehend unter Bezugnahme auf 1 beschriebenen Sensoren 16, gemessen werden. Die Fahrzeugdaten können zudem Diagnosefehlercodes (Diagnostic Trouble Codes - DTC) beinhalten, die durch eine oder mehrere Diagnoseroutinen ausgelöst werden können, die durch die Steuerung ausgeführt werden. In einigen Beispielen können die Fahrzeugdaten automatisch an ein Funktionsfähigkeitsüberwachungssystem des Cloud-basierten Servers gesendet werden, während in anderen Beispielen die Fahrzeugdaten durch das Funktionsfähigkeitsüberwachungssystem angefordert werden können. Zum Beispiel kann ein DTC bezüglich einer Fahrzeugkomponente automatisch an das Funktionsfähigkeitsüberwachungssystem gesendet werden, und als Reaktion auf das Empfangen des DTC kann das Funktionsfähigkeitsüberwachungssystem Informationen über Bedingungen eines Fahrzeugsystems, das die Fahrzeugkomponente beinhaltet, vor der Beeinträchtigung anfordern. In einem Beispiel werden die Fahrzeugdaten kontinuierlich in Echtzeit gesendet.
-
Bei 1004 beinhaltet das Verfahren 1000 Bestimmen, ob ein Anomalieerkennungsschwellenwert angepasst wurde. Wie vorstehend in Bezug auf die 5-7B erläutert, kann ein Anomalieerkennungsschwellenwert einem oder mehreren AD-Modellen für eine vorgegebene Fahrzeugkomponente zugeordnet sein. Nach dem Einsatz des einen oder der mehreren AD-Modelle (wobei z. B. die AD-Modelle an Fahrzeugdaten ausgeführt werden, wie etwa den bei 1003 gesammelten Fahrzeugdaten, um zu bestimmen, ob die Fahrzeugkomponente Anzeichen einer Beeinträchtigung aufweist) können das eine oder die mehreren AD-Modelle eingeschätzt werden (z. B. gemäß den Verfahren aus den 6-7B), um zu bestimmen, ob der anfängliche/kalibrierte AD-Schwellenwert, der dem einen oder den mehreren AD-Modellen zugeordnet ist, noch genau ist, oder ob der AD-Schwellenwert aktualisiert werden sollte. Wie in Bezug auf 5 erläutert, kann, wenn ein AD-Modell und/oder ein AD-Schwellenwert aktualisiert wird, das aktualisierte AD-Modell und/oder der AD-Schwellenwert von dem AD-Server perPush-Übertragung an die vernetzten Objekte (z. B. eine Vielzahl von Fahrzeugen) übertragen werden. Somit kann die Fahrzeugsteuerung bestimmen, ob ein AD-Schwellenwert, der lokal an dem Fahrzeug gebraucht wird, kürzlich aktualisiert wurde. Wenn bei 1004 bestimmt wird, dass der Anomalieerkennungsschwellenwert angepasst wurde, geht das Verfahren 1000 zu 1008 über. Bei 1008 beinhaltet das Verfahren 1000 Modifizieren einer Variablen der Fahrzeugklasse, um eine Anpassung des Anomalieerkennungsschwellenwerts widerzuspiegeln. Bei 1010 beinhaltet das Verfahren 1000 Aktualisieren des Fahrzeuganomalieschwellenwerts/der Fahrzeuganomalieschwellenwerte als Reaktion auf das Empfangen der Angabe, dass der/die AD-Schwellenwert(e) aktualisiert werden sollten, und bei 1011 beinhaltet das Verfahren 1000 Senden eines Fahrzeugfunktionsfähigkeitsindex an den Cloud-basierten Server. In einigen Ausführungsformen kann der Fahrzeugfunktionsfähigkeitsindex verwendet werden, um ein RUL-Modell der Fahrzeugklasse anzupassen. Wenn bei 1004 bestimmt wird, dass der Anomalieerkennungsschwellenwert nicht angepasst wurde, geht alternativ das Verfahren 1000 zu 1006 über. Bei 1006 beinhaltet das Verfahren 1000 Beibehalten der Variablen der Fahrzeugklasse, was widerspiegelt, das keine Anpassung an dem Anomalieerkennungsschwellenwert vorgenommen wurde.
