DE102020106464A1 - Haustechnikgerät, insbesondere Warmwasserbereiter, und zugehöriges Verfahren - Google Patents

Haustechnikgerät, insbesondere Warmwasserbereiter, und zugehöriges Verfahren Download PDF

Info

Publication number
DE102020106464A1
DE102020106464A1 DE102020106464.0A DE102020106464A DE102020106464A1 DE 102020106464 A1 DE102020106464 A1 DE 102020106464A1 DE 102020106464 A DE102020106464 A DE 102020106464A DE 102020106464 A1 DE102020106464 A1 DE 102020106464A1
Authority
DE
Germany
Prior art keywords
technology device
setpoint temperature
temperature
user
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102020106464.0A
Other languages
English (en)
Inventor
Hubert Nolte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stiebel Eltron GmbH and Co KG
Original Assignee
Stiebel Eltron GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stiebel Eltron GmbH and Co KG filed Critical Stiebel Eltron GmbH and Co KG
Priority to DE102020106464.0A priority Critical patent/DE102020106464A1/de
Priority to EP21161796.4A priority patent/EP3879190B1/de
Publication of DE102020106464A1 publication Critical patent/DE102020106464A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/156Reducing the quantity of energy consumed; Increasing efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/14Cleaning; Sterilising; Preventing contamination by bacteria or microorganisms, e.g. by replacing fluid in tanks or conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/16Reducing cost using the price of energy, e.g. choosing or switching between different energy sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/174Supplying heated water with desired temperature or desired range of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/176Improving or maintaining comfort of users
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/184Preventing harm to users from exposure to heated water, e.g. scalding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/395Information to users, e.g. alarms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/421Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0026Domestic hot-water supply systems with conventional heating means
    • F24D17/0031Domestic hot-water supply systems with conventional heating means with accumulation of the heated water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0073Arrangements for preventing the occurrence or proliferation of microorganisms in the water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/144Measuring or calculating energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/223Temperature of the water in the water storage tank
    • F24H15/225Temperature of the water in the water storage tank at different heights of the tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/25Temperature of the heat-generating means in the heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/281Input from user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/288Accumulation of deposits, e.g. lime or scale
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/37Control of heat-generating means in heaters of electric heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/45Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based remotely accessible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/486Control of fluid heaters characterised by the type of controllers using timers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Selective Calling Equipment (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zum Betreiben eines Haustechnikgerätes, insbesondere eines Warmwasserspeichers, und ein zugehöriges Haustechnikgerät. Das Haustechnikgerät ist zur Kommunikation mit einem Energieversorgungsunternehmen, EVU, und zur Kommunikation mit einem Endgerät eines Nutzers, insbesondere einem Smartphone, ausgebildet. Das Verfahren umfasst die folgenden Schritte: Betreiben des Haustechnikgerätes auf einer reduzierten Sollwerttemperatur (TRed), wobei die reduzierte Sollwerttemperatur (TRed) anhand einer Lernfunktion für den Nutzer ermittelt ist, wenn das EVU keinen Bedarf zur Energieabnahme an das Haustechnikgerät kommuniziert, Empfangen eines Bedarfssignals von dem EVU und Betreiben des Haustechnikgerätes auf einer erhöhten Sollwerttemperatur, wobei die erhöhte Sollwerttemperatur höher als die reduzierte Sollwerttemperatur (TRed) ist.

