DE102021115645A1 - Fahrbarer Großmanipulator - Google Patents

Fahrbarer Großmanipulator Download PDF

Info

Publication number
DE102021115645A1
DE102021115645A1 DE102021115645.9A DE102021115645A DE102021115645A1 DE 102021115645 A1 DE102021115645 A1 DE 102021115645A1 DE 102021115645 A DE102021115645 A DE 102021115645A DE 102021115645 A1 DE102021115645 A1 DE 102021115645A1
Authority
DE
Germany
Prior art keywords
support
large manipulator
chassis
support legs
forces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102021115645.9A
Other languages
English (en)
Inventor
Johannes HENIKL
Andreas Kugi
Wolfgang Kemmetmüller
Martin Meringer
Valentin Platzgummer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Friedrich Wilhelm Schwing GmbH
Original Assignee
Friedrich Wilhelm Schwing GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Friedrich Wilhelm Schwing GmbH filed Critical Friedrich Wilhelm Schwing GmbH
Priority to DE102021115645.9A priority Critical patent/DE102021115645A1/de
Priority to EP22733420.8A priority patent/EP4355962A1/de
Priority to PCT/EP2022/066042 priority patent/WO2022263382A1/de
Publication of DE102021115645A1 publication Critical patent/DE102021115645A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0445Devices for both conveying and distributing with distribution hose with booms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/62Constructional features or details
    • B66C23/72Counterweights or supports for balancing lifting couples
    • B66C23/78Supports, e.g. outriggers, for mobile cranes
    • B66C23/80Supports, e.g. outriggers, for mobile cranes hydraulically actuated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/88Safety gear
    • B66C23/90Devices for indicating or limiting lifting moment
    • B66C23/905Devices for indicating or limiting lifting moment electrical
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0445Devices for both conveying and distributing with distribution hose with booms
    • E04G21/0463Devices for both conveying and distributing with distribution hose with booms with boom control mechanisms, e.g. to automate concrete distribution

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Manipulator (AREA)

Abstract

Die Erfindung betrifft einen fahrbaren Großmanipulator (10), insbesondere eine Autobetonpumpe, mit einem Fahrgestell (12), einem auf dem Fahrgestell (12) um eine Hochachse drehbar angeordneten, ausfalt- und / oder ausfahrbaren Arbeitsausleger (13), vier Stützauslegern (14, 15, 16, 17), die jeweils am Fahrgestell (12) angeordnet und von einer Fahrstellung ganz oder teilweise in eine Abstützstellung horizontal ausfahrbar sind, an den äußeren Enden der Stützausleger (14, 15, 16, 17) angeordnete, vertikal ausfahrbare Stützbeine (18, 19, 20, 21), die den fahrbaren Großmanipulator (10), unter Bildung einer jeweiligen Stützkraft (FSi) der Stützbeine (18, 19, 20, 21), abstützen. Die Erfindung ist gekennzeichnet durch Erfassungsmittel (30, 31, 32, 33, 38, 39) zur Erfassung einer oder mehrerer Messgrößen (FSi), welche vom Verspannungszustand des Fahrgestells (12) abhängig sind und eine programmgesteuerte Abstützhilfe (µC) die dazu eingerichtet ist, durch das Ansteuern der vertikal ausfahrbaren Stützbeine (18, 19, 20, 21) eine von den Messgrößen (FSi) abhängige Torsionsbewegung im Fahrgestell (12) des Großmanipulators (10) im abgestützten Zustand zu erzeugen. Ferner betrifft die Erfindung ein Verfahren zur programmgesteuerten Unterstützung des Abstützvorganges eines fahrbaren Großmanipulators (10), insbesondere einer Autobetonpumpe.

