DE102021118547A1 - Vacuum insulation body with an improved sealing seam - Google Patents

Vacuum insulation body with an improved sealing seam Download PDF

Info

Publication number
DE102021118547A1
DE102021118547A1 DE102021118547.5A DE102021118547A DE102021118547A1 DE 102021118547 A1 DE102021118547 A1 DE 102021118547A1 DE 102021118547 A DE102021118547 A DE 102021118547A DE 102021118547 A1 DE102021118547 A1 DE 102021118547A1
Authority
DE
Germany
Prior art keywords
vacuum insulation
insulation body
coc
cycloolefin copolymer
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102021118547.5A
Other languages
German (de)
Inventor
Thomas Wollheim
Andreas Müller
Roland Caps
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Va Q Tec AG
Original Assignee
Va Q Tec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Va Q Tec AG filed Critical Va Q Tec AG
Priority to DE102021118547.5A priority Critical patent/DE102021118547A1/en
Publication of DE102021118547A1 publication Critical patent/DE102021118547A1/en
Ceased legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • E04B1/803Heat insulating elements slab-shaped with vacuum spaces included in the slab
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/14Layered products comprising a layer of synthetic resin next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/05Interconnection of layers the layers not being connected over the whole surface, e.g. discontinuous connection or patterned connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1021Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0221Vinyl resin
    • B32B2266/0228Aromatic vinyl resin, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0278Polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/06Open cell foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Thermal Insulation (AREA)

Abstract

Die Erfindung richtet sich auf einen Vakuumdämmkörper mit einer vakuumdichten, mit einem offenporigen, druckbelastbaren Kern und einer Umhüllung aus einer oder mehreren Hochbarrierefolien, deren Siegelseiten aus einem Cycloolefin-Copolymer oder einer Koextrusion aus Polypropylen und Cycloolefin-Copolymer bestehen.The invention relates to a vacuum insulation body with a vacuum-tight, open-pore, pressure-resistant core and a covering made of one or more high-barrier films whose sealing sides consist of a cycloolefin copolymer or a coextrusion of polypropylene and cycloolefin copolymer.

Description

Die Erfindung betrifft einen Vakuumdämmkörper aus einem offenporigen, druckbelastbaren Kern mit einer vakuumdichten Umhüllung mit einer oder mehreren Hochbarrierefolien mit einer Siegelschicht.The invention relates to a vacuum insulation body made of an open-pore, pressure-resistant core with a vacuum-tight covering with one or more high-barrier films with a sealing layer.

Vakuumdämmkörper erreichen durch Evakuierung eines offenporigen, druckbelastbaren Kernmaterials eine sehr niedrige Wärmeleitfähigkeit, da durch die Evakuierung die Wärmeleitfähigkeit der Luft ausgeschaltet werden kann. Solche Vakuumdämmkörper sind üblicherweise mit einer Hochbarrierefolie vakuumdicht umhüllt. Unterschiedliche Füllmaterialen auf der Basis von Kieselsäurepulvern, Perlitpulvern, organischen Schäumen und Glasfasermaterialien stehen zur Verfügung. Die geringsten Wärmeleitfähigkeiten unter ausreichend gutem Vakuum erreichen dabei Glasfasermaterialien mit 1,5 bis 2,0 mW/mK nach der Herstellung, Kieselsäurematerialien mit 3,0 bis 5,0 mW/mK und Polyurethankerne mit etwa 8,0 mW/mK. Je nach der Größe der Poren der Füllmaterialien müssen unterschiedlich niedrige Gasdrücke in den Kernen bei der Herstellung erreicht und im Anwendungszeitraum auch auf diesem niedrigen Niveau gehalten werden. Bei Glasfasern und offenporigen PU-Schäumen sind Gasdrücke um 0,01 bis 0,1 mbar notwendig, um die Wärmeleitfähigkeit des Restgases im Wesentlichen unterbinden zu können. Andere, mikroporöse Füllmaterialien wie pyrogene Kieselsäuren oder Aerogele können wegen ihrer Porenstruktur von weniger als 1 µm auch bei Gasdrücken zwischen 1 und 10 mbar eingesetzt werden, ohne dass sich die Wärmeleitfähigkeit des Restgases bemerkbar macht.Vacuum insulating bodies achieve a very low thermal conductivity by evacuating an open-pored, pressure-resistant core material, since the thermal conductivity of the air can be eliminated by the evacuation. Such vacuum insulation bodies are usually encased in a vacuum-tight manner with a high-barrier film. Various filling materials based on silica powders, perlite powders, organic foams and glass fiber materials are available. Glass fiber materials with 1.5 to 2.0 mW/mK after production, silica materials with 3.0 to 5.0 mW/mK and polyurethane cores with about 8.0 mW/mK achieve the lowest thermal conductivities under sufficiently good vacuum. Depending on the size of the pores of the filling materials, different low gas pressures must be achieved in the cores during production and must also be kept at this low level during the period of use. In the case of glass fibers and open-pored PU foams, gas pressures of around 0.01 to 0.1 mbar are necessary in order to be able to essentially suppress the thermal conductivity of the residual gas. Due to their pore structure of less than 1 µm, other, microporous filling materials such as pyrogenic silica or aerogels can also be used at gas pressures between 1 and 10 mbar without the thermal conductivity of the residual gas being noticeable.