Description

  • Haustechnikgeräte sind bekannt. Beispielsweise dienen elektrisch betriebene Warmwasserbereiter zur Bereitstellung beheizten Trinkwassers. Die dezentrale Bereitstellung kann mittels eines Durchlauferhitzers erfolgen, die zentrale Bereitstellung erfolgt in der Regel mit einem Wasserspeicher. Das Trinkwasser wird in einem ausreichend großen, vorzugsweise wärmegedämmten Behälter erwärmt und gespeichert. Das Wasser im Behälter kann mittels eines Heizelements und/oder durch eine Wärmepumpe aufgeheizt werden.
  • Es sind derartige Haustechnikgeräte bekannt, bei denen je nach Betriebsart eine Wärmpumpe und ein elektrisches Heizelement das Wasser entweder zeitgleich oder im Wechsel erwärmt. Beispielsweise produzieren beheizte Trinkwasserspeicher auch dann thermische Verluste, wenn gerade kein Wasser gezapft wird. Dieser Verlust ist unerwünscht und wird als Bereitschaftsverlust oder auch „Stand-By-Verlust“ bezeichnet.
  • Aus Platzgründen und aus Gründen der Energieeinsparung gibt es wegen unterschiedlicher Verbrauchsmengen verschieden große derartige Trinkwasserspeicher, da die Bereitschaftsverluste auch von dem Volumen des gespeicherten Wassers abhängen.
  • Die Bereitschaftsverluste eines Haustechnikgeräts wie eines elektrisch beheizten Trinkwasserspeichers hängen neben der spezifischen Wärmekapazität des Trinkwassers unter Anderem von seinem Volumen, seiner Oberfläche, dem Wärmerückhaltevermögen der Speicherdämmung und der Temperaturdifferenz zwischen dem Speicherwasser und dem Aufstellraum des Speichers ab.
  • Üblicherweise beträgt die Temperatur, bei der beheiztes Trinkwasser zum Duschen oder zum Händewaschen genutzt wird, etwa 40-43 °C. Wenn die Wassertemperatur an einem Thermostat des Haustechnikgerätes höher als 43°C eingestellt wird, kann das beheizte Trinkwasser in einer Mischarmatur mit kaltem Wasser gemischt werden. Hierdurch kann, je nach Temperatur des kalten Wassers, die Nutzmenge des im Haustechnikgerät erwärmten Wassers vergrößert werden, so dass mehr Wasser als das vorhandene Speichervolumen zur Verfügung steht.
  • Im Zuge von Versuchen zur Energieeinsparung wurde versucht, die Wärmeverluste beheizter Wasserspeicher durch die Verbesserung des Wärmerückhaltevermögens der Dämmung zu reduzieren. Ebenso ist es bekannt, durch eine automatische Nutzeranalyse mittels Sensorik und einer im Wassertank integrierten, selbstlernenden Elektronik, genannt „Smart Elektronik“, die Temperaturdifferenz zwischen Aufstellraum und Speicherwasser zu minimieren. Dies erfolgt insbesondere so, dass zu jeder Zeit gerade genug Nutzwasser zur Verfügung steht, die Wärmverluste aber schrittweise durch eine gezielte Absenkung der Warmwassertemperatur am Wassertemperaturregler reduzieren werden, wodurch Energie eingespart wird.
  • Je nachdem, wie weit die Wassertemperatur abgesenkt wird, kann es allerdings zu Komforteinbußen kommen, insbesondere, wenn sich das Nutzerverhalten unerwartet ändert.
  • Ferner sind Haustechnikgeräte bekannt, die von Stromversorgungsunternehmen, genannt EVU, angesteuert werden können, um auf Anforderung des EVU elektrischen Strom zu verbrauchen. Mit dem verbrauchten Strom kann das Haustechnikgerät beispielsweise einen thermischen Speicher, wie den Wasserspeicher eines Warmwasserbereiters, aufzuheizen.
  • Zusätzlich zur Erfüllung des Komfortanspruches des Wärmeabnehmers wird dadurch ein Beitrag zur Netzstabilisierung des Stromnetzes geleistet, der von dem EVU gegenüber dem Kunden beispielsweise durch einen günstigen Stromtarif honoriert wird. Hier ist es im Interesse des EVU, zum Beispiel durch die Gewährung von Nachtstromtarifen, den unterschiedlichen Stromverbrauch zwischen Tag und Nacht auszugleichen, um eine gleichmäßige Energieerzeugung bei einer möglichst konstanten Kraftwerksleistung zu gewährleisten. Da das Zu- und Abfahren von Kraftwerken teuer und der Ausbau erneuerbarer Energie ein erklärtes Ziel ist, wird es zunehmend im Mix von zentraler Energieerzeugung, insbesondere durch konventionelle Kraftwerke, und erneuerbaren Erzeugern, insbesondere Photovoltaik und Windenergie, ein stark schwankendes Angebot elektrischer Energie geben. Das erfordert diverse Maßnahmen zur Energiespeicherung, um das schwankende Stromangebot auszugleichen, wodurch ein die Netze stabilisierender Einfluss bewirkt wird.
  • Vor diesem Hintergrund war es eine Aufgabe der vorliegenden Erfindung, ein Haustechnikgerät sowie ein Verfahren zum Steuern eines derartigen Haustechnikgerätes anzugeben, das gleichzeitig einen netzstabilisierenden Beitrag liefert, dennoch aber Komforteinbußen für den Nutzer vermeidet.
  • Die Aufgabe wird gelöst durch ein Verfahren zum Betreiben eines Haustechnikgerätes, insbesondere eines Warmwasserspeichers, nach Anspruch 1 sowie ein Haustechnikgerät nach Anspruch 8.
  • Erfindungsgemäß wird insbesondere ein Verfahren zum Betreiben eines Haustechnikgerätes, insbesondere eines Warmwasserspeichers, vorgeschlagen, wobei das Haustechnikgerät zur Kommunikation mit einem Energieversorgungsunternehmen, EVU, und zur Kommunikation mit einem Endgerät eines Nutzers, insbesondere einem Smartphone, ausgebildet ist. Das Verfahren weist die folgenden Schritte auf: Betreiben des Haustechnikgerätes auf einer reduzierten Sollwerttemperatur, wobei die reduzierte Sollwerttemperatur anhand einer Lernfunktion für den Nutzer ermittelt ist, wenn das EVU keinen Bedarf zur Energieabnahme an das Haustechnikgerät kommuniziert; Empfangen eines Bedarfssignals von dem EVU und Betreiben des Haustechnikgerätes auf einer erhöhten Sollwerttemperatur, wobei die erhöhte Sollwerttemperatur höher als die reduzierte Sollwerttemperatur ist.
  • Das erfindungsgemäße Verfahren ermöglicht, dass das Haustechnikgerät von einem EVU ferngesteuert wird, das heißt zur Netzstabilisierung beiträgt, und trotzdem einen möglichst niedrigen Energieverbrauch ermöglicht, da ein vom Nutzerverhalten abhängiger Sollwert immer dann zur Anwendung kommt, wenn das EVU keinen Bedarf signalisiert, das Gerät zu beheizen. Damit wird der Nutzerkomfort in jedem Fall gewährleistet, sowie der Energieverbrauch und die mit dem Betrieb des Haustechnikgerätes verbundenen Kosten reduziert.
  • Vorzugsweise umfasst das Verfahren weiter die folgenden Schritte: Prüfen, ob eine Mischarmatur vorhanden ist, und in dem Fall, dass eine Mischarmatur vorhanden ist, Ermöglichen, dass die erhöhte Sollwerttemperatur auf einen Wert größer 60°C, insbesondere größer 70°C und besonders bevorzugt mindestens 85°C ansteigt.