Description

  • Die Erfindung betrifft einen fahrbaren, für den Arbeitsbetrieb abstützbaren Großmanipulator, sowie ein Verfahren zur programmgesteuerten Unterstützung zur Abstützung eines fahrbaren Großmanipulators.
  • Fahrbare Großmanipulatoren sind aus dem Stand der Technik (zum Beispiel WO 2005/095256 A1 ) bekannt. Sie umfassen insbesondere ein Fahrgestell, einen auf dem Fahrgestell um eine Hochachse drehbar angeordneten, ausfalt- und/oder ausfahrbaren Arbeitsausleger, Stützausleger die jeweils am Fahrgestell angeordnet und von einer Fahrstellung ganz oder teilweise in eine Abstützstellung horizontal ausfahrbar sind, sowie an den äußeren Enden der Stützausleger angeordnete, mit Antriebsaggregaten vertikal ausfahrbare Stützbeine, mit der der fahrbare Großmanipulator unter Bildung einer jeweiligen Stützkraft der Stützbeine abstützbar ist.
  • Beim Abstützvorgang eines Großmanipulators mit vier verschwenkbaren bzw. teleskopierbaren Stützauslegern kann es zu Verspannungen des Fahrgestells kommen, insbesondere, wenn zum Ausnivellieren des Fahrgestells die Höhe einzelner Stützbeine der Stützausleger zum Abschluss des Abstützvorganges nachjustiert wird. Dabei kann es bei einzelnen Stützbeinen bereits vor der Inbetriebnahme des Großmanipulators zu unnötig hohen Stützkräften kommen, während auf anderen Stützbeinen die Stützkräfte zu niedrig sind.
  • Unter dem Begriff „Fahrgestell“ ist im Folgenden die Kombination des Fahrgestells des LKWs, auf dem der Großmanipulator aufgebaut ist, sowie des Grundrahmens gemeint, auf dem der Arbeitsausleger montiert ist und die weiteren Bauteile des Großmanipulators beinhaltet.
  • Eine ungleichmäßige Verteilung der Stützlasten beim Abstützen eines Großmanipulators ist für den Bediener in der Regel, insbesondere bei einem steif konstruierten Grundrahmen, nicht erkennbar, denn für das Ausnivellieren des Großmanipulators steht in der Regel nur ein Neigungswinkelmesser (Libelle) zur Verfügung. Sobald alle Stützbeine rein optisch fest auf dem Boden stehen und der Großmanipulator ausnivelliert ist, ist der Aufstellvorgang in der Regel abgeschlossen, ohne dass eine Verspannung des Fahrgestells für den Bediener erkennbar wäre.
  • Nach der Inbetriebnahme des Großmanipulators, d.h. zum Beispiel mit ausgefaltetem Arbeitsausleger, führt diese unausgewogene Stützlastverteilung dazu, dass einzelne Stützbeine bzw. die Stützausleger stärker als notwendig belastet oder sogar überlastet werden.
  • In der Schrift WO 2005/095256 A1 wird für den automatischen Abstützvorgang eines Großmanipulators in Form einer Autobetonpumpe eine gekoppelte Ansteuerung der Antriebsaggregate der vier Stützbeine mit Hilfe eines handbetätigten Steuerorgans vorgeschlagen um eine Verspannung des Grundrahmens beim Abstützvorgang durch eine ungleichmäßige Stützkraftverteilung zu vermeiden.
  • Bei beengten Baustellenverhältnissen ist oftmals nur eine spezielle Abstützkonfiguration, beispielsweise eine Teilabstützung, möglich, d.h. die Stützbeine werden alle bis auf den Boden ausgefahren, aber eine oder mehrere Stützausleger werden nicht vollständig vom Grundrahmen verschwenkt bzw. teleskopiert, um beispielweise an einer Baustelle neben einer Straße noch genügend Raum für den Durchgangsverkehr frei zu lassen. Es hat sich herausgestellt, dass bei derartigen Teilabstützungen die in den o.g. Schriften vorgeschlagenen Verfahren nicht immerzu den erwünschten Ergebnissen führen.
  • In der Schrift WO 2018/115270 A1 wird vorgeschlagen, anhand der vorgesehenen Abstützkonfiguration in Verbindung mit dem Schwerpunkt der Gesamtmaschine, gegebenenfalls unter Berücksichtigung verschiedener Tankfüllstände, die den Schwerpunkt beeinflussen, die optimale Stützkraft für jedes Stützbein vor dem Ausfahren der Stützbeine zu ermitteln und diese Stützkräfte beim Abstützen der Maschine einzustellen. Dieses Verfahren hat den Nachteil, dass die Schwerpunktberechnung und die davon abhängige Ermittlung der Stützkräfte recht aufwendig ist. Zudem ist das Einstellen der ermittelten Soll-Stützkräfte sowohl manuell als auch automatisch schwierig. Die Schwierigkeit liegt dabei darin begründet, dass die Stützkräfte nicht unabhängig voneinander eingestellt werden können, da sie im Gesamtsystem alle miteinander verkoppelt sind. Die Änderung des Ausfahrzustands eines einzelnen Stützbeins hat Einfluss auf die Stützkraft des jeweiligen Stützbeins, aber ebenso auf die Stützkräfte der anderen Stützbeine. Zudem ist es im Allgemeinen schwierig, beim Einstellen der individuellen Stützkräfte darauf zu achten, dass die Einstellung der Höhe sowie der Neigung der Maschine unverändert bleibt.
  • Es ist daher eine Aufgabe der Erfindung, einen fahrbaren Großmanipulator vorzuschlagen, der die oben genannten Probleme beim Abstützvorgang löst.
  • Gelöst wird diese Aufgaben durch einen fahrbaren Großmanipulator mit den Merkmalen des Anspruchs 1 sowie durch ein Verfahren mit den Merkmalen des Anspruchs 17.
  • Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen. Es ist darauf hinzuweisen, dass die in den Ansprüchen einzeln aufgeführten Merkmale auch in beliebiger und technologisch sinnvoller Weise miteinander kombiniert werden können und somit weitere Ausgestaltungen der Erfindung aufzeigen.
  • Die Erfindung schlägt also vor, Erfassungsmittel zur Erfassung einer oder mehrerer Messgrößen, welche vom Verspannungszustand des Fahrgestells abhängig sind, vorzusehen und eine programmgesteuerte Abstützhilfe ist dazu eingerichtet, durch das Ansteuern der vertikal ausfahrbaren Stützbeine eine von den Messgrößen abhängige Torsionsbewegung im Fahrgestell des Großmanipulators im abgestützten Zustand zu erzeugen. Durch diese Torsionsbewegung, die durch das gezielte Ein- und Ausfahren der einzelnen Stützbeine erzeugt wird, lassen sich die Stützkräfte bzw. die Stützkraftverteilung gezielt auf optimale Werte für jedes Stützbein einstellen, womit auch der Verspannungszustand des Fahrgestells optimiert wird. Der Schwerpunkt des Großmanipulators muss dafür beispielsweise zuvor nicht bekannt sein.
  • Gemäß einer vorteilhaften Ausgestaltung der Erfindung wird die Torsionsbewegung erzeugt, indem zwei diagonal zueinander liegende Stützbeine in eine jeweils gleiche Richtung aus- beziehungsweise eingefahren werden, insbesondere Heben oder Senken, während die zwei anderen diagonal zueinander liegenden Stützbeine jeweils in eine entgegengesetzte Richtung einbeziehungsweise ausgefahren werden, insbesondere Senken oder Heben. Daraus ergibt sich der Vorteil, dass das Fahrgestell zwar tordiert wird, sich aber die Neigung des Fahrgestells, insbesondere jene des Drehturms, an dem der Arbeitsausleger des Großmanipulators montiert ist, nicht oder nur minimal ändert. Zudem bleibt durch diese spezielle Bewegung der Stützbeine die Höhe des Fahrgestells über dem Boden insgesamt konstant. Während der Torsion des Fahrgestells ändern sich die Messgrößen, die von der Torsion des Fahrgestells abhängig sind und werden für die Optimierung der Stützkräfte herangezogen.
  • Gemäß einer vorteilhaften Ausgestaltung der Erfindung wird die Torsionsbewegung durch eine Steuerung der Ausfahrgeschwindigkeit der jeweiligen Stützbeine erzeugt Die Messgrößen, welche vom Verspannungszustand des Fahrgestells abhängig sind, werden verwendet, um die Ausfahrgeschwindigkeiten zu ermitteln und mit diesen Ausfahrgeschwindigkeiten lässt sich die Torsionsbewegung, die letztendlich zur Optimierung der Stützkräfte führt, einfach und gezielt durchführen.
  • Vorteilhafterweise werden mit den Erfassungsmitteln, welche vom Verspannungszustand des Fahrgestells abhängig sind, die Stützkräfte der Stützbeine ermittelt. Daraus ergibt sich der Vorteil, dass die Mittel zur Erfassung des Verspannungszustandes des Fahrgestells praktisch die Gleichen sind, mit denen die optimalen Stützkräfte eingestellt werden. Damit sind keine weiteren Messeinrichtungen notwendig, um die Stützkräfte optimal einzustellen und damit den Großmanipulator möglichst unverspannt aufzustellen.
  • Vorteilhafterweise ist die programmgesteuerte Abstützhilfe dazu eingerichtet, für das unverspannte Aufstellen des Fahrgestells die Summe der Quadrate der Stützkräfte der Stützbeine zu minimieren. Untersuchungen haben ergeben, dass der Großmanipulator weitestgehend unverspannt aufgestellt ist, wenn die Summe der Quadrate der erfassten Stützkräfte minimal ist. Die programmgesteuerte Abstützhilfe kann die Stützkräfte einfach ermitteln und dann durch die gezielte Torsionsbewegung nach diesem Kriterium einstellen.
  • Gemäß einer vorteilhaften Ausgestaltung führt die programmgesteuerte Abstützhilfe die Torsionsbewegung solange in einer Bewegungsrichtung für die jeweiligen Stützbeine aus, solange die Summe der Quadrate der Stützkräfte kleiner wird. So kann die programmgesteuerte Abstützhilfe die Stützkräfte gezielt in Richtung der Minimierung der Summe der Quadrate der Stützkräfte einstellen, bis die optimalen Stützkräfte ermittelt beziehungsweise eingestellt sind.
  • Gemäß einer vorteilhaften Ausgestaltung ist die programmgesteuerte Abstützhilfe dazu eingerichtet die Stützkräfte zu berechnen, für welche die Summe der Quadrate der Stützkräfte der Stützbeine minimal ist, um daraus einen Sollwert für die Summe der Quadrate der Stützkräfte zu bestimmen. Durch die Berechnung der Stützkräfte in dieser Art und Weise kann die programmgesteuerte Abstützhilfe die Sollwerte gezielt und schnell an den Stützbeinen einstellen.
  • Vorzugsweise enthält die programmgesteuerte Abstützhilfe eine Regelung, welche die Summe der Quadrate der Stützkräfte der Stützbeine auf den berechneten Sollwert einstellt, wobei als Stellgröße für die Regelung die Torsionsbewegung verwendet wird. Insbesondere mit Hilfe der Torsionsbewegung können die Sollwerte der Stützkräfte schnell und gezielt eingestellt werden.
  • Vorzugsweise wird der Sollwert für die Summe der Quadrate der Stützkräfte für die Regelung kleiner gewählt wird als der berechnete Sollwert. Durch diese Maßnahme wird sichergestellt, dass bei kleineren Fehlern in der Sollwert-Berechnung aufgrund von nur ungenau bekannten Parametern der des Großmanipulators (Beladungszustand, Füllstand im Wassertank, etc.), die dazu führen können, dass der berechnete Sollwert für die Summe der Quadrate der Stützkräfte höher als das real erreichbare Optimum ist und der Regler damit eine nicht optimale Verteilung der Stützkräfte einstellen würde, immer jene Verteilung der Stützkräfte eingestellt wird, welche dem real erreichbaren Optimum für die Abstützung des Großmanipulators entspricht.
  • Vorzugsweise weist der Großmanipulator Sensoren auf, die den horizontalen Ausfahrzustand der Stützausleger erfassen und die programmgesteuerte Abstützhilfe ermittelt die, für die Minimierung der Summe der Quadrate der Stützkräfte, erforderliche Richtung der Torsionsbewegung anhand des horizontalen Ausfahrzustands der Stützausleger und der gemessenen Stützkräfte.
  • Gemäß einer vorteilhaften Ausgestaltung weist der Großmanipulator einen Neigungssensor auf, der die Neigung des Fahrgestells des Großmanipulators um die Längsachse (Rollwinkel) im abgestützten Zustand ermittelt. Damit kann die programmgesteuerte Abstützhilfe beim Durchführen der erfindungsgemäßen Torsionsbewegung die Neigung des Fahrgestells um die Längsachse gegebenenfalls durch eine Überlagerung der Torsionsbewegung mit einer Neigungsbewegung um die Längsachse (Rollbewegung) gezielt korrigieren beziehungsweise nachstellen.
  • Bevorzugt ist vorgesehen, dass die programmgesteuerte Abstützhilfe einen Konfigurationsregler aufweist, welche die Neigung des Fahrgestells des Großmanipulators um die Längsachse im abgestützten Zustand auf einen Sollwert regelt. Durch diese Regelung kann beispielsweise eine vom Bediener gewünschte Neigung des Großmanipulators um die Längsachse vorgeben und entsprechend eingestellt werden.
  • In einer bevorzugten Ausführungsform weist der Großmanipulator einen Neigungssensor auf, der die Neigung des Fahrgestells des Großmanipulators um die Querachse (Nickwinkel) im abgestützten Zustand ermittelt. Damit kann die programmgesteuerte Abstützhilfe beim Durchführen der erfindungsgemäßen Torsionsbewegung die Neigung des Fahrgestells um die Querachse gegebenenfalls durch eine Überlagerung der Torsionsbewegung mit einer Neigungsbewegung um die Querachse (Nickbewegung) gezielt korrigieren beziehungsweise nachstellen.
  • Bevorzugt weist die programmgesteuerte Abstützhilfe einen Konfigurationsregler auf, der die Neigung des Fahrgestells des Großmanipulators um die Querachse (Nickwinkel) im abgestützten Zustand auf einen Sollwert regelt. Durch diese Regelung kann beispielsweise eine vom Bediener gewünschte Neigung des Großmanipulators um die Querachse vorgegeben und entsprechend eingestellt werden.
  • Gemäß einer bevorzugten Ausführungsform werden die jeweiligen Ausfahrgeschwindigkeiten der Stützbeine so bestimmt, dass das gleichzeitige Aus- und Einfahren der diagonal zueinander liegenden Stützbeine keine Veränderung der Höhe und/oder der Neigung bezogen auf die Längsachse und/oder der Neigung bezogen auf die Querachse des Fahrgestells verursacht. Dies hat den Vorteil, dass eine schon eingestellte Neigung und Höhe des Fahrgestells bei der Optimierung der Stützkräfte durch die Torsionsbewegung nicht mehr verändert werden.
  • Bevorzugt ist die Neigungsbewegung um die Querachse und/oder die Längsachse und/oder die Hebe- und Senkbewegung vom Bediener des Großmanipulators durch eine hierfür vorgesehene Eingabevorrichtung vorgebbar. Mit Hilfe der Eingabevorrichtung kann der Bediener vor, nach oder auch während der Optimierung der Stützkräfte durch die programmgesteuerte Abstützhilfe die Neigung und Höhe des Großmanipulators einfach verändern beziehungsweise an seine Wünsche anpassen.
  • Ferner ist Gegenstand der vorliegenden Erfindung ein Verfahren zur programmgesteuerten Unterstützung des Abstützvorganges eines fahrbaren Großmanipulators. Das erfindungsgemäße Verfahren umfasst die Verfahrensschritte:
    • - Erfassen einer oder mehrerer Messgrößen welche vom Verspannungszustand des Fahrgestells abhängig sind,
      • - Erzeugen einer von den Messgrößen abhängigen Torsionsbewegung im Fahrgestell des Großmanipulators im abgestützten Zustand durch Ansteuern der vertikal ausfahrbaren Stützbeine.
  • Weitere Merkmale, Einzelheiten und Vorteile der Erfindung ergeben sich aufgrund der nachfolgenden Beschreibung sowie anhand der Zeichnungen, die Ausführungsbeispiele der Erfindung zeigen. Einander entsprechende Gegenstände oder Elemente sind in allen Figuren mit den gleichen Bezugszeichen versehen.
  • Es zeigen:
    • 1 perspektive Ansicht eines erfindungsgemäßen fahrbaren Großmanipulators
    • 2 Draufsicht auf eine schematische Ansicht eines erfindungsgemäßen Großmanipulators
    • 3a Regelkreis mit erfindungsgemäßer programmgesteuerter Abstützhilfe in einer ersten Ausführungsvariante
    • 3b Regelkreis mit erfindungsgemäßer programmgesteuerter Abstützhilfe in einer zweiten Ausführungsvariante