-
Sobald die Variable der Fahrzeugklasse modifiziert oder beibehalten wurde, geht das Verfahren 1000 zu 1012 über. Bei 1012 beinhaltet das Verfahren 1000 Bestimmen, ob Komponentenfunktionsfähigkeitsdaten einen AD-Schwellenwert überschreiten. Zum Beispiel kann eine Zeitdauer, während der die Komponente kontinuierlich verwendet wird, eine Schwellenzeitdauer überschreiten, wodurch abgeleitet werden kann, dass eine Beeinträchtigung der Komponente unmittelbar bevorsteht. Wenn bei 1012 bestimmt wird, dass die Komponentenfunktionsfähigkeitsdaten den AD-Schwellenwert überschritten haben, geht das Verfahren 1000 zu 1014 über. Bei 1014 wird die Komponente in Bezug auf eine mögliche Beeinträchtigung gekennzeichnet. Zum Beispiel kann ein DTC festgelegt werden oder eine andere Art von Diagnosecode kann festgelegt werden. Wenn bei 1012 bestimmt wird, dass die Komponentenfunktionsfähigkeitsdaten den AD-Schwellenwert nicht überschritten haben, geht das Verfahren 1000 zu 1016 über. Bei 1016 wird die Komponente nicht in Bezug auf eine mögliche Beeinträchtigung gekennzeichnet. Der AD-Schwellenwert kann ein anfänglicher/kalibrierter Schwellenwert sein oder der AD-Schwellenwert kann der angepasste AD-Schwellenwert sein. Es versteht sich, dass das Fahrzeug mehrere AD-Schwellenwerte speichern kann, die jeweils für eine andere Fahrzeugkomponente spezifisch sind, und geeignete Fahrzeugdaten (z. B. Fehlzündungsdaten, Temperaturdaten, Druckdaten, Nachbehandlungsdaten, Abgaszusammensetzungsdaten usw.) mit jedem AD-Schwellenwert verglichen werden können, um die Funktionsfähigkeit jeder unterschiedlichen Fahrzeugkomponente zu bestimmen.
-
Somit können Daten von einem IoT-Framework, wie etwa einer Flotte vernetzter Fahrzeuge, in Verbindung mit Verfahren zum maschinellen Lernen verwendet werden, um eine Genauigkeit der AD-Modellierung einer Vielzahl von Komponenten eines Fahrzeugs der Flotte vernetzter Fahrzeuge zu erhöhen. Durch Verwenden von Wahrscheinlichkeitsdichtefunktionen und ferner Schätzen bedingter Wahrscheinlichkeiten des Erkennens einer Anomalie angesichts einer vorherigen Erkennung einer Anomalie oder Beeinträchtigung einer oder mehrerer anderer Komponenten des Fahrzeugs können AD-Schwellenwerte der Vielzahl von Komponenten aktualisiert werden, um eine Beeinträchtigung jeder Komponente der Vielzahl von Komponenten auf regelmäßiger und/oder kontinuierlicher Basis genauer vorherzusagen.
-
Insbesondere können durch Anpassen der AD-Schwellenwerte der Vielzahl von Komponenten auf Grundlage von bedingten Wahrscheinlichkeiten (z. B. der P(E/C)-Wahrscheinlichkeiten) anstelle des Verwendens eines herkömmlichen Mittelungsansatzes Trenddaten von Anomalien leichter durch AD-Modelle und Schwellenwerte erfasst werden. Durch Erhöhen einer Genauigkeit der AD-Modelle und Beibehalten aktualisierter AD-Schwellenwerte in einem Fahrzeug kann einem Fahrer eine Benachrichtigung gesendet werden, das Fahrzeug zu einem geeigneten Zeitpunkt zur Wartung zu bringen, wobei der geeignete Zeitpunkt eine Nutzungsdauer einer oder mehrerer Komponenten des Fahrzeugs maximiert und eine Rate von Komponentenbeeinträchtigungen im praktischen Einsatz minimiert. Ferner können die Wahrscheinlichkeitsdichtefunktionen und bedingten Wahrscheinlichkeiten verwendet werden, um eine Grundursachenanalyse der Komponentenbeeinträchtigung zu verbessern. Ein zusätzlicher Vorteil der in dieser Schrift bereitgestellten Systeme und Verfahren besteht darin, dass eine Vielzahl von statistischen Modellen und/oder Modellen zum maschinellen Lernen unterschiedlicher Art verwendet werden kann, die im Laufe der Zeit konkurrieren und sich weiterentwickeln können, um die Genauigkeit der AD-Modelle kontinuierlich zu verbessern.