  • Damit kann gewährleistet werden, dass keine Gefahr des Verbrühens durch zu hohe Temperaturen beispielsweise im Wasserspeicher besteht, insbesondere in dem Fall, in dem keine Mischarmatur vorhanden ist. Im Fall einer erhöhten Temperatur beispielsweise des Wassers im Wasserspeicher kann ein entsprechender Hinweis an das Endgerät des Nutzers ausgegeben werden. Die Sollwerttemperatur wird in Abhängigkeit des Bedarfs des EVU eingestellt.
  • Vorzugsweise ist die Sollwerttemperatur eine zeitlich veränderliche Sollwerttemperatur, die an das Nutzerverhalten angepasst ist.
  • Anders ausgedrückt werden regelmäßig wiederkehrende Zapfvorgänge des Nutzers, zum Beispiel morgendliches Duschen, erkannt und die für die regelmäßig wiederkehrenden Zapfvorgänge benötigte Warmwasser- bzw. Energiemenge vorgehalten. Die Solltemperatur und damit auch die durch die Solltemperatur entstehenden Bereitschafsverluste können dadurch minimiert werden.
  • Vorzugsweise umfasst das Verfahren vor dem Schritt des Betreibens des Haustechnikgerätes auf der reduzierten Sollwerttemperatur weiter die folgenden Schritte: Inbetriebnahme des Haustechnikgerätes, wobei sich an die Inbetriebnahme eine Lernfunktion mit vordefiniertem Zeitraum, beispielsweise drei Tage, anschließt, wobei die Lernfunktion zur Ermittlung eines zeitlich aufgelösten Nutzerverhaltens ausgebildet ist, Bestimmung einer reduzierten oder erhöhten Sollwerttemperatur nach Abschluss des vordefinierten Zeitraums.
  • In dem Fall, dass erhöhter Bedarf an Energie vorliegt, also keine Absenkung der Sollwerttemperatur auf eine reduzierte Sollwerttemperatur möglich ist, wird eine erhöhte Sollwerttemperatur als Mindestsollwerttemperatur festgelegt. Dieser Wert der Mindestsollwerttemperatur wird nicht unterschritten, auch wenn das Haustechnikgerät durch das EVU ferngesteuert wird.
  • Vorzugsweise ermöglicht das Verfahren wenigstens eine, vorzugsweise sämtliche, der nachfolgenden Funktionen während des Betriebs des Haustechnikgeräts: a) Minimierung des Bereitschaftswärmeaufwands durch temporäre Absenkung der Warmwassertemperatur, b) Erkennen einer längeren Abwesenheit des Benutzers und Betreiben des Haustechnikgerätes in einem Absenkbetrieb mit abgesenkter Warmwassertemperatur bei dem Erkennen einer Abwesenheit, wobei insbesondere bei Unterschreiten eines vordefinierten Abstandes des Nutzers von dem Haustechnikgerätes der Absenkbetrieb beendet wird, c) Durchführen einer verbrauchsabhängigen Legionellen-Funktion und d) Detektieren einer Verkalkung des Haustechnikgerätes.
  • Sämtliche dieser Funktionen dienen der Optimierung des Energieverbrauchs und/oder der Steigerung des Komforts des Nutzers.
  • Vorzugsweise fordert das Verfahren vor der Aktivierung jeder der Funktionen eine Bestätigung auf dem Endgerät des Nutzers. Damit wird verhindert, dass der Nutzer die Kontrolle über den Betrieb seines Haustechnikgeräts verliert, er sich also durch die Steuerung entmündigt fühlt.
  • Vorzugsweise wird ein Betrieb des Haustechnikgerätes unter Steuerung der EVU, insbesondere nach Empfang des Bedarfsignals, durch das Endgerät und den Nutzer überschrieben.
  • Erfindungsgemäß wird ferner ein Haustechnikgerät, insbesondere Warmwasserspeicher, mit einer Steuerung vorgeschlagen, wobei die Steuerung zur Durchführung des erfindungsgemäßen Verfahrens ausgebildet ist.
  • Vorzugsweise umfasst das Haustechnikgerät zwei Schnittstellen zum Anschluss von Kommunikationsmodulen, wobei eines der Kommunikationsmodule zur Kommunikation mit einem EVU und das andere der Kommunikationsmodule zur Kommunikation mit einem Endgerät eines Nutzers, insbesondere einem Smartphone, ausgebildet ist, wobei die Steuerung zur automatischen Erkennung des Anschlusses eines Kommunikationsmoduls ausgebildet ist.
  • Damit sind mehrere Versionen des Haustechnikgeräts möglich, nämlich Standardversionen, die kein Kommunikationsmodul umfassen, sowie solche die eines oder beide der Kommunikationsmodule umfassen. Je nach den Bedürfnissen des Nutzers kann demnach ein optimales Haustechnikgerät ausgewählt werden.
  • Vorzugsweise tauscht die Steuerung bei Erkennung des Anschlusses eines Kommunikationsmoduls Daten, beispielsweise für ein Ad Hoc Pairing mit einem Endgerät des Nutzers und/oder Informationen über einen Verbrühschutz, eine Mindestsollwerttemperatur, beispielsweise der reduzierten Sollwerttemperatur, und/oder die aufgrund des Verbrühschutzes höchste zulässige Sollwerttemperatur, automatisch aus. Hierdurch kann vermieden werden, dass die Komfortansprüche des Nutzers ungewollt beeinflusst werden.
  • Weitere Vorteile und bevorzugte Ausgestaltungen werden nachfolgend mit Verweis auf die beigefügten Figuren beschrieben. Hierbei zeigen:
    • 1 schematisch und exemplarisch ein Haustechnikgerät,
    • 2 schematisch und exemplarisch ein Warmwasser-Temperaturprofil,
    • 3 schematisch und exemplarisch ein Flussdiagramm eines Verfahrens,
    • 4 schematisch und exemplarisch ein Haustechnikgerät,
    • 5 schematisch und exemplarisch und
    • 6 schematisch und exemplarisch ein Flussdiagramm eines Verfahrens.
  • 1 zeigt schematisch und exemplarisch ein beispielhaft als Warmwasserbereiter ausgestaltetes Haustechnikgerät 100. Das Haustechnikgerät 100 weist einen Wassertank 1 mit einem Warmwasserauslaufrohr 2 und einem Kaltwassereinlaufrohr 3 auf. Eine Heizeinrichtung 4 heizt Brauchwasser in dem Wassertank 1 auf.
  • Die Heizeinrichtung 4, die beispielsweise ein elektrisches Heizelement oder eine Wärmepumpe umfasst, ist mit einer Steuerung 5 durch eine Leitung 4a verbunden, wobei die Verbindung in anderen Ausführungen auch drahtlos erfolgen kann.
  • Die Steuerung 5, die auch als Elektronik bezeichnet wird, steht optional mit einer Anzeige 6 und einem Bedienfeld 7 in leitender Verbindung. Mit der Steuerung 5 ist vorzugsweise ein Protokoll- oder Datenkonvertiermodul 11 verbunden, das wiederum mit einem Funkmodul 12 kommuniziert. Das Datenkonvertiermodul 11 übersetzt die zwischen Steuerung 5 und Funkmodul 12, empfangenen Daten in durch die Steuerung 5 lesbare Daten und andersherum für die von der Steuerung 5 zur Übertragung vorgesehenen Daten.
  • Ein Internet Gateway empfängt drahtlos Informationen 14 beispielsweise von einem Internet Router 15 und sendet diese Informationen drahtlos oder drahtgebunden 13 zu dem Internet Router 15.