    • 4a-f Verschiedene Diagramme zur Veranschaulichung des erfindungsgemäßen Abstützvorganges
    • 5 Ein Ablaufdiagramm zur Darstellung des erfindungsgemäßen Verfahrens
  • In der 1 mit dem Bezugszeichen 10 bezeichnet ist ein erfindungsgemäßer fahrbarer Großmanipulator in Form einer Autobetonpumpe dargestellt. Bei einem Großmanipulator 10 im Sinne dieser Erfindung könnte es sich beispielsweise auch um einen Mobilkran, ein Feuerwehrfahrzeug mit Drehleiter, eine Hubarbeitsbühne oder ähnliche fahrbare Arbeitsmaschinen mit einer Abstützung handeln. Der fahrbare Großmanipulator 10 weist ein Fahrgestell 12 auf. Auf dem Fahrgestell 12 ist ein um eine Hochachse drehbar angeordneter, ausfalt- und / oder ausfahrbarer Arbeitsausleger 13 angeordnet. Der fahrbare Großmanipulator 10 ist auf vier Stützauslegern 14, 15, 16, 17, die jeweils am Fahrgestell 12 angeordnet und von einer Fahrstellung ganz oder teilweise in eine Abstützstellung horizontal ausfahrbar sind, und an den äußeren Enden der Stützausleger 14, 15, 16, 17 angeordneten vertikal ausfahrbaren Stützbeinen 18, 19, 20, 21, die den fahrbaren Großmanipulator 10, unter Bildung einer jeweiligen Stützkraft FSi der Stützbeine 18, 19, 20, 21 abstützen, abgestützt. Der Großmanipulator 10 ist im abgestützten Zustand dargestellt. Die Stützausleger 14, 15, 16, 17 sind in der 1 vollständig ausgefahren, das heißt, die zwei vorderen Stützausleger 14, 15 sind austelekopiert und die zwei hinteren Stützausleger 16, 17 sind vom Fahrgestell 12 abgeklappt. Die Stützbeine 18, 19, 20, 21 sind nach unten ausgefahren, so dass alle Räder des Fahrgestells 12 frei hängen und die gesamte Masse mges des Großmanipulators 10 von den Stützbeinen 14, 15, 16, 17 getragen wird.
  • Bei dem Arbeitsausleger 13 der Autobetonpumpe 10 handelt es sich um einen, über einen Drehschemel 24 mit dem Fahrgestell 12 verbundenen Betonverteilermast 13, der mehrere Mastsegmente 13a, 13b, 13c aufweist. Am Drehschemel 24 sind zwei Neigungssensoren 49, 50 zur Erfassung der Neigung des Drehschemels 24 beziehungsweise des Großmanipulators 10 um die X-(Längs-)Achse ψx und die Y-(Quer-)Achse ψy angeordnet. (2). Die Neigungssensoren 49, 50 können auch an anderen geeigneten Stellen angeordnet sein. Die Stützkräfte FSi der vier Stützbeine 18, 19, 20, 21 werden über die Stützfüße 45, 46, 47, 48 auf den Untergrund übertragen. Das Ausbeziehungsweise Einfahren der Stützbeine 18, 19, 20, 21 erfolgt in der Regel durch in den Stützbeinen 18, 19, 20, 21 angeordnete, nicht dargestellte, Hydraulikzylinder, welche vom Bediener und/oder der programmgesteuerten Abstützhilfe µC (3a, 3b) über Hydraulikventile angesteuert werden können. Mit den Stützbeinen 18, 19, 20, 21 kann damit die Höhe rz des Fahrgestells 12 sowie dessen Neigung in Längsrichtung ψx und Querrichtung ψy eingestellt werden. Diesen drei Zielgrößen, also rz ψx und ψy stehen jedoch für den Bediener oder der programmgesteuerten Abstützhilfe µC vier Stellgrößen beziehungsweise Freiheitsgrade in Form der Ausfahrlängen lsi der vier Stützbeine 18, 19, 20, 21 gegenüber. Dieser eine zusätzliche Freiheitsgrad führt dazu, dass die Verteilung der Stützkräfte FSi durch die drei Zielgrößen allein nicht eindeutig definiert wird. Dieser vierte Freiheitsgrad kann als die Verspannung des Fahrgestells 12 betrachtet werden, welche unnötig hohe Kräfte im Fahrgestell 12 und damit auch in den Stützbeinen 18, 19, 20, 21 bewirkt. Man beachte hierbei, dass in der Regel durch die Elastizität des Fahrgestells 12 und der Stützausleger 14, 15, 16, 17 gewährleistet wird, dass alle vier Stützbeine 18, 19, 20, 21 den Boden berühren. Bei einem komplett starren System, beispielsweise bei perfekt ebenem Untergrund und einem ausnivellierten Großmanipulator 10, würde jede noch so kleine Abweichung der Ausfahrlänge lSL eines Stützbeins 18, 19, 20, 21 von den Ausfahrlängen der anderen Stützbeine 18, 19, 20, 21 dazu führen, dass ein Stützbein 18, 19, 20, 21 nicht mehr den Boden berührt. In der Realität können jedoch einzelne Stützbeine 18, 19, 20, 21 um einige Zentimeter ausbeziehungsweise eingefahren werden, ohne dass eines der Stützbeine 18, 19, 20, 21 vom Boden abhebt. Dabei kann es dazu kommen, dass auf ein oder zwei der Stützbeine 18, 19, 20, 21 eine sehr hohe Stützkraft FSi lastet, während andere Stützbeine 18, 19, 20, 21 nur gering belastet sind und das Fahrgestell 12 unnötig tordiert beziehungsweise verspannt wird. Für den Bediener ist diese Verspannung nicht ohne weiteres ersichtlich und beim Arbeitsbetrieb der Autobetonpumpe 10 mit ausgefaltetem Verteilermast 13 können einzelne Stützbeine 18, 19, 20, 21, und damit auch die Stützausleger 14, 15, 16, 17, unnötig stark belastet oder auch überlastet werden.
  • Die Vermeidung dieser unnötig starken Belastung kann nun als vierte Zielgröße zur optimalen Abstützung des Großmanipulators 10 angegeben werden. Um hierfür einen geeigneten Lösungsansatz zu finden, ist es sinnvoll, die hierfür wesentlichen physikalischen Gegebenheiten in einem vereinfachten Modell zu betrachten. Der Großmanipulator 10 beziehungsweise das Fahrgestell 12 kann hierfür vereinfacht in elastische Balkenelemente (zum Beispiel als linearelastische Euler-Bernoulli Balken) und Starrkörper unterteilt werden. Unter Verwendung des Variationsprinzips kann das mathematische Modell des Großmanipulators 10 in der Form g ( x , u , d ) = 0
    Figure DE102021115645A1_0001
    angegeben werden. Der Vektor x beschreibt hier die Freiheitsgrade des Modells, das heißt, die Positionen und Orientierungen der Starrkörper. Im Vektor u werden die vertikalen und horizontalen Längen der vier Stützbeine 18, 19, 20, 21 und Stützausleger 14, 15, 16, 17 zusammengefasst, welche die Stellgrößen des Systems für die Abstützung darstellen. Im Vektor d sind alle weiteren Modelleingänge, wie zum Beispiel die Lage des Schwerpunkts des Auslegers 13, die Position der Fußpunkte der Stützbeine 18, 19, 20, 21 und der Reifen, zusammengefasst. Damit kann die Aufgabenstellung für die programmgesteuerte Abstützhilfe µC als allgemeine Optimierungsaufgabe formuliert werden: min l s  
    Figure DE102021115645A1_0002
    u . B . v .  g ( x , u , d ) = 0
    Figure DE102021115645A1_0003
    [ r z , D ψ x , D ψ y , D ] = [ r z , D s 0 0 ]
    Figure DE102021115645A1_0004
    F s 0
    Figure DE102021115645A1_0005
    l S , m i n l S k l S , m a x
    Figure DE102021115645A1_0006
  • In (1a) beschreibt Π >= 0 das noch zu definierende Gütekriterium (Gütefunktion) für die Abstützung. Mit Is werden die Ausfahrlängen lsi der Stützbeine 18, 19, 20, 21 bezeichnet und in einem Vektor zusammengefasst. Gleichung (1b) beschreibt das vorhin angegebene allgemeine mathematische Modell. In (1c) werden für die Höhe r z , D s
    Figure DE102021115645A1_0007
    des Fahrgestells 12 sowie dessen Neigung in Längsrichtung ψy,D (Rotation um die y-Achse) und Querrichtung ψx,D (Rotation um die x-Achse) Sollwerte festgelegt, wobei die Sollhöhe mit r z , D s
    Figure DE102021115645A1_0008
    definiert wird und für die Neigung des Großmanipulators 10 vereinfacht eine Neigung von 0° in Längs- sowie in Querrichtung gefordert wird. Die Ungleichungsbedingung (1d) berücksichtigt, dass nur positive Stützkräfte Fsi (welche hier und auch im Folgenden im Vektor FS zusammengefasst sind) erzeugt werden können und die konstruktiven Beschränkungen der Stützlängen lsi werden in (1e) berücksichtigt. Zusammengefasst bedeutet die Aufgabenstellung, dass jene Ausfahrlängen lSi der Stützbeine 18, 19, 20, 21 gesucht werden, welche unter Berücksichtigung der Nebenbedingungen (1 b) - (1 e) zu einer minimalen Gütefunktion Π führen.
  • Für die noch nicht spezifizierte Gütefunktion Π sind mehrere Festlegungen möglich:
    1. 1. Für eine bestmögliche Standsicherheit müssen die Stützkräfte FSi so gleichmäßig wie möglich auf die vier Stützbeine 18, 19, 20, 21 aufgeteilt werden. Diese Forderung kann in Form der Gütefunktion π ƒ = F s T F S
      Figure DE102021115645A1_0009
      formuliert werden, wobei hierbei die Stützkräfte FSi im Vektor FS zusammengefasst sind. Das heißt, dass die Summe der Quadrate der Stützkräfte FSi gewichtet wird. Bei dieser Form der Optimierung ist es notwendig, die Stützkräfte FSi aller vier Stützbeine 18, 19, 20, 21 als Messgrößen zu erfassen. Es ist anzumerken, dass die Gütefunktion auch verallgemeinert durch π ƒ = F s T Q ƒ F S
      Figure DE102021115645A1_0010
      mit einer positiv definiten Matrix Qƒ formuliert werden kann. Damit könnte beispielsweise berücksichtigt werden, dass eine bestimmte Untergruppe der Stützbeine 18, 19, 20, 21 (zum Beispiel die beiden vorderen oder die beiden hinteren Stützbeine) aufgrund ihrer Konstruktion stärker belastet werden können als die anderen Stützbeine.
    2. 2. Eine weitere Variante als Optimierungsziel ist die Minimierung der elastischen Deformation des Großmanipulators 10, insbesondere der Torsion des Fahrgestells 12. Zum Erreichen dieses Ziels können in der Praxis, wie weiter oben schon erläutert, die Signale der Neigungssensoren 38, 39 als Messgrößen verwendet werden. Alternativ ist jedoch auch die Verwendung von geeignet am Fahrgestell 12 platzierten Dehnungsmessstreifen denkbar, mit welcher der Zustand der elastischen Deformation bzw. der Torsion erfasst werden kann.
    3. 3. Als dritter Vorschlag kann die innere Verformungsenergie zufolge der Deformation des Fahrgestells 12 genannt werden. Zur Definition der Deformation kann ein bereits erwähntes vereinfachtes elastisches Modell des Fahrgestells 12 dienen. Zur Erfassung der Verformungsenergie
    könnten hierfür wiederum geeignet am Fahrgestell 12 platzierte Dehnungsmessstreifen dienen.
  • Im Weiteren wird die Regelungsstrategie auf der Basis der Optimierung, beziehungsweise der Minimierung, der Summe der Quadrate der Stützkräfte FSi erläutert (Gütefunktion Πƒ). Es wird davon ausgegangen, dass die Längen lsi der Stützbeine 18, 19, 20, 21 entsprechend den Bedingungen auf der Baustelle vom Bediener eingestellt werden können. Weiterhin können alle vier Stützbeine 18, 19, 20, 21 beispielsweise soweit abgesenkt werden, dass ein leichter Bodenkontakt für jedes Stützbein 18, 19, 20, 21 stattfindet. Ausgehend von dieser Konfiguration soll der Großmanipulator 10 mit Hilfe der programmgesteuerten Abstützhilfe µC mit Hilfe der vier Stützbeine 18, 19, 20, 21 in eine horizontal orientierte Konfiguration in einer gewünschten Höhe rz automatisch ausgerichtet werden, wobei zusätzlich die Gütefunktion Πƒ so gut wie möglich minimiert werden soll. Als Stelleingänge dienen dabei die Zylinder- beziehungsweise Ausfahrgeschwindigkeiten vsj,j = 1, ...,4 der vier Stützbeine 18, 19, 20, 21, welche über die erwähnten Hydraulikventile eingestellt werden können. Die gesamte Regelungsaufgabe wird nun in zwei Teile unterteilt:
    • (i) Die Regelung der Konfiguration qD des Großmanipulators und
    • (ii) Die Einstellung der Stützkräfte Fs,i so, dass die Gütefunktion Πƒ minimal wird.
  • Bei Annahme kleiner Winkel ψx,D und ψy,D gilt folgender Zusammenhang zwischen den Zylindergeschwindigkeiten vSi und den (Drehwinkel-) Geschwindigkeiten des Drehschemels 24: v S = [ 1 r y , S 1 D r x , S 1 D 1 r y , S 2 D r x , S 2 D 1 r y , S 3 D r x , S 3 D 1 r y , S 4 D r x , S 4 D ] [ r ˙ z , D ψ ˙ x , D ψ ˙ y , D ] = H I u I .
    Figure DE102021115645A1_0011
  • Dabei beschreiben r x , S i D
    Figure DE102021115645A1_0012
    und r y , S i D
    Figure DE102021115645A1_0013
    die Positionen der Stützbeine 18, 19, 20, 21 in der Ebene und sind damit direkt vom Ausfahrzustand der horizontalen Stützausleger 14, 15, 16, 17 abhängig. Die Größe ṙz,D beschreibt dabei die vertikale Geschwindigkeit des Drehschemels 24 und ψ̇x,D,ψ̇y,D die Winkelgeschwindigkeiten des Drehschemels 24 um die Längs- und Querachse x, y. Anzumerken ist, dass anstelle des Drehschemels 24 auch ein anderer, beliebiger Punkt des Fahrgestells hierfür als Ausgangspunkt definiert werden kann.
  • Mithilfe der virtuellen Stellgröße uI kann damit sehr einfach eine Steuerung für die Orientierung und die vertikale Lage des Großmanipulators 10, welche im Folgenden im Vektor qd zusammengefasst wird, ermittelt werden. Hierzu werden die Einträge der Transformationsmatrix HI (3a,b: 57) genauer betrachtet. Soll beispielsweise lediglich die Höhe verändert werden, ṙz,D ≠ 0, ψ̇x,D = ψ̇y,D = 0, ergibt sich für alle Stützbeine 18, 19, 20, 21 der gleiche Eintrag ṙz,D, das heißt alle Stützbeine 18, 19, 20, 21 werden in dieselbe Richtung mit derselben Geschwindigkeit verfahren. Soll lediglich die Neigung ψx,D verändert werden, ψ̇x,D ≠ 0, ṙZ,D = ψ̇y,D = 0, so wird die Winkelgeschwindigkeitsvorgabe ψ̇x,D für jedes Stützbein 18, 19, 20, 21 mit der y-Koordinate des jeweiligen Stützbeins multipliziert. Da die y-Koordinaten der Stützbeine 18, 20 auf der linken Seite des Fahrgestells (S1, S3) das gleiche negative Vorzeichen aufweisen und die Stützbeine 19, 21 auf der rechten Seite des Fahrgestells (S2, S4) das gleiche positive Vorzeichen aufweisen, ergibt sich eine Bewegung, bei der beide linken Stützbeine 18, 20 gleichmäßig in dieselbe Richtung verfahren werden, insbesondere Heben oder Senken, während die beiden rechten Stützbeine 19, 21 gleichmäßig in die entgegengesetzte Richtung verfahren werden, insbesondere Senken oder Heben. Dies ist eine Rollbewegung. Soll lediglich die Neigung ψy,D verändert werden, ergibt sich mit analogen Überlegungen eine Nickbewegung.
  • In einer, beispielsweise in 3a dargestellten Variante, kann die virtuelle Stellgröße uI seitens des Bedieners mit einem Eingabemittel 51, beispielsweise in Form einer Fernsteuerung 51 mit Joysticks, vorgegeben werden. Diese Sollvorgabe des Bedieners wird in der weiteren Beschreibung mit u I s
    Figure DE102021115645A1_0014
    bezeichnet. Der Bediener kann damit ausgehend von der Konfiguration q D 0
    Figure DE102021115645A1_0015
    besonders einfach die Höhenbewegung vorgeben, um eine von ihm gewünschte Höhe rz des Fahrgestells 12 einzustellen. Je nach Bedarf kann er des Weiteren besonders einfach die Neigung des Großmanipulators 10 anpassen, wenn zum Beispiel, wie häufig in der Praxis erforderlich, der hintere Teil des Fahrgestells 12 tiefer liegen soll, damit der Frischbeton eines Fahrmischers einfacher in den Einfülltrichter 22 gefördert werden kann.
  • In einer alternativen, beispielsweise in der 3b vorgestellten Variante, kann der Abstützvorgang weiter automatisiert werden, indem die programmgesteuerten Abstützhilfe µC das Überführen des Fahrgestells von der Anfangskonfiguration q D 0
    Figure DE102021115645A1_0016
    in eine gewünschte Zielkonfiguration q D E = [ r z , D E 0 0 ]
    Figure DE102021115645A1_0017
    autonom durchführt. Dazu wird eine Trajektorie q D s ( t )
    Figure DE102021115645A1_0018
    zur gewünschten Konfiguration so geplant, dass die resultierenden Stützgeschwindigkeiten v S s = H I q ˙ D s ( t ) = H I u I s ( t )
    Figure DE102021115645A1_0019
     