Der Anstieg des Gasdruckes im Kern während der Nutzungsdauer hängt von der Barriereeigenschaft der Umhüllungsfolie gegenüber Luft und Wasserdampf, dem Umgebungsklima im Anwendungszeitraum und der Dicke des Paneels ab. In einem Vakuumisolationspaneel mit einem 20 mm starken Glasfaserkern darf der Gasdruck typischerweise nicht um mehr als 0,05 mbar pro Jahr bei einer vorgesehenen Nutzungsdauer von 10 Jahren zunehmen, um einen Anstieg der Wärmeleitfähigkeit von einem Anfangswert von 2,0 mW/mK auf unter 5,0 mW/mK zu begrenzen. Dies entspricht dem Durchgang einer Luftmenge von 1 mbar Liter pro m2 Paneelfläche und pro Jahr. Typische Hochbarrierefolien erreichen 6 bis 50 mbar Liter/(m2 * Jahr) bei Raumtemperatur. An speziellen Hochbarrierefolien konnten Durchgangswerte von 2 bis 5 mbar Liter/(m2 * Jahr) gemessen werden. Die Messung erfolgt dabei dadurch, dass z.B. an einem relativ dünnen Testpaneel mit gröberen Fasern der Anstieg der Wärmeleitfähigkeit über einen längeren Zeitraum gemessen wird. Dabei wird der Einfluss von Feuchtigkeit durch Zugabe eines Trockenmittels unterbunden. Ein Ausschluss des Anstiegs der Wärmeleitfähigkeit aufgrund von Ausgasungen kann dadurch getroffen werden, dass nur der lineare Anstieg ausgewertet wird. In einer separaten Messung wird vorher die Abhängigkeit der Wärmeleitfähigkeit des Testkernmaterials vom Gas- bzw. Luftdruck im Kern bestimmt. Nimmt in der separaten Messung in dem Faserkern bei einem Anstieg des Luftdrucks um 0,1 mbar die Wärmeleitfähigkeit um 1,0 mW/mK zu, kann daraus umgekehrt aus einem linearen, zeitlichen Anstieg der Wärmeleitfähigkeit von 1,0 mW/mK pro Jahr im Testpaneel auf eine zeitliche Änderung des Luftdrucks um 0,1 mbar pro Jahr geschlossen werden. Multipliziert mit der Dicke des Testpaneels, z.B. 10 mm, ergibt sich daraus ein Luftdurchgangswert der Umhüllungsfolie von z.B. 1 mbar Liter/(m2 * Jahr).The increase in gas pressure in the core during service life depends on the barrier properties of the encapsulating film against air and water vapour, the ambient climate during the period of use and the thickness of the panel. In a vacuum insulation panel with a 20 mm thick glass fiber core, the gas pressure must typically not increase by more than 0.05 mbar per year over an intended service life of 10 years in order to increase the thermal conductivity from an initial value of 2.0 mW/mK to below 5 .0 mW/mK. This corresponds to the passage of an air volume of 1 mbar liter per m 2 panel area and per year. Typical high barrier films achieve 6 to 50 mbar liters/(m 2 * year) at room temperature. Transmission values of 2 to 5 mbar liters/(m 2 * year) could be measured on special high-barrier films. The measurement is carried out by measuring the increase in thermal conductivity over a longer period of time, for example on a relatively thin test panel with coarser fibers. The influence of moisture is prevented by adding a desiccant. The increase in thermal conductivity due to outgassing can be ruled out by only evaluating the linear increase. In a separate measurement, the dependency of the thermal conductivity of the test core material on the gas or air pressure in the core is determined beforehand. If, in the separate measurement in the fiber core, the thermal conductivity increases by 1.0 mW/mK with an increase in air pressure of 0.1 mbar, this can be reversed from a linear, temporal increase in thermal conductivity of 1.0 mW/mK per year in the test panel on a change in air pressure over time of 0.1 mbar per year. Multiplied by the thickness of the test panel, eg 10 mm, this results in an air permeability value of the enveloping film of eg 1 mbar liter/(m 2 * year).

