DE102019207170A1 - Verfahren zur Verhinderung einer Kollision eines Werkzeugs mit einer Baumaschine - Google Patents

Verfahren zur Verhinderung einer Kollision eines Werkzeugs mit einer Baumaschine Download PDF

Info

Publication number
DE102019207170A1
DE102019207170A1 DE102019207170.8A DE102019207170A DE102019207170A1 DE 102019207170 A1 DE102019207170 A1 DE 102019207170A1 DE 102019207170 A DE102019207170 A DE 102019207170A DE 102019207170 A1 DE102019207170 A1 DE 102019207170A1
Authority
DE
Germany
Prior art keywords
tool
construction machine
minimum distance
working arm
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102019207170.8A
Other languages
English (en)
Inventor
Christian Krause
Kai Liu
Horst Wagner
Bilge Manga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102019207170.8A priority Critical patent/DE102019207170A1/de
Publication of DE102019207170A1 publication Critical patent/DE102019207170A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2033Limiting the movement of frames or implements, e.g. to avoid collision between implements and the cabin
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like

Abstract

Die Erfindung betrifft ein Verfahren zur Verhinderung einer Kollision eines Werkzeugs (2) einer Baumaschine (1) mit der Baumaschine (1), die über einen Arbeitsarm (3) mit dem Werkzeug (2) verbunden ist. Zunächst wird ein Minimalabstand (Amin) zu der Baumaschine (1) aus bekannten Abmessungen der Baumaschine (1) definiert. Anschließend wird eine Position des Werkzeugs (2) mit Hilfe eines oder mehrerer der Sensoren inertiale Messeinheit, Winkelsensoren (4), Linearsensoren durch einen Algorithmus zur Bestimmung einer kinematischen Kette der Baumaschine (1) bestimmt. Wenn die Position des Werkzeugs (2) den Minimalabstand (Amin) zu der Baumaschine (1) unterschreitet, erfolgt ein Unterbinden (40) und/oder Steuern (50) der Bewegung des Werkzeugs (2) und/oder des Arbeitsarms (3) zur Verhinderung der Kollision des Werkzeugs (2) mit der Baumaschine (1).