-
Die technische Wirkung der Verwendung von Daten vernetzter Fahrzeuge zum kontinuierlichen Aktualisieren von AD-Modellen und AD-Schwellenwerten auf Grundlage von Grenzwahrscheinlichkeitsdichtefunktionen und bedingten Wahrscheinlichkeitsdichtefunktionen besteht darin, dass eine Genauigkeit der AD-Modelle und AD-Schwellenwerte erhöht werden kann, wodurch eine Nutzungsdauer von Fahrzeugkomponenten maximiert wird.
-
Die Offenbarung stellt zudem Unterstützung für ein Verfahren zur kontinuierlichen Funktionsfähigkeitsüberwachung von vernetzten physischen Objekten bereit, umfassend: Anpassen von Schwellenwerten für Anomalieerkennung und Grundursachenanalysealgorithmen für die vernetzten physischen Objekte auf Grundlage einer Aggregation neuer vernetzter Daten unter Verwendung von maschinellem Lernen, Aktualisieren und Einstufen in einer Rangfolge von hochentwickelten statistischen Modellen und Modellen zum maschinellen Lernen auf Grundlage ihrer Leistung unter Verwendung vernetzter Daten, bis ein Modell mit der besten Leistung bestätigt ist, und Einsetzen des Modells mit der besten Leistung, um die vernetzten physischen Objekte zu überwachen. In einem ersten Beispiel für das Verfahren beinhalten die vernetzten physischen Objekte Fahrzeugkomponenten einer Vielzahl von Fahrzeugen eines Systems von vernetzten Fahrzeugen und sind die hochentwickelten statistischen Modelle und Modelle zum maschinellen Lernen Anomalieerkennungs(AD)-Modelle, die verwendet werden, um einen Funktionsfähigkeitsindex der Fahrzeugkomponenten festzusetzen. In einem zweiten Beispiel für das Verfahren, das optional das erste Beispiel beinhaltet, ist das System vernetzter Fahrzeuge ein Cloud-basiertes System, das ferner mindestens eine von einer Konstruktions-/Qualitätsdatenbank, einer Garantiedatenbank, einer Händler-/Reparaturdatenbank und einer Entwicklungsdatenbank beinhaltet. In einem dritten Beispiel für das Verfahren, das optional eines oder beide des ersten und zweiten Beispiels beinhaltet, umfasst das Aktualisieren der hochentwickelten statistischen Modelle und Modelle zum maschinellen Lernen ferner Anpassen eines Anomalieerkennungs(AD-)Schwellenwerts jedes Modells der hochentwickelten statistischen Modelle und Modelle zum maschinellen Lernen, um eine Gesamtanzahl von falsch positiven Ergebnissen einer Anomalie und/oder einer Gesamtanzahl von falsch negativen Ergebnissen der Anomalie zu minimieren. In einem vierten Beispiel für das Verfahren, das optional eines oder mehrere oder jedes des ersten bis dritten Beispiels beinhaltet, umfasst das Aktualisieren der hochentwickelten statistischen Modelle und Modelle zum maschinellen Lernen ferner Initialisieren der hochentwickelten statistischen Modelle und Modelle zum maschinellen Lernen mit Vor-Einsatz-Kalibrierungen. In einem fünften Beispiel für das Verfahren, das optional eines oder mehrere oder jedes des ersten bis vierten Beispiels beinhaltet, umfasst das Aktualisieren der hochentwickelten statistischen Modelle und Modelle zum maschinellen Lernen ferner Folgendes: Aktualisieren einer Randwahrscheinlichkeit einer ersten Beeinträchtigung eines ersten Objekts, Aktualisieren einer ersten bedingten Wahrscheinlichkeit der ersten Beeinträchtigung des ersten Objekts angesichts einer zweiten Beeinträchtigung eines zweiten Objekts, wobei die zweite Beeinträchtigung vor der ersten Beeinträchtigung auftritt, Aktualisieren einer zweiten bedingten Wahrscheinlichkeit der zweiten Beeinträchtigung des zweiten Objekts angesichts der ersten Beeinträchtigung des ersten Objekts, Schätzen eines Funktionsfähigkeitsstatus des ersten Objekts auf Grundlage der ersten bedingten Wahrscheinlichkeit und als Reaktion darauf, dass die zweite bedingte Wahrscheinlichkeit eine Schwellenwahrscheinlichkeit überschreitet, Feststellen der zweiten Beeinträchtigung als Grundursache der ersten Beeinträchtigung. In einem sechsten Beispiel für das Verfahren, das optional eines oder mehrere oder jedes des ersten bis fünften Beispiels beinhaltet, umfasst