Dieser sehr niedrige Wert lässt sich an einer Testprobe typischerweise innerhalb von weniger als einem Monat messen, wenn Änderungen der Wärmeleitfähigkeiten von weniger als 0,1 mW/mK in diesem Zeitraum sicher festgestellt werden können.This very low value can typically be measured on a test sample in less than a month if changes in thermal conductivities of less than 0.1 mW/mK can be reliably detected over this period.

In der Praxis liegen die niedrigsten gemessen Werte der Luftdurchlässigkeit von Hochbarrierefolien nicht unter 2 mbar Liter/(m2 * Jahr). Eine Analyse des Luftdurchgangs durch die Oberfläche der Umhüllung zeigt, dass die Diffusion von Luft durch die Siegelnähte gegenüber der Diffusion durch die Folienfläche nicht vernachlässigt werden kann. Üblicherweise besteht die Hochbarrierefolie aus einer siegelfähigen Schicht aus Polyethylen (PE) mit einer Stärke von etwa 50 µm, die mit der eigentlichen Hochbarriereschicht aus mehreren, meist metallisierten Polyester- oder Polyvinylalkoholfolien laminiert ist. Polyethylen weist eine um mehrere Größenordnungen (vgl. Lexikon der Kunststofftechnik) höhere Luftdurchlässigkeit als metallisierte Polyesterfolien auf. Damit kann die Seitwärtspermeation von Luft allein durch die Siegelschicht aus Polyethylen, umgerechnet auf die Fläche der Hochbarrierehülle, Werte zwischen 1 und 4 mbar Liter/ (m2 Jahr) erreichen. Der Wert hängt auch vom Verhältnis der Länge des Siegelrandes zu der Fläche des Vakuumpaneels ab.In practice, the lowest values measured for the air permeability of high-barrier films are not less than 2 mbar liters/(m 2 * year). An analysis of the air passage through the surface of the casing shows that the diffusion of air through the seal seams cannot be neglected compared to the diffusion through the film surface. The high-barrier film usually consists of a sealable layer of polyethylene (PE) with a thickness of around 50 µm, which is laminated to the actual high-barrier layer of several, mostly metalized, polyester or polyvinyl alcohol films. Polyethylene has an air permeability that is several orders of magnitude higher (cf. Lexicon of Plastics Technology) than metallized polyester films. This means that the sideways permeation of air through the sealing layer made of polyethylene alone, converted to the area of the high-barrier envelope, can reach values between 1 and 4 mbar liters/(m 2 year). The value also depends on the ratio of the length of the sealing edge to the area of the vacuum panel.

Will man Werte unter 1 mbar Liter/(m2 * Jahr) für die Gesamthülle einschließlich der Siegelnähte erreichen, so muss also neben einem möglichst geringen Wert des Flächendurchgangs von Luft durch die Folie, auch auf eine Verringerung des Luftdurchgangs durch die Siegelnaht geachtet werden.If you want to achieve values below 1 mbar liter/(m 2 * year) for the entire casing including the sealed seams, you have to pay attention to the lowest possible value of the surface passage of air through the film and also to a reduction in the air passage through the sealed seam.