    Figure DE102021115645A1_0020
    unter den maximalen Stützengeschwindigkeiten vi,max liegen. In dieser Ausführungsform muss der Bediener gegebenenfalls lediglich eine Freigabe für die Bewegungsausführung geben, zum Beispiel durch aktive Betätigung eines Bedienelements an einem Eingabemittel 51, wie etwa das Auslenken eines Joysticks einer Fernsteuerung. Die Zielkonfiguration q D E
    Figure DE102021115645A1_0021
    kann dabei entweder fest hinterlegt sein oder alternativ kann der Bediener durch ein geeignetes Eingabemittel 51 den Sollwert für die Höhe oder auch die Sollwerte für die Neigungen vorgeben.
  • Für beide dargestellte Varianten ( u I s
    Figure DE102021115645A1_0022
    direkt von Benutzer oder von Trajektorie) ist es sinnvoll, zusätzlich eine Fehlerregelung für die Abweichungen der Höhe und der Neigungen des Fahrgestells 12 von ihren jeweiligen Sollwerten vorzusehen, da die Bewegungen des realen Systems den berechneten Vorgaben u I s
    Figure DE102021115645A1_0023
    bzw. v S s
    Figure DE102021115645A1_0024
    nicht exakt entsprechen werden. Dies kann beispielsweise durch einen PI-Regler der Form u I r = K p ( q D s q D ) + K i 0 t ( q D s q D ) d t
    Figure DE102021115645A1_0025
    umgesetzt werden, wobei Kp und Ki positiv definite Diagonalmatrizen sind. In der ersten Variante werden die Sollwerte für die Regelung dadurch bestimmt, dass jeweils jener Wert, den die Größe bei Beendigung der letzten Bewegungsvorgabe für diese Größe hatte, als neuer Sollwert festgehalten wird. Während der Bewegungsvorgabe für diese Größe wird die Regelung für diese deaktiviert. Erfolgt beispielsweise die Vorgabe einer Höhenbewegung, wird die Regelung für die Höhe deaktiviert, indem zum Beispiel einfach der Sollwert auf den aktuellen Istwert gesetzt wird. Wird die Höhenbewegung beendet, bleibt der letzte gesetzte Sollwert fest. Erfolgt nun beispielsweise die Vorgabe einer reinen Neigungsbewegung, wird der Regler dafür sorgen, dass die zuvor eingestellte Höhe beibehalten wird und nicht aufgrund der realen, nicht exakt der Vorgabe entsprechenden, Neigungsbewegung von diesem wegdriftet. Bei den anderen beiden Zielgrößen (die Neigungen) wird mit der Regelung analog verfahren. In der zweiten Variante ergeben sich die Sollwerte einfach aus der Trajektorie q D s ( t ) .
    Figure DE102021115645A1_0026
  • Für den zweiten Teil der Regelungsaufgabe muss geklärt werden, auf welchen Wert die Stützkräfte FS beziehungsweise die Gütefunktion Πƒ geregelt werden müssen. Natürlich ist es notwendig, dass die Stützkräfte FSi so gewählt werden, dass sich der Großmanipulator 10 in der gewünschten Orientierung und Lage im stationären Gleichgewicht befindet. Wird das Gesamtsystem vereinfacht als Starrkörpersystem betrachtet, wobei die Nachgiebigkeit der Stützausleger 14, 15, 16, 17 bzw. des Bodens näherungsweise durch Federelemente mit der Steifigkeit kZ,BS berücksichtigt werden so muss H I T F S = τ s ,
    Figure DE102021115645A1_0027
    mit der Transformationsmatrix HI 57 sowie den verallgemeinerten Kräften τ s = [ F z S , M x S , M y S ] T
    Figure DE102021115645A1_0028
    im stationären Fall gelten. Diese Kräfte und Momente können einfach aus der Kräfte- und Momentenbilanz berechnet werden und es gilt F z S = m g e s G
    Figure DE102021115645A1_0029
     