  • Die Sensorik am Haustechnikgerät 100 besteht vorzugsweise aus folgenden Komponenten: ein Temperatursensor 8 ist gegenüber der Mündung des Warmwasserauslaufrohres 2 auf der äußeren Tankoberfläche angebracht, hier wird die Domtemperatur des Wassertanks 1 erfasst.
  • Ein Sensor 9 ist vorzugsweise ein Integralsensor, der die Wassertemperatur in vertikaler Tankrichtung beispielsweise mittels einer NTC Kette erfasst. Ein Temperatursensor 10 ist gegenüber der Mündung des Kaltwassereinlaufrohres 3, ebenso auf der Außenseite des Wassertanks 1, auf der Oberfläche des Wassertanks 1 angebracht.
  • Über den nicht dargestellten elektrischen Stromanschluss wird die Heizeinrichtung 4 mit Spannung versorgt und von der Steuerung 5 beziehungsweise eines darin zu diesem Zweck vorgesehenen Temperaturreglers eingeschaltet, wenn das Wasser nachgeheizt werden soll. Ein ebenso nicht dargestellter Sicherheitstemperaturbegrenzer schaltet die Heizeinrichtung 4 aus, falls der Temperaturregler versagt. Ebenso nicht dargestellt, aber üblicherweise vorhanden, ist eine Vorrichtung zum Korrosionsschutz des Wassertanks wie eine Fremdstromanode oder eine Opferanode.
  • Vorzugsweise wird der Beginn einer Wasserzapfung mittels beispielsweise des Temperatursensors 10 erkannt, wie im Stand der Technik bekannt ist. Vorzugsweise wird durch die Steuerung 5 bei jedem Zapfvorgang die durch die Zapfung verbrauchte, thermischen Energie ermittelt. Die Steuerung 5 startet bei Erkennen des Zapfbeginns einen Timer und summiert während der Laufzeit des Timers die Differenzbeträge der aus dem Integralsensorsignal ermittelten momentanen Energieinhalte solange auf, bis das Integralsensorsignal wieder ansteigt oder sich der Gradient des sinkendenden Signals um einen festgelegten Betrag ändert und die Laufzeit des Timers endet.
  • Eine Gradientenbetrachtung zur Erkennung der Beendigung eines Zapfvorganges ist besonders im Standby ohne Nachheizung sinnvoll. Der für den Wasserheizer als Haustechnikgerät 100 typische Standby-Wärmeverlust kann bei der Bilanzierung mitberücksichtigt sein.
  • Da beispielsweise bei elektrisch beheizten Trinkwasserspeichern die Aufheizleistung üblicherweise gegenüber der Entnahmeleistung klein ist, wird die Zapfdauer auch während einer Nachheizungsperiode sicher erkannt, da das Integralsensorsignal auch während einer Nachheizung sinkt, solange die entnommene Energiemenge pro Zeiteinheit grösser ist als die in derselben Zeiteinheit Zugeführte. Dies ist üblicherweise der Fall, außer dass eine ungewöhnlich kleine Menge an Wasser entnommen wird, d.h. Zapfstelle nur sehr gering aufgedreht wird.
  • Das gilt ebenso für die Fallunterscheidung bei Entnahmen ohne Nachheizung im Standby bei ausreichend gedämmten Wasserspeicher. Hier ist die durch übliche Zapfmengen hervorgerufene Reduzierungen des Integralsensorsignals deutlich grösser als die Signalreduzierung die sich durch Bereitschaftsverluste einstellt.
  • Es kann vorgesehen sein, insbesondere dann, wenn eine Heizleistung Pel annähernd so groß ist wie die Entnahmeleistung, die Heizleistung Pel während der Entnahmezeit zu reduzieren. Bilanziert wird eine entnommene Wassermenge V beispielsweise und vereinfacht dargestellt nachfolgenden Schemata:
  • Während eines Standby oder Bereitschaftszustandes, das heißt ohne Nachheizung mittels der Heizeinrichtung 4: V = t 1 t 2 Q i n t e g r a l 2 Q i n t e g r a l 1 c p × ( T D o m T K W )
    Figure DE102020106464A1_0001
  • Während der Nachheizung mit elektrischer Heizleistung Pel: V = t 1 t 2 Q i n t e g r a l 2 Q i n t e g r a l 1 c p × ( T D o m T K W ) + t 1 t 2 P e l
    Figure DE102020106464A1_0002
    Vereinfacht kann mit einer Wasserdichte von 1000 kg/m3 gerechnet werden. Die Parameter der Formeln bedeuten wie folgt:
  • - Qintegral2
    aus Signal des als Integralsensor ausgestalteten Temperatursensors 9 berechnete thermische Energie zum Zeitpunkt t2.
    - Qintegral1
    aus Signal des als Integralsensor ausgestalteten Temperatursensors 9 berechnete thermische Energie zum Zeitpunkt t1
    - cp
    spezifische Wärmekapazität des Wassers
    - TDom
    Mit Temperatursensor 8 ermittelte Wassertemperatur des Doms
    - TKW
    Mit Temperatursensor 10 ermittelte Wassertemperatur am Kaltwasserzulauf 3
    - V
    gezapftes Volumen
  • Die spezifische Wärmekapazität cp wird, genauso wie das Tankvolumen des Wasserspeichers 1, ab Werk der Steuereinheit µ als Parameter eingespeichert.
  • Zur weiteren Verarbeitung wird beispielsweise die pro Tag verbrauchte, gezapfte Energiemenge abgespeichert. Auch kann die gezapfte Energiemenge zeitlich aufgelöst, beispielsweise je Minute, 10 Minuten, Stunden, etc. aufgeschlüsselt gespeichert werden.
  • Die für Verbraucher nutzbare Wassertemperatur ist individuell geringfügig unterschiedlich, wobei eine Mindesttemperatur von 42 °C als guter Mittelwert angenommen werden kann. Beispielsweise sind es bis zu 55 °C in Küchenanwendungen, die höhere Temperaturen erfordern.
  • 2 zeigt schematisch und exemplarisch ein typisches Temperaturprofil 200 über beispielsweise einen 24 Stunden-Tag auf der horizontalen Achse. Gestrichelt ist ein Tagesverlauf der Integralsensortemperatur TIntegral bei einer Temperatureinstellung des Sollwertes von 65 °C und mit durchgezogener Linie ist der Tagesverlauf bei einer Temperatureinstellung des Sollwertes von 55°C gezeigt. Im unteren Bereich sind schraffiert Zapfzyklen und nicht schraffiert Nachheizzyklen dargestellt.
  • Die beispielhaft gebräuchliche Nutztemperatur ist gestrichelt waagerecht bei 42°C dargestellt. Zu erkennen ist in 2, wie sich im gestrichelt dargestellten Verlauf für einen Startpunkt bei 65 °C die Integralsensortemperatur T Integral entwickelt, wenn morgens, mittags und abends gezapft wird und das Gerätethermostat auf 65°C Temperatur eingestellt ist.
  • Die niedrigste Integralsensortemperatur T Integral stellt sich um ca. 16:00 Uhr mit 52,5°C ein. Bei der 55°C Einstellung beginnt der Verlauf bei 55 °C morgens und es stellt sich um ca. 22:00 Uhr die niedrigste Integralsensortemperatur T Integral mit 43°C ein.
  • Die im Folgenden beschriebenen, von der Steuerung 5 bevorzugt ausgeführten Funktionen, werden anhand des Schemas der 3, das die erste der Funktionen illustriert, beispielhaft erläutert.
  • Minimierung des Bereitschaftswärmeaufwandes durch Anpassen der Warmwassertemperatur an den täglichen Warmwasserverbrauch
  • 3 zeigt schematisch ein Flussdiagramm eines Verfahrens 300, zu dem das beispielhaft in 1 gezeigte Haustechnikgerät ausgebildet sein kann.