das Einstufen in einer Rangfolge der hochentwickelten statistischen Modelle und Modelle zum maschinellen Lernen auf Grundlage ihrer Leistung ferner Folgendes: Berechnen einer Fläche unter einer Kurve der Operationscharakteristik eines Beobachters (ROC-Kurve) von jedem Modell der hochentwickelten statistischen Modelle und Modelle zum maschinellen Lernen, wobei die Fläche eine Erfolgswahrscheinlichkeit jedes Modells angibt, und Einstufen in einer Rangfolge der hochentwickelten statistischen Modelle und Modelle zum maschinellen Lernen auf Grundlage der Erfolgswahrscheinlichkeit jedes Modells. In einem siebten Beispiel für das Verfahren, das optional eines oder mehrere oder jedes des ersten bis sechsten Beispiels beinhaltet, umfasst das Einstufen in einer Rangfolge der hochentwickelten statistischen Modelle und Modelle zum maschinellen Lernen auf Grundlage ihrer Leistung ferner Folgendes: in einer ersten Bedingung, wenn ein Objekt der vernetzten physischen Objekte als Reaktion darauf, dass eine Anomalie vorhergesagt wird, inspiziert wird: als Reaktion darauf, dass die Anomalie ein richtig positives Ergebnis ist, Neueinstufen in einer Rangfolge und Einstufen in einer Rangfolge der hochentwickelten statistischen Modelle und Modelle zum maschinellen Lernen nach einer Wahrscheinlichkeit des Auftretens der Anomalie in absteigender Reihenfolge, als Reaktion darauf, dass die Anomalie ein falsch positives Ergebnis ist, Neueinstufen in einer Rangfolge und Einstufen in einer Rangfolge der hochentwickelten statistischen Modelle und Modelle zum maschinellen Lernen nach einer Wahrscheinlichkeit des Auftretens der Anomalie in aufsteigender Reihenfolge, und in einer zweiten Bedingung, wenn das Objekt der vernetzten physischen Objekte als Reaktion darauf, dass die Anomalie vorhergesagt wird, nicht inspiziert wird: als Reaktion darauf, dass das Objekt innerhalb einer Schwellenzeit eines vorhergesagten Endes einer Nutzungsdauer des Objekts beeinträchtigt wird, Neueinstufen in einer Rangfolge und Einstufen in einer Rangfolge der hochentwickelten statistischen Modelle und Modelle zum maschinellen Lernen nach der Wahrscheinlichkeit des Auftretens der Anomalie in absteigender Reihenfolge, als Reaktion darauf, dass das Objekt außerhalb der Schwellenzeit nach dem vorhergesagten Ende der Nutzungsdauer des Objekts beeinträchtigt wird, Neueinstufen in einer Rangfolge und Einstufen in einer Rangfolge der hochentwickelten statistischen Modelle und Modelle zum maschinellen Lernen nach der Wahrscheinlichkeit des Auftretens der Anomalie in aufsteigender Reihenfolge, als Reaktion darauf, dass das Objekt außerhalb der Schwellenzeit vor dem vorhergesagten Ende der Nutzungsdauer des Objekts beeinträchtigt wird: Neueinstufen in einer Rangfolge und Einstufen in einer Rangfolge der hochentwickelten statistischen Modelle und Modelle zum maschinellen Lernen nach der Wahrscheinlichkeit des Auftretens der Anomalie in absteigender Reihenfolge. In einem achten Beispiel für das Verfahren, das optional eines oder mehrere oder jedes des ersten bis siebten Beispiels beinhaltet, sind die hochentwickelten statistischen Modelle und Modelle zum maschinellen Lernen in einem Fahrzeug gespeichert und werden durch eine Steuerung des Fahrzeugs auf Grundlage von in einem nichtflüchtigen Speicher der Steuerung gespeicherten Anweisungen aktualisiert und in einer Rangfolge eingestuft. In einem neunten Beispiel für das Verfahren, das optional eines oder mehrere oder jedes des ersten bis achten Beispiels beinhaltet, sind die hochentwickelten statistischen Modelle und Modelle zum maschinellen Lernen in einem Cloud-basierten Funktionsfähigkeitsüberwachungssystem gespeichert und werden durch eine Anwendung des Cloud-basierten Funktionsfähigkeitsüberwachungssystems aktualisiert und in einer Rangfolge eingestuft, wobei die vernetzten physischen Objekte eine Vielzahl von Fahrzeugen beinhalten und wobei das Modell mit der besten Leistung in einer jeweiligen Steuerung jedes Fahrzeugs eingesetzt wird.