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Verhinderung einer Kollision eines an der Baumaschine angebrachten Werkzeugs und/oder einer Last am Werkzeug mit der Baumaschine selbst. Ferner betrifft die Erfindung ein Computerprogramm, das jeden Schritt des Verfahrens ausführt, wenn es auf einem Rechengerät abläuft, sowie ein maschinenlesbares Speichermedium, welches das Computerprogramm speichert. Schließlich betrifft die Erfindung ein elektronisches Steuergerät, welches eingerichtet ist, das erfindungsgemäße Verfahren auszuführen.
  • Stand der Technik
  • Bei Baumaschinen mit einem Werkzeug, das über einen Arbeitsarm mit der Arbeitsmaschine verbunden ist, kommt es gelegentlich zu Unfällen, bei denen das Werkzeug mit der Baumaschine kollidiert. Dies kann zum einen durch falsche Handhabung oder Unachtsamkeit eines Bedieners passieren oder bei automatisierten Baumaschinen durch eine fehlerhafte Ansteuerung.
  • Es sind Algorithmen zur Bestimmung der kinematischen Kette bekannt. An jedem Glied des Werkzeugarms ist hierfür einer oder mehrere der folgenden Sensoren inertiale Messeinheit (IMU, inertial measuring unit), Winkelsensoren, Linearsensoren angeordnet, welche Sensordaten an ein Rechengerät senden. Die so ermittelten Sensordaten werden für jeden Sensor individuell gefiltert und zur Zustandsschätzung der Orientierung des jeweiligen Sensors relativ zu einem ortsfesten Inertialkoordinatensystem fusioniert. Ein solcher Algorithmus wird bei der Tool Center Point Estimation verwendet. Die Tool Center Point Estimation ist ein Algorithmus zur Zustandsschätzung von Orientierung und Position eines Endeffektors. Der Endeffektor ist insbesondere ein Werkzeug oder ein Teil eines Werkzeugs, das einen Werkzeugarm mit mehreren Gliedern, die über Gelenke verbunden sind, aufweist.
  • Typischerweise verwendete Verfahren sind in der Abhandlung von Nikolas Trawny und Stergios I. Roumeliotis. „Indirect Kalman filter for 3D attitude estimation“ University of Minnesota, Dept. of Comp. Sci. & Eng., Tech. Rep 2 (2005), in der Abhandlung von Robert Mahony, Tarek Hamel, und Jean-Michel Pflimlin, „Nonlinear complementaryfilters on the special orthogonal group“, IEEE Transactions on automatic control 53.5 (2008): 1203-1218, sowie in der Abhandlung von Sebastian Madgwick, „An efficient orientation filter for inertial and inertial/magnetic sensor arrays“ Report x-io and University of Bristol (UK) 25 (2010), beschrieben, auf die insoweit verwiesen wird.
  • Aus der so geschätzten Orientierung des Sensors wird zunächst die Orientierung des Glieds, an dem der Sensor angeordnet ist, bestimmt. Dies wird für alle Glieder des Werkzeugarms durchgeführt. Aus der relativen Orientierung zweier aufeinanderfolgender Glieder lässt sich bei bekannter Kinematik (zum Beispiel bei bekannten Denavit-Hartenberg Parametern) der Gelenkwinkel des Gelenks, das die beiden Glieder verbindet, berechnen. Sind schließlich alle Gelenkwinkel und die Maße der Glieder bekannt, folgt die gesamte Konfiguration des Werkzeugarms direkt aus der Vorwärtskinematik und somit die Orientierung und Position des Endeffektors.
  • Für eine detaillierte Beschreibung wird auf die Abhandlung von Mark W. Spong, Seth Hutchinson und Mathukumalli Vidyasagar, „Robot modeling and control“, Vol. 3. New York: Wiley, 2006, verwiesen.
  • Offenbarung der Erfindung
  • Es wird ein Verfahren zur Verhinderung einer Kollision eines an einer Baumaschine angeordneten Werkzeugs und/oder einer Last, die von dem Werkzeug transportiert wird oder an diesem hängt oder in anderer Weise angeordnet ist, mit der Baumaschine selbst, die über einen Arbeitsarm mit dem Werkzeug verbunden ist, vorgeschlagen.
  • Zunächst wird als Grenzwert ein Minimalabstand zu der Baumaschine definiert, der vom Werkzeug nicht unterschritten werden darf. Der Minimalabstand wird aus den bekannten Abmessungen der Baumaschine definiert und repräsentiert einen sicherheitsrelevanten Bereich (Sicherheitsbereich) um die Baumaschine. Der Minimalabstand ist abhängig vom Werkzeug und kann zudem von weiteren Parametern, wie z. B. äußeren Einflüssen, insbesondere einem starken Wind usw., abhängen. Vorzugsweise kann ein Modell der Baumaschine herangezogen werden, aus dem die Abmessungen der Baumaschine und/oder der Minimalabstand - vorteilhafterweise beide - ermittelt werden. Alternativ können die Abmessungen im Vorhinein gemessen werden.