Versuche in dieser Richtung wurden schon durch Maßnahmen wie Verbreiterung der Siegelnaht und spezielle Formgebung der Siegelnaht z.B. durch Rillen unternommen, welche lokal die Siegelnahtstärke reduzieren. Diese Maßnahmen erreichen allerdings, auf Grundlage von laufend durchgeführten Messungen und Auswertungen, nicht mehr als eine Verringerung der Seitwärtspermeation um einen Faktor 2 gegenüber dem üblichen Wert.Attempts in this direction have already been undertaken using measures such as widening the sealed seam and special shaping of the sealed seam, for example by means of grooves, which locally reduce the thickness of the sealed seam. However, these measures achieve, on the basis of continuously implemented th measurements and evaluations, no more than a reduction in sideways permeation by a factor of 2 compared to the usual value.

Es ist Aufgabe der vorliegenden Erfindung, die Nachteile des beschriebenen Standes der Technik zu beseitigen und einen Aufbau der Hochbarrierefolie zu finden, der es erlaubt die Seitwärtspermeation durch die Siegelnaht erheblich zu vermindern, um so eine weitere Verringerung der Gesamtpermeation idealerweise auf unter 1 mbar Liter/(m2 * Jahr) zu ermöglichen, gleichzeitig jedoch die Siegelfähigkeit der Konstruktion zu erhalten.It is the object of the present invention to eliminate the disadvantages of the prior art described and to find a structure for the high-barrier film which allows the lateral permeation through the sealing seam to be significantly reduced, in order to achieve a further reduction in the total permeation, ideally to less than 1 mbar liter/ (m 2 * year) while maintaining the sealability of the construction.

Das Problem wird bei einem Vakuumdämmkörper dadurch gelöst, dass wenigstens einer der im Bereich einer Siegelnaht aneinander liegenden Oberflächenabschnitte der Hochbarrierefolie Cycloolefin-Copolymer (COC) umfasst. Das Cycloolefin-Copolymer (COC) kann als reines Cycloolefin-Copolymer (COC) in Form einer diskreten Schicht am Oberflächenabschnitt aufgebracht werden. Das Cycloolefin-Copolymer (COC) kann als Koextrudat von Cycloolefin-Copolymer (COC) mit einer weiteren Komponente, meist Polypropylen (PP) auf den Oberflächenabschnitt aufgebracht werden. Dieses Material lässt sich mit einem erheblich besseren Barrierevermögen, als bisher verwendete Polyolefine realisieren, so dass eine solche Siegelnaht deutlich dichter ist als eine herkömmliche Siegelnaht.The problem is solved in a vacuum insulating body in that at least one of the surface sections of the high-barrier film lying against one another in the region of a sealing seam comprises cycloolefin copolymer (COC). The cycloolefin copolymer (COC) can be applied as a pure cycloolefin copolymer (COC) in the form of a discrete layer at the surface portion. The cycloolefin copolymer (COC) can be applied to the surface section as a coextrudate of cycloolefin copolymer (COC) with another component, usually polypropylene (PP). This material can be realized with a significantly better barrier capacity than previously used polyolefins, so that such a sealed seam is significantly tighter than a conventional sealed seam.

Beispielsweise hat ein Koextrudat aus Polypropylen (PP) / Cycloolefin-Copolymer (COC), aufgrund des moderaten Schmelzpunktes von Polypropylen bei etwa 165 °C und des amorphen Verhaltens von Cycloolefin-Copolymer, ein gut definierbares Siegelverhalten deutlich unterhalb des Schmelzpunktes und ist daher für eine Heißsiegelung geeignet.For example, a coextrudate made of polypropylene (PP) / cycloolefin copolymer (COC) has a well-defined sealing behavior well below the melting point due to the moderate melting point of polypropylene at around 165 °C and the amorphous behavior of cycloolefin copolymer and is therefore suitable for a Suitable for heat sealing.