  • Das System lernt in einem Schritt 310, falls von dem Nutzer eine Lernfunktion bei Inbetriebnahme des Gerätes aktiviert wurde, in einem Schritt 320 über einen definierten Zeitraum beispielsweise 3 Tage nach Inbetriebnahme das Nutzungsverhalten und bewertet eine mögliche Absenkung oder Anhebung der Werkseitig eingestellten Warmwassertemperatur TDefault nach den Kriterien i) Anzahl der täglichen Zapfungen und ii) kleinster Temperaturdifferenz dTMin zwischen Mindestnutztemperatur und kleinster Integralsensortemperatur.
  • Bis der definierte Zeitraum nicht abgeschlossen ist, wird in einem Schritt 330 beispielsweise die werksseitig vorgegebene Temperatur TDefault verwendet.
  • Nach Abschluss des definierten Zeitraumes, wird in Schritt 340 ausgewertet. Dabei wird auch der Zeitraum Z Dom bewertet, wie lange die Integralsensortemperatur niedrig oder hoch war. Eine niedrige Integralsensortemperatur kann für die Ermittlung von ZDom beispielsweise mit TDom < 0,8 × TDefault definiert sein.
  • Als Ergebnis der Bewertung wird eine Temperaturabsenkung Tred oder Anhebung Tzu vorgeschlagen, indem ein berechneter Temperaturwert in der Steuerung 5 ermittelt, über den Protokoll Konverter oder das Datenkonvertiermodul 11 dem Funkmodul 12 zur Verfügung gestellt, und in einem Schritt 350 über den Router 15 in einem Schritt 360 an ein Endgerät des Nutzers, beispielsweise ein Smartphone, gesendet wird, das es in einem Schritt 370 zusammen mit einer Einsparung in einem Schritt 380 anzeigt.
  • In einem Schritt 390 wird an dem Endgerät abgefragt, ob der vorgeschlagene veränderte Sollwert übernommen werden soll oder nicht. In Abhängigkeit von der Antwort wird in einem Schritt 400 der Sollwert der Temperatur angepasst oder das Verfahren beginnt von vorne.
  • Zusätzlich werden optional in einem Schritt 410 abhängig von der Höhe des vorgeschlagenen Temperaturwertes die Kosten oder die Einsparung berechnet und dem Endgerät mitgeteilt. Die Höhe der Kosten/Einsparungen ergibt sich aus der Verringerung/Erhöhung des Bereitschaftswärmeaufwands, hervorgerufen durch eine Absenkung/Erhöhung der Temperatur des Speicherwassers. Die Einsparung wird in einem Schritt 420 wahlweise monetär, vorzugsweise als Multiplikation des energetischen Wertes mit einer Währung, energetisch, und/oder als CO2 ausgegeben. Die Einsparung wird relativ zu dem Bereitschaftsverlust der werksseitig eingestellten Speichertemperatur berechnet.
  • Minimierung des Bereitschaftswärmeaufwandes durch eine temporäre Absenkung der Warmwassertemperatur.
  • Das erfindungsgemäße Haustechnikgerät 100 lernt über einen definierten Zeitraum, der beispielsweise ebenso wie in der oben beschriebenen Funktion 1 drei Tage betragen kann, zu welchen Tageszeiten und mit welcher Häufigkeit ein Zapfen erfolgt. Über die Smartphone-App an dem Endgerät 15 schlägt das System eine temporäre Absenkung der Warmwassertemperatur vor. Wenn der Vorschlag durch den Nutzer an dem Endgerät 15 angenommen wird, wird die erfolgte Einsparung gegenüber der Werkseinstellung nach Ablauf eines definierten Zeitraumes beispielsweise an das Endgerät 15 oder an das Anzeigeelement 6 oder beides ausgegeben.
  • Wurde der Vorschlag angenommen, wird nach Ablauf eines definierten Zeitraumes die Einsparung gegenüber der Werkseinstellung, vorzugsweise auf dem Endgerät, ausgegeben. Mittels eines Abstandsignales teilt das Smart Phone dem Smart System mit das der Nutzer sich in einem voreingestellten Abstand dem Aufstellort nähert und der Absenkbetrieb wird automatisch beendet.
  • Aktiver Urlaubsbetrieb
  • Das System hat über einen Zeitraum von beispielsweise mehr als 24 Stunden, wobei der Zeitraum vorzugsweise einstellbar ist, keine Zapfung detektiert. Es sendet dann aktiv an das Endgerät eine Anfrage, über welchen Zeitraum die Temperatur des Haustechnikgerätes 100 abgesenkt werden soll, und setzt besonders bevorzugt automatisch ein räumliches Abstandssignal zwischen Endgerät und Haustechnikgerät 100 für die Beendigung des Abwesenheitsmodus zur Aktivierung der Aufheizung. Hierfür wird vorzugsweise eine GPS oder ähnliche Satellitennavigationsposition des Endgerätes verwendet. Besonders bevorzugt erfolgt die Beendigung des Abwesenheitsmodus mit einer Desinfektion, indem einmalig auf mindestens 65°C aufgeheizt wird. Damit wird die Gefahr von Legionellen oder anderen Keimen durch die über eine längere Zeit abgesenkte Temperatur gebannt.
  • Verbrauchsabhängige Legionellenfunktion
  • Das System berechnet durch die Auswertung der Zapfdauer, der Kaltwassertemperatur und des Signals des Integraltemperatursensors die während eines bestimmten Zeitraums, beispielsweise täglich, aus dem Speicher entnommene Wassermenge. Wird ein vorzugsweise werksseitig festgelegter Mindestwert während des Zeitraumes unterschritten, wird die Temperatureinstellung überprüft. Ist die Temperatur des Speicherwassers dauerhaft unter einem festgelegten Grenzwert von beispielsweise 55°C eingestellt, wird auf dem Endgerät eine einmalige Desinfektionsaufheizung auf 60°C oder 70°C vorgeschlagen oder, je nach Einstellung, automatisch durchgeführt.
  • Um das periphere Rohrleitungssystem in den Desinfektionsprozess mit einzubeziehen kann, wenn vom Nutzer gewünscht, via Endgerät auf den Desinfektionszeitpunkt hingewiesen werden, damit die Zapfstellen des Leitungssystems fristgerecht zum Desinfizieren geöffnet werden können.
  • Ebenso ist es möglich, eine Zirkulationspumpe mittels eines Endgeräts temporär zu aktivieren, um die Desinfektion dann durchzuführen, wenn die Wassertemperatur im Speicher 1 ausreichend hoch ist.
  • Neben der Information zum Desinfektionszeitpunkt kann ein Warnhinweis zum Verbrühschutz verbunden sein, der vorzugsweise auf dem Endgerät angezeigt wird. Damit kann die Sicherheit der Nutzung weiter erhöht werden.
  • Verkalkungsanzeige
  • Das System fragt bei der Inbetriebnahme des Haustechnikgerätes 100, ob das Wasser im Versorgungsgebiet des Nutzers kalkhaltig ist oder nicht. Wird vom Nutzer eingetragen, dass das Wasser kalkhaltig ist, wird in Abhängigkeit der eingestellten Warmwassertemperatur und/oder des Warmwasserverbrauches ein Wartungsintervall zum Reinigen der Heizeinrichtung 4 ermittelt und beispielsweise an dem Endgerät, zum Beispiel mittels einer Smartphone-App, vorgeschlagen.