  • Der Minimalabstand kann für unterschiedliche Abschnitte des Sicherheitsbereichs um die Baumaschine unterschiedlich definiert werden. Außerdem kann der Minimalabstand abhängig von der auszuführenden Arbeitssequenz definiert werden. Vorteilhafterweise wird der Minimalabstand so gewählt, dass das Werkzeug, wenn es den Minimalabstand unterschreitet, bei typischen Geschwindigkeiten noch abgebremst werden kann, bevor es die Baumaschine erreicht. Am Beispiel eines Baggers kann der Minimalabstand in der Nähe des Bodens, wo oftmals der Arbeitsbereich des Baggers liegt, kleiner gewählt werden als z. B. in der Nähe der Führerkabine. Zudem kann der Minimalabstand beim Heben einer Last größer definiert werden als z. B. beim Ausbaggern einer Grube. Dadurch werden sicherheitsrelevante Gesichtspunkte berücksichtigt.
  • Generell kann der Minimalabstand lastabhängig bestimmt werden. Das Gewicht der Last am Werkzeug kann beispielsweise über einen Gewichtssensor gemessen werden oder aus einen Druck in der Hydrauliksteuerung für das Werkzeug ermittelt werden. Die Signale können dann an ein elektronisches Steuergerät weitergegeben werden, in dem sie verarbeitet werden.
  • Darüber hinaus kann der Minimalabstand abhängig von einer Schwingung der Last am Werkzeug gewählt werden. Wird die Last beispielsweise über Ketten oder Seile angehoben und bewegt, so können Schwingungen mit Amplituden in der Größenordnung des Minimalabstands entstehen. Bei solchen Schwingungen wird der Minimalabstand vorteilhafterweise größer gewählt. Die Schwingungen der Last können zum einen mittels zumindest eines Gewichtssensors (siehe oben) ermittelt werden. Die Signale werden an das elektronische Steuergerät weitergegeben. Dort werden die Signale analysiert und auf bestimmte Schwingungen untersucht, die charakteristisch für die Schwingungen der Last sind, insbesondere wird dabei der Frequenzbereich und/oder die Phasenlage der Schwingungen im Signal bestimmt. Zum anderen können die Schwingungen mittels der unten beschriebenen inertialen Messeinheiten bestimmt werden. Insbesondere wird hierbei die Position des Tool Center Points über die Zeit ermittelt und auf die Schwingung der Last geschlossen.
  • Anschließend, insbesondere während des gesamten Verfahrens, wird eine Position des Werkzeugs mit Hilfe eines oder mehrerer der Sensoren inertiale Messeinheit, Winkelsensoren, Linearsensoren durch einen Algorithmus zur Bestimmung der kinematischen Kette bestimmt. Der Algorithmus zur Bestimmung der kinematischen Kette basiert auf Sensorsignalen der Sensoren, die wenigstens an dem zumindest einen Teil des Werkzeugs und bevorzugt an jedem Glied der kinematischen Kette zwischen der Baumaschine und dem Werkzeug angeordnet sind. Mittels diesen Sensoren können z. B. Gelenkwinkel zwischen den Gliedern der kinematischen Kette gemessen werden. Inertiale Messeinheiten lassen sich leicht und kostengünstig nachrüsten und können für andere Verfahren verwendet werden.
  • Wenn die Position des Werkzeugs den Minimalabstand unterschreitet, d. h. wenn das Werkzeug in den Sicherheitsbereich der Baumaschine eindringt, wird die Bewegung des Werkzeugs und/oder des Arbeitsarms unterbunden oder in anderer Weise gesteuert, sodass die Kollision des Werkzeugs mit der Baumaschine verhindert wird.
  • Zum einen kann die Bewegung des Werkzeugs und/oder des Arbeitsarms gestoppt werden, wenn die Position des Werkzeugs den Minimalabstand zu der Baumaschine unterschreitet. Auf diese Weise wird eine Nothalt-Funktion implementiert. Diese Funktion kommt insbesondere dann zum Einsatz, wenn ein Bediener das Werkzeug so ansteuert, dass es direkt in den Sicherheitsbereich eindringt. Neben dem Stoppen der Bewegung kann beim Unterbinden der Bewegung auch die manuelle Steuerung verhindert werden. Die Unterbindung der Bewegung kann wieder aufgehoben werden. Insbesondere kann dies direkt durch den Bediener oder eine andere verantwortliche Person veranlasst werden. Alternativ kann, nachdem die Bewegung unterbunden wurde, die Bewegung des Werkzeugs und/oder des Arbeitsarms automatisch gesteuert werden und zwar derart, dass das Werkzeug aus dem Minimalabstand heraus bewegt wird.