-
Die Offenbarung stellt zudem Unterstützung für ein System bereit, umfassend: einen Prozessor und in einem nichtflüchtigen Speicher gespeicherte Anweisungen, die bei Ausführung den Prozessor zu Folgendem veranlassen: als Reaktion auf das Empfangen von ersten Beeinträchtigungsdaten einer ersten Fahrzeugkomponente eines Fahrzeugs: Aktualisieren einer Wahrscheinlichkeitsdichtefunktion auf Grundlage der ersten Beeinträchtigungsdaten, wobei die Wahrscheinlichkeitsdichtefunktion eine Wahrscheinlichkeitsverteilung einer im Laufe der Zeit auftretenden Beeinträchtigung der ersten Fahrzeugkomponente angibt, Aktualisieren eines Anomalieerkennungs(AD)-Modells der ersten Fahrzeugkomponente auf Grundlage der aktualisierten Wahrscheinlichkeitsdichtefunktion und Senden des aktualisierten AD-Modells an das Fahrzeug und/oder eine Vielzahl von zusätzlichen Fahrzeugen. In einem ersten Beispiel für das System beinhaltet das Empfangen der ersten Beeinträchtigungsdaten Empfangen von Daten der ersten Fahrzeugkomponente von anderen ähnlichen Fahrzeugen innerhalb eines Systems vernetzter Fahrzeuge. In einem zweiten Beispiel für das System, das optional das erste Beispiel beinhaltet, das ferner in dem nichtflüchtigen Speicher gespeicherte Anweisungen beinhaltet, die bei Ausführung den Prozessor dazu veranlassen, die Wahrscheinlichkeitsdichtefunktion unter Verwendung von Kerndichteschätzungen (KDEs) zu aktualisieren, wobei ein neuer Kern aus den ersten Beeinträchtigungsdaten erstellt wird, und wobei die Wahrscheinlichkeitsdichtefunktion durch Aktualisieren einer gewichteten Summierung einer Vielzahl von Kernen der Wahrscheinlichkeitsdichtefunktion aktualisiert wird. In einem dritten Beispiel für das System, das optional eines oder beide des ersten und zweiten Beispiels beinhaltet, werden die KDEs verwendet, um abweichende Daten von normalen Daten zu trennen, um Trends in einer Population von Fahrzeugkomponenten festzustellen und/oder um Qualitätsunterschiede zwischen Teilpopulationen von Fahrzeugkomponenten zu erkennen. In einem vierten Beispiel für das System, das optional eines oder mehrere oder jedes des ersten bis dritten Beispiels beinhaltet, umfasst das Aktualisieren der Wahrscheinlichkeitsdichtefunktion ferner Folgendes: Berechnen einer Randwahrscheinlichkeit einer Beeinträchtigung der ersten Fahrzeugkomponente unter Verwendung der Wahrscheinlichkeitsdichtefunktion, Berechnen einer bedingten Wahrscheinlichkeit des Auftretens der Beeinträchtigung der ersten Fahrzeugkomponente angesichts von zweiten Beeinträchtigungsdaten einer zweiten Fahrzeugkomponente, Aktualisieren der Wahrscheinlichkeitsdichtefunktion auf Grundlage der bedingten Wahrscheinlichkeit des Auftretens der Beeinträchtigung der ersten Fahrzeugkomponente angesichts der zweiten Beeinträchtigungsdaten. In einem fünften Beispiel für das System, das optional eines oder mehrere oder jedes des ersten bis vierten Beispiels beinhaltet, das ferner in dem nichtflüchtigen Speicher gespeicherte Anweisungen beinhaltet, die bei Ausführung den Prozessor dazu veranlassen, die bedingte Wahrscheinlichkeit des Auftretens der Beeinträchtigung der ersten Fahrzeugkomponente angesichts der zweiten Beeinträchtigungsdaten unter Verwendung des Bayes-Theorems auf Grundlage der Randwahrscheinlichkeit und einer bedingten Wahrscheinlichkeit des Auftretens einer zweiten Beeinträchtigung der zweiten Fahrzeugkomponente angesichts der ersten Beeinträchtigungsdaten