Eine Reduzierung des Wasserdampfeintrages um etwa 50 Prozent in den Vakuumdämmkörper konnte bei Voruntersuchungen in Form von standardisierten Messreihen ermittelt werden. Hierbei ließen sich durch Modifikation der Koextrusionsvolumenanteile von Polypropylen und Cycloolefin-Copolymer (COC) gut erkennbare Querdiffusionswerte reduzieren.A reduction in water vapor entry of around 50 percent into the vacuum insulation body was determined in preliminary tests in the form of standardized measurement series. Easily recognizable cross-diffusion values could be reduced by modifying the coextrusion volume fractions of polypropylene and cycloolefin copolymer (COC).

Aufgrund der im Polypropylen integrierten und eingebetteten Cycloolefin-Copolymer-Bestandteile, welche beispielsweise eine Glasübergangstemperaturen von 138 °C, 158 °C oder 178 °C aufweisen, ergibt sich eine deutliche höhere Wärmeformbeständigkeit der Siegelschicht. Aufgrund des wesentlich höheren Schmelzpunkts sind mit der Erfindung auch Anwendungen von Vakuumisolationspaneelen jenseits von Temperaturen von 100 °C möglich, bei denen übliche, mit Polyolefinen ausgerüstete Hochbarrierefolien nicht mehr einsetzbar sind. Due to the cycloolefin copolymer components integrated and embedded in the polypropylene, which have a glass transition temperature of 138 °C, 158 °C or 178 °C, for example, the heat resistance of the sealing layer is significantly higher. Due to the significantly higher melting point, applications of vacuum insulation panels beyond temperatures of 100° C. are also possible with the invention, at which conventional high-barrier films equipped with polyolefins can no longer be used.

Ein Beispiel für Cycloolefin-Copolymer (COC) sind die Produkte TOPAS 6013 F-04, TOPAS 6015S-04 und TOPAS 6017S-04, die eine besonders gute Wärmeformbeständigkeit der Siegelschicht gewährleisten.An example of cycloolefin copolymer (COC) are the products TOPAS 6013 F-04, TOPAS 6015S-04 and TOPAS 6017S-04, which ensure particularly good heat resistance of the sealing layer.

Weiterhin werden durch die Cycloolefin-Copolymer (COC) in der Koextrusion deutlich bessere Barrierewerte, unterstützt durch die Hochbarriereeigenschaften des Cycloolefin-Copolymers erzielt.Furthermore, the cycloolefin copolymer (COC) in coextrusion achieves significantly better barrier values, supported by the high barrier properties of the cycloolefin copolymer.

Vorteil der Verwendung der mit koextrudierten Siegelschichten aus Polypropylen und COC sind die nun möglichen, sehr geringen Gesamtluftdurchgangsraten für die Hüllen der Vakuumdämmkerne von unter 1,5 mbar Liter/(m2 Jahr).The advantage of using the co-extruded sealing layers made of polypropylene and COC are the very low total air permeability rates for the shells of the vacuum insulation cores of less than 1.5 mbar liters/(m 2 year).

Bevorzugt umfasst ein einziger Oberflächenabschnitt der Hochbarrierefolie Cycloolefin-Copolymer (COC) zum Beispiel als diskrete Lage. Wenn die Umhüllung nur in Laschen verlaufende Siegelnähte aufweist, werden dazu normalerweise die einander zugewandten Innenseiten der Umhüllung flächig aneinandergelegt und insbesondere entlang einer Schweißlinie miteinander verschweißt. Wenn in diesem Fall nur Innenseite an Innenseite gesiegelt wird, genügt es im Rahmen der Erfindung nur eben diese Innenseite mit einer COC-haltigen Siegelschicht zu versehen.Preferably, a single surface portion of the high barrier film comprises cycloolefin copolymer (COC) as a discrete layer, for example. If the casing has sealing seams running only in tabs, the inner sides of the casing facing one another are normally placed flat against one another and, in particular, welded to one another along a welding line. If in this case only the inside is sealed to the inside, it is sufficient within the scope of the invention to provide just this inside with a COC-containing sealing layer.