  • Zum anderen kann die Bewegung des Werkzeugs und/oder des Arbeitsarms so geregelt werden, dass der Minimalabstand zu der Baumaschine nicht weiter unterschritten wird. Demnach wird das Werkzeug auf einen Abstand von der Baumaschine entfernt geregelt, der größer als der Minimalabstand ist. Auf diese Weise wird eine Abstandsregelung implementiert. Diese Funktion kann dann zum Einsatz kommen, wenn eine andere Bewegung ausgeführt werden soll, welche den Abstand zwischen Werkzeug und Baumaschine beeinflusst.
  • Das Computerprogramm ist eingerichtet, jeden Schritt des Verfahrens durchzuführen, insbesondere, wenn es auf einem Rechengerät oder Steuergerät durchgeführt wird. Es ermöglicht die Implementierung des Verfahrens in einem herkömmlichen elektronischen Steuergerät, ohne hieran bauliche Veränderungen vornehmen zu müssen. Hierzu ist es auf dem maschinenlesbaren Speichermedium gespeichert.
  • Durch Aufspielen des Computerprogramms auf ein herkömmliches elektronisches Steuergerät, wird das elektronische Steuergerät erhalten, welches eingerichtet ist, eine Kollision des Werkzeugs mit der Baumaschine zu verhindern.
  • Figurenliste
  • Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert.
    • 1a zeigt eine schematische Darstellung einer Baumaschine, wobei ein Werkzeug der Baumaschine von dieser beabstandet ist.
    • 1b zeigt eine schematische Darstellung der Baumaschine, wobei sich das Werkzeug innerhalb eines Minimalabstands zur Baumaschine befindet.
    • 2 zeigt ein Ablaufdiagramm des erfindungsgemäßen Verfahrens.
  • Ausführungsbeispiele der Erfindung
  • 1 a und b zeigen jeweils eine schematische Darstellung einer Baumaschine 1 in Form eines Baggers mit einem als Schaufel ausgebildeten Werkzeug 2. Das Werkzeug 2 ist über einen Arbeitsarm 3 mit der Baumaschine 1 verbunden und kann eine hier nicht dargestellte Last transportieren. Der Arbeitsarm ist mehrgliedrig ausgebildet, wobei jeweils ein Gelenk 4 zwischen den einzelnen Armgliedern sowie zwischen dem Arbeitsarm 3 und dem Werkzeug 2 und zwischen dem Arbeitsarm 3 und der Baumaschine 1 ausgebildet ist, über das die Komponenten zueinander beweglich sind. Die Baumaschine 1, der Arbeitsarm 3 und das Werkzeug 2 bilden eine kinematische Kette. Für jedes Glied der kinematischen Kette ist an den Gelenken 4 jeweils ein Gelenkwinkelsensor (nicht dargestellt) angeordnet, der den Winkel des Gelenks 4 zwischen zwei miteinander verbundenen Gliedern misst. In anderen Ausführungsformen ist an jedem Glied der kinematischen Kette ein inertialer Sensor einer inertialen Messeinheit angeordnet. Die Sensoren sind mit einem elektronischen Steuergerät 5 der Baumaschine 1 verbunden. In dieser Ausführungsform umfasst die Baumaschine 1 einen Oberbau 6, in dem das Führerhaus angeordnet ist, und einen Unterbau 7, mit dem die Baumaschine 1 auf dem Boden steht. Der Oberbau 6 kann sich gegenüber dem Unterbau 7 mittels eines dazwischen angeordneten Gelenks 8 drehen.
  • Darüber hinaus ist ein Minimalabstand Amin dargestellt, der einen Sicherheitsbereich um die Baumaschine herum definiert. Auch wenn der Minimalabstand Amin in den 1a,b überall gleich groß ist, kann er in anderen Ausführungsbeispielen für unterschiedliche Abschnitte der Baumaschine verschieden groß sein. Zum Beispiel kann der Minimalabstand Amin für den Unterbau 7 kleiner gewählt werden als für den Oberbau 6, da in diesem Bereich typischerweise Arbeiten ausgeführt werden. Des Weiteren wird der Minimalabstand Amin abhängig von der Last am Werkzeug 2 gewählt werden. Zur Ermittlung der Last kann ein hier nicht gezeigter Gewichtssensor vorgesehen sein. Außerdem wird der Minimalabstand abhängig von Schwingungen der Last gewählt werden. Wenn die Last z. B. an einer Kette oder an einem Seil hängt, kann die Amplitude groß genug sein, um den Minimalabstand Amin zu überschreiten. In diesem Fall wird der Minimalabstand Amin größer gewählt. Zur Ermittlung der Last kann der oben erwähnte Gewichtssensor vorgesehen sein. Zur Ermittlung der Schwingung können auch die obengenannten inertialen Sensoren verwendet werden. Die schwingende Last führt zu charakteristischen Schwingungen des Signals des Gewichtssensors in einem bestimmten Frequenzbereich mit einer bestimmten Phasenlage. Der Minimalabstand wird zudem so gewählt, dass das Werkzeug 2 mit der Last, nicht so weit von Baumaschine 1 entfernt geführt wird, dass ein Kippen der Baumaschine 1 erfolgen könnte.