zu berechnen. In einem sechsten Beispiel für das System, das optional eines oder mehrere oder jedes des ersten bis fünften Beispiels beinhaltet, wird die bedingte Wahrscheinlichkeit des Auftretens der zweiten Beeinträchtigung der zweiten Fahrzeugkomponente angesichts der ersten Beeinträchtigungsdaten in einer Datenbank eines Herstellers des Fahrzeugs gespeichert und von einem Cloud-basierten Server empfangen. In einem siebten Beispiel für das System, das optional eines oder mehrere oder jedes des ersten bis sechsten Beispiels beinhaltet, beinhaltet das Aktualisieren eines AD-Modells Aktualisieren eines AD-Schwellenwerts des AD-Modells.
-
Die Offenbarung stellt zudem Unterstützung für ein Verfahren bereit, umfassend: Kategorisieren von Fahrzeugen einer Population vernetzter Fahrzeuge in Fahrzeugklassen unter Verwendung einer Fahrzeugtaxonomie, Erzeugen einer Vielzahl von Anomalieerkennungs(AD)-Modellen für ein vernetztes physisches Objekt einer Fahrzeugklasse der Population vernetzter Fahrzeuge, wenn ein AD-Schwellenwert eines AD-Modells aus der Vielzahl von AD-Modellen erreicht ist, wobei das AD-Modell dem vernetzten physischen Objekt zugeordnet ist, wobei das vernetzte physische Objekt Teil eines Fahrzeugs der Fahrzeugklasse ist: Benachrichtigen eines Fahrers des Fahrzeugs, das Fahrzeug warten zu lassen, als Reaktion auf das Erkennen einer Anomalie während der Wartung Anpassen einer Richtig-Positiv-Rate des AD-Modells und Neueinstufen der Vielzahl von AD-Modellen in einer Rangfolge, als Reaktion auf das Nichterkennen einer Anomalie während der Wartung Anpassen einer Falsch-Positiv-Rate des AD-Modells und Neueinstufen der Vielzahl von AD-Modellen in einer Rangfolge als Reaktion darauf, dass der Fahrer das Fahrzeug nicht wartet: Überwachen des vernetzten physischen Objekts, bis eine Beeinträchtigung auftritt, als Reaktion auf das Auftreten der Beeinträchtigung an einem vorhergesehenen Ende einer Nutzungsdauer des vernetzten physischen Objekts, Neueinstufen der Vielzahl von AD-Modellen in einer Rangfolge als Reaktion auf das Auftreten der Beeinträchtigung vor oder nach dem vorhergesehenen Ende einer Nutzungsdauer des vernetzten physischen Objekts: Neueinstufen der Vielzahl von AD-Modellen in einer Rangfolge und Weiterleiten von Beeinträchtigungsdaten zum Objekt des vernetzten Fahrzeugs an einen Hersteller des Objekts. In einem ersten Beispiel für das Verfahren basiert die Fahrzeugtaxonomie auf mindestens einem von einer Marke, einem Modell, einem Antriebsstrang, einer Kraftübertragung und einem Radstand von Fahrzeugen der Population vernetzter Fahrzeuge und mindestens einem von einer Umgebungstemperatur, einer Luftfeuchtigkeit , eine Höhe und einen Satz von Verkehrsmustern einer Betriebsregion der Fahrzeuge der Population der vernetzten Fahrzeuge. Es ist zu beachten, dass die in dieser Schrift beinhalteten beispielhaften Steuer- und Schätzroutinen mit verschiedenen Motor- und/oder Fahrzeugsystemkonfigurationen verwendet werden können. Die in dieser Schrift offenbarten Steuerverfahren und -routinen können als ausführbare Anweisungen in nichttransitorischem Speicher gespeichert sein und können durch das Steuersystem durchgeführt werden, das die Steuerung in Kombination mit den verschiedenen Sensoren, Aktoren und anderer Motorhardware beinhaltet. Die spezifischen in dieser Schrift beschriebenen Routinen können eine oder mehrere einer beliebigen Anzahl von Verarbeitungsstrategien