  • Bei Auslösen eines Sicherheitstemperaturbegrenzers (nicht gezeigt) des Haustechnikgerätes 100 wird zur Fehlerbehebung eine Information an den Nutzer des Haustechnikgerätes 100, beispielsweise an das Endgerät, geschickt. Die Information kann auf das Entkalken hinweisen.
  • Dazu wird vorzugsweise unmittelbar nach Inbetriebnahme während des Standby-Betriebes die Aufheizzeit unter Berücksichtigung der aktuellen Kaltwasser-Einlauftemperatur und des eingestellten Sollwertes und der aktuellen Netzspannung ermittelt und als Referenzwert KIntegral/Min abgespeichert. Bevor der Wert als gültig abgespeichert wird, prüft die Elektronik ob während der Aufheizzeit Wasser gezapft wurde oder nicht. Alle folgenden Nachheizungen im Standby-Betrieb, d.h. solche Nachheizungen, während denen kein Wasser gezapft wurde, werden mit dem Referenzwert verglichen.
  • Ist die Nachheizzeit über einen bestimmten Wert, beispielsweise mehr als 15 %, länger als der Referenzwert, wird ein Wartungssignal gesendet. Die längere Nachheizzeit deutet auf ein Verkalken der Heizeinrichtung 4 hin. Alternativ oder zusätzlich ist es möglich, die Temperatur der Heizeinrichtung 4 an einer geeigneten Stelle zu messen und den Verkalkungsgrad der Heizeinrichtung 4 aus der Höhe der Übertemperatur, das heißt der Temperatur der Heizeinrichtung 4 im Vergleich zu der Temperatur des Wassers, zu bestimmen.
  • Auch dazu wird vorzugsweise unmittelbar nach der Inbetriebnahme während des Standby-Betriebes ohne Zapfung die Referenztemperatur der Heizeinrichtung 4 gemessen und abgespeichert. Eine Veränderung relativ zum Referenzwert wird bewertet und als Verkalkungsgrad vorzugsweise am Endgerät angezeigt.
  • Die genannten Funktionen können ergänzt werden durch beispielsweise eine Bestückung mit einem weiteren Kommunikationsmodul, das Daten direkt mit dem Betreiber des Stromnetzes, dem Energieversorgungsunternehmen (EVU), austauscht und das Haustechnikgerät 100 ferngesteuert betreibt.
  • In 4 ist ein Haustechnikgerät 100 dargestellt, das mit zwei Kommunikationsmodulen ausgerüstet ist. Es ist selbstverständlich möglich, die genannten Kommunikationsmodule direkt auf einer Hauptplatine des Haustechnikgerätes 100 zu integrieren.
  • Die Kommunikation des EVU mit dem Haustechnikgerät 100 wird dann über das Datenkonvertiermodul 11a und das Funkmodul 12a mit dem Server des EVU 15a organisiert. Das EVU sendet dann ein Wärmebedarfssignal 14a zum Funkmodul 12a. Das Funkmodul 12a gibt dann zum Beispiel ein „Heizen Ein“ oder „Heizen Aus“ Signal 13a zurück an das EVU. Ebenso ist es möglich, dem EVU die voraussichtliche Dauer der Stillstandsphase („Heizen Aus“) oder die voraussichtliche Dauer der Aufheizphase („Heizen Ein“) über ein festgelegtes Datenprotokoll als Signal 13a mitzuteilen.
  • Eine mögliche Struktur der Kommunikation ist in 5 dargestellt.
  • In 5 ist eine Kommunikation 510 des Gerätes mit dem Server 15a eines EVU (utility) dargestellt, während unten eine Kommunikation 520 über einen WIFI Router 15 und einen Cloud Server 16 zu dem Empfänger (Endgerät 17) gezeigt ist. Es ist ebenso möglich, dass ein Haustechnikgerät 100 mit zwei Kommunikationsmodulen ausgerüstet wird, um unabhängig voneinander mit dem Nutzer (Endgerät 17 z.B. Smartphone) und dem EVU zu kommunizieren.
  • Von Vorteil ist es, wenn das Haustechnikgerät 100 es merkt, sobald ein Kommunikationsmodul angeschlossen wird und selbständig Daten z.B. wegen Ad-Hoc Pairing mit einem Endgerät 17 und/oder Informationen über einen Verbrühschutz, dem Mindestwarmwassertemperatur-Sollwert und den aufgrund des Verbrühschutzes höchsten Warmwassertemperatur-Sollwert ausgetauscht werden, um die Komfortansprüche des Nutzers nicht ungewollt zu beeinflussen.
  • Ein Verfahren 600 zum Betrieb des Haustechnikgerätes 100 wird nachfolgend anhand des schematischen und exemplarischen Flussdiagramms der 6 erläutert.
  • Zunächst wird das Haustechnikgerät 100 in einem Schritt 605 mit Standardwerten betrieben und es wird geprüft, ob das Kommunikationsmodul zur Kommunikation mit dem Endgerät 17 enthalten ist. Falls dem nicht der Fall ist, wird in einem Schritt 610 die Einstellung des Haustechnikgerätes über eine interne Anzeige durchgeführt.
  • Andernfalls wird in einem Schritt 615 geprüft, ob das Kommunikationsmodul zur Kommunikation mit dem EVU vorhanden ist. Falls ja, wird in einem Schritt 620 geprüft, ob eine Mischarmatur vorhanden ist. Falls nein, wird in einem Schritt 625 die Einstellung im Display vorgenommen. Falls die Mischarmatur vorhanden ist, kann der maximale Warmwassertemperatur-Sollwert Tmax in einem Schritt 630 höher festgelegt werden.
  • Bei der der Konfiguration oder der Inbetriebnahme des Haustechnikgerätes 100 werden also spezifische Parameter des angeschlossenen Warmwasserverteilsystems, wie das Vorhandensein einer Zentralen Mischarmatur mit dem Parameter „Mischarmatur vorhanden“ der Steuerung 5 über die integrierte Anzeigetafel 7 und/oder das Endgerät 17 mitgeteilt. Wenn der Steuerung 5 in Schritt 620 mitgeteilt wird, dass eine zentrale Mischarmatur vorhanden ist, kann der Warmwassertemperatur-Sollwert bis zum Beispiel maximal 85°C erhöht werden, wenn das Haustechnikgerät 100 von einem EVU ferngesteuert wird, um bei Bedarf des EVU viel Wärme bei niedrigen Stromtarif zu speichern.
  • In Schritt 635 wird die gelernte Sollwerttemperatur TRed erhalten. Die Tarife für Hochtarif und Niedertarif werden in Schritt 640 eingegeben.
  • In Schritt 645 wird geprüft, ob anhand einer Anforderung des EVU ein Heizen erfolgt. In Schritt 650 werden die Laufzeiten der Heizeinrichtung 4 anhand der Gültigkeitszeiten von Hochtarif / Niedertarif ermittelt. Aus allen Maßnahmen wird die erfolgte Einsparung in Schritt 655 ermittelt und vorzugsweise dem Nutzer über das Endgerät 17 bereitgestellt.
  • Für die Zeit, in der das EVU keinen Bedarf hat, kann das Gerät also auf dem reduzierten Warmwassertemperatur Sollwert TRed betrieben werden. Der reduzierte Warmwassertemperatur-Sollwert TRed kann ein aus der bei Inbetriebnahme des Gerätes folgenden Lernfunktion ermittelter Mindest-Warmwassertemperatur-Sollwert sein. Durch eine Eingabe der unterschiedlichen Tarife an dem Bedienfeld 7 oder über das Endgerät kann von Zeit zu Zeit eine aufsummierte Einsparung gegenüber einem Referenztarif ausgegeben werden. Ebenso ist es möglich, eine Verbrühwarnung auszugeben, wenn eine bestimmte Wassertemperatur überschritten ist. Die Schritte 660 bis 685 entsprechen im Wesentlichen den Schritten 340 bis 420 für den Fall, dass in Schritt 660 ein vorhandenes Endgerät detektiert wurde.