  • In 1a ist ein Zustand dargestellt, bei dem das Werkzeug 2 von der Baumaschine 1 beabstandet ist und somit die Position des Werkzeugs 2 weit außerhalb des Minimalabstands Amin liegt. In diesem Zustand können das Werkzeug 2, der Arbeitsarm 3 und die Baumaschine 1 frei betrieben werden, ohne dass das Risiko einer Kollision zwischen dem Werkzeug 2 und dem Baumaschine 1 besteht.
  • In 1b ist ein Zustand dargestellt, bei dem die Position das Werkzeug 2 innerhalb des Minimalabstands Amin liegt. Hier besteht ein erhebliches Risiko einer Kollision zwischen dem Werkzeug 2 und der Baumaschine 1. Daher repräsentiert der Minimalabstands Amin einen Sicherheitsbereich um die Baumaschine 1, in dem es zu einer Kollision kommen kann. Erfindungsgemäß ist es für den in 1b gezeigten Zustand vorgesehen, die Bewegung des Werkzeugs 2 und des Arbeitsarms 3 zu unterbinden und/oder die Bewegung des Werkzeugs 2 und des Arbeitsarms 3 so zu steuern, dass keine Kollision stattfindet.
  • 2 zeigt ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens. Bereits im Vorhinein wird der Minimalabstand Amin abhängig von der Baumaschine 1 und dem Werkzeug 2 definiert. Der Minimalabstand Amin wird aus den bekannten Abmessungen der Baumaschine 1 definiert. Die Abmessungen der Baumaschine 1 können in einem Modell M der Baumaschine 1 hinterlegt sein. Außerdem kann das Modell M bei der Bestimmung des Minimalabstands Amin herangezogen werden. In weiteren Ausführungsbeispielen können die Abmessungen im Vorhinein direkt gemessen werden. Der Minimalabstand Amin ist abhängig vom gewählten Werkzeug und der auszuführenden Arbeitssequenz. Zudem können weitere Parameter, wie z. B. der Wind oder andere äußere Einflüsse miteinbezogen werden. Diese können unter anderem die obengenannten Schwingungen beeinflussen.
  • Während des gesamten Verfahrens wird die Position P des Werkzeugs 2 bestimmt 20. Hierfür wird die an sich bekannte Tool Center Point Estimation verwendet, welche die Position P aus den von den Gelenkwinkelsensoren gemessenen Gelenkwinkel der gesamten kinematischen Kette ermittelt. Hierfür werden die Abmessungen des Arbeitsarms 3 verwendet, die ebenfalls in dem obengenannten Modell M hinterlegt sein können. Auch diese Abmessungen können alternativ im Vorhinein direkt gemessen werden.
  • In einer kontinuierlichen Abfrage 30 wird geprüft, ob sich die Position P des Werkzeugs 2 innerhalb des Minimalabstands Amin zur Baumaschine 1 befindet. Der Minimalabstand Amin dient demnach als Schwelle für die Abfrage 30. Befindet sich die Position P außerhalb des Minimalabstands Amin, liegt der in 1a dargestellte Zustand vor und es besteht kein Risiko einer Kollision. Das Verfahren wird fortgeführt, und weiterhin die Position P des Werkzeugs 2 ermittelt. Befindet sich die Position P innerhalb des Minimalabstands Amin, liegt der in 1b dargestellte Zustand vor und es besteht ein erhebliches Risiko für eine Kollision. In diesem Fall werden Gegenmaßnahmen eingeleitet.
  • Zum einen ist es vorgesehen, die Bewegung des Werkzeugs 2 und/oder des Arbeitsarms 3 zu unterbinden 40. Dabei wird die Bewegung des Werkzeugs 2 und/oder des Arbeitsarms 3 gestoppt, d. h. es wird ein Nothalt ausgeführt. Diese Gegenmaßnahme wird vor allem dann eingesetzt, wenn das Werkzeug 2, insbesondere auf Befehl eines Bedieners hin, direkt auf die Baumaschine 1 zubewegt. Zum anderen ist es vorgesehen, die Bewegung des Werkzeugs 2 und/oder des Arbeitsarms 3 so zu steuern 50, dass eine Kollision vermieden wird. Zu letzterem gehört auch, die Bewegung des Werkzeugs 2 und/oder des Arbeitsarms 3 so zu regeln, dass der Minimalabstand Amin zu der Baumaschine 1 nicht unterschritten wird. Diese Gegenmaßnahme wird vor allem dann eingesetzt, wenn das Werkzeug 2 und/oder der Arbeitsarm 3 nicht direkt bewegt werden. Als Beispiel dient der Fall einer Drehung des Oberbaus 6 um die Hochachse, bei dem die Bewegung des Werkzeugs 2 währenddessen so geregelt wird, dass der Minimalabstand Amin stets eingehalten wird. Auch kann die Bewegung des Werkzeugs 2 und/oder des Arbeitsarms 3 gesteuert 50 werden, nachdem die Bewegung des Werkzeugs 2 und/oder des Arbeitsarms 3 zuvor unterbunden 40 wurde, um das Werkzeug 2 wieder aus dem Sicherheitsbereich zu entfernen.