Ferner bevorzugt umfassen (genau) zwei Oberflächenabschnitte der Hochbarrierefolie das Cycloolefin-Copolymer (COC). Werden zwei unterschiedliche Oberflächen der Umhüllung miteinander versiegelt - also bspw. ein Bereich der Innenseite mit einem Bereich der Außenseite - so sollten beide Oberflächen mit einer Cycloolefin-Copolymer Siegelschicht ausgerüstet sein.Further preferably, (precisely) two surface sections of the high barrier film comprise the cycloolefin copolymer (COC). If two different surfaces of the cover are sealed together - e.g. an area on the inside with an area on the outside - both surfaces should be equipped with a cycloolefin copolymer sealing layer.

Vorteilhafterweise sind die aneinander liegenden Oberflächenabschnitte der Siegelnaht thermisch gefügt ausgebildet.Advantageously, the abutting surface sections of the sealing seam are thermally joined.

Eine bevorzugte Variante sieht vor, dass die Oberflächenabschnitte mittels Ultraschall thermisch gefügt ausgebildet sind.A preferred variant provides that the surface sections are thermally joined by means of ultrasound.

Alternativ oder additiv ist die Siegelnaht der aneinander liegenden Oberflächenabschnitte mechanisch gefügt ausgebildet.Alternatively or in addition, the sealing seam of the surface sections lying against one another is designed to be mechanically joined.

Vorteilhafterweise umfasst die Hochbarrierefolie eine metallisierte Polyesterfolie. Beispielsweise erreicht eine Vakuumisolationspaneel-Umhüllung mit einer Aluminiumverbundfolie bestehend aus einer 6 µm dünnen Aluminiumfolie, die mit einer Polyesterfolie, einer metallisierten Polyesterfolie und der erfindungsgemäßen Siegelschicht laminiert ist, eine Luftdurchlässigkeit bei Raumtemperatur um 0,2 mbar Liter pro m2 Paneelfläche und Jahr.Advantageously, the high barrier film comprises a metallized polyester film. For example, reaches a vacuum insulation panel covering with an aluminum composite film consisting of a 6 micron thin aluminum foil with a polyester film, a metallized polyester film and the inventions the sealing layer according to the invention is laminated, an air permeability at room temperature of 0.2 mbar liters per m 2 panel surface and year.

Bevorzugt ist die Hochbarrierefolie derart ausgebildet, dass die Luftdurchlässigkeit der einen oder mehreren Hochbarrierefolien bei 23 % / 50 % relativer Feuchte weniger als 10 mbar Liter pro Quadratmeter Paneelfläche und Jahr beträgt.The high-barrier film is preferably designed in such a way that the air permeability of the one or more high-barrier films at 23%/50% relative humidity is less than 10 mbar liters per square meter of panel area and year.

Vorteilhafterweise ist der Kern des Vakuumdämmkörpers aus pyrogener Kieselsäure, Fällungskieselsäure, wenigstens einem Aerogel, Perlitpulver, offenporigem Polyurethanschaum, offenporigem Polystyrolschaum mit Porengrößen kleiner 10 µm, Polyesterfasern oder Glasfasern.The core of the vacuum insulation body is advantageously made of pyrogenic silica, precipitated silica, at least one aerogel, perlite powder, open-pore polyurethane foam, open-pore polystyrene foam with pore sizes of less than 10 μm, polyester fibers or glass fibers.

Ein anderer Aspekt der Erfindung betrifft die Verwendung von Cycloolefin-Copolymer (COC) zur Herstellung einer Siegelnaht an einem Vakuumdämmkörper.Another aspect of the invention relates to the use of cycloolefin copolymer (COC) to produce a sealed seam on a vacuum insulating body.