Claims (10)

  1. Verfahren zum Betreiben eines Haustechnikgerätes (100), insbesondere eines Warmwasserspeichers, wobei das Haustechnikgerät (100) zur Kommunikation mit einem Energieversorgungsunternehmen, EVU (15a), und zur Kommunikation mit einem Endgerät (17) eines Nutzers, insbesondere einem Smartphone, ausgebildet ist, wobei das Verfahren die folgenden Schritte aufweist: - Betreiben des Haustechnikgerätes (100) auf einer reduzierten Sollwerttemperatur (TRed), wobei die reduzierte Sollwerttemperatur (TRed) anhand einer Lernfunktion für den Nutzer ermittelt ist, wenn das EVU (15a) keinen Bedarf zur Energieabnahme an das Haustechnikgerät (100) kommuniziert, - Empfangen eines Bedarfssignals von dem EVU (15a) und Betreiben des Haustechnikgerätes (100) auf einer erhöhten Sollwerttemperatur, wobei die erhöhte Sollwerttemperatur höher als die reduzierte Sollwerttemperatur (TRed) ist.
  2. Verfahren nach Anspruch 1, wobei das Verfahren weiter umfasst: - Prüfen, ob eine Mischarmatur vorhanden ist, und - in dem Fall, dass eine Mischarmatur vorhanden ist, Ermöglichen, dass die erhöhte Sollwerttemperatur auf einen Wert größer 60°C, insbesondere größer 70°C und besonders bevorzugt mindestens 85°C ansteigt.
  3. Verfahren nach einem der vorstehenden Ansprüche, wobei die Sollwerttemperatur eine zeitlich veränderliche Sollwerttemperatur ist, die an das Nutzerverhalten angepasst ist.
  4. Verfahren nach einem der vorstehenden Ansprüche, wobei das Verfahren vor dem Schritt des Betreibens des Haustechnikgerätes (100) auf der reduzierten Sollwerttemperatur (TRed) weiter umfasst: - Inbetriebnahme des Haustechnikgerätes (TRed), wobei sich an die Inbetriebnahme eine Lernfunktion mit vordefiniertem Zeitraum, beispielsweise drei Tage, anschließt, wobei die Lernfunktion zur Ermittlung eines zeitlich aufgelösten Nutzerverhaltens ausgebildet ist, - Bestimmung einer reduzierten oder erhöhten Sollwerttemperatur nach Abschluss des vordefinierten Zeitraums.
  5. Verfahren nach einem der vorstehenden Ansprüche, wobei das Verfahren wenigstens eine, vorzugsweise sämtliche, der nachfolgenden Funktionen während des Betriebs des Haustechnikgeräts ermöglicht: - Minimierung des Bereitschaftswärmeaufwands durch temporäre Absenkung der Warmwassertemperatur, - Erkennen einer längeren Abwesenheit des Benutzers und Betreiben des Haustechnikgerätes (100) in einem Absenkbetrieb mit abgesenkter Warmwassertemperatur bei dem Erkennen einer Abwesenheit, wobei insbesondere bei Unterschreiten eines vordefinierten Abstandes des Nutzers von dem Haustechnikgerät (100) der Absenkbetrieb beendet wird, - Durchführen einer verbrauchsabhängigen Legionellen-Funktion und - Detektieren einer Verkalkung des Haustechnikgerätes (100).
  6. Verfahren nach Anspruch 5, wobei das Verfahren vor der Aktivierung jeder der Funktionen eine Bestätigung auf dem Endgerät (17) des Nutzers fordert.
  7. Verfahren nach einem der vorstehenden Ansprüche, wobei ein Betrieb des Haustechnikgerätes (100) unter Steuerung der EVU (15a), insbesondere nach Empfang des Bedarfsignals, durch das Endgerät (17) und den Nutzer überschrieben wird.
  8. Haustechnikgerät (100), insbesondere Warmwasserspeicher, mit einer Steuerung (5), wobei die Steuerung (5) zur Durchführung des Verfahrens nach einem der vorstehenden Ansprüche ausgebildet ist.
  9. Haustechnikgerät (100) nach Anspruch 8, wobei das Haustechnikgerät (100) zwei Schnittstellen zum Anschluss von Kommunikationsmodulen (11, 12; 11a, 12a) aufweist, wobei eines der Kommunikationsmodule zur Kommunikation mit einem EVU (15a) und das andere der Kommunikationsmodule zur Kommunikation mit einem Endgerät (17) eines Nutzers, insbesondere einem Smartphone, ausgebildet ist, wobei die Steuerung (5) vorzugsweise zur automatischen Erkennung des Anschlusses eines Kommunikationsmoduls ausgebildet ist.
  10. Haustechnikgerät (100) nach Anspruch 9, wobei die Steuerung bei Erkennung des Anschlusses eines Kommunikationsmoduls Daten, beispielsweise für ein Ad Hoc Pairing mit einem Endgerät des Nutzers und/oder Informationen über einen Verbrühschutz, eine Mindestsollwerttemperatur, beispielsweise der reduzierten Sollwerttemperatur, und/oder die aufgrund des Verbrühschutzes höchste zulässige Sollwerttemperatur, automatisch ausgetauscht.
DE102020106464.0A 2020-03-10 2020-03-10 Haustechnikgerät, insbesondere Warmwasserbereiter, und zugehöriges Verfahren Pending DE102020106464A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102020106464.0A DE102020106464A1 (de) 2020-03-10 2020-03-10 Haustechnikgerät, insbesondere Warmwasserbereiter, und zugehöriges Verfahren
EP21161796.4A EP3879190B1 (de) 2020-03-10 2021-03-10 Haustechnikgerät, insbesondere warmwasserbereiter, und zugehöriges verfahren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020106464.0A DE102020106464A1 (de) 2020-03-10 2020-03-10 Haustechnikgerät, insbesondere Warmwasserbereiter, und zugehöriges Verfahren