    Figure DE102021115645A1_0030
    mit der gesamten Masse mges des Großmanipulators 10 und der Erdbeschleunigung g. Der optimale Wert der Stützkräfte F S s
    Figure DE102021115645A1_0031
    kann dann aus dem quadratischen Optimierungsproblem mit linearen Nebenbedingungen min F S F S T F S  u . B . v .   H I T F S τ S = 0
    Figure DE102021115645A1_0032
    zu F S s = H I ( H I T H I ) 1 τ S
    Figure DE102021115645A1_0033
    errechnet werden, womit der optimale Wert der Gütefunktion zu ƒ s = ( τ S ) T ( H I T H I ) 1 τ S
    Figure DE102021115645A1_0034
    folgt. Die Regelung der Gütefunktion Πƒ auf ihren optimalen Wert ƒ s
    Figure DE102021115645A1_0035
    erfolgt auf Basis der Differentialgleichung . ƒ = 2 F S T F S 1 S v S 2 k z , B S F S T v S ,
    Figure DE102021115645A1_0036
    wobei im letzten Schritt vereinfachend angenommen wurde, dass die Orientierung des Großmanipulators 10 nahezu horizontal ist und die effektive Bodensteifigkeit kz,BS für alle Stützbeine 18, 19, 20, 21 gleich ist. Die Vorgabe der Ausfahrgeschwindigkeit der Stützbeine 18, 19, 20, 21 muss nun so erfolgen, dass einerseits Πƒ auf den Sollwert geregelt wird, andererseits aber die Regelung der Lage und Orientierung des Großmanipulators möglichst nicht beeinflusst wird. Um das zu erreichen, wird vs in der Form vs = HIuI + hv angeschrieben. Wählt man h so, dass h T H I = 0
    Figure DE102021115645A1_0037
    gilt, der Vektor also orthogonal zu allen Spaltenvektoren von HI ist, so hat eine Änderung von v keinen Einfluss auf die auf die Lage- und Positionsregelung und die beiden Regelungsaufgaben sind voneinander entkoppelt. Zusätzlich kann man noch fordern, dass ||h||2 = 1 gilt, um die Länge des Vektors eindeutig zu definieren. Mit Vorgabe der (virtuellen) Stellgröße v in der Form v = 1 2 k z , B S F s T h ( 2 k z , B S F S T h u I + k ƒ ( ƒ s ƒ ) )
    Figure DE102021115645A1_0038
    wird mit dem positiven Reglerparameter kƒ > 0 erreicht, dass die Dynamik des Regelungsfehlers ƒ s ƒ
    Figure DE102021115645A1_0039
    asymptotisch stabil ist.
  • Dem orthogonalen Vektor h kommt in dem Regelungsverfahren eine zentrale Bedeutung zu. Um diese Bedeutung zu verstehen, wird hierfür beispielhaft für einen repräsentativen Großmanipulator 10 in Vollabstützung die Transformationsmatrix HI 57 und der Vektor h in Zahlenwerten angeschrieben, H I = [ 1.000 3.124   1.477 1.000   3.124   1.477 1.000 2.840 5.662 1.000   2.840 5.472 ] ,
    Figure DE102021115645A1_0040
    und h = [0.469 -0.483 -0.516 0.530]T. Die leichte Asymmetrie in den Zahlenwerten ergibt sich aus der Asymmetrie in der Konstruktion des Großmanipulators 10. Betrachtet man nun eine reine Bewegung über den zusätzlichen virtuellen Eingang vs = hv, also mit uI = 0, erkennt man deutlich, dass es sich hierbei um eine erfindungsgemäße Torsionsbewegung handelt. Der grundsätzliche Charakter dieser Bewegung ist es, dass zwei diagonal zueinander liegende Stützbeine 18, 21 in eine jeweils gleiche Richtung aus- beziehungsweise eingefahren werden, insbesondere Heben oder Senken, während die zwei anderen diagonal zueinander liegenden Stützbeine 19, 20 jeweils in eine entgegengesetzte Richtung ein- beziehungsweise ausgefahren werden, insbesondere Senken oder Heben. Für eine exakte Ausgestaltung dieser Bewegung muss die Geometrie des Großmanipulators 10 beziehungsweise die Positionen der Stützbeine 18, 19, 20, 21 bekannt sein. Jedoch wird auch ohne exakte Umsetzung einer derart beschriebenen Torsionsbewegung die Stützkraftverteilung bzw. der Verspannungszustand des Großmanipulators 10 damit maßgeblich beeinflusst werden können. Durch die nicht exakte Umsetzung würde dabei wohl eine Drift der weiteren Zielgrößen (Höhe und Neigung des Fahrgestells) entstehen, welche jedoch durch die erfindungsgemäße Fehlerregelung für diese Größen kompensiert wird.
  • In dem oben beschriebenen Regelgesetz hat des Weiteren der Ausdruck F S T h
    Figure DE102021115645A1_0041
    eine besondere Bedeutung, da dieser die Richtung der Torsionsbewegung bestimmt. Dies ist wichtig, da der Großmanipulator 10, ausgehend vom unverspannten Zustand in zwei verschiedene Richtungen tordiert werden kann, was sich jeweils in einer ungünstigeren Stützkraftverteilung beziehungsweise einer Verspannung des Fahrgestells 12 auswirkt. In beiden Fällen wird dabei jedoch ƒ > ƒ s
    Figure DE102021115645A1_0042
    werden. Aus der zu regelnden Größe Πƒ geht somit die erforderliche Richtung für die Torsionsbewegung nicht hervor. Die Richtung wird in dem Regelgesetz jedoch durch den Ausdruck F S T h
    Figure DE102021115645A1_0043
    bestimmt, das heißt, anhand des horizontalen Ausfahrzustands der Stützausleger 14, 15, 16, 17 und der gemessenen Stützkräfte FS.
  • Da der Ausdruck F S T h
    Figure DE102021115645A1_0044
    im Nenner des Regelgesetzes im Optimum bei ƒ = ƒ s
    Figure DE102021115645A1_0045
    zu Null wird, wie sich zeigen lässt, muss das Regelgesetz in der praktischen Ausführung geeignet modifiziert werden, sodass v beschränkt bleibt.
  • Aufgrund von nur ungenau bekannten Parametern des Großmanipulators 10 (exakte Abmessungen, Massenverteilung aufgrund nur ungenau bekannter Zuladungen und Füllständen, z.B. des Wassertanks) entspricht das real erreichbare Optimum von Πƒ nicht unbedingt dem berechneten Optimum ƒ s .
    Figure DE102021115645A1_0046
    Ist das real erreichbare Optimum kleiner als das berechnete, wird der Stützkraftregler 54 die Stützkräfte FSi auf Werte einstellen, die nicht dem Optimum entsprechen. Ist das real erreichbare Optimum jedoch größer als das berechnete Optimum, kann dieses praktisch nicht erreicht werden und der Stützkraftregler 54 würde gegebenenfalls ohne zusätzliche Maßnahmen eine ständige Oszillation um das real erreichbare Optimum erzeugen. Um dies zu vermeiden, müssen Abbruchbedingungen in den Regelungsalgorithmus eingebaut werden, indem zum Beispiel erkannt wird, wenn der Wert von Πƒ nach einer Phase der Verringerung wieder erhöht wird. Dies könnte so gedeutet werden, dass das reale Optimum bereits erreicht wurde und nun der Zustand wieder schlechter wird. In diesem Fall würde der Regelalgorithmus direkt abbrechen oder wieder den zuvor erreichten Minimalwert einstellen. Mit einer solchen Modifikation ist es beispielsweise sinnvoll, den Sollwert immer sicher unterhalb des berechneten Optimums einzustellen, da damit immer das real erreichbare Optimum eingestellt wird, auch dann, wenn das real erreichbare Optimum kleiner als das berechnete ist.
  • In einer alternativen Ausgestaltungsform für den zweiten Teil der Regelungsaufgabe wird die Stellgröße, das heißt die Zylindergeschwindigkeiten vSi in der Form v S = H I u I + ( E H I ( H I T H I ) 1 H I T ) v
    Figure DE102021115645A1_0047
    mit der Projektionsmatrix H, und der virtuellen, diesmal jedoch vektoriellen Stellgröße v für die Minimierung von Πƒ angeschrieben. Diese Wahl der Regelung von Πƒ hat ebenso keinen Einfluss auf die Regelung der Konfiguration qD des Großmanipulators 10.
  • Es ist anzumerken, dass die Projektionsmatrix H (3a,b 58) aufgrund ihrer Orthogonalität zur Transformationsmatrix HI 57 aus einzelnen Spaltenvektoren besteht, die ihrerseits orthogonal zu der Transformationsmatrix HI 57 sind. Im Unterschied zur ersten Variante hat man hier somit mithilfe der zur Transformationsmatrix HI 57 orthogonalen Projektionsmatrix H 58 nicht nur einen virtuellen Eingang erzeugt, sondern vier, welche in der vektoriellen Stellgröße v zusammengefasst sind. Diese vier virtuellen Eingänge erzeugen jedoch wiederum analog zu den obigen Ausführungen jeweils erfindungsgemäße Torsionsbewegungen, welche in dieser Ausgestaltung überlagert werden und die Überlagerung von Torsionsbewegungen führt wiederum in Summe zu einer erfindungsgemäßen Torsionsbewegung.
  • Wird das Gesamtsystem wieder vereinfacht als Starrkörpersystem betrachtet, wobei die Nachgiebigkeit der Stützausleger 14, 15, 16, 17 beziehungsweise des Bodens näherungsweise durch Federelemente mit der Steifigkeit kZ,BS berücksichtigt wird, ergibt sich die zeitliche Änderung der zu minimierenden Größe Πƒ zu: . ƒ = 2 F S T F S 1 S v S 2 k z , B S F S T ( H I u I + H v ) ,
    Figure DE102021115645A1_0048
    wobei angenommen wird, dass die Orientierung des Großmanipulators 10 nahezu horizontal ist und die Steifigkeit kz, für alle Stützbeine 18, 19, 20, 21 gleich ist. Die Wahl v = -kƒFs, kƒ > 0, führt dazu, dass die Gütefunktion Πƒ auf ihr Minimum geregelt wird. Um das zu zeigen ist zu beachten, dass in einer Ruhelage des geschlossenen Regelkreises die Bedingungen (5a) F S T H I u I k ƒ F S T H F S = 0
    Figure DE102021115645A1_0049
    v S = H I u I + H v = 0 H I T F S = τ 9  
    Figure DE102021115645A1_0050
    erfüllt sein müssen, mit der bereits beschriebenen Kräfte- und Momentenbilanz (5c). Da HI spaltenregulär ist, folgt uI = 0 und man erhält: ƒ s = F S T F S = τ s ( H I T H I ) τ s .
    Figure DE102021115645A1_0051
  • Es kann nun einfach gezeigt werden, dass der stationäre Wert ƒ s
    Figure DE102021115645A1_0052
    von Πƒ der Lösung des Optimierungsproblems min F S F S T F S  u .B .v  H I T F S τ s = 0
    Figure DE102021115645A1_0053
    entspricht. Der Vorteil dieser Ausführungsvariante der Kraftregelung besteht darin, dass diese die Gütefunktion Πƒ auf ihr Minimum regelt, ohne dass dieses Minimum zuvor theoretisch berechnet werden muss, beziehungsweise kein Sollwert für die Gütefunktion Πƒ bestimmt werden muss, wie in der ersten gezeigten Ausführungsvariante der Kraftregelung.
  • Wie schon erläutert wurde, besteht der Kern beider gezeigten Ausführungsvarianten der Kraftregelung in der Erkenntnis, dass die Verspannung des Fahrgestells 12, beziehungsweise hier konkret die Verteilung der Stützkräfte FSi, zielgerichtet durch eine Torsionsbewegung gesteuert beziehungsweise minimiert werden kann, während dabei die anderen drei Zielgrößen (Höhe rz des Fahrgestells 12 sowie die Neigung des Fahrgestells 12 in Längs- und Querrichtung ψX, ψY) unbeeinflusst bleiben. Für die hier gezeigten Ausführungsvarianten ist eine Erfassung der Stützkräfte FSi erforderlich, welche im Allgemeinen Messgrößen darstellen, welche vom Verspannungszustand des Fahrgestells 12 abhängig sind.
  • Wie bereits erläutert, ist die erfindungsgemäße Anwendung nicht auf die messtechnische Erfassung der Stützkräfte FSi eingegrenzt. Im Allgemeinen sind viele Varianten für eine Umsetzung denkbar, wobei jedoch allgemein Erfassungsmittel 30, 31, 32, 33, 38, 39 zur Erfassung einer oder mehrerer Messgrößen FSi, welche vom Verspannungszustand des Fahrgestells 12 abhängig sind, vorausgesetzt werden. Wie bereits erläutert, können dies ebenso beispielsweise geeignet platzierte Dehnungsmessstreifen oder mehrere Neigungssensoren 38, 39 sein, durch welche der Torsionszustand des Fahrgestells 12 festgestellt werden kann.
  • Im Folgenden wird anhand weiterer Figuren die praktische Umsetzung der Erfindung konkreter dargestellt.
  • Die 2 zeigt eine Draufsicht auf den erfindungsgemäßen Großmanipulator 10 mit Erfassungsmitteln 30, 31, 32, 33, 38, 39 zur Erfassung einer oder mehrerer Messgrößen FSi, welche vom Verspannungszustand des Fahrgestells 12 abhängig sind und eine programmgesteuerte Abstützhilfe µC, die dazu eingerichtet ist, durch das Ansteuern der vertikal ausfahrbaren Stützbeine 18, 19, 20, 21 eine von den Messgrößen FSi abhängige Torsionsbewegung im Fahrgestell 12 des Großmanipulators 10 im abgestützten Zustand zu erzeugen. Die Erfassungsmittel 30, 31, 32, 33, 38, 39 zur Erfassung einer oder mehrerer Messgrößen FSi sind beispielsweise in den Stützauslegern 14, 15, 16, 17 oder den Stützbeinen 18, 19, 20, 21 angeordnete Stützkraftsensoren 30, 31, 32, 34 bekannter Bauart. Alternativ können die Stützkräfte FSi in den Stützbeinen 18, 19, 20, 21 über eine Messung des Hydraulikdrucks in den Hydraulikzylindern der Stützbeine 18, 19, 20, 21 ermittelt werden. Alternativ oder zusätzlich zur Stützkraftmessung können zur Erfassung des Verspannungszustandes Neigungssensoren 38, 39 im vorderen und hinteren Bereich des Fahrgestells 12, wie in 2 dargestellt, und/oder auf der rechten und linken Seite des Fahrgestells 12 angeordnet sein. Wenn die Neigungssensoren 38, 39 jeweils die gleiche Neigung anzeigen, ist davon auszugehen, dass das Fahrgestell 12 weitestgehend unverspannt aufgestellt ist. Alternativ können beispielsweise am Fahrgestell 12 an geeigneten Positionen angebrachte Dehnungsmessstreifen als Erfassungsmittel zur Erfassung des Verspannungszustandes des Fahrgestells 12 verwendet werden. In der weiteren Beschreibung wird die Erfindung anhand der Stützkraftsensoren 30, 31, 32, 33 beschrieben. In der 2 ist die Abstützung in die vier Bereiche Si (i=1-4) aufgeteilt, das heißt: vorne links: S1, vorne rechts: S2, hinten links S3 und hinten rechts S4. Entsprechend sind die Stützkräfte FSi,i = 1, ...,4 diesen vier Bereichen S1 bis S4 im Folgenden zugeordnet.
  • Eine wesentliche Erkenntnis zum Verständnis der hier beschriebenen Erfindung ist, dass eine gleichförmige Verteilung der Stützkräfte FSi auf die vier Stützbeine 18, 19, 20, 21 nicht unbedingt zu einer optimalen Abstützung des Großmanipulators 10 führt. Im Grunde ist die gleichmäßige Aufteilung der Stützkräfte FSi nur bei einer Vollabstützung, das heißt, alle Stützausleger 14, 15, 16, 17 sind voll ausgefahren, sinnvoll, dies aber auch nur unter der Bedingung, dass der Schwerpunkt des Großmanipulators 10 in der Mitte zwischen den Stützbeinen 18, 19, 20, 21 liegt. Im allgemeineren Fall, insbesondere bei einer Konfiguration, bei der manche Stützausleger 14, 15, 16, 17 nur zum Teil ausgefahren sind, wie zum Beispiel. in der 2 dargestellt, wird sich aufgrund des immer geltenden Momenten- und Kräftegleichgewichts H I T F S = τ s
    Figure DE102021115645A1_0054
    je nach Konfiguration eine andere Verteilung der Stützkräfte FSi ergeben, welche im Sinne von Gleichung (7) optimal ist. Auch diese Aufteilung der Stützkräfte FSi lässt sich, wie oben schon erläutert, selbst unter Zuhilfenahme der Stützkraftsensoren 30, 31, 32, 33 nur schwer manuell einstellen, weil die Veränderung der Stützkraft FSi an einem der Stützbeine 18, 19, 20, 21 durch das Ausfahren des jeweiligen Stützbeines immer auch eine Veränderung der Stützkräfte FSi an den anderen drei Stützbeinen zur Folge hat. Die individuelle Einstellung der optimalen Stützkräfte FSi für jedes Stützbein 18, 19, 20, 21 hat sich bisher als sehr schwierig herausgestellt. Diese Problematik wird mit der hier vorgestellten Erfindung einfach gelöst und umgangen, indem die programmgesteuerte Abstützhilfe µC durch das Ansteuern der vertikal ausfahrbaren Stützbeine 18, 19, 20, 21 eine von den Stützkräften FSi abhängige Torsionsbewegung im Fahrgestell 12 des Großmanipulators 10 im abgestützten Zustand erzeugt und dabei durch das gezeigte Regelungsverfahren bevorzugt ein Minimum für die Summe der Quadrate der Stützkräfte FSi eingestellt wird. Die Stützkräfte FSi werden dabei in ihrer Gesamtheit nach einem allgemeineren Kriterium eingestellt und nicht individuell.
  • 3a zeigt ein Blockschaltbild des erfindungsgemäßen Großmanipulators 10 mit einer programmgesteuerten Abstützhilfe µC und einem Eingabemittel 51, beispielsweise in Form einer Fernsteuerung 51, mit der mit einem Joystick oder anderen Eingabeelementen eine Neigungsbewegung (Neigungsänderung pro Zeit) in Längs- oder Querrichtung und eine Höhenbewegung (Höhenänderung pro Zeit) des Großmanipulators 10 von einem Bediener (beispielsweise mit der x, y und z Achse eines dreiachsigen Joysticks) vorgegeben werden kann. Die Vorgaben werden in 3a in dem Vektor u s i
    Figure DE102021115645A1_0055
    zusammengefasst. Die programmgesteuerte Abstützhilfe µC enthält insbesondere einen Stützkraftregler 54, der als Eingangssignal die tatsächlichen Stützkräfte FSi der vier Stützbeine 18, 19, 20, 21 des Großmanipulators 10 verwendet.
  • In der Praxis wird der Bediener zunächst, zum Beispiel mittels in 3 nicht gezeigten Handhebeln, an den zugeordneten Hydraulikventilen, die Stützausleger 14, 15, 16, 17 ausklappen beziehungsweise ausfahren und die Stützbeine 18, 19, 20, 21 zumindest soweit ausfahren, bis alle vier Stützbeine 18, 19, 20, 21 fest, das heißt mit einer jeweiligen Stützkraft FSi > 0, auf dem Boden stehen. Der Bediener kann, muss aber nicht, die Stützbeine 18, 19, 20, 21 soweit ausfahren, bis die Räder des Fahrgestells 12 vom Boden abgehoben haben, wie im Weiteren noch erläutert wird. Die Neigung ψX in X-Richtung und die Neigung ψY in Y-Richtung sowie die Höhe rz des Großmanipulators 10 über dem Boden werden im Folgenden in einem Vektor qD zusammengefasst und im Weiteren auch als aktuelle Konfiguration bezeichnet. Die programmgesteuerte Abstützhilfe µC umfasst einen Sollwertgenerator 52 zur Bestimmung einer Soll-Konfiguration q D S
    Figure DE102021115645A1_0056
    anhand der in dieser Darstellungsform vom Benutzer vorgegebenen Eingangsgrößen u s i ,
    Figure DE102021115645A1_0057
    welche eine virtuellen Stellgröße zur Steuerung der Orientierung und der vertikalen Ausrichtung qD des Großmanipulators entspricht und von dem Eingabemittel 51 abgeleitet wird, sowie der aktuellen Konfiguration qD, die mittels der Sensoren 25, 49, 50 am Großmanipulator 10 ermittelt wird. Der Sensor 25 ist eine Einrichtung mit welcher die Höhe des Fahrgestells 12 rz ermittelt werden kann. Je nachdem, was als Höhe des Fahrgestells 12 definiert wird, können unterschiedliche Sensoren 25 verwendet werden. Beispielsweise kann es sich um einen Ultraschallsensor handeln, welcher auf der Unterseite des Fahrgestells 12 am Fahrzeugmittelpunkt (Schnittpunkt von Längs- und Querachse) angeordnet ist. Alternativ ist auch ein Längenaufnehmer denkbar, der die Ausfahrlänge eines Stützbeins (z.B. jenes vorne rechts, 19) ermittelt. Die Höhe rz des Fahrgestells könnte mit der gemessenen Ausfahrlänge lS2 des Stützbeins 19 entweder unter Einbeziehung der gemessenen Neigungen des Fahrgestells 12 ermittelt werden, sofern die Höhe rz als der Abstand des Fahrzeugmittelpunkts zum Boden definiert wird, oder die Höhe rz des Fahrgestells 12 wird direkt als die Ausfahrlänge lS2 des einen Stützbeins 19 definiert. Die letztere Definition ist im Prinzip ausreichend und wäre bei einem ausreichend genau nivellierten Fahrgestell 12 äquivalent zur ersten Definition. Alternativ könnten an allen vier Stützbeinen 18, 19, 20, 21 Sensoren 25 zur Erfassung der Höhe rz angeordnet sein und damit praktisch auf die Neigungssensoren 49, 50 verzichtet werden, weil über Längensensoren 25 an allen Stützbeinen 18, 19, 20, 21 auch die Neigung des Fahrgestells in x- und y-Richtung, zumindest bei ebenem Untergrund, ermittelt werden kann. Die Stützausleger 14, 15, 16, 17 sind zudem jeweils mit einem Positionssensor 34, 35, 36, 37 ausgestattet, die die Position der Stützbeine 18, 19, 20, 21 bezogen auf das Fahrgestell 12 erfassen. Bei den zwei vorderen, teleskopierbaren Stützenauslegern 14, 15 sind dies beispielsweise Seilzugsensoren 34, 35, die den Ausfahrzustand der Stützausleger 14, 15 erfassen und Drehwinkelsensoren 36, 37, die erfassen, wie weit die hinteren Stützausleger 16, 17 abgeklappt sind.