Claims (7)

  1. Verfahren zur Verhinderung einer Kollision eines Werkzeugs (2) einer Baumaschine (1) und/oder einer mittels eines Werkzeugs (2) einer Baumaschine (1) bewegten Last (2) mit der Baumaschine (1), die über einen Arbeitsarm (3) mit dem Werkzeug (2) verbunden ist, gekennzeichnet durch folgende Schritte: - Definieren (10) eines Minimalabstands (Amin) des Werkzeugs (2) zu der Baumaschine (1) aus bekannten Abmessungen der Baumaschine (1); - Bestimmen (20) einer Position (P) des Werkzeugs (2) mit Hilfe eines oder mehrerer der Sensoren inertiale Messeinheit, Winkelsensoren (4), Linearsensoren durch einen Algorithmus zur Bestimmung einer kinematischen Kette der Baumaschine (1); und - Unterbinden (40) und/oder Steuern (50) der Bewegung des Werkzeugs (2) und/oder des Arbeitsarms (3) zur Verhinderung der Kollision des Werkzeugs (2) mit der Baumaschine (1), wenn die Position (P) des Werkzeugs (2) den Minimalabstand (Amin) zu der Baumaschine (1) unterschreitet.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Abmessungen der Baumaschine (1) und/oder der Minimalabstand (Amin) zur Baumaschine (1) aus einem Modell (M) der Baumaschine (1) bestimmt werden.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Bewegung des Werkzeugs (2) und/oder des Arbeitsarms (1) gestoppt wird, wenn die Position (P) des Werkzeugs (2) den Minimalabstand (Amin) zu der Baumaschine (1) unterschreitet.
  4. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Bewegung des Werkzeugs (2) und/oder des Arbeitsarms (3) so geregelt wird, dass der Minimalabstand (Amin) zu der Baumaschine (1) nicht weiter unterschritten wird.
  5. Computerprogramm, welches eingerichtet ist, jeden Schritt des Verfahrens nach einem der Ansprüche 1 bis 4 durchzuführen.
  6. Maschinenlesbares Speichermedium, auf welchem ein Computerprogramm nach Anspruch 5 gespeichert ist.
  7. Elektronisches Steuergerät (5), welches eingerichtet ist, um mittels eines Verfahrens nach einem der Ansprüche 1 oder 4 eine Kollision eines Werkzeugs (2) einer Baumaschine (1) mit der Baumaschine (1) zu verhindern.
DE102019207170.8A 2019-05-16 2019-05-16 Verfahren zur Verhinderung einer Kollision eines Werkzeugs mit einer Baumaschine Pending DE102019207170A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102019207170.8A DE102019207170A1 (de) 2019-05-16 2019-05-16 Verfahren zur Verhinderung einer Kollision eines Werkzeugs mit einer Baumaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019207170.8A DE102019207170A1 (de) 2019-05-16 2019-05-16 Verfahren zur Verhinderung einer Kollision eines Werkzeugs mit einer Baumaschine