Publications (1)

Publication Number Publication Date
DE102020106464A1 true DE102020106464A1 (de) 2021-09-16

Family

ID=74870726

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102020106464.0A Pending DE102020106464A1 (de) 2020-03-10 2020-03-10 Haustechnikgerät, insbesondere Warmwasserbereiter, und zugehöriges Verfahren

Country Status (2)

Country Link
EP (1) EP3879190B1 (de)
DE (1) DE102020106464A1 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2615385A1 (de) 2012-01-13 2013-07-17 STIEBEL ELTRON GmbH & Co. KG Systemmanager für leistungsgeregelte Energiewandler

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3016639A1 (de) * 1980-04-30 1981-11-05 Forbach Gmbh & Co Kg, 8740 Bad Neustadt Wasserspeichererhitzer
DE58903512D1 (de) * 1988-08-31 1993-03-25 Landis & Gyr Betriebs Ag Sollwertgeber fuer einen brauchwasserspeicher-regler.
DE102012024705A1 (de) * 2012-12-18 2014-06-18 Robert Bosch Gmbh Verfahren zum Betrieb eines Trinkwarmwasserbereiters

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2615385A1 (de) 2012-01-13 2013-07-17 STIEBEL ELTRON GmbH & Co. KG Systemmanager für leistungsgeregelte Energiewandler

Also Published As

Publication number Publication date
EP3879190B1 (de) 2024-05-01
EP3879190A1 (de) 2021-09-15

Similar Documents

Publication Publication Date Title
DE69632216T2 (de) Verfahren zur Energieverwaltung in einer Haushaltsumgebung
DE102016015503B4 (de) Verfahren zur Temperierung mindestens eines Gebäuderaums mit Prognose und Optimierung der Energieaufnahme
DE2837262A1 (de) Regelungs- und messystem der wohnungsspezifischen heizung/kuehlung und verfahren zum kalibrieren des systems
DE102014011311A1 (de) Wärmemessungs- und Steuersystem bezogen auf Unterschied der Innen- und Außentemperatur, die Wärmeaufteilungsberechnung und die Kontrollmethode
DE602004003870T2 (de) Cogenerationssystem, Steuerungseinheit für eine Cogenerationsanlage, und Betreibsprogramm der Cogenerationsanlage
EP3091294A1 (de) Verfahren und vorrichtung zur steuerung der wärmeversorgung von wärmeverbrauchern
AT509882B1 (de) Verfahren zur steuerung einer wärmeversorgungsanlage
WO2019081501A1 (de) Energiemanagementsystem zum vorausschauenden ermitteln und regeln einer vorlauftemperatur einer gebäudeheizung
DE102019001743A1 (de) Haushaltsgerät und zugehöriges Verfahren zum Steuern
DE4125839A1 (de) Nah-versorgungs-system
EP3879190B1 (de) Haustechnikgerät, insbesondere warmwasserbereiter, und zugehöriges verfahren
EP2246768A2 (de) Regelverfahren für ein Heizungssystem
DE102008040436A1 (de) Verfahren zum Ermitteln einer Sollvorlauftemperatur für eine Regelung einer Warmwasserheizung eines Gebäudes
WO1989012342A1 (en) Process and system for reducing power peaks of supply and/or consumption of power transmitted through lines
EP1447627A1 (de) Vorrichtung und Verfahren zum Steuern und/oder Regeln für die Gebäudeheizung oder -kühlung
DE102005007452A1 (de) Vorrichtung zur thermischen Desinfektion von Trinkwarmwasserversorgungsanlagen
EP2998802B1 (de) Energieverteilsystem für ein Energienetz
DE10125672B4 (de) Verfahren und Vorrichtung zur Warmwasserbereitung
DE3538934C2 (de)
DE202021002540U1 (de) Geschirrspülmaschine mit Leistungsanpassung zur Eigenverbrauchsmaximierung bei lokaler regenerativer Stromerzeugung
WO2022122581A1 (de) Verfahren zum betreiben einer wärmepumpe
EP2667475A1 (de) Vorrichtung und Verfahren zum Ändern eines Stromverbrauchsprofils von mindestens einer Person in einem Haus oder in einer Wohneinheit mit einem Verteilnetz
EP2110613A2 (de) Verfahren und Vorrichtung zur dezentralen Warmwasserbereitung
DE19734361A1 (de) Vorrichtung zum Betreiben einer Heizungsanlage
DE19810320C2 (de) Anlage zum Heizen und zum Erzeugen von Warmwasser mit zentraler Steuerung und Zusatzsteuerung

Legal Events

Date Code Title Description
R163 Identified publications notified
R012 Request for examination validly filed