Claims (13)

Vakuumdämmkörper bestehend aus einem offenporigen, druckbelastbaren Kern und einer Umhüllung aus einer oder mehreren Hochbarrierefolien, welche zum vakuumdichten Verschluss der Umhüllung entlang einer oder mehrerer Siegelnähte aneinander gesiegelt sind, wobei wenigstens einer der im Bereich einer Siegelnaht aneinander liegenden Oberflächenabschnitte der Hochbarrierefolie Cycloolefin-Copolymer (COC) umfasst.Vacuum insulation body consisting of an open-pored, pressure-resistant core and a cover made of one or more high-barrier films, which are sealed to one another along one or more sealing seams for the vacuum-tight closure of the cover, with at least one of the surface sections of the high-barrier film lying next to one another in the area of a sealing seam being cycloolefin copolymer (COC ) includes. Vakuumdämmkörper nach Anspruch 1, dadurch gekennzeichnet, dass der wenigstens eine Oberflächenabschnitt ein reines Cycloolefin-Copolymer (COC) umfasst.vacuum insulation body claim 1 , characterized in that the at least one surface section comprises a pure cycloolefin copolymer (COC). Vakuumdämmkörper nach Anspruch 1, dadurch gekennzeichnet, dass der wenigstens eine Oberflächenabschnitt ein Koextrudat von Cycloolefin-Copolymer (COC) mit mindestens einem weiteren Polymer umfasst.vacuum insulation body claim 1 , characterized in that the at least one surface portion comprises a coextrudate of cycloolefin copolymer (COC) with at least one other polymer. Vakuumdämmkörper nach Anspruch 3, dadurch gekennzeichnet, dass das mindestens eine weitere Polymer Polypropylen ist.vacuum insulation body claim 3 , characterized in that the at least one further polymer is polypropylene. Vakuumdämmkörper nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein einziger Oberflächenabschnitt oder eine Oberfläche der Hochbarrierefolie Cycloolefin-Copolymer (COC) umfasst.Vacuum insulating body according to one of the preceding claims, characterized in that a single surface section or one surface of the high barrier film comprises cycloolefin copolymer (COC). Vakuumdämmkörper nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwei Oberflächenabschnitte oder beide Oberflächen der Hochbarrierefolie das Cycloolefin-Copolymer (COC) umfassen.Vacuum insulating body according to one of the preceding claims, characterized in that two surface sections or both surfaces of the high barrier film comprise the cycloolefin copolymer (COC). Vakuumdämmkörper nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Siegelnaht der aneinander liegenden Oberflächenabschnitte thermisch gefügt ausgebildet ist.Vacuum insulating body according to one of the preceding claims, characterized in that the sealing seam of the surface sections lying against one another is designed to be thermally joined. Vakuumdämmkörper nach Anspruch 7, dadurch gekennzeichnet, dass die Siegelnaht der aneinander liegenden Oberflächenabschnitte mit Ultraschall gefügt ausgebildet ist.vacuum insulation body claim 7 , characterized in that the sealing seam of the surface sections lying against one another is designed to be joined with ultrasound. Vakuumdämmkörper nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Siegelnaht der aneinander liegenden Oberflächenabschnitte mechanisch gefügt ausgebildet ist.Vacuum insulation body according to one of Claims 1 until 5 , characterized in that the sealing seam of the abutting surface sections is mechanically joined. Vakuumdämmkörper nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hochbarrierefolie eine metallisierte Polyesterfolie umfasst.Vacuum insulation body according to one of the preceding claims, characterized in that the high-barrier film comprises a metalized polyester film. Vakuumdämmkörper nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hochbarrierefolien derart ausgebildet ist, dass die Luftdurchlässigkeit bei 23 % / 50 % relativer Feuchte weniger als 10 mbar Liter pro Quadratmeter Paneelfläche und Jahr beträgt.Vacuum insulation body according to one of the preceding claims, characterized in that the high-barrier foil is designed in such a way that the air permeability at 23%/50% relative humidity is less than 10 mbar liters per square meter of panel surface and year. Vakuumdämmkörper nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kern aus pyrogener Kieselsäure, Fällungskieselsäure, wenigstens einem Aerogel, Perlitpulver, offenporigem Polyurethanschaum, offenporigem Polystyrolschaum mit Porengrößen kleiner 10 µm, Polyesterfasern oder Glasfasern ist.Vacuum insulation body according to one of the preceding claims, characterized in that the core consists of pyrogenic silica, precipitated silica, at least one aerogel, perlite powder, open-pore polyurethane foam, open-pore polystyrene foam with pore sizes smaller than 10 µm, polyester fibers or glass fibers. Verwendung von Cycloolefin-Copolymer (COC) zur Herstellung einer Siegelnaht an einem Vakuumdämmkörper.Use of cycloolefin copolymer (COC) to produce a sealed seam on a vacuum insulation body.
DE102021118547.5A 2021-07-19 2021-07-19 Vacuum insulation body with an improved sealing seam Ceased DE102021118547A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102021118547.5A DE102021118547A1 (en) 2021-07-19 2021-07-19 Vacuum insulation body with an improved sealing seam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102021118547.5A DE102021118547A1 (en) 2021-07-19 2021-07-19 Vacuum insulation body with an improved sealing seam