  • Das Ausgangssignal q D s
    Figure DE102021115645A1_0058
    des Sollwertgenerators 52 wird dem Konfigurationsregler 53 zugeführt, der Abweichungen der Höhe rz , der Orientierung ψX, das heißt die Neigung des Fahrgestells 12 um die Längsachse x, und ψY, das heißt die Neigung des Fahrgestells 12 um die Querachse y, also insgesamt die Konfiguration qd des Großmanipulators 10, von dem vom Sollwertgenerator vorgegebenen Sollwert ausregelt.
  • Wie bereits beschrieben, erfolgt die Bestimmung der Sollwerte in dieser Ausgestaltungsform dadurch, dass jeweils jener Wert, den die Größe bei Beendigung der letzten Bewegungsvorgabe seitens des Bedieners für diese Größe hatte, als neuer Sollwert festgehalten wird. Während der Bewegungsvorgabe für diese Größe wird die Regelung für diese deaktiviert.
  • Als weiteres Eingangssignal wird dem Konfigurationsregler 53 die aktuelle Konfiguration qd des Großmanipulators 10 zugeführt.
  • Das Ausgangssignal des Konfigurationsreglers 53 wird mit der von dem Joystick der Fernsteuerung 51 erfassten Bewegungsvorgabe u s i
    Figure DE102021115645A1_0059
    additiv überlagert und mit der Transformationsmatrix HI 57 multipliziert, welche näherungsweise den Zusammenhang zwischen den Ausfahrgeschwindigkeiten vSi der Stützbeine 18, 19, 20, 21 und den damit verbundenen Winkelgeschwindigkeiten des Großmanipulators 10 um die Längs- und Querachse ψ̇X,ψ̇Y und der vertikalen Geschwindigkeit des Fahrgestells ṙz beschreibt und von der Geometrie des Großmanipulators 10 und der Position der Stützbeine 18, 19, 20, 21 bezogen auf das Fahrgestell 12 (Ausfahrzustand und Abklappwinkel) abhängig ist.
  • Die programmgesteuerte Abstützhilfe µC umfasst ferner einen Stützkraftregler 54, der als Eingangssignal die aktuellen Stützkräfte FSi der vier Stützbeine 18, 19, 20, 21 verwendet. Das Ausgangsignal des Stützkraftreglers 54 wird in der hier dargestellten Ausführungsform mit der Projektionsmatrix H 58 multipliziert und über den Schalter 55 mit dem anderen Signal zur Einstellung bzw. Regelung der Konfiguration qd additiv hinzugefügt. Das Summensignal wird dabei als Vorgabe für die Ausfahrgeschwindigkeiten zur Ansteuerung der vertikal ausfahrbaren Stützbeine 18, 19, 20, 21 verwendet.
  • Eine Aktivierung des Stützkraftreglers 54 ist in der Regel erst dann sinnvoll, wenn die Reifen des Großmanipulators 10 vollständig vom Boden abgehoben sind und der Kontakt mit dem Boden nur durch die vier Stützbeine 18, 19, 20, 21 erfolgt. Daher wird zu Beginn des automatisierten Abstützvorgangs nur die Orientierung ψX, ψY, und Höhe rz, das heißt die Konfiguration qD des Großmanipulators 10, geregelt. Die Kraftregelung wird bevorzugt dann aktiviert, sobald die Fehler in der Orientierung und Höhe unterhalb von einstellbaren Grenzen liegen sowie die Summe der Stützkräfte FSi der Gravitationskraft mgesg des Großmanipulators 10 entspricht.
  • 3b zeigt ein Blockschaltbild des erfindungsgemäßen Großmanipulators 10 mit einer alternativen Ausgestaltung der programmgesteuerten Abstützhilfe µC. In dieser Variante wird die Bewegungsvorgabe u s i
    Figure DE102021115645A1_0060
    nicht direkt vom Bediener mittels des Eingabemittels 51 erzeugt, sondern vom Sollwertgenerator 52, welcher anhand einer, wie hier dargestellt, vom Benutzer in einer geeigneten Form über das Eingabemittel 51 vorgegebenen Zielkonfiguration q D E
    Figure DE102021115645A1_0061
    qD eine Trajektorie u s i ( t )
    Figure DE102021115645A1_0062
    und q D s ( t )
    Figure DE102021115645A1_0063
    bestimmt, welche das Fahrgestell 12 von einer Ausgangskonfiguration q D 0 ,
    Figure DE102021115645A1_0064
    welche vom Sollwertgenerator 52 vom aktuell gemessenen Zustand qD bei Aktivierung der programmgesteuerten Abstützhilfe µC abgeleitet werden kann, in die Endkonfiguration q D E
    Figure DE102021115645A1_0065
    überführt. Der Bediener wird des Weiteren dem Sollwertgenerator 52 ein Freigabesignal 56 übermitteln, durch welche die Bewegung des Großmanipulators 10 im Sinne einer Totmannfunktion freigegeben werden kann.
  • In den 4a bis 4f ist das Verhalten der oben beschriebenen Regelungsstrategie für die automatische Abstützung eines Großmanipulators 10 anhand einer Rechtsabstützung dargestellt. Rechtsabstützung heißt, die zwei linken Stützausleger 14, 16 (S1, S3) sind nicht ausgefahren, beziehungsweise nicht ausgeklappt, während die zwei rechten Stützausleger 15,17 (S2, S4) vollständig ausgefahren beziehungsweise ausgeklappt sind. Der Untergrund weist in diesem Beispiel eine relativ starke Neigung von ψ x , D 0 = 4 °  und  ψ y , D 0 = 4 °
    Figure DE102021115645A1_0066
    auf. Der Boden unter den Stützbeinen 18, 19, 20, 21 ist in diesem Beispiel unterschiedlich hart. Zu Beginn sind die Stützbeine 18, 19, 20, 21 im Kontakt mit dem Boden und bringen bereits eine kleine Kontaktkraft FSi auf. Zum Zeitpunkt 0 wird die Regelung für die Orientierung und Höhe qD des Großmanipulators 10 mittels des Konfigurationsreglers 53 aktiviert und die Stützbeine 18, 19, 20, 21 werden koordiniert ausgefahren. Zu diesem Zeitpunkt ist der Stützkraftregler 54 noch nicht aktiviert, das heißt, der Schalter 55 ist offen. Die Ausfahrgeschwindigkeit der Stützen 18, 19, 20, 21 ist dabei auf den Maximalwert v S k m a x = 5  cm/s
    Figure DE102021115645A1_0067
    beschränkt. Die Höhe und die Orientierung qD des Großmanipulators 10 werden schnell und ohne Überschwingen entlang der Sollwerte geregelt. Aufgrund der unsymmetrischen Abstützkonfiguration (Rechtsabstützung, unterschiedliche Bodensteifigkeiten) ergeben sich jedoch maßgebliche Unterschiede in den Stützkräften FSi. Zum Zeitpunkt t ≈ 17 s haben die Höhe und Orientierung qD ihr gewünschtes Toleranzband erreicht und der Stützkraftregler 54 wird aktiviert (schraffierter Bereich). Der Stützkraftregler 54 gleicht die Stützkräfte FSi aus und die Gütefunktion Πƒ wird auf ihren minimalen Wert ƒ s
    Figure DE102021115645A1_0068
    geführt. Insbesondere in 4c ist gut sichtbar, dass zum Beispiel die Stützkraft S4 zu Beginn der Stützkraftregelung noch sehr hoch ist und im Zuge der Kraftregelung mit Hilfe der gezielten Torsion des Fahrgestells 12 auf den optimalen Wert geregelt wird. Wie in den 4d und 4e gut sichtbar ist, bleiben die Höhe rz und die Neigungen ψX und ψY während der Stützkraftregelung praktisch konstant. Die Stützkräfte FSi sind hier zur einfacheren Darstellung auf eine normierte Stützkraft Fn bezogen dargestellt. Am Ende der Kraftregelung sind die Stützkräfte FS1 und FS3 an den eingefahrenen Stützauslegern 14, 16 erwartungsgemäß etwas höher eingestellt als an den vollständig ausgefahrenen Stützauslegern 15, 17. Innerhalb von weniger als 30 Sekunden wurde somit eine optimale Abstützung des Großmanipulators 10 erreicht.
  • Damit Ungenauigkeiten bei der Ermittlung der Gesamtmasse mges des Großmanipulators 10 beziehungsweise bei der Bestimmung der einzelnen Stützkräfte FSi nicht dazu führen, dass die Regelung nicht abgeschlossen werden kann, wird der Sollwert für die Summe der Quadrate der Stützkräfte FSi für die Regelung vorzugsweise etwas kleiner gewählt als der berechnete Sollwert.
  • Ein Vorteil der hier vorgestellten Regelung besteht darin, dass der Bediener vor, während oder auch nach der automatischen Regelung der Stützkräfte FSi eine erwünschte Neigung des Fahrgestells 12 des Großmanipulators 10 um die Querachse im abgestützten Zustand vorgeben kann und die Neigung auf diesen Sollwert geregelt wird.
  • Der Stützkraftregler beziehungsweise der Regelalgorithmus bestimmt die jeweilige Ausfahrgeschwindigkeit vSi der Stützbeine 18, 19, 20, 21 vorteilhafterweise für die Stützkraftregelung so, dass durch das gleichzeitige Aus- und Einfahren der diagonal zueinander liegenden Stützbeine 18, 19, 20, 21 keine Veränderung der Höhe rz des Fahrgestells 12 verursacht wird.
  • Zudem werden vom Stützkraftregler 54 die jeweiligen Ausfahrgeschwindigkeiten vSi der Stützbeine 18, 19, 20, 21 vorteilhafterweise so bestimmt, dass diese keine Veränderung der Neigung ψxy des Fahrgestells 12 bezogen auf die Längsachse x und/oder die Querachse y des Fahrgestells 12 verursachen.
  • Durch das Ansteuern der vertikal ausfahrbaren Stützbeine 18, 19, 20, 21 kann eine Hebe- oder Senkbewegung des Fahrgestells 12 erzeugt werden, durch welche die Höhe rz des Fahrgestells 12 im abgestützten Zustand eingestellt wird, wobei die Neigung ψx um die Längsachse x und/oder die Neigung ψy um die Querachse y und/oder die Torsion des Fahrgestells 12 unverändert bleiben, wobei die Hebe- oder Senkbewegung beispielsweise dadurch erzeugt wird, dass alle vier Stützbeine 18, 18, 20, 21 gleichförmig in eine Richtung aus- oder eingefahren werden. Die Hebe- oder Senkbewegung ist vom Bediener durch die Eingabevorrichtung 51 vorgebbar.
  • Durch das Ansteuern der vertikal ausfahrbaren Stützbeine 18, 19, 20, 21 kann mit Hilfe des hier vorgestellten Regelkreises eine Neigungsbewegung um die Längsachse x des Fahrgestells 12 erzeugt werden, durch welche die Neigung ψx des Fahrgestells 12 um die Längsachse x im abgestützten Zustand eingestellt wird, wobei die Höhe rz des Fahrgestells 12 und/oder die Neigung des Fahrgestells 12 um die Querachse (Nickwinkel) und/oder die Torsion des Fahrgestells 12 unverändert bleiben.
  • Diese Neigungsbewegung um die Längsachse x wird beispielsweise dadurch erzeugt, dass beide Stützbeine 18, 20 auf der linken Seite des Fahrgestells 12 in eine gleiche Richtung, insbesondere Heben oder Senken, bewegt werden, während die beiden Stützbeine 19, 21 auf der rechten Seite des Fahrgestells 12 in eine gegenüber den Stützbeinen 18, 20 auf der linken Seite entgegengesetzte Richtung, insbesondere Senken oder Heben, bewegt werden. Diese Neigungsbewegung um die Längsachse (x) des Fahrgestells 12 ist beispielsweise auch vom Bediener der Maschine durch die Eingabevorrichtung 51 vorgebbar.
  • Durch das Ansteuern der vertikal ausfahrbaren Stützbeine 18, 19, 20, 21 kann mit dem hier vorgestellten Regelkreis eine Neigungsbewegung um die Querachse y des Fahrgestells 12 erzeugt werden, durch welche die Neigung ψy des Fahrgestells 12 um die Querachse y im abgestützten Zustand eingestellt wird, wobei die Höhe rz des Fahrgestells 12 und/oder die Neigung ψx des Fahrgestells 12 um die Längsachse x und/oder die Torsion des Fahrgestells 12 unverändert bleiben. Die Neigung um die Querachse y des Fahrgestells 12 wird so erzeugt, dass die zwei Stützbeine 18, 19 auf der Vorderseite des Fahrgestells 12 in eine gleiche Richtung, insbesondere Heben oder Senken, bewegt werden, während die beiden Stützbeine 20, 21 auf der Hinterseite des Fahrgestells 12 in eine gegenüber den Stützbeinen 18, 19 auf der Vorderseite entgegengesetzte Richtung, insbesondere Senken oder Heben, bewegt werden. Die Neigung um die Querachse y des Fahrgestells 12 kann der Bediener des Großmanipulators 10 beispielsweise durch die Eingabevorrichtung 51 vorgeben und vor, während oder nach der optimalen Einstellung der Stützkräfte FSi und der Einstellung der Höhe rz und der Neigung um die Längsachse ψx nachträglich einfach verändern. Dies gilt auch entsprechend für die Erzeugung einer Neigungsbewegung um die Längsachse x.
  • Die einzustellende Ausfahrgeschwindigkeiten vSi der Stützbeine 18, 19, 20, 21 werden mit dem hier vorgestellten Regelkreis anhand des horizontalen Ausfahrzustands der Stützausleger 14, 15, 16, 17 bestimmt. Die Torsionsbewegung kann durch den Regelalgorithmus automatisch der Hebe- oder Senkbewegung und/oder der Neigungsbewegung um die Längsachse x des Fahrgestells 12 und/oder der Neigungsbewegung um die Querachse y des Fahrgestells 12 überlagert werden.
  • 5 zeigt das erfindungsgemäße Verfahren anhand des Ablaufs des oben erläuterten Abstützungsalgorithmus mit der programmgesteuerten Abstützhilfe µC.
  • Im Schritt S10 startet der Algorithmus. Im Schritt S11 werden ein oder mehrere Messgrößen FSi erfasst, welche vom Verspannungszustand des Fahrgestells 12 abhängig sind. Bei den Messgrößen FSi handelt es sich beispielsweise um die Stützkräfte FSi der vier Stützbeine 18, 19, 20, 21 oder alternativ die durch Neigungssensoren 38, 39 erfasste Torsion des Fahrgestells 12 oder andere geeignete Erfassungsmittel, die Aufschluss über den Verspannungszustand des Fahrgestells 12 geben.
  • Im Schritt S12 wird, beispielsweise mittels der auf dem Stützkraftregler 54 oben erläuterten Regelungsstrategie, eine von den Messgrößen FSi abhängige Torsionsbewegung im Fahrgestell 12 des Großmanipulators 10 im abgestützten Zustand erzeugt, indem die vertikal ausfahrbaren Stützbeine 18, 19, 20, 21 angesteuert werden. Hierfür ermittelt beispielsweise der Stützkraftregler 54 eine geeignete Ausfahrgeschwindigkeit vSi für jedes der Stützbeine 18, 19, 20, 21.
  • Im Schritt S13 wird überprüft, ob die im Schritt S12 eingeleitete Torsionsbewegung zu einer optimalen Abstützung des Großmanipulators 12 geführt hat. Für diese Überprüfung wird beispielsweise die durch die Torsionsbewegung geänderte Verteilung der Stützkräfte FSi auf die vier Stützbeine ermittelt. Falls die Torsionsbewegung noch nicht zu einer optimalen Abstützung des Großmanipulators 10 geführt hat, geht es wieder zurück zu den Schritten S11 und S12 bis im Schritt S13 festgestellt wird, dass die optimale Abstützung erreicht wurde und der Ablauf im Schritt S14 gestoppt wird. Es versteht sich, dass die Schritte S11, S12 und S13 dieses Verfahrens nicht unbedingt nacheinander abgearbeitet werden, sondern dass im Sinne der oben beschriebenen Regelungsstrategie die drei Schritte S11, S12 und S13 parallel beziehungsweise ineinander verschachtelt ausgeführt werden, bis die optimale Abstützung erreicht wird.
  • Dem Schritt S11 kann noch ein Schritt vorgelagert sein, in dem, wie oben erläutert, beispielsweise der Konfigurationsregler 53 die Konfiguration qD, also die Höhe rz und /oder die Orientierung, das heißt die Neigung des Großmanipulators 10 in X- und Y-Richtung, einstellt. Prinzipiell könnte aber beispielsweise der Bediener auch mit am Großmanipulator 10 angeordneten Bedienhebeln oder mit der Fernsteuerung 51 die Konfiguration qD durch manuelles Ausfahren der Stützbeine 18, 19, 20, 21 vorgeben und der Stützkraftregler 54 optimiert die Stützkräfte FSi auf der Basis dieser manuell vorgegeben Konfiguration qD.
  • Die programmgesteuerte Abstützhilfe µC wurde hier für den Fall vorgestellt, dass die Abstützung des Großmanipulators 10 ausgefahren und die Stützkräfte FSi optimiert werden, während der Mast noch eingefaltet ist. Dabei wird angenommen, dass der Arbeitsausleger 13, zumindest bei einer Vollabstützung, in alle Arbeitsrichtungen eingesetzt wird und sich auch im Arbeitsbetrieb optimale Stützkräfte FSi einstellen. Das heißt, keine der Stützen 18, 19, 20, 21 wird im Arbeitsbetrieb überlastet oder hebt im Arbeitsbetrieb ab, was im Fall einer Autobetonpumpe 10 nicht ungewöhnlich und auch nicht kritisch ist, solange nur eine Stütze abhebt. Der programmgesteuerten Abstützhilfe µC könnte zu Beginn des Abstützvorgangs auch ein bevorzugter Arbeitsbereich des Arbeitsauslegers 13 vorgegeben werden, der bei der Optimierung der Stützkräfte FSi berücksichtigt wird, so dass insbesondere beim Betrieb des Arbeitsauslegers 13 in dem bevorzugten Arbeitsbereich die Stützkräfte FSi optimal eingestellt sind.
  • Ferner können mit der hier vorgestellten programmgesteuerten Abstützhilfe µC auch im laufenden Betrieb des Arbeitsauslegers 13 die Stützkräfte FSi laufend korrigiert beziehungsweise nachgestellt werden. Dagegen sprechen aus heutiger Sicht nur Sicherheitsanforderungen, nach denen die Ansteuerung der Stützen bei ausgefaltetem Arbeitsausleger 13 nicht gestattet ist, weil die Folgen einer Fehlfunktion fatal sein können.
  • Bezugszeichenliste
  • 10
    fahrbarer Großmanipulator
    12
    Fahrgestell
    13
    Arbeitsausleger
    13a-c
    Segmente Arbeitsausleger
    14
    Stützausleger 1 (vorne links)
    15
    Stützausleger 2 (vorne rechts)
    16
    Stützausleger 3 (hinten links)
    17
    Stützausleger 4 (hinten rechts
    18
    Stützbein S1
    19
    Stützbein S2
    20
    Stützbein S3
    21
    Stützbein S4
    22
    Einfülltrichter
    24
    Drehschemel
    25
    Sensor Höhe
    29
    Fahrerkabine
    30
    Stützkraftsensor S1
    31
    Stützkraftsensor S2
    32
    Stützkraftsensor S3
    33
    Stützkraftsensor S4
    34
    Positionssensor Stützausleger S1
    35
    Positionssensor Stützausleger S2
    36
    Positionssensor Stützausleger S3
    37
    Positionssensor Stützausleger S4
    38
    Neigungssensor vorne
    39
    Neigungssensor hinten
    45-48
    Stützfüße
    49
    Neigungssensor Längsachse (X)
    50
    Neigungssensor Querachse (Y)
    51
    Eingabemittel (Fernsteuerung)
    52
    Sollwertgenerator Höhe, Orientierung
    53
    Konfigurationsregler (Höhe, Orientierung)
    54
    Stützkraftregler
    55
    Schalter Zuschaltung Stützkraftregler
    56
    Freigabesignal
    57
    Transformationsmatrix HI
    58
    Projektionsmatrix H
  • Formelzeichen
  • FSi
    Stützkraft des Stützbeins Si (i=1 bis 4)
    lSi
    vertikale Stützlänge des Stützbeins Si (i=1 bis 4)
    vSi
    Ausfahrgeschwindigkeit des Stützbeins Si (i=1 bis 4)
    rz
    Höhe (z) des Fahrgestells
    ψx
    Neigung des Großmanipulators in x - Richtung (Längsachse)
    ψy
    Neigung des Großmanipulators in y - Richtung (Querachse)
    y-Position der Stütze i im Bezug auf den Drehschemel
    x-Position der Stütze i im Bezug auf den Drehschemel
    qD
    Konfiguration des Großmanipulators (rzxy)
    Startkonfiguration des Großmanipulators
    Endkonfiguration des Großmanipulators
    Trajektorie des Großmanipulators von Start- zu Endkonfiguration
    Πƒ
    zu minimierendes Gütekriterium für Stützkräfte (optimale Lösung)
    Πi
    zu minimierendes Gütekriterium für Torsion des Grundrahmens (alternative Lösung)
    uI
    virtuelle Stellgröße zur Regelung der Orientierung und der vertikalen Lage des Großmanipulators
    Ausgang des PI-Regler zur Kompensation von Abweichungen der Ist- von der Sollkonfiguration
    ν⊥
    skalare, virtuelle Stellgröße für die Minimierung von Πƒ
    v⊥
    vektorielle, virtuelle Stellgröße für die Minimierung von Πƒ
    kz,BS
    effektive Bodensteifigkeit für Sützbein S
    Kp
    Diagonalmatrix mit Verstärkungsfaktoren für P-Regler
    KI
    Diagonalmatrix mit Verstärkungsfaktoren für I-Regler
    Reglerparameter des Stützkraftreglers
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • WO 2005095256 A1 [0002, 0007]
    • WO 2018115270 A1 [0009]