Publications (1)

Publication Number Publication Date
DE102019207170A1 true DE102019207170A1 (de) 2020-11-19

Family

ID=73018823

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102019207170.8A Pending DE102019207170A1 (de) 2019-05-16 2019-05-16 Verfahren zur Verhinderung einer Kollision eines Werkzeugs mit einer Baumaschine

Country Status (1)

Country Link
DE (1) DE102019207170A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69612271T2 (de) * 1996-01-22 2001-07-05 Hitachi Construction Machinery Antikollisionssystem für eine Baumaschine
DE69831713T2 (de) * 1997-01-07 2006-05-18 Hitachi Construction Machinery Co., Ltd. Kollisionsverhütungsvorrichtung für einen hydraulischen Bagger mit einem zweiteiligen Arm
DE102009018070A1 (de) * 2009-04-20 2010-10-21 Robert Bosch Gmbh Mobile Arbeitsmaschine mit einer Positionsregeleinrichtung eines Arbeitsarms und Verfahren zur Positionregelung eines Arbeitsarms einer mobilen Arbeitsmaschine
WO2014110502A1 (en) * 2013-01-11 2014-07-17 The Regents Of The University Of Michigan Monitoring proximity of objects at construction jobsites via three-dimensional virtuality in real-time
DE102016014759A1 (de) * 2016-12-10 2018-06-14 Hydac Electronic Gmbh Verfahren und System zur Schätzung eines Winkels sowie Arbeitsmaschine
US20180224280A1 (en) * 2017-02-03 2018-08-09 Caterpillar Trimble Control Technologies Llc Iterative estimation of centripetal accelerations of inertial measurement units in kinematic chains