darstellen, wie etwa ereignisgesteuert, unterbrechungsgesteuert, Multitasking, Multithreading und dergleichen. Demnach können verschiedene veranschaulichte Handlungen, Vorgänge und/oder Funktionen in der veranschaulichten Abfolge oder parallel durchgeführt oder in einigen Fällen weggelassen werden. Gleichermaßen ist die Verarbeitungsreihenfolge nicht zwangsläufig erforderlich, um die Merkmale und Vorteile der in dieser Schrift beschriebenen Ausführungsbeispiele zu erzielen, sondern zur Vereinfachung der Veranschaulichung und Beschreibung bereitgestellt. Ein(e) oder mehrere der veranschaulichten Handlungen, Vorgänge und/oder Funktionen können je nach konkret eingesetzter Strategie wiederholt durchgeführt werden. Ferner können die beschriebenen Handlungen, Vorgänge und/oder Funktionen grafisch Code darstellen, der in nichttransitorischen Speicher des computerlesbaren Speichermediums in dem Motorsteuersystem einzuprogrammieren ist, wobei die beschriebenen Handlungen durch Durchführen der Anweisungen in einem System, das die verschiedenen Motorhardwarekomponenten in Kombination mit der elektronischen Steuerung beinhaltet, ausgeführt werden.
-
Es versteht sich, dass die in dieser Schrift offenbarten Konfigurationen und Routinen beispielhafter Natur sind und dass diese spezifischen Ausführungsformen nicht in einschränkendem Sinn aufzufassen sind, da zahlreiche Variationen möglich sind. Zum Beispiel kann die vorstehende Technologie auf V6-, I4-, I6-, V12-, 4-Zylinder-Boxer- und andere Motorarten angewendet werden. Darüber hinaus sollen die Ausdrücke „erstes“, „zweites“, „drittes“ und dergleichen, sofern nicht ausdrücklich das Gegenteil angegeben ist, keine Reihenfolge, Position, Menge oder Bedeutung wiedergeben, sondern sie werden lediglich als Bezeichnungen zum Unterscheiden eines Elements von einem anderen verwendet. Der Gegenstand der vorliegenden Offenbarung beinhaltet alle neuartigen und nicht naheliegenden Kombinationen und Unterkombinationen der verschiedenen Systeme und Konfigurationen sowie andere Merkmale, Funktionen und/oder Eigenschaften, die in dieser Schrift offenbart sind.
-
Wie in dieser Schrift verwendet, ist der Ausdruck „etwa“ als plus oder minus fünf Prozent des jeweiligen Bereichs aufgefasst, es sei denn, es wird etwas anderes vorgegeben.
-
Die folgenden Patentansprüche heben gewisse Kombinationen und Unterkombinationen besonders hervor, die als neuartig und nicht naheliegend betrachtet werden. Diese Patentansprüche können sich auf „ein“ Element oder „ein erstes“ Element oder das Äquivalent davon beziehen. Solche Patentansprüche sollten dahingehend verstanden werden, dass sie die Einbeziehung eines oder mehrerer solcher Elemente beinhalten und zwei oder mehr solcher Elemente weder erfordern noch ausschließen. Andere Kombinationen und Unterkombinationen der offenbarten Merkmale, Funktionen, Elemente und/oder Eigenschaften können durch Änderung der vorliegenden Patentansprüche oder durch Einreichung neuer Patentansprüche in dieser oder einer verwandten Anmeldung beansprucht werden. Derartige Patentansprüche werden unabhängig davon, ob sie einen weiteren, engeren, gleichen oder unterschiedlichen Umfang im Vergleich zu den ursprünglichen Patentansprüchen aufweisen, ebenfalls als im Gegenstand der vorliegenden Offenbarung beinhaltet betrachtet.
-
ZITATE ENTHALTEN IN DER BESCHREIBUNG
-
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
-
Zitierte Patentliteratur
-