Claims (17)

  1. Fahrbarer Großmanipulator (10), insbesondere eine Autobetonpumpe, mit einem Fahrgestell (12), einem auf dem Fahrgestell (12) um eine Hochachse drehbar angeordneten, ausfalt- und / oder ausfahrbaren Arbeitsausleger (13), vier Stützauslegern (14, 15, 16, 17), die jeweils am Fahrgestell (12) angeordnet und von einer Fahrstellung ganz oder teilweise in eine Abstützstellung horizontal ausfahrbar sind, an den äußeren Enden der Stützausleger (14, 15, 16, 17) angeordnete, vertikal ausfahrbare Stützbeine (18, 19, 20, 21), die den fahrbaren Großmanipulator (10), unter Bildung einer jeweiligen Stützkraft der Stützbeine (18, 19, 20, 21) abstützen, gekennzeichnet durch, Erfassungsmittel (30, 31, 32, 33, 38, 39) zur Erfassung einer oder mehrerer Messgrößen (FSi), welche vom Verspannungszustand des Fahrgestells (12) abhängig sind, und eine programmgesteuerte Abstützhilfe (µC) die dazu eingerichtet ist, durch das Ansteuern der vertikal ausfahrbaren Stützbeine (18, 19, 20, 21) eine von den Messgrößen (FSi) abhängige Torsionsbewegung im Fahrgestell (12) des Großmanipulators (10) zu erzeugen.
  2. Fahrbarer Großmanipulator (10) nach Anspruch 1, dadurch gekennzeichnet, dass die Torsionsbewegung erzeugt wird, indem zwei diagonal zueinander liegende Stützbeine (18, 21) in eine jeweils gleiche Richtung, insbesondere Heben oder Senken, aus- beziehungsweise eingefahren werden, während die zwei anderen diagonal zueinander liegenden Stützbeine (19, 20) jeweils in eine entgegengesetzte Richtung, insbesondere Senken oder Heben, ein- beziehungsweise ausgefahren werden.
  3. Fahrbarer Großmanipulator (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die programmgesteuerte Abstützhilfe (µC) des Großmanipulators (10) dazu eingerichtet ist, die Torsionsbewegung durch Steuerung der Ausfahrgeschwindigkeit (vSi) der jeweiligen Stützbeine (18, 19, 20, 21) zu erzeugen.
  4. Fahrbarer Großmanipulator (10) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Erfassungsmittel (30, 31, 32, 33) die Stützkräfte (FSi) der Stützbeine (18, 19, 20, 21) ermitteln.
  5. Fahrbarer Großmanipulator (10) nach Anspruch 4, dadurch gekennzeichnet, dass die programmgesteuerte Abstützhilfe (µC) dazu eingerichtet ist, die Summe der Quadrate der Stützkräfte (FSi) der Stützbeine (18, 19, 20, 21) zu minimieren.
  6. Fahrbarer Großmanipulator (10) nach Anspruch 5, dadurch gekennzeichnet, dass die programmgesteuerte Abstützhilfe (µC) dazu eingerichtet ist, die Torsionsbewegung in einer Bewegungsrichtung für die jeweiligen Stützbeine (18, 19, 20, 21) auszuführen, solange die Summe der Quadrate der Stützkräfte (FSi) kleiner wird.
  7. Fahrbarer Großmanipulator (10) nach Anspruch 4, dadurch gekennzeichnet, dass die programmgesteuerte Abstützhilfe (µC) dazu eingerichtet ist, die Stützkräfte (FSi) zu berechnen, für welche die Summe der Quadrate der Stützkräfte der Stützbeine (18, 19, 20, 21) minimal ist, um daraus einen Sollwert für die Summe der Quadrate der Stützkräfte (FSi) zu bestimmen.
  8. Fahrbarer Großmanipulator (10) nach Anspruch 7, dadurch gekennzeichnet, dass die programmgesteuerte Abstützhilfe (µC) einen Stützkraftregler (54) enthält, welcher die Summe der Quadrate der Stützkräfte (FSi) der Stützbeine auf den berechneten Sollwert einstellt, wobei als Stellgröße für die Regelung des Stützkraftreglers (54) die Torsionsbewegung verwendet wird.
  9. Fahrbarer Großmanipulator (10) nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass der Sollwert für die Summe der Quadrate der Stützkräfte (FSi) für die Regelung kleiner gewählt wird als der berechnete Sollwert.
  10. Fahrbarer Großmanipulator (10) nach Anspruch 5 bis 9, dadurch gekennzeichnet, dass der Großmanipulator (10) Sensoren (34, 35, 36, 37) aufweist, die den horizontalen Ausfahrzustand der Stützausleger (14, 15, 16, 17) erfassen und die programmgesteuerte Abstützhilfe (µC) ermittelt die für die Minimierung der Summe der Quadrate der Stützkräfte erforderliche Richtung der Torsionsbewegung anhand des horizontalen Ausfahrzustands der Stützausleger (14, 15, 16, 17) und der ermittelten Stützkräfte (FSi).
  11. Fahrbarer Großmanipulator (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Großmanipulator (10) einen Neigungssensor (49) aufweist, der die Neigung des Fahrgestells (12) des Großmanipulators (10) um die Längsachse (ψx) ermittelt.
  12. Fahrbarer Großmanipulator (10) nach Anspruch 11, dadurch gekennzeichnet, dass die programmgesteuerte Abstützhilfe (µC) einen Konfigurationsregler (53) aufweist, der die Neigung des Fahrgestells (12) des Großmanipulators (10) um die Längsachse (ψx) auf einen Sollwert regelt.
  13. Fahrbarer Großmanipulator (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Großmanipulator (10) einen Neigungssensor (50) aufweist, der die Neigung des Fahrgestells (12) des Großmanipulators (10) um die Querachse (ψy) ermittelt.
  14. Fahrbarer Großmanipulator (10) nach Anspruch 13, dadurch gekennzeichnet, dass die programmgesteuerte Abstützhilfe (µC) einen Konfigurationsregler (53) aufweist, der die Neigung des Fahrgestells (12) des Großmanipulators (10) um die Querachse (ψy) auf einen Sollwert regelt.
  15. Fahrbarer Großmanipulator (10) nach Anspruch 3, dadurch gekennzeichnet, dass die jeweiligen Ausfahrgeschwindigkeiten (vSi) der Stützbeine (18, 19, 20, 21), so bestimmt werden, dass das gleichzeitige Aus- und Einfahren der diagonal zueinander liegenden Stützbeine (18, 19, 20, 21), keine Veränderung der Höhe (rz) und/oder der Neigung (ψx) bezogen auf die Längsachse (x) und/oder der Neigung (ψy) bezogen auf die Querachse (y) des Fahrgestells (12) verursacht.
  16. Fahrbarer Großmanipulator (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Neigungsbewegung um die Querachse (y) und/oder der Längsachse (x) und/oder eine Hebe- und Senkbewegung vom Bediener des Großmanipulators (10) durch eine hierfür vorgesehene Eingabevorrichtung (51) vorgebbar ist.
  17. Verfahren zur programmgesteuerten Unterstützung des Abstützvorganges eines fahrbaren Großmanipulators (10), insbesondere einer Autobetonpumpe, mit einem Fahrgestell (12), einen auf dem Fahrgestell (12) um eine Hochachse drehbar angeordneten, ausfalt- und / oder ausfahrbaren Arbeitsausleger (13), Stützauslegern (14, 15, 16, 17), die jeweils am Fahrgestell (12) angeordnet und von einer Fahrstellung ganz oder teilweise in eine Abstützstellung horizontal ausfahrbar sind, an den äußeren Enden der Stützausleger (14, 15, 16, 17) angeordnete, vertikal ausfahrbare Stützbeine (18, 19, 19, 20), die den fahrbaren Großmanipulator (10), unter Bildung einer jeweiligen Stützkraft (FSi) der Stützbeine (18, 19 , 20, 21), abstützen, mit den Verfahrensschritten: - Erfassen einer oder mehrerer Messgrößen (FSi), welche vom Verspannungszustand des Fahrgestells (12) abhängig sind (S11), - Erzeugen einer von den Messgrößen (FSi) abhängigen Torsionsbewegung im Fahrgestell (12) des Großmanipulators (10) durch Ansteuern der vertikal ausfahrbaren Stützbeine (18, 19, 20, 21, S12).
DE102021115645.9A 2021-06-17 2021-06-17 Fahrbarer Großmanipulator Pending DE102021115645A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102021115645.9A DE102021115645A1 (de) 2021-06-17 2021-06-17 Fahrbarer Großmanipulator
EP22733420.8A EP4355962A1 (de) 2021-06-17 2022-06-13 FAHRBARER GROßMANIPULATOR
PCT/EP2022/066042 WO2022263382A1 (de) 2021-06-17 2022-06-13 FAHRBARER GROßMANIPULATOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102021115645.9A DE102021115645A1 (de) 2021-06-17 2021-06-17 Fahrbarer Großmanipulator