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69612271T2 (de) * 1996-01-22 2001-07-05 Hitachi Construction Machinery Antikollisionssystem für eine Baumaschine
DE69831713T2 (de) * 1997-01-07 2006-05-18 Hitachi Construction Machinery Co., Ltd. Kollisionsverhütungsvorrichtung für einen hydraulischen Bagger mit einem zweiteiligen Arm
DE102009018070A1 (de) * 2009-04-20 2010-10-21 Robert Bosch Gmbh Mobile Arbeitsmaschine mit einer Positionsregeleinrichtung eines Arbeitsarms und Verfahren zur Positionregelung eines Arbeitsarms einer mobilen Arbeitsmaschine
WO2014110502A1 (en) * 2013-01-11 2014-07-17 The Regents Of The University Of Michigan Monitoring proximity of objects at construction jobsites via three-dimensional virtuality in real-time
DE102016014759A1 (de) * 2016-12-10 2018-06-14 Hydac Electronic Gmbh Verfahren und System zur Schätzung eines Winkels sowie Arbeitsmaschine
US20180224280A1 (en) * 2017-02-03 2018-08-09 Caterpillar Trimble Control Technologies Llc Iterative estimation of centripetal accelerations of inertial measurement units in kinematic chains

Similar Documents

Publication Publication Date Title
DE102015005908B4 (de) System zum Transportieren eines Werkstücks mit einer Funktion zur Überwachung einer externen Kraft
DE69631028T2 (de) Arbeitsbereich-Begrenzungssystem für eine Baumaschine.
EP2698234B1 (de) Vorrichtung und verfahren zum automatisierten entnehmen von in einem behälter angeordneten werkstücken
EP3274135B1 (de) Robustes intuitives bedienverfahren durch berührung eines manipulators
DE10296748T5 (de) Roboter
EP2984350A1 (de) Elektrohydraulischer steuerkreis
DE10107107A1 (de) Vorrichtung zur Betätigung eines Knickmasts eines Großmanipulators sowie Großmanipulator mit einer solchen Vorrichtung
DE102015005212A1 (de) Sicherheitsüberwachungsvorrichtung für einen ein Werkstück greifenden und tragenden Roboter
AT520008B1 (de) Verfahren zum Dämpfen von Drehschwingungen eines Lastaufnahmeelements einer Hebeeinrichtung
EP1332841A2 (de) Verfahren zur Steuerung eines Roboters und Steuereinheit für einen Roboter
EP3378823A1 (de) Kran
EP3395513A1 (de) Kollaboratives robotersystem
EP2208584B1 (de) Verfahren zur Steuerung von Industrierobotern
DE102016004466A1 (de) Verfahren zum Bewegen des letzten Gliedes einer kinematischen Kette sowie Vorrichtung und Arbeitsmaschine zum Durchführen des Verfahrens
EP2082852B1 (de) Verfahren und Vorrichtung zur Überwachung eines Manipulators
DE102019120633A1 (de) Verfahren zur automatischen Bewegung eines Arbeitsgeräts sowie Arbeitsgerät
DE102016120809A1 (de) Verfahren zum robotergestützten Einpassen eines männlichen Bauteils in ein weibliches Bauteil
EP2355957A1 (de) Verfahren und vorrichtung zum steuern eines manipulatorsystems
DE102019207170A1 (de) Verfahren zur Verhinderung einer Kollision eines Werkzeugs mit einer Baumaschine
WO2020229095A1 (de) Verfahren zur analyse der bodenbeschaffenheit und/oder des härtegrads des bodens
EP4130394A1 (de) Verfahren zur überwachung und/oder durchführung einer bewegung eines arbeitsgeräts sowie arbeitsgerät und computerprogrammprodukt
WO2022028828A1 (de) Vorrichtung und verfahren zum erfassen von geschwindigkeiten von armsegmenten eines roboters
WO2020229277A1 (de) Verfahren zum ablegen eines werkzeugs einer baumaschine
EP3427904B1 (de) Anordnung mit einem manipulator und einer begrenzungseinrichtung zur begrenzung des arbeitsbereichs
DD220581A1 (de) Verfahren zum sperren der arbeitsbewegungen von turmdrehkranen

Legal Events

Date Code Title Description
R163 Identified publications notified