Publications (1)

Publication Number Publication Date
DE102021118547A1 true DE102021118547A1 (en) 2023-01-19

Family

ID=84546807

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102021118547.5A Ceased DE102021118547A1 (en) 2021-07-19 2021-07-19 Vacuum insulation body with an improved sealing seam

Country Status (1)

Country Link
DE (1) DE102021118547A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098083A1 (en) 2000-06-20 2001-12-27 Mitsubishi Polyester Film Gmbh White, sealable, biaxially-oriented, co-extruded polyester film with cycloolefinic copolymer (coc), method for production and use thereof
DE202019004158U1 (en) 2019-02-22 2020-02-11 Uponor Innovation Ab Insulated pipe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098083A1 (en) 2000-06-20 2001-12-27 Mitsubishi Polyester Film Gmbh White, sealable, biaxially-oriented, co-extruded polyester film with cycloolefinic copolymer (coc), method for production and use thereof
DE202019004158U1 (en) 2019-02-22 2020-02-11 Uponor Innovation Ab Insulated pipe

Similar Documents

Publication Publication Date Title
EP2906424B1 (en) Insulating glazing unit
EP3421709B2 (en) Spacer for insulating glazing
DE112005000069B4 (en) Vacuum heat insulating material, heat insulating device in which this material is used and refrigerator-freezer device
DE19915311A1 (en) Vacuum insulating panel, especially for refrigerators, has a microporous core encased in a 7-layer plastic foil with a polyolefin sealing layer, a gas barrier, a polyolefin layer and a metallised polymer layer
EP3004479B1 (en) Film-coated vacuum insulated panel
CH688059A5 (en) Double glazing.
EP3104058B1 (en) Double-walled conduit having a heat-insulating layer and a plastic outer tube for use with same
WO2003002828A1 (en) Vacuum insulation panel
DE112016001425T5 (en) Vacuum insulation housing
DE102021118547A1 (en) Vacuum insulation body with an improved sealing seam
DE102008023841A1 (en) Insulation element and method for producing the Dämmelements
DE102016013199A1 (en) Thermal insulation panel
EP3538719B1 (en) Vacuum insulation panel
EP1597554B1 (en) Method for determining at least one state parameter of a sealing system and sealing system
DE102004050549B4 (en) Foil-covered vacuum insulation panel and method of making the same
WO2015043626A1 (en) Spacer for spacing glass panes of a multi-glazed window, multi-glazed window, vapour barrier film for a spacer, method for producing a vapour barrier film, and method for producing a spacer
DE102006058804A1 (en) Brick production method for a cuboid vacuum panel interlinks inner and outer shells and heat insulation created by a vacuum panel between the inner and outer shells
DE102018004599A1 (en) Polyolefin-free coating for Vakuumdämmkörper
EP2409128A1 (en) Indicator for detecting penetration of air and/or dampness into a vacuum, pressure or modified atmosphere packaging
EP4202140A1 (en) Vacuum insulation element
DE10031149C2 (en) thermal insulation board
DE19525735A1 (en) Spacers for double glazing
EP0771995A1 (en) Method for making superinsulation panel, superinsulation panel and its application
DE102008023838A1 (en) Insulation element and method for producing the Dämmelements
DE102010008356B4 (en) Use of a vapor barrier film with improved vapor barrier effect

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final