Publications (1)

Publication Number Publication Date
DE102021115645A1 true DE102021115645A1 (de) 2022-12-22

Family

ID=82196617

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102021115645.9A Pending DE102021115645A1 (de) 2021-06-17 2021-06-17 Fahrbarer Großmanipulator

Country Status (3)

Country Link
EP (1) EP4355962A1 (de)
DE (1) DE102021115645A1 (de)
WO (1) WO2022263382A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004012966A1 (de) 2004-03-17 2005-10-06 Putzmeister Ag Mobiles Arbeitsgerät mit Stützauslegern sowie Verfahren zur Aufstellung eines solchen Geräts
EP2727876B1 (de) 2012-10-31 2016-11-23 Manitowoc Crane Companies, LLC Auslegerplattenüberwachungssystem
US20180127249A1 (en) 2016-11-04 2018-05-10 Lippert Components Inc. Platform twist detection and mitigation method and apparatus
DE102016125450A1 (de) 2016-12-22 2018-06-28 Schwing Gmbh Fahrbarer Großmanipulator
US20180223550A1 (en) 2014-02-28 2018-08-09 Norco Industries, Inc. Structure orientation using motor velocity

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015208071A1 (de) * 2015-04-30 2016-11-03 Putzmeister Engineering Gmbh Fahrbare Arbeitsmaschine und Verfahren zu deren Betrieb
IT201700084735A1 (it) * 2017-07-25 2019-01-25 Hyva Holding Bv Sistema di livellamento per macchine operatrici.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004012966A1 (de) 2004-03-17 2005-10-06 Putzmeister Ag Mobiles Arbeitsgerät mit Stützauslegern sowie Verfahren zur Aufstellung eines solchen Geräts
WO2005095256A1 (de) 2004-03-17 2005-10-13 Putzmeister Aktiengesellschaft Mobiles arbeitsgerät mit stützauslegern sowie verfahren zur aufstellung eines solchen geräts
EP2727876B1 (de) 2012-10-31 2016-11-23 Manitowoc Crane Companies, LLC Auslegerplattenüberwachungssystem
US20180223550A1 (en) 2014-02-28 2018-08-09 Norco Industries, Inc. Structure orientation using motor velocity
US20180127249A1 (en) 2016-11-04 2018-05-10 Lippert Components Inc. Platform twist detection and mitigation method and apparatus
DE102016125450A1 (de) 2016-12-22 2018-06-28 Schwing Gmbh Fahrbarer Großmanipulator
WO2018115270A1 (de) 2016-12-22 2018-06-28 Schwing Gmbh FAHRBARER GROßMANIPULATOR

Also Published As

Publication number Publication date
WO2022263382A1 (de) 2022-12-22
EP4355962A1 (de) 2024-04-24

Similar Documents

Publication Publication Date Title
EP3303732B1 (de) Grossmanipulator mit schnell ein- und ausfaltbarem knickmast
EP1537282B1 (de) Grossmanipulator mit einem Knickmast und einer Regeleinrichtung zur Aussteuerung des Knickmastes
EP3559374B1 (de) Grossmanipulator mit automatisiertem mastaufbau
EP3408208B1 (de) Kran und verfahren zum steuern eines solchen krans
WO2020001991A1 (de) Kran und verfahren zum steuern eines solchen krans
WO2005095256A1 (de) Mobiles arbeitsgerät mit stützauslegern sowie verfahren zur aufstellung eines solchen geräts
EP2580152B1 (de) Verfahren zum bestimmen einer kippwahrscheinlichkeit bei einem flurförderzeug
DE69928756T2 (de) Steuerungsvorrichtung für die Fahr- und Drehbewegung von einer Hubvorrichtung mit Ausleger
WO2018115270A1 (de) FAHRBARER GROßMANIPULATOR
DE112013003616B4 (de) Arbeitsmaschine
AT520008A1 (de) Verfahren zum Dämpfen von Drehschwingungen eines Lastaufnahmeelements einer Hebeeinrichtung
DE102016015388A1 (de) Verfahren zur assistierten Ausführung von Kranbewegungen eines Krans sowie Kran
EP2752384A1 (de) Mobiles Arbeitsgerät, insbesondere Mobilkran
DE102021115645A1 (de) Fahrbarer Großmanipulator
DE102021105802A1 (de) Verfahren und system zur korrektur der längsverrollung aus versetzter last mittels aktiver verrollungsregelung
DE102007055535B4 (de) Mobilkran
DE102012001185A1 (de) Verfahren zum Betrieb eines ortsveränderbaren Arbeitsgerätes, sowie ein Arbeitsgerät zur Ausführung des Verfahrens
EP4053065B1 (de) Vorrichtung und verfahren zur steuerung eines krandrehwerks sowie kran
DE112021002805T5 (de) Verfahren zur autonomen Fahrsteuerung eines Raupenfahrzeugs, Steuervorrichtung für ein Raupenfahrzeug und Raupenfahrzeug
DE102021128317A1 (de) Verfahren und System zur Planung eines Einsatzes zum Heben einer Last mit einem Kran
DE102021004647A1 (de) Verfahren zur horizontalen Ausrichtung eines stehenden Fahrzeugs
EP3728099B1 (de) Kransteuerung
EP3530817B1 (de) Arbeitsmaschine mit einer vorrichtung zur veränderung der bodendruckverteilung der arbeitsmaschine
DE102018104306A1 (de) Anbaugerät zum Einbringen einer Verrohrung bei der Pfahlgründung sowie Verfahren zum Einstellen der Pfahlneigung
DE102021125042B3 (de) Nachstützüberwachung für ein Dickstofffördersystem

Legal Events

Date Code Title Description
R163 